acpi: fix integer as NULL pointer warning
[linux-2.6/openmoko-kernel/knife-kernel.git] / fs / namei.c
blobc7e43536c49ad06433c5963c446ce936e0f94e9f
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/namei.h>
35 #include <asm/uaccess.h>
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 static int __link_path_walk(const char *name, struct nameidata *nd);
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
119 static int do_getname(const char __user *filename, char *page)
121 int retval;
122 unsigned long len = PATH_MAX;
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
141 char * getname(const char __user * filename)
143 char *tmp, *result;
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
150 result = tmp;
151 if (retval < 0) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
156 audit_getname(result);
157 return result;
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
163 if (unlikely(!audit_dummy_context()))
164 audit_putname(name);
165 else
166 __putname(name);
168 EXPORT_SYMBOL(putname);
169 #endif
173 * generic_permission - check for access rights on a Posix-like filesystem
174 * @inode: inode to check access rights for
175 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176 * @check_acl: optional callback to check for Posix ACLs
178 * Used to check for read/write/execute permissions on a file.
179 * We use "fsuid" for this, letting us set arbitrary permissions
180 * for filesystem access without changing the "normal" uids which
181 * are used for other things..
183 int generic_permission(struct inode *inode, int mask,
184 int (*check_acl)(struct inode *inode, int mask))
186 umode_t mode = inode->i_mode;
188 if (current->fsuid == inode->i_uid)
189 mode >>= 6;
190 else {
191 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
192 int error = check_acl(inode, mask);
193 if (error == -EACCES)
194 goto check_capabilities;
195 else if (error != -EAGAIN)
196 return error;
199 if (in_group_p(inode->i_gid))
200 mode >>= 3;
204 * If the DACs are ok we don't need any capability check.
206 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
207 return 0;
209 check_capabilities:
211 * Read/write DACs are always overridable.
212 * Executable DACs are overridable if at least one exec bit is set.
214 if (!(mask & MAY_EXEC) ||
215 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
216 if (capable(CAP_DAC_OVERRIDE))
217 return 0;
220 * Searching includes executable on directories, else just read.
222 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 if (capable(CAP_DAC_READ_SEARCH))
224 return 0;
226 return -EACCES;
229 int permission(struct inode *inode, int mask, struct nameidata *nd)
231 int retval, submask;
232 struct vfsmount *mnt = NULL;
234 if (nd)
235 mnt = nd->path.mnt;
237 if (mask & MAY_WRITE) {
238 umode_t mode = inode->i_mode;
241 * Nobody gets write access to a read-only fs.
243 if (IS_RDONLY(inode) &&
244 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
245 return -EROFS;
248 * Nobody gets write access to an immutable file.
250 if (IS_IMMUTABLE(inode))
251 return -EACCES;
254 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
256 * MAY_EXEC on regular files is denied if the fs is mounted
257 * with the "noexec" flag.
259 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
260 return -EACCES;
263 /* Ordinary permission routines do not understand MAY_APPEND. */
264 submask = mask & ~MAY_APPEND;
265 if (inode->i_op && inode->i_op->permission) {
266 retval = inode->i_op->permission(inode, submask, nd);
267 if (!retval) {
269 * Exec permission on a regular file is denied if none
270 * of the execute bits are set.
272 * This check should be done by the ->permission()
273 * method.
275 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
276 !(inode->i_mode & S_IXUGO))
277 return -EACCES;
279 } else {
280 retval = generic_permission(inode, submask, NULL);
282 if (retval)
283 return retval;
285 retval = devcgroup_inode_permission(inode, mask);
286 if (retval)
287 return retval;
289 return security_inode_permission(inode, mask, nd);
293 * vfs_permission - check for access rights to a given path
294 * @nd: lookup result that describes the path
295 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
297 * Used to check for read/write/execute permissions on a path.
298 * We use "fsuid" for this, letting us set arbitrary permissions
299 * for filesystem access without changing the "normal" uids which
300 * are used for other things.
302 int vfs_permission(struct nameidata *nd, int mask)
304 return permission(nd->path.dentry->d_inode, mask, nd);
308 * file_permission - check for additional access rights to a given file
309 * @file: file to check access rights for
310 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
312 * Used to check for read/write/execute permissions on an already opened
313 * file.
315 * Note:
316 * Do not use this function in new code. All access checks should
317 * be done using vfs_permission().
319 int file_permission(struct file *file, int mask)
321 return permission(file->f_path.dentry->d_inode, mask, NULL);
325 * get_write_access() gets write permission for a file.
326 * put_write_access() releases this write permission.
327 * This is used for regular files.
328 * We cannot support write (and maybe mmap read-write shared) accesses and
329 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
330 * can have the following values:
331 * 0: no writers, no VM_DENYWRITE mappings
332 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
333 * > 0: (i_writecount) users are writing to the file.
335 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
336 * except for the cases where we don't hold i_writecount yet. Then we need to
337 * use {get,deny}_write_access() - these functions check the sign and refuse
338 * to do the change if sign is wrong. Exclusion between them is provided by
339 * the inode->i_lock spinlock.
342 int get_write_access(struct inode * inode)
344 spin_lock(&inode->i_lock);
345 if (atomic_read(&inode->i_writecount) < 0) {
346 spin_unlock(&inode->i_lock);
347 return -ETXTBSY;
349 atomic_inc(&inode->i_writecount);
350 spin_unlock(&inode->i_lock);
352 return 0;
355 int deny_write_access(struct file * file)
357 struct inode *inode = file->f_path.dentry->d_inode;
359 spin_lock(&inode->i_lock);
360 if (atomic_read(&inode->i_writecount) > 0) {
361 spin_unlock(&inode->i_lock);
362 return -ETXTBSY;
364 atomic_dec(&inode->i_writecount);
365 spin_unlock(&inode->i_lock);
367 return 0;
371 * path_get - get a reference to a path
372 * @path: path to get the reference to
374 * Given a path increment the reference count to the dentry and the vfsmount.
376 void path_get(struct path *path)
378 mntget(path->mnt);
379 dget(path->dentry);
381 EXPORT_SYMBOL(path_get);
384 * path_put - put a reference to a path
385 * @path: path to put the reference to
387 * Given a path decrement the reference count to the dentry and the vfsmount.
389 void path_put(struct path *path)
391 dput(path->dentry);
392 mntput(path->mnt);
394 EXPORT_SYMBOL(path_put);
397 * release_open_intent - free up open intent resources
398 * @nd: pointer to nameidata
400 void release_open_intent(struct nameidata *nd)
402 if (nd->intent.open.file->f_path.dentry == NULL)
403 put_filp(nd->intent.open.file);
404 else
405 fput(nd->intent.open.file);
408 static inline struct dentry *
409 do_revalidate(struct dentry *dentry, struct nameidata *nd)
411 int status = dentry->d_op->d_revalidate(dentry, nd);
412 if (unlikely(status <= 0)) {
414 * The dentry failed validation.
415 * If d_revalidate returned 0 attempt to invalidate
416 * the dentry otherwise d_revalidate is asking us
417 * to return a fail status.
419 if (!status) {
420 if (!d_invalidate(dentry)) {
421 dput(dentry);
422 dentry = NULL;
424 } else {
425 dput(dentry);
426 dentry = ERR_PTR(status);
429 return dentry;
433 * Internal lookup() using the new generic dcache.
434 * SMP-safe
436 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
438 struct dentry * dentry = __d_lookup(parent, name);
440 /* lockess __d_lookup may fail due to concurrent d_move()
441 * in some unrelated directory, so try with d_lookup
443 if (!dentry)
444 dentry = d_lookup(parent, name);
446 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
447 dentry = do_revalidate(dentry, nd);
449 return dentry;
453 * Short-cut version of permission(), for calling by
454 * path_walk(), when dcache lock is held. Combines parts
455 * of permission() and generic_permission(), and tests ONLY for
456 * MAY_EXEC permission.
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call permission() to do more
460 * complete permission check.
