ibmlana_init_one() must be __devinit
[linux-2.6/openmoko-kernel/knife-kernel.git] / include / asm-ia64 / bitops.h
bloba1b9719f5fbb7ba11071a92ddcd611e6945e2c2e
1 #ifndef _ASM_IA64_BITOPS_H
2 #define _ASM_IA64_BITOPS_H
4 /*
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9 * O(1) scheduler patch
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
16 #include <linux/compiler.h>
17 #include <linux/types.h>
18 #include <asm/intrinsics.h>
20 /**
21 * set_bit - Atomically set a bit in memory
22 * @nr: the bit to set
23 * @addr: the address to start counting from
25 * This function is atomic and may not be reordered. See __set_bit()
26 * if you do not require the atomic guarantees.
27 * Note that @nr may be almost arbitrarily large; this function is not
28 * restricted to acting on a single-word quantity.
30 * The address must be (at least) "long" aligned.
31 * Note that there are driver (e.g., eepro100) which use these operations to
32 * operate on hw-defined data-structures, so we can't easily change these
33 * operations to force a bigger alignment.
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 static __inline__ void
38 set_bit (int nr, volatile void *addr)
40 __u32 bit, old, new;
41 volatile __u32 *m;
42 CMPXCHG_BUGCHECK_DECL
44 m = (volatile __u32 *) addr + (nr >> 5);
45 bit = 1 << (nr & 31);
46 do {
47 CMPXCHG_BUGCHECK(m);
48 old = *m;
49 new = old | bit;
50 } while (cmpxchg_acq(m, old, new) != old);
53 /**
54 * __set_bit - Set a bit in memory
55 * @nr: the bit to set
56 * @addr: the address to start counting from
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
62 static __inline__ void
63 __set_bit (int nr, volatile void *addr)
65 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
69 * clear_bit() has "acquire" semantics.
71 #define smp_mb__before_clear_bit() smp_mb()
72 #define smp_mb__after_clear_bit() do { /* skip */; } while (0)
74 /**
75 * clear_bit - Clears a bit in memory
76 * @nr: Bit to clear
77 * @addr: Address to start counting from
79 * clear_bit() is atomic and may not be reordered. However, it does
80 * not contain a memory barrier, so if it is used for locking purposes,
81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82 * in order to ensure changes are visible on other processors.
84 static __inline__ void
85 clear_bit (int nr, volatile void *addr)
87 __u32 mask, old, new;
88 volatile __u32 *m;
89 CMPXCHG_BUGCHECK_DECL
91 m = (volatile __u32 *) addr + (nr >> 5);
92 mask = ~(1 << (nr & 31));
93 do {
94 CMPXCHG_BUGCHECK(m);
95 old = *m;
96 new = old & mask;
97 } while (cmpxchg_acq(m, old, new) != old);
101 * clear_bit_unlock - Clears a bit in memory with release
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
105 * clear_bit_unlock() is atomic and may not be reordered. It does
106 * contain a memory barrier suitable for unlock type operations.
108 static __inline__ void
109 clear_bit_unlock (int nr, volatile void *addr)
111 __u32 mask, old, new;
112 volatile __u32 *m;
113 CMPXCHG_BUGCHECK_DECL
115 m = (volatile __u32 *) addr + (nr >> 5);
116 mask = ~(1 << (nr & 31));
117 do {
118 CMPXCHG_BUGCHECK(m);
119 old = *m;
120 new = old & mask;
121 } while (cmpxchg_rel(m, old, new) != old);
125 * __clear_bit_unlock - Non-atomically clear a bit with release
127 * This is like clear_bit_unlock, but the implementation uses a store
128 * with release semantics. See also __raw_spin_unlock().