462 static int exec_permission_lite(struct inode *inode,
463 struct nameidata *nd)
465 umode_t mode = inode->i_mode;
467 if (inode->i_op && inode->i_op->permission)
468 return -EAGAIN;
470 if (current->fsuid == inode->i_uid)
471 mode >>= 6;
472 else if (in_group_p(inode->i_gid))
473 mode >>= 3;
475 if (mode & MAY_EXEC)
476 goto ok;
478 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
479 goto ok;
481 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
482 goto ok;
484 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
485 goto ok;
487 return -EACCES;
489 return security_inode_permission(inode, MAY_EXEC, nd);
493 * This is called when everything else fails, and we actually have
494 * to go to the low-level filesystem to find out what we should do..
496 * We get the directory semaphore, and after getting that we also
497 * make sure that nobody added the entry to the dcache in the meantime..
498 * SMP-safe
500 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
502 struct dentry * result;
503 struct inode *dir = parent->d_inode;
505 mutex_lock(&dir->i_mutex);
507 * First re-do the cached lookup just in case it was created
508 * while we waited for the directory semaphore..
510 * FIXME! This could use version numbering or similar to
511 * avoid unnecessary cache lookups.
513 * The "dcache_lock" is purely to protect the RCU list walker
514 * from concurrent renames at this point (we mustn't get false
515 * negatives from the RCU list walk here, unlike the optimistic
516 * fast walk).
518 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
520 result = d_lookup(parent, name);
521 if (!result) {
522 struct dentry * dentry = d_alloc(parent, name);
523 result = ERR_PTR(-ENOMEM);
524 if (dentry) {
525 result = dir->i_op->lookup(dir, dentry, nd);
526 if (result)
527 dput(dentry);
528 else
529 result = dentry;
531 mutex_unlock(&dir->i_mutex);
532 return result;
536 * Uhhuh! Nasty case: the cache was re-populated while
537 * we waited on the semaphore. Need to revalidate.
539 mutex_unlock(&dir->i_mutex);
540 if (result->d_op && result->d_op->d_revalidate) {
541 result = do_revalidate(result, nd);
542 if (!result)
543 result = ERR_PTR(-ENOENT);
545 return result;
548 static int __emul_lookup_dentry(const char *, struct nameidata *);
550 /* SMP-safe */
551 static __always_inline int
552 walk_init_root(const char *name, struct nameidata *nd)
554 struct fs_struct *fs = current->fs;
556 read_lock(&fs->lock);
557 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
558 nd->path = fs->altroot;
559 path_get(&fs->altroot);
560 read_unlock(&fs->lock);
561 if (__emul_lookup_dentry(name,nd))
562 return 0;
563 read_lock(&fs->lock);
565 nd->path = fs->root;
566 path_get(&fs->root);
567 read_unlock(&fs->lock);
568 return 1;
572 * Wrapper to retry pathname resolution whenever the underlying
573 * file system returns an ESTALE.
575 * Retry the whole path once, forcing real lookup requests
576 * instead of relying on the dcache.
578 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
580 struct path save = nd->path;
581 int result;
583 /* make sure the stuff we saved doesn't go away */
584 dget(save.dentry);
585 mntget(save.mnt);
587 result = __link_path_walk(name, nd);
588 if (result == -ESTALE) {
589 /* nd->path had been dropped */
590 nd->path = save;
591 dget(nd->path.dentry);
592 mntget(nd->path.mnt);
593 nd->flags |= LOOKUP_REVAL;
594 result = __link_path_walk(name, nd);
597 path_put(&save);
599 return result;
602 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
604 int res = 0;
605 char *name;
606 if (IS_ERR(link))
607 goto fail;
609 if (*link == '/') {
610 path_put(&nd->path);
611 if (!walk_init_root(link, nd))
612 /* weird __emul_prefix() stuff did it */
613 goto out;
615 res = link_path_walk(link, nd);
616 out:
617 if (nd->depth || res || nd->last_type!=LAST_NORM)
618 return res;
620 * If it is an iterative symlinks resolution in open_namei() we
621 * have to copy the last component. And all that crap because of
622 * bloody create() on broken symlinks. Furrfu...
624 name = __getname();
625 if (unlikely(!name)) {
626 path_put(&nd->path);
627 return -ENOMEM;
629 strcpy(name, nd->last.name);
630 nd->last.name = name;
631 return 0;
632 fail:
633 path_put(&nd->path);
634 return PTR_ERR(link);
637 static void path_put_conditional(struct path *path, struct nameidata *nd)
639 dput(path->dentry);
640 if (path->mnt != nd->path.mnt)
641 mntput(path->mnt);
644 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
646 dput(nd->path.dentry);
647 if (nd->path.mnt != path->mnt)
648 mntput(nd->path.mnt);
649 nd->path.mnt = path->mnt;
650 nd->path.dentry = path->dentry;
653 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
655 int error;
656 void *cookie;
657 struct dentry *dentry = path->dentry;
659 touch_atime(path->mnt, dentry);
660 nd_set_link(nd, NULL);
662 if (path->mnt != nd->path.mnt) {
663 path_to_nameidata(path, nd);
664 dget(dentry);
666 mntget(path->mnt);
667 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
668 error = PTR_ERR(cookie);
669 if (!IS_ERR(cookie)) {
670 char *s = nd_get_link(nd);
671 error = 0;
672 if (s)
673 error = __vfs_follow_link(nd, s);
674 if (dentry->d_inode->i_op->put_link)
675 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
677 path_put(path);
679 return error;
683 * This limits recursive symlink follows to 8, while
684 * limiting consecutive symlinks to 40.
686 * Without that kind of total limit, nasty chains of consecutive
687 * symlinks can cause almost arbitrarily long lookups.
689 static inline int do_follow_link(struct path *path, struct nameidata *nd)
691 int err = -ELOOP;
692 if (current->link_count >= MAX_NESTED_LINKS)
693 goto loop;
694 if (current->total_link_count >= 40)
695 goto loop;
696 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
697 cond_resched();
698 err = security_inode_follow_link(path->dentry, nd);
699 if (err)
700 goto loop;
701 current->link_count++;
702 current->total_link_count++;
703 nd->depth++;
704 err = __do_follow_link(path, nd);
705 current->link_count--;
706 nd->depth--;
707 return err;
708 loop:
709 path_put_conditional(path, nd);
710 path_put(&nd->path);
711 return err;
714 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
716 struct vfsmount *parent;
717 struct dentry *mountpoint;
718 spin_lock(&vfsmount_lock);
719 parent=(*mnt)->mnt_parent;
720 if (parent == *mnt) {
721 spin_unlock(&vfsmount_lock);
722 return 0;
724 mntget(parent);
725 mountpoint=dget((*mnt)->mnt_mountpoint);
726 spin_unlock(&vfsmount_lock);
727 dput(*dentry);
728 *dentry = mountpoint;
729 mntput(*mnt);
730 *mnt = parent;
731 return 1;
734 /* no need for dcache_lock, as serialization is taken care in
735 * namespace.c
737 static int __follow_mount(struct path *path)
739 int res = 0;
740 while (d_mountpoint(path->dentry)) {
741 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
742 if (!mounted)
743 break;
744 dput(path->dentry);
745 if (res)
746 mntput(path->mnt);
747 path->mnt = mounted;
748 path->dentry = dget(mounted->mnt_root);
749 res = 1;
751 return res;
754 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
756 while (d_mountpoint(*dentry)) {
757 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
758 if (!mounted)
759 break;
760 dput(*dentry);
761 mntput(*mnt);
762 *mnt = mounted;
763 *dentry = dget(mounted->mnt_root);
767 /* no need for dcache_lock, as serialization is taken care in
768 * namespace.c
770 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
772 struct vfsmount *mounted;
774 mounted = lookup_mnt(*mnt, *dentry);
775 if (mounted) {
776 dput(*dentry);
777 mntput(*mnt);
778 *mnt = mounted;
779 *dentry = dget(mounted->mnt_root);
780 return 1;
782 return 0;
785 static __always_inline void follow_dotdot(struct nameidata *nd)
787 struct fs_struct *fs = current->fs;
789 while(1) {
790 struct vfsmount *parent;
791 struct dentry *old = nd->path.dentry;
793 read_lock(&fs->lock);
794 if (nd->path.dentry == fs->root.dentry &&
795 nd->path.mnt == fs->root.mnt) {
796 read_unlock(&fs->lock);
797 break;
799 read_unlock(&fs->lock);
800 spin_lock(&dcache_lock);
801 if (nd->path.dentry != nd->path.mnt->mnt_root) {
802 nd->path.dentry = dget(nd->path.dentry->d_parent);
803 spin_unlock(&dcache_lock);
804 dput(old);
805 break;
807 spin_unlock(&dcache_lock);
808 spin_lock(&vfsmount_lock);
809 parent = nd->path.mnt->mnt_parent;
810 if (parent == nd->path.mnt) {
811 spin_unlock(&vfsmount_lock);
812 break;
814 mntget(parent);
815 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
816 spin_unlock(&vfsmount_lock);
817 dput(old);
818 mntput(nd->path.mnt);
819 nd->path.mnt = parent;
821 follow_mount(&nd->path.mnt, &nd->path.dentry);
825 * It's more convoluted than I'd like it to be, but... it's still fairly
826 * small and for now I'd prefer to have fast path as straight as possible.
827 * It _is_ time-critical.
829 static int do_lookup(struct nameidata *nd, struct qstr *name,
830 struct path *path)
832 struct vfsmount *mnt = nd->path.mnt;
833 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
835 if (!dentry)
836 goto need_lookup;
837 if (dentry->d_op && dentry->d_op->d_revalidate)
838 goto need_revalidate;
839 done:
840 path->mnt = mnt;
841 path->dentry = dentry;
842 __follow_mount(path);
843 return 0;
845 need_lookup:
846 dentry = real_lookup(nd->path.dentry, name, nd);
847 if (IS_ERR(dentry))
848 goto fail;
849 goto done;
851 need_revalidate:
852 dentry = do_revalidate(dentry, nd);
853 if (!dentry)
854 goto need_lookup;
855 if (IS_ERR(dentry))
856 goto fail;
857 goto done;
859 fail:
860 return PTR_ERR(dentry);
864 * Name resolution.
865 * This is the basic name resolution function, turning a pathname into
866 * the final dentry. We expect 'base' to be positive and a directory.
868 * Returns 0 and nd will have valid dentry and mnt on success.
869 * Returns error and drops reference to input namei data on failure.
871 static int __link_path_walk(const char *name, struct nameidata *nd)
873 struct path next;
874 struct inode *inode;
875 int err;
876 unsigned int lookup_flags = nd->flags;
878 while (*name=='/')
879 name++;
880 if (!*name)
881 goto return_reval;
883 inode = nd->path.dentry->d_inode;
884 if (nd->depth)
885 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
887 /* At this point we know we have a real path component. */
888 for(;;) {
889 unsigned long hash;
890 struct qstr this;
891 unsigned int c;
893 nd->flags |= LOOKUP_CONTINUE;
894 err = exec_permission_lite(inode, nd);
895 if (err == -EAGAIN)
896 err = vfs_permission(nd, MAY_EXEC);
897 if (err)
898 break;
900 this.name = name;
901 c = *(const unsigned char *)name;
903 hash = init_name_hash();
904 do {
905 name++;
906 hash = partial_name_hash(c, hash);
907 c = *(const unsigned char *)name;
908 } while (c && (c != '/'));
909 this.len = name - (const char *) this.name;
910 this.hash = end_name_hash(hash);
912 /* remove trailing slashes? */
913 if (!c)
914 goto last_component;
915 while (*++name == '/');
916 if (!*name)
917 goto last_with_slashes;
920 * "." and ".." are special - ".." especially so because it has
921 * to be able to know about the current root directory and
922 * parent relationships.
924 if (this.name[0] == '.') switch (this.len) {
925 default:
926 break;
927 case 2:
928 if (this.name[1] != '.')
929 break;
930 follow_dotdot(nd);
931 inode = nd->path.dentry->d_inode;
932 /* fallthrough */
933 case 1:
934 continue;
937 * See if the low-level filesystem might want
938 * to use its own hash..
940 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
941 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
942 &this);
943 if (err < 0)
944 break;
946 /* This does the actual lookups.. */
947 err = do_lookup(nd, &this, &next);
948 if (err)
949 break;
951 err = -ENOENT;
952 inode = next.dentry->d_inode;
953 if (!inode)
954 goto out_dput;
955 err = -ENOTDIR;
956 if (!inode->i_op)
957 goto out_dput;
959 if (inode->i_op->follow_link) {
960 err = do_follow_link(&next, nd);
961 if (err)
962 goto return_err;
963 err = -ENOENT;
964 inode = nd->path.dentry->d_inode;
965 if (!inode)
966 break;
967 err = -ENOTDIR;
968 if (!inode->i_op)
969 break;
970 } else
971 path_to_nameidata(&next, nd);
972 err = -ENOTDIR;
973 if (!inode->i_op->lookup)
974 break;
975 continue;
976 /* here ends the main loop */
978 last_with_slashes:
979 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
980 last_component:
981 /* Clear LOOKUP_CONTINUE iff it was previously unset */
982 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
983 if (lookup_flags & LOOKUP_PARENT)
984 goto lookup_parent;
985 if (this.name[0] == '.') switch (this.len) {
986 default:
987 break;
988 case 2:
989 if (this.name[1] != '.')
990 break;
991 follow_dotdot(nd);
992 inode = nd->path.dentry->d_inode;
993 /* fallthrough */
994 case 1:
995 goto return_reval;
997 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
998 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
999 &this);
1000 if (err < 0)
1001 break;
1003 err = do_lookup(nd, &this, &next);
1004 if (err)
1005 break;
1006 inode = next.dentry->d_inode;
1007 if ((lookup_flags & LOOKUP_FOLLOW)
1008 && inode && inode->i_op && inode->i_op->follow_link) {
1009 err = do_follow_link(&next, nd);
1010 if (err)
1011 goto return_err;
1012 inode = nd->path.dentry->d_inode;
1013 } else
1014 path_to_nameidata(&next, nd);
1015 err = -ENOENT;
1016 if (!inode)
1017 break;
1018 if (lookup_flags & LOOKUP_DIRECTORY) {
1019 err = -ENOTDIR;
1020 if (!inode->i_op || !inode->i_op->lookup)
1021 break;
1023 goto return_base;
1024 lookup_parent:
1025 nd->last = this;
1026 nd->last_type = LAST_NORM;
1027 if (this.name[0] != '.')
1028 goto return_base;
1029 if (this.len == 1)
1030 nd->last_type = LAST_DOT;
1031 else if (this.len == 2 && this.name[1] == '.')
1032 nd->last_type = LAST_DOTDOT;
1033 else
1034 goto return_base;
1035 return_reval:
1037 * We bypassed the ordinary revalidation routines.
1038 * We may need to check the cached dentry for staleness.
1040 if (nd->path.dentry && nd->path.dentry->d_sb &&
1041 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1042 err = -ESTALE;
1043 /* Note: we do not d_invalidate() */
1044 if (!nd->path.dentry->d_op->d_revalidate(
1045 nd->path.dentry, nd))
1046 break;
1048 return_base:
1049 return 0;
1050 out_dput:
1051 path_put_conditional(&next, nd);
1052 break;
1054 path_put(&nd->path);
1055 return_err:
1056 return err;
1059 static int path_walk(const char *name, struct nameidata *nd)
1061 current->total_link_count = 0;
1062 return link_path_walk(name, nd);
1066 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1067 * everything is done. Returns 0 and drops input nd, if lookup failed;
1069 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1071 if (path_walk(name, nd))
1072 return 0; /* something went wrong... */
1074 if (!nd->path.dentry->d_inode ||
1075 S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1076 struct path old_path = nd->path;
1077 struct qstr last = nd->last;
1078 int last_type = nd->last_type;
1079 struct fs_struct *fs = current->fs;
1082 * NAME was not found in alternate root or it's a directory.