130 static __inline__ void
131 __clear_bit_unlock(int nr, volatile void *addr)
133 __u32 mask, new;
134 volatile __u32 *m;
136 m = (volatile __u32 *)addr + (nr >> 5);
137 mask = ~(1 << (nr & 31));
138 new = *m & mask;
139 barrier();
140 ia64_st4_rel_nta(m, new);
144 * __clear_bit - Clears a bit in memory (non-atomic version)
146 static __inline__ void
147 __clear_bit (int nr, volatile void *addr)
149 volatile __u32 *p = (__u32 *) addr + (nr >> 5);
150 __u32 m = 1 << (nr & 31);
151 *p &= ~m;
155 * change_bit - Toggle a bit in memory
156 * @nr: Bit to clear
157 * @addr: Address to start counting from
159 * change_bit() is atomic and may not be reordered.
160 * Note that @nr may be almost arbitrarily large; this function is not
161 * restricted to acting on a single-word quantity.
163 static __inline__ void
164 change_bit (int nr, volatile void *addr)
166 __u32 bit, old, new;
167 volatile __u32 *m;
168 CMPXCHG_BUGCHECK_DECL
170 m = (volatile __u32 *) addr + (nr >> 5);
171 bit = (1 << (nr & 31));
172 do {
173 CMPXCHG_BUGCHECK(m);
174 old = *m;
175 new = old ^ bit;
176 } while (cmpxchg_acq(m, old, new) != old);
180 * __change_bit - Toggle a bit in memory
181 * @nr: the bit to set
182 * @addr: the address to start counting from
184 * Unlike change_bit(), this function is non-atomic and may be reordered.
185 * If it's called on the same region of memory simultaneously, the effect
186 * may be that only one operation succeeds.
188 static __inline__ void
189 __change_bit (int nr, volatile void *addr)
191 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
195 * test_and_set_bit - Set a bit and return its old value
196 * @nr: Bit to set
197 * @addr: Address to count from
199 * This operation is atomic and cannot be reordered.
200 * It also implies a memory barrier.
202 static __inline__ int
203 test_and_set_bit (int nr, volatile void *addr)
205 __u32 bit, old, new;
206 volatile __u32 *m;
207 CMPXCHG_BUGCHECK_DECL
209 m = (volatile __u32 *) addr + (nr >> 5);
210 bit = 1 << (nr & 31);
211 do {
212 CMPXCHG_BUGCHECK(m);
213 old = *m;
214 new = old | bit;
215 } while (cmpxchg_acq(m, old, new) != old);
216 return (old & bit) != 0;
220 * test_and_set_bit_lock - Set a bit and return its old value for lock
221 * @nr: Bit to set
222 * @addr: Address to count from
224 * This is the same as test_and_set_bit on ia64
226 #define test_and_set_bit_lock test_and_set_bit
229 * __test_and_set_bit - Set a bit and return its old value
230 * @nr: Bit to set
231 * @addr: Address to count from
233 * This operation is non-atomic and can be reordered.
234 * If two examples of this operation race, one can appear to succeed
235 * but actually fail. You must protect multiple accesses with a lock.
237 static __inline__ int
238 __test_and_set_bit (int nr, volatile void *addr)
240 __u32 *p = (__u32 *) addr + (nr >> 5);
241 __u32 m = 1 << (nr & 31);
242 int oldbitset = (*p & m) != 0;
244 *p |= m;
245 return oldbitset;
249 * test_and_clear_bit - Clear a bit and return its old value
250 * @nr: Bit to set
251 * @addr: Address to count from
253 * This operation is atomic and cannot be reordered.
254 * It also implies a memory barrier.
256 static __inline__ int
257 test_and_clear_bit (int nr, volatile void *addr)
259 __u32 mask, old, new;
260 volatile __u32 *m;
261 CMPXCHG_BUGCHECK_DECL
263 m = (volatile __u32 *) addr + (nr >> 5);
264 mask = ~(1 << (nr & 31));
265 do {
266 CMPXCHG_BUGCHECK(m);
267 old = *m;
268 new = old & mask;
269 } while (cmpxchg_acq(m, old, new) != old);
270 return (old & ~mask) != 0;
274 * __test_and_clear_bit - Clear a bit and return its old value
275 * @nr: Bit to set
276 * @addr: Address to count from
278 * This operation is non-atomic and can be reordered.
279 * If two examples of this operation race, one can appear to succeed
280 * but actually fail. You must protect multiple accesses with a lock.