1083 * Try to find it in the normal root:
1085 nd->last_type = LAST_ROOT;
1086 read_lock(&fs->lock);
1087 nd->path = fs->root;
1088 path_get(&fs->root);
1089 read_unlock(&fs->lock);
1090 if (path_walk(name, nd) == 0) {
1091 if (nd->path.dentry->d_inode) {
1092 path_put(&old_path);
1093 return 1;
1095 path_put(&nd->path);
1097 nd->path = old_path;
1098 nd->last = last;
1099 nd->last_type = last_type;
1101 return 1;
1104 void set_fs_altroot(void)
1106 char *emul = __emul_prefix();
1107 struct nameidata nd;
1108 struct path path = {}, old_path;
1109 int err;
1110 struct fs_struct *fs = current->fs;
1112 if (!emul)
1113 goto set_it;
1114 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1115 if (!err)
1116 path = nd.path;
1117 set_it:
1118 write_lock(&fs->lock);
1119 old_path = fs->altroot;
1120 fs->altroot = path;
1121 write_unlock(&fs->lock);
1122 if (old_path.dentry)
1123 path_put(&old_path);
1126 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1127 static int do_path_lookup(int dfd, const char *name,
1128 unsigned int flags, struct nameidata *nd)
1130 int retval = 0;
1131 int fput_needed;
1132 struct file *file;
1133 struct fs_struct *fs = current->fs;
1135 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1136 nd->flags = flags;
1137 nd->depth = 0;
1139 if (*name=='/') {
1140 read_lock(&fs->lock);
1141 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
1142 nd->path = fs->altroot;
1143 path_get(&fs->altroot);
1144 read_unlock(&fs->lock);
1145 if (__emul_lookup_dentry(name,nd))
1146 goto out; /* found in altroot */
1147 read_lock(&fs->lock);
1149 nd->path = fs->root;
1150 path_get(&fs->root);
1151 read_unlock(&fs->lock);
1152 } else if (dfd == AT_FDCWD) {
1153 read_lock(&fs->lock);
1154 nd->path = fs->pwd;
1155 path_get(&fs->pwd);
1156 read_unlock(&fs->lock);
1157 } else {
1158 struct dentry *dentry;
1160 file = fget_light(dfd, &fput_needed);
1161 retval = -EBADF;
1162 if (!file)
1163 goto out_fail;
1165 dentry = file->f_path.dentry;
1167 retval = -ENOTDIR;
1168 if (!S_ISDIR(dentry->d_inode->i_mode))
1169 goto fput_fail;
1171 retval = file_permission(file, MAY_EXEC);
1172 if (retval)
1173 goto fput_fail;
1175 nd->path = file->f_path;
1176 path_get(&file->f_path);
1178 fput_light(file, fput_needed);
1181 retval = path_walk(name, nd);
1182 out:
1183 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1184 nd->path.dentry->d_inode))
1185 audit_inode(name, nd->path.dentry);
1186 out_fail:
1187 return retval;
1189 fput_fail:
1190 fput_light(file, fput_needed);
1191 goto out_fail;
1194 int path_lookup(const char *name, unsigned int flags,
1195 struct nameidata *nd)
1197 return do_path_lookup(AT_FDCWD, name, flags, nd);
1201 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1202 * @dentry: pointer to dentry of the base directory
1203 * @mnt: pointer to vfs mount of the base directory
1204 * @name: pointer to file name
1205 * @flags: lookup flags
1206 * @nd: pointer to nameidata
1208 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1209 const char *name, unsigned int flags,
1210 struct nameidata *nd)
1212 int retval;
1214 /* same as do_path_lookup */
1215 nd->last_type = LAST_ROOT;
1216 nd->flags = flags;
1217 nd->depth = 0;
1219 nd->path.mnt = mntget(mnt);
1220 nd->path.dentry = dget(dentry);
1222 retval = path_walk(name, nd);
1223 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1224 nd->path.dentry->d_inode))
1225 audit_inode(name, nd->path.dentry);
1227 return retval;
1231 static int __path_lookup_intent_open(int dfd, const char *name,
1232 unsigned int lookup_flags, struct nameidata *nd,
1233 int open_flags, int create_mode)
1235 struct file *filp = get_empty_filp();
1236 int err;
1238 if (filp == NULL)
1239 return -ENFILE;
1240 nd->intent.open.file = filp;
1241 nd->intent.open.flags = open_flags;
1242 nd->intent.open.create_mode = create_mode;
1243 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1244 if (IS_ERR(nd->intent.open.file)) {
1245 if (err == 0) {
1246 err = PTR_ERR(nd->intent.open.file);
1247 path_put(&nd->path);
1249 } else if (err != 0)
1250 release_open_intent(nd);
1251 return err;
1255 * path_lookup_open - lookup a file path with open intent
1256 * @dfd: the directory to use as base, or AT_FDCWD
1257 * @name: pointer to file name
1258 * @lookup_flags: lookup intent flags
1259 * @nd: pointer to nameidata
1260 * @open_flags: open intent flags
1262 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1263 struct nameidata *nd, int open_flags)
1265 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1266 open_flags, 0);
1270 * path_lookup_create - lookup a file path with open + create intent
1271 * @dfd: the directory to use as base, or AT_FDCWD
1272 * @name: pointer to file name
1273 * @lookup_flags: lookup intent flags
1274 * @nd: pointer to nameidata
1275 * @open_flags: open intent flags
1276 * @create_mode: create intent flags
1278 static int path_lookup_create(int dfd, const char *name,
1279 unsigned int lookup_flags, struct nameidata *nd,
1280 int open_flags, int create_mode)
1282 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1283 nd, open_flags, create_mode);
1286 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1287 struct nameidata *nd, int open_flags)
1289 char *tmp = getname(name);
1290 int err = PTR_ERR(tmp);
1292 if (!IS_ERR(tmp)) {
1293 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1294 putname(tmp);
1296 return err;
1299 static struct dentry *__lookup_hash(struct qstr *name,
1300 struct dentry *base, struct nameidata *nd)
1302 struct dentry *dentry;
1303 struct inode *inode;
1304 int err;
1306 inode = base->d_inode;
1309 * See if the low-level filesystem might want
1310 * to use its own hash..
1312 if (base->d_op && base->d_op->d_hash) {
1313 err = base->d_op->d_hash(base, name);
1314 dentry = ERR_PTR(err);
1315 if (err < 0)
1316 goto out;
1319 dentry = cached_lookup(base, name, nd);
1320 if (!dentry) {
1321 struct dentry *new = d_alloc(base, name);
1322 dentry = ERR_PTR(-ENOMEM);
1323 if (!new)
1324 goto out;
1325 dentry = inode->i_op->lookup(inode, new, nd);
1326 if (!dentry)
1327 dentry = new;
1328 else
1329 dput(new);
1331 out:
1332 return dentry;
1336 * Restricted form of lookup. Doesn't follow links, single-component only,
1337 * needs parent already locked. Doesn't follow mounts.
1338 * SMP-safe.
1340 static struct dentry *lookup_hash(struct nameidata *nd)
1342 int err;
1344 err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1345 if (err)
1346 return ERR_PTR(err);
1347 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1350 static int __lookup_one_len(const char *name, struct qstr *this,
1351 struct dentry *base, int len)
1353 unsigned long hash;
1354 unsigned int c;
1356 this->name = name;
1357 this->len = len;
1358 if (!len)
1359 return -EACCES;
1361 hash = init_name_hash();
1362 while (len--) {
1363 c = *(const unsigned char *)name++;
1364 if (c == '/' || c == '\0')
1365 return -EACCES;
1366 hash = partial_name_hash(c, hash);
1368 this->hash = end_name_hash(hash);
1369 return 0;
1373 * lookup_one_len - filesystem helper to lookup single pathname component
1374 * @name: pathname component to lookup
1375 * @base: base directory to lookup from
1376 * @len: maximum length @len should be interpreted to
1378 * Note that this routine is purely a helper for filesystem usage and should
1379 * not be called by generic code. Also note that by using this function the
1380 * nameidata argument is passed to the filesystem methods and a filesystem
1381 * using this helper needs to be prepared for that.
1383 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1385 int err;
1386 struct qstr this;
1388 err = __lookup_one_len(name, &this, base, len);
1389 if (err)
1390 return ERR_PTR(err);
1392 err = permission(base->d_inode, MAY_EXEC, NULL);
1393 if (err)
1394 return ERR_PTR(err);
1395 return __lookup_hash(&this, base, NULL);
1399 * lookup_one_noperm - bad hack for sysfs
1400 * @name: pathname component to lookup
1401 * @base: base directory to lookup from
1403 * This is a variant of lookup_one_len that doesn't perform any permission
1404 * checks. It's a horrible hack to work around the braindead sysfs
1405 * architecture and should not be used anywhere else.
1407 * DON'T USE THIS FUNCTION EVER, thanks.
1409 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1411 int err;
1412 struct qstr this;
1414 err = __lookup_one_len(name, &this, base, strlen(name));
1415 if (err)
1416 return ERR_PTR(err);
1417 return __lookup_hash(&this, base, NULL);
1420 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1421 struct nameidata *nd)
1423 char *tmp = getname(name);
1424 int err = PTR_ERR(tmp);
1426 if (!IS_ERR(tmp)) {
1427 err = do_path_lookup(dfd, tmp, flags, nd);
1428 putname(tmp);
1430 return err;
1433 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1435 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1439 * It's inline, so penalty for filesystems that don't use sticky bit is
1440 * minimal.
1442 static inline int check_sticky(struct inode *dir, struct inode *inode)
1444 if (!(dir->i_mode & S_ISVTX))
1445 return 0;
1446 if (inode->i_uid == current->fsuid)
1447 return 0;
1448 if (dir->i_uid == current->fsuid)
1449 return 0;
1450 return !capable(CAP_FOWNER);
1454 * Check whether we can remove a link victim from directory dir, check
1455 * whether the type of victim is right.
1456 * 1. We can't do it if dir is read-only (done in permission())
1457 * 2. We should have write and exec permissions on dir
1458 * 3. We can't remove anything from append-only dir
1459 * 4. We can't do anything with immutable dir (done in permission())
1460 * 5. If the sticky bit on dir is set we should either
1461 * a. be owner of dir, or
1462 * b. be owner of victim, or
1463 * c. have CAP_FOWNER capability
1464 * 6. If the victim is append-only or immutable we can't do antyhing with
1465 * links pointing to it.
1466 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1467 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1468 * 9. We can't remove a root or mountpoint.
1469 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1470 * nfs_async_unlink().
1472 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1474 int error;
1476 if (!victim->d_inode)
1477 return -ENOENT;
1479 BUG_ON(victim->d_parent->d_inode != dir);
1480 audit_inode_child(victim->d_name.name, victim, dir);
1482 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1483 if (error)
1484 return error;
1485 if (IS_APPEND(dir))
1486 return -EPERM;
1487 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1488 IS_IMMUTABLE(victim->d_inode))
1489 return -EPERM;
1490 if (isdir) {
1491 if (!S_ISDIR(victim->d_inode->i_mode))
1492 return -ENOTDIR;
1493 if (IS_ROOT(victim))
1494 return -EBUSY;
1495 } else if (S_ISDIR(victim->d_inode->i_mode))
1496 return -EISDIR;
1497 if (IS_DEADDIR(dir))
1498 return -ENOENT;
1499 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1500 return -EBUSY;
1501 return 0;
1504 /* Check whether we can create an object with dentry child in directory
1505 * dir.
1506 * 1. We can't do it if child already exists (open has special treatment for
1507 * this case, but since we are inlined it's OK)
1508 * 2. We can't do it if dir is read-only (done in permission())
1509 * 3. We should have write and exec permissions on dir
1510 * 4. We can't do it if dir is immutable (done in permission())
1512 static inline int may_create(struct inode *dir, struct dentry *child,
1513 struct nameidata *nd)
1515 if (child->d_inode)
1516 return -EEXIST;
1517 if (IS_DEADDIR(dir))
1518 return -ENOENT;
1519 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1523 * O_DIRECTORY translates into forcing a directory lookup.
1525 static inline int lookup_flags(unsigned int f)
1527 unsigned long retval = LOOKUP_FOLLOW;
1529 if (f & O_NOFOLLOW)
1530 retval &= ~LOOKUP_FOLLOW;
1532 if (f & O_DIRECTORY)
1533 retval |= LOOKUP_DIRECTORY;
1535 return retval;
1539 * p1 and p2 should be directories on the same fs.
1541 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1543 struct dentry *p;
1545 if (p1 == p2) {
1546 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1547 return NULL;
1550 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1552 for (p = p1; p->d_parent != p; p = p->d_parent) {
1553 if (p->d_parent == p2) {
1554 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1555 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1556 return p;
1560 for (p = p2; p->d_parent != p; p = p->d_parent) {
1561 if (p->d_parent == p1) {
1562 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1563 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1564 return p;
1568 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1569 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1570 return NULL;
1573 void unlock_rename(struct dentry *p1, struct dentry *p2)
1575 mutex_unlock(&p1->d_inode->i_mutex);
1576 if (p1 != p2) {
1577 mutex_unlock(&p2->d_inode->i_mutex);
1578 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1582 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1583 struct nameidata *nd)
1585 int error = may_create(dir, dentry, nd);
1587 if (error)
1588 return error;
1590 if (!dir->i_op || !dir->i_op->create)
1591 return -EACCES; /* shouldn't it be ENOSYS? */
1592 mode &= S_IALLUGO;
1593 mode |= S_IFREG;
1594 error = security_inode_create(dir, dentry, mode);
1595 if (error)
1596 return error;
1597 DQUOT_INIT(dir);
1598 error = dir->i_op->create(dir, dentry, mode, nd);
1599 if (!error)
1600 fsnotify_create(dir, dentry);
1601 return error;
1604 int may_open(struct nameidata *nd, int acc_mode, int flag)
1606 struct dentry *dentry = nd->path.dentry;
1607 struct inode *inode = dentry->d_inode;
1608 int error;
1610 if (!inode)
1611 return -ENOENT;
1613 if (S_ISLNK(inode->i_mode))
1614 return -ELOOP;
1616 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1617 return -EISDIR;
1620 * FIFO's, sockets and device files are special: they don't
1621 * actually live on the filesystem itself, and as such you
1622 * can write to them even if the filesystem is read-only.
1624 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1625 flag &= ~O_TRUNC;
1626 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1627 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1628 return -EACCES;
1630 flag &= ~O_TRUNC;
1633 error = vfs_permission(nd, acc_mode);
1634 if (error)
1635 return error;
1637 * An append-only file must be opened in append mode for writing.
1639 if (IS_APPEND(inode)) {
1640 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1641 return -EPERM;
1642 if (flag & O_TRUNC)
1643 return -EPERM;
1646 /* O_NOATIME can only be set by the owner or superuser */
1647 if (flag & O_NOATIME)
1648 if (!is_owner_or_cap(inode))
1649 return -EPERM;
1652 * Ensure there are no outstanding leases on the file.
1654 error = break_lease(inode, flag);
1655 if (error)
1656 return error;
1658 if (flag & O_TRUNC) {
1659 error = get_write_access(inode);
1660 if (error)
1661 return error;
1664 * Refuse to truncate files with mandatory locks held on them.
1666 error = locks_verify_locked(inode);
1667 if (!error) {
1668 DQUOT_INIT(inode);
1670 error = do_truncate(dentry, 0,
1671 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1672 NULL);
1674 put_write_access(inode);
1675 if (error)
1676 return error;
1677 } else
1678 if (flag & FMODE_WRITE)
1679 DQUOT_INIT(inode);
1681 return 0;
1685 * Be careful about ever adding any more callers of this
1686 * function. Its flags must be in the namei format, not
1687 * what get passed to sys_open().
1689 static int __open_namei_create(struct nameidata *nd, struct path *path,
1690 int flag, int mode)
1692 int error;
1693 struct dentry *dir = nd->path.dentry;
1695 if (!IS_POSIXACL(dir->d_inode))
1696 mode &= ~current->fs->umask;
1697 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1698 mutex_unlock(&dir->d_inode->i_mutex);
1699 dput(nd->path.dentry);
1700 nd->path.dentry = path->dentry;
1701 if (error)
1702 return error;
1703 /* Don't check for write permission, don't truncate */
1704 return may_open(nd, 0, flag & ~O_TRUNC);
1708 * Note that while the flag value (low two bits) for sys_open means:
1709 * 00 - read-only
1710 * 01 - write-only
1711 * 10 - read-write
1712 * 11 - special
1713 * it is changed into
1714 * 00 - no permissions needed
1715 * 01 - read-permission
1716 * 10 - write-permission
1717 * 11 - read-write
1718 * for the internal routines (ie open_namei()/follow_link() etc)
1719 * This is more logical, and also allows the 00 "no perm needed"
1720 * to be used for symlinks (where the permissions are checked
1721 * later).
1724 static inline int open_to_namei_flags(int flag)
1726 if ((flag+1) & O_ACCMODE)
1727 flag++;
1728 return flag;
1731 static int open_will_write_to_fs(int flag, struct inode *inode)
1734 * We'll never write to the fs underlying
1735 * a device file.
1737 if (special_file(inode->i_mode))
1738 return 0;
1739 return (flag & O_TRUNC);
1743 * Note that the low bits of the passed in "open_flag"
1744 * are not the same as in the local variable "flag". See
1745 * open_to_namei_flags() for more details.
1747 struct file *do_filp_open(int dfd, const char *pathname,
1748 int open_flag, int mode)
1750 struct file *filp;
1751 struct nameidata nd;
1752 int acc_mode, error;
1753 struct path path;
1754 struct dentry *dir;
1755 int count = 0;
1756 int will_write;
1757 int flag = open_to_namei_flags(open_flag);
1759 acc_mode = ACC_MODE(flag);
1761 /* O_TRUNC implies we need access checks for write permissions */
1762 if (flag & O_TRUNC)
1763 acc_mode |= MAY_WRITE;
1765 /* Allow the LSM permission hook to distinguish append
1766 access from general write access. */
1767 if (flag & O_APPEND)
1768 acc_mode |= MAY_APPEND;
1771 * The simplest case - just a plain lookup.
1773 if (!(flag & O_CREAT)) {
1774 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1775 &nd, flag);
1776 if (error)
1777 return ERR_PTR(error);
1778 goto ok;
1782 * Create - we need to know the parent.
1784 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1785 &nd, flag, mode);
1786 if (error)
1787 return ERR_PTR(error);
1790 * We have the parent and last component. First of all, check
1791 * that we are not asked to creat(2) an obvious directory - that
1792 * will not do.
1794 error = -EISDIR;
1795 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1796 goto exit;
1798 dir = nd.path.dentry;
1799 nd.flags &= ~LOOKUP_PARENT;
1800 mutex_lock(&dir->d_inode->i_mutex);
1801 path.dentry = lookup_hash(&nd);
1802 path.mnt = nd.path.mnt;
1804 do_last:
1805 error = PTR_ERR(path.dentry);
1806 if (IS_ERR(path.dentry)) {
1807 mutex_unlock(&dir->d_inode->i_mutex);
1808 goto exit;
1811 if (IS_ERR(nd.intent.open.file)) {
1812 error = PTR_ERR(nd.intent.open.file);
1813 goto exit_mutex_unlock;
1816 /* Negative dentry, just create the file */
1817 if (!path.dentry->d_inode) {
1819 * This write is needed to ensure that a
1820 * ro->rw transition does not occur between
1821 * the time when the file is created and when
1822 * a permanent write count is taken through
1823 * the 'struct file' in nameidata_to_filp().
1825 error = mnt_want_write(nd.path.mnt);
1826 if (error)
1827 goto exit_mutex_unlock;
1828 error = __open_namei_create(&nd, &path, flag, mode);
1829 if (error) {
1830 mnt_drop_write(nd.path.mnt);
1831 goto exit;
1833 filp = nameidata_to_filp(&nd, open_flag);
1834 mnt_drop_write(nd.path.mnt);
1835 return filp;
1839 * It already exists.
1841 mutex_unlock(&dir->d_inode->i_mutex);
1842 audit_inode(pathname, path.dentry);
1844 error = -EEXIST;
1845 if (flag & O_EXCL)
1846 goto exit_dput;
1848 if (__follow_mount(&path)) {
1849 error = -ELOOP;
1850 if (flag & O_NOFOLLOW)
1851 goto exit_dput;
1854 error = -ENOENT;
1855 if (!path.dentry->d_inode)
1856 goto exit_dput;
1857 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1858 goto do_link;
1860 path_to_nameidata(&path, &nd);
1861 error = -EISDIR;
1862 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1863 goto exit;
1866 * Consider:
1867 * 1. may_open() truncates a file
1868 * 2. a rw->ro mount transition occurs
1869 * 3. nameidata_to_filp() fails due to
1870 * the ro mount.
1871 * That would be inconsistent, and should
1872 * be avoided. Taking this mnt write here
1873 * ensures that (2) can not occur.
1875 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1876 if (will_write) {
1877 error = mnt_want_write(nd.path.mnt);
1878 if (error)
1879 goto exit;
1881 error = may_open(&nd, acc_mode, flag);
1882 if (error) {
1883 if (will_write)
1884 mnt_drop_write(nd.path.mnt);
1885 goto exit;
1887 filp = nameidata_to_filp(&nd, open_flag);
1889 * It is now safe to drop the mnt write
1890 * because the filp has had a write taken
1891 * on its behalf.
1893 if (will_write)
1894 mnt_drop_write(nd.path.mnt);
1895 return filp;
1897 exit_mutex_unlock:
1898 mutex_unlock(&dir->d_inode->i_mutex);
1899 exit_dput:
1900 path_put_conditional(&path, &nd);
1901 exit:
1902 if (!IS_ERR(nd.intent.open.file))
1903 release_open_intent(&nd);
1904 path_put(&nd.path);
1905 return ERR_PTR(error);
1907 do_link:
1908 error = -ELOOP;
1909 if (flag & O_NOFOLLOW)
1910 goto exit_dput;
1912 * This is subtle. Instead of calling do_follow_link() we do the
1913 * thing by hands. The reason is that this way we have zero link_count
1914 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1915 * After that we have the parent and last component, i.e.
1916 * we are in the same situation as after the first path_walk().
1917 * Well, almost - if the last component is normal we get its copy
1918 * stored in nd->last.name and we will have to putname() it when we
1919 * are done. Procfs-like symlinks just set LAST_BIND.
1921 nd.flags |= LOOKUP_PARENT;
1922 error = security_inode_follow_link(path.dentry, &nd);
1923 if (error)
1924 goto exit_dput;
1925 error = __do_follow_link(&path, &nd);
1926 if (error) {
1927 /* Does someone understand code flow here? Or it is only
1928 * me so stupid? Anathema to whoever designed this non-sense
1929 * with "intent.open".
1931 release_open_intent(&nd);
1932 return ERR_PTR(error);
1934 nd.flags &= ~LOOKUP_PARENT;
1935 if (nd.last_type == LAST_BIND)
1936 goto ok;
1937 error = -EISDIR;
1938 if (nd.last_type != LAST_NORM)
1939 goto exit;
1940 if (nd.last.name[nd.last.len]) {
1941 __putname(nd.last.name);
1942 goto exit;
1944 error = -ELOOP;
1945 if (count++==32) {
1946 __putname(nd.last.name);
1947 goto exit;
1949 dir = nd.path.dentry;
1950 mutex_lock(&dir->d_inode->i_mutex);
1951 path.dentry = lookup_hash(&nd);
1952 path.mnt = nd.path.mnt;
1953 __putname(nd.last.name);
1954 goto do_last;
1958 * filp_open - open file and return file pointer
1960 * @filename: path to open
1961 * @flags: open flags as per the open(2) second argument
1962 * @mode: mode for the new file if O_CREAT is set, else ignored
1964 * This is the helper to open a file from kernelspace if you really
1965 * have to. But in generally you should not do this, so please move
1966 * along, nothing to see here..
1968 struct file *filp_open(const char *filename, int flags, int mode)
1970 return do_filp_open(AT_FDCWD, filename, flags, mode);
1972 EXPORT_SYMBOL(filp_open);
1975 * lookup_create - lookup a dentry, creating it if it doesn't exist
1976 * @nd: nameidata info
1977 * @is_dir: directory flag
1979 * Simple function to lookup and return a dentry and create it
1980 * if it doesn't exist. Is SMP-safe.
1982 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1984 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1986 struct dentry *dentry = ERR_PTR(-EEXIST);
1988 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1990 * Yucky last component or no last component at all?
1991 * (foo/., foo/.., /////)
1993 if (nd->last_type != LAST_NORM)
1994 goto fail;
1995 nd->flags &= ~LOOKUP_PARENT;
1996 nd->flags |= LOOKUP_CREATE;
1997 nd->intent.open.flags = O_EXCL;
2000 * Do the final lookup.
2002 dentry = lookup_hash(nd);
2003 if (IS_ERR(dentry))
2004 goto fail;
2006 if (dentry->d_inode)
2007 goto eexist;
2009 * Special case - lookup gave negative, but... we had foo/bar/
2010 * From the vfs_mknod() POV we just have a negative dentry -
2011 * all is fine. Let's be bastards - you had / on the end, you've
2012 * been asking for (non-existent) directory. -ENOENT for you.
2014 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2015 dput(dentry);
2016 dentry = ERR_PTR(-ENOENT);
2018 return dentry;
2019 eexist:
2020 dput(dentry);
2021 dentry = ERR_PTR(-EEXIST);
2022 fail:
2023 return dentry;
2025 EXPORT_SYMBOL_GPL(lookup_create);
2027 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2029 int error = may_create(dir, dentry, NULL);
2031 if (error)
2032 return error;
2034 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2035 return -EPERM;
2037 if (!dir->i_op || !dir->i_op->mknod)
2038 return -EPERM;
2040 error = devcgroup_inode_mknod(mode, dev);
2041 if (error)
2042 return error;
2044 error = security_inode_mknod(dir, dentry, mode, dev);
2045 if (error)
2046 return error;
2048 DQUOT_INIT(dir);
2049 error = dir->i_op->mknod(dir, dentry, mode, dev);
2050 if (!error)
2051 fsnotify_create(dir, dentry);
2052 return error;
2055 static int may_mknod(mode_t mode)
2057 switch (mode & S_IFMT) {
2058 case S_IFREG:
2059 case S_IFCHR:
2060 case S_IFBLK:
2061 case S_IFIFO:
2062 case S_IFSOCK:
2063 case 0: /* zero mode translates to S_IFREG */
2064 return 0;
2065 case S_IFDIR:
2066 return -EPERM;
2067 default:
2068 return -EINVAL;
2072 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
2073 unsigned dev)
2075 int error = 0;
2076 char * tmp;
2077 struct dentry * dentry;
2078 struct nameidata nd;
2080 if (S_ISDIR(mode))
2081 return -EPERM;
2082 tmp = getname(filename);
2083 if (IS_ERR(tmp))
2084 return PTR_ERR(tmp);
2086 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2087 if (error)
2088 goto out;
2089 dentry = lookup_create(&nd, 0);
2090 if (IS_ERR(dentry)) {
2091 error = PTR_ERR(dentry);
2092 goto out_unlock;
2094 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2095 mode &= ~current->fs->umask;
2096 error = may_mknod(mode);
2097 if (error)
2098 goto out_dput;
2099 error = mnt_want_write(nd.path.mnt);
2100 if (error)
2101 goto out_dput;
2102 switch (mode & S_IFMT) {
2103 case 0: case S_IFREG:
2104 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2105 break;
2106 case S_IFCHR: case S_IFBLK:
2107 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2108 new_decode_dev(dev));
2109 break;
2110 case S_IFIFO: case S_IFSOCK:
2111 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2112 break;
2114 mnt_drop_write(nd.path.mnt);
2115 out_dput:
2116 dput(dentry);
2117 out_unlock:
2118 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2119 path_put(&nd.path);
2120 out:
2121 putname(tmp);
2123 return error;
2126 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2128 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2131 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2133 int error = may_create(dir, dentry, NULL);
2135 if (error)
2136 return error;
2138 if (!dir->i_op || !dir->i_op->mkdir)
2139 return -EPERM;
2141 mode &= (S_IRWXUGO|S_ISVTX);
2142 error = security_inode_mkdir(dir, dentry, mode);
2143 if (error)
2144 return error;
2146 DQUOT_INIT(dir);
2147 error = dir->i_op->mkdir(dir, dentry, mode);
2148 if (!error)
2149 fsnotify_mkdir(dir, dentry);
2150 return error;
2153 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2155 int error = 0;
2156 char * tmp;
2157 struct dentry *dentry;
2158 struct nameidata nd;
2160 tmp = getname(pathname);
2161 error = PTR_ERR(tmp);
2162 if (IS_ERR(tmp))
2163 goto out_err;
2165 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2166 if (error)
2167 goto out;
2168 dentry = lookup_create(&nd, 1);
2169 error = PTR_ERR(dentry);
2170 if (IS_ERR(dentry))
2171 goto out_unlock;
2173 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2174 mode &= ~current->fs->umask;
2175 error = mnt_want_write(nd.path.mnt);
2176 if (error)
2177 goto out_dput;
2178 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2179 mnt_drop_write(nd.path.mnt);
2180 out_dput:
2181 dput(dentry);
2182 out_unlock:
2183 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2184 path_put(&nd.path);
2185 out:
2186 putname(tmp);
2187 out_err:
2188 return error;
2191 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2193 return sys_mkdirat(AT_FDCWD, pathname, mode);
2197 * We try to drop the dentry early: we should have
2198 * a usage count of 2 if we're the only user of this
2199 * dentry, and if that is true (possibly after pruning
2200 * the dcache), then we drop the dentry now.
2202 * A low-level filesystem can, if it choses, legally
2203 * do a
2205 * if (!d_unhashed(dentry))
2206 * return -EBUSY;
2208 * if it cannot handle the case of removing a directory
2209 * that is still in use by something else..
2211 void dentry_unhash(struct dentry *dentry)
2213 dget(dentry);
2214 shrink_dcache_parent(dentry);
2215 spin_lock(&dcache_lock);
2216 spin_lock(&dentry->d_lock);
2217 if (atomic_read(&dentry->d_count) == 2)
2218 __d_drop(dentry);
2219 spin_unlock(&dentry->d_lock);
2220 spin_unlock(&dcache_lock);
2223 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2225 int error = may_delete(dir, dentry, 1);
2227 if (error)
2228 return error;
2230 if (!dir->i_op || !dir->i_op->rmdir)
2231 return -EPERM;
2233 DQUOT_INIT(dir);
2235 mutex_lock(&dentry->d_inode->i_mutex);
2236 dentry_unhash(dentry);
2237 if (d_mountpoint(dentry))
2238 error = -EBUSY;
2239 else {
2240 error = security_inode_rmdir(dir, dentry);
2241 if (!error) {
2242 error = dir->i_op->rmdir(dir, dentry);
2243 if (!error)
2244 dentry->d_inode->i_flags |= S_DEAD;
2247 mutex_unlock(&dentry->d_inode->i_mutex);
2248 if (!error) {
2249 d_delete(dentry);
2251 dput(dentry);
2253 return error;
2256 static long do_rmdir(int dfd, const char __user *pathname)
2258 int error = 0;
2259 char * name;
2260 struct dentry *dentry;
2261 struct nameidata nd;
2263 name = getname(pathname);
2264 if(IS_ERR(name))
2265 return PTR_ERR(name);
2267 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2268 if (error)
2269 goto exit;
2271 switch(nd.last_type) {
2272 case LAST_DOTDOT:
2273 error = -ENOTEMPTY;
2274 goto exit1;
2275 case LAST_DOT:
2276 error = -EINVAL;
2277 goto exit1;
2278 case LAST_ROOT:
2279 error = -EBUSY;
2280 goto exit1;
2282 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2283 dentry = lookup_hash(&nd);
2284 error = PTR_ERR(dentry);
2285 if (IS_ERR(dentry))
2286 goto exit2;
2287 error = mnt_want_write(nd.path.mnt);
2288 if (error)
2289 goto exit3;
2290 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2291 mnt_drop_write(nd.path.mnt);
2292 exit3:
2293 dput(dentry);
2294 exit2:
2295 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2296 exit1:
2297 path_put(&nd.path);
2298 exit:
2299 putname(name);
2300 return error;
2303 asmlinkage long sys_rmdir(const char __user *pathname)
2305 return do_rmdir(AT_FDCWD, pathname);
2308 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2310 int error = may_delete(dir, dentry, 0);
2312 if (error)
2313 return error;
2315 if (!dir->i_op || !dir->i_op->unlink)
2316 return -EPERM;
2318 DQUOT_INIT(dir);
2320 mutex_lock(&dentry->d_inode->i_mutex);
2321 if (d_mountpoint(dentry))
2322 error = -EBUSY;
2323 else {
2324 error = security_inode_unlink(dir, dentry);
2325 if (!error)
2326 error = dir->i_op->unlink(dir, dentry);
2328 mutex_unlock(&dentry->d_inode->i_mutex);
2330 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2331 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2332 fsnotify_link_count(dentry->d_inode);
2333 d_delete(dentry);
2336 return error;
2340 * Make sure that the actual truncation of the file will occur outside its
2341 * directory's i_mutex. Truncate can take a long time if there is a lot of
2342 * writeout happening, and we don't want to prevent access to the directory
2343 * while waiting on the I/O.
2345 static long do_unlinkat(int dfd, const char __user *pathname)
2347 int error = 0;
2348 char * name;
2349 struct dentry *dentry;
2350 struct nameidata nd;
2351 struct inode *inode = NULL;
2353 name = getname(pathname);
2354 if(IS_ERR(name))
2355 return PTR_ERR(name);
2357 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2358 if (error)
2359 goto exit;
2360 error = -EISDIR;
2361 if (nd.last_type != LAST_NORM)
2362 goto exit1;
2363 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2364 dentry = lookup_hash(&nd);
2365 error = PTR_ERR(dentry);
2366 if (!IS_ERR(dentry)) {
2367 /* Why not before? Because we want correct error value */
2368 if (nd.last.name[nd.last.len])
2369 goto slashes;
2370 inode = dentry->d_inode;
2371 if (inode)
2372 atomic_inc(&inode->i_count);
2373 error = mnt_want_write(nd.path.mnt);
2374 if (error)
2375 goto exit2;
2376 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2377 mnt_drop_write(nd.path.mnt);
2378 exit2:
2379 dput(dentry);
2381 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2382 if (inode)
2383 iput(inode); /* truncate the inode here */
2384 exit1:
2385 path_put(&nd.path);
2386 exit:
2387 putname(name);
2388 return error;
2390 slashes:
2391 error = !dentry->d_inode ? -ENOENT :
2392 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2393 goto exit2;
2396 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2398 if ((flag & ~AT_REMOVEDIR) != 0)
2399 return -EINVAL;
2401 if (flag & AT_REMOVEDIR)
2402 return do_rmdir(dfd, pathname);
2404 return do_unlinkat(dfd, pathname);
2407 asmlinkage long sys_unlink(const char __user *pathname)
2409 return do_unlinkat(AT_FDCWD, pathname);
2412 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2414 int error = may_create(dir, dentry, NULL);
2416 if (error)
2417 return error;
2419 if (!dir->i_op || !dir->i_op->symlink)
2420 return -EPERM;
2422 error = security_inode_symlink(dir, dentry, oldname);
2423 if (error)
2424 return error;
2426 DQUOT_INIT(dir);
2427 error = dir->i_op->symlink(dir, dentry, oldname);
2428 if (!error)
2429 fsnotify_create(dir, dentry);
2430 return error;
2433 asmlinkage long sys_symlinkat(const char __user *oldname,
2434 int newdfd, const char __user *newname)
2436 int error = 0;
2437 char * from;
2438 char * to;
2439 struct dentry *dentry;
2440 struct nameidata nd;
2442 from = getname(oldname);
2443 if(IS_ERR(from))
2444 return PTR_ERR(from);
2445 to = getname(newname);
2446 error = PTR_ERR(to);
2447 if (IS_ERR(to))
2448 goto out_putname;
2450 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2451 if (error)
2452 goto out;
2453 dentry = lookup_create(&nd, 0);
2454 error = PTR_ERR(dentry);
2455 if (IS_ERR(dentry))
2456 goto out_unlock;
2458 error = mnt_want_write(nd.path.mnt);
2459 if (error)
2460 goto out_dput;
2461 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2462 mnt_drop_write(nd.path.mnt);
2463 out_dput:
2464 dput(dentry);
2465 out_unlock:
2466 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2467 path_put(&nd.path);
2468 out:
2469 putname(to);
2470 out_putname:
2471 putname(from);
2472 return error;
2475 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2477 return sys_symlinkat(oldname, AT_FDCWD, newname);
2480 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2482 struct inode *inode = old_dentry->d_inode;
2483 int error;
2485 if (!inode)
2486 return -ENOENT;
2488 error = may_create(dir, new_dentry, NULL);
2489 if (error)
2490 return error;
2492 if (dir->i_sb != inode->i_sb)
2493 return -EXDEV;
2496 * A link to an append-only or immutable file cannot be created.
2498 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2499 return -EPERM;
2500 if (!dir->i_op || !dir->i_op->link)
2501 return -EPERM;
2502 if (S_ISDIR(old_dentry->d_inode->i_mode))
2503 return -EPERM;
2505 error = security_inode_link(old_dentry, dir, new_dentry);
2506 if (error)
2507 return error;
2509 mutex_lock(&old_dentry->d_inode->i_mutex);
2510 DQUOT_INIT(dir);
2511 error = dir->i_op->link(old_dentry, dir, new_dentry);
2512 mutex_unlock(&old_dentry->d_inode->i_mutex);
2513 if (!error)
2514 fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2515 return error;
2519 * Hardlinks are often used in delicate situations. We avoid
2520 * security-related surprises by not following symlinks on the
2521 * newname. --KAB
2523 * We don't follow them on the oldname either to be compatible
2524 * with linux 2.0, and to avoid hard-linking to directories
2525 * and other special files. --ADM
2527 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2528 int newdfd, const char __user *newname,
2529 int flags)
2531 struct dentry *new_dentry;
2532 struct nameidata nd, old_nd;
2533 int error;
2534 char * to;
2536 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2537 return -EINVAL;
2539 to = getname(newname);
2540 if (IS_ERR(to))
2541 return PTR_ERR(to);
2543 error = __user_walk_fd(olddfd, oldname,
2544 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2545 &old_nd);
2546 if (error)
2547 goto exit;
2548 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2549 if (error)
2550 goto out;
2551 error = -EXDEV;
2552 if (old_nd.path.mnt != nd.path.mnt)
2553 goto out_release;
2554 new_dentry = lookup_create(&nd, 0);
2555 error = PTR_ERR(new_dentry);
2556 if (IS_ERR(new_dentry))
2557 goto out_unlock;
2558 error = mnt_want_write(nd.path.mnt);
2559 if (error)
2560 goto out_dput;
2561 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2562 mnt_drop_write(nd.path.mnt);
2563 out_dput:
2564 dput(new_dentry);
2565 out_unlock:
2566 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2567 out_release:
2568 path_put(&nd.path);
2569 out:
2570 path_put(&old_nd.path);
2571 exit:
2572 putname(to);
2574 return error;
2577 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2579 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2583 * The worst of all namespace operations - renaming directory. "Perverted"
2584 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2585 * Problems:
2586 * a) we can get into loop creation. Check is done in is_subdir().
2587 * b) race potential - two innocent renames can create a loop together.
2588 * That's where 4.4 screws up. Current fix: serialization on
2589 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2590 * story.
2591 * c) we have to lock _three_ objects - parents and victim (if it exists).
2592 * And that - after we got ->i_mutex on parents (until then we don't know
2593 * whether the target exists). Solution: try to be smart with locking
2594 * order for inodes. We rely on the fact