282 static __inline__ int
283 __test_and_clear_bit(int nr, volatile void * addr)
285 __u32 *p = (__u32 *) addr + (nr >> 5);
286 __u32 m = 1 << (nr & 31);
287 int oldbitset = *p & m;
289 *p &= ~m;
290 return oldbitset;
294 * test_and_change_bit - Change a bit and return its old value
295 * @nr: Bit to set
296 * @addr: Address to count from
298 * This operation is atomic and cannot be reordered.
299 * It also implies a memory barrier.
301 static __inline__ int
302 test_and_change_bit (int nr, volatile void *addr)
304 __u32 bit, old, new;
305 volatile __u32 *m;
306 CMPXCHG_BUGCHECK_DECL
308 m = (volatile __u32 *) addr + (nr >> 5);
309 bit = (1 << (nr & 31));
310 do {
311 CMPXCHG_BUGCHECK(m);
312 old = *m;
313 new = old ^ bit;
314 } while (cmpxchg_acq(m, old, new) != old);
315 return (old & bit) != 0;
319 * WARNING: non atomic version.
321 static __inline__ int
322 __test_and_change_bit (int nr, void *addr)
324 __u32 old, bit = (1 << (nr & 31));
325 __u32 *m = (__u32 *) addr + (nr >> 5);
327 old = *m;
328 *m = old ^ bit;
329 return (old & bit) != 0;
332 static __inline__ int
333 test_bit (int nr, const volatile void *addr)
335 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
339 * ffz - find the first zero bit in a long word
340 * @x: The long word to find the bit in
342 * Returns the bit-number (0..63) of the first (least significant) zero bit.
343 * Undefined if no zero exists, so code should check against ~0UL first...
345 static inline unsigned long
346 ffz (unsigned long x)
348 unsigned long result;
350 result = ia64_popcnt(x & (~x - 1));
351 return result;
355 * __ffs - find first bit in word.
356 * @x: The word to search
358 * Undefined if no bit exists, so code should check against 0 first.
360 static __inline__ unsigned long
361 __ffs (unsigned long x)
363 unsigned long result;
365 result = ia64_popcnt((x-1) & ~x);
366 return result;
369 #ifdef __KERNEL__
372 * Return bit number of last (most-significant) bit set. Undefined
373 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
375 static inline unsigned long
376 ia64_fls (unsigned long x)
378 long double d = x;
379 long exp;
381 exp = ia64_getf_exp(d);
382 return exp - 0xffff;
386 * Find the last (most significant) bit set. Returns 0 for x==0 and
387 * bits are numbered from 1..32 (e.g., fls(9) == 4).
389 static inline int
390 fls (int t)
392 unsigned long x = t & 0xffffffffu;
394 if (!x)
395 return 0;
396 x |= x >> 1;
397 x |= x >> 2;
398 x |= x >> 4;
399 x |= x >> 8;
400 x |= x >> 16;
401 return ia64_popcnt(x);
404 #include <asm-generic/bitops/fls64.h>
407 * ffs: find first bit set. This is defined the same way as the libc and
408 * compiler builtin ffs routines, therefore differs in spirit from the above
409 * ffz (man ffs): it operates on "int" values only and the result value is the
410 * bit number + 1. ffs(0) is defined to return zero.
412 #define ffs(x) __builtin_ffs(x)
415 * hweightN: returns the hamming weight (i.e. the number
416 * of bits set) of a N-bit word
418 static __inline__ unsigned long
419 hweight64 (unsigned long x)
421 unsigned long result;
422 result = ia64_popcnt(x);
423 return result;
426 #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful)
427 #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful)
428 #define hweight8(x) (unsigned int) hweight64((x) & 0xfful)
430 #endif /* __KERNEL__ */
432 #include <asm-generic/bitops/find.h>
434 #ifdef __KERNEL__
436 #include <asm-generic/bitops/ext2-non-atomic.h>
438 #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
439 #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
441 #include <asm-generic/bitops/minix.h>
442 #include <asm-generic/bitops/sched.h>
444 #endif /* __KERNEL__ */
446 #endif /* _ASM_IA64_BITOPS_H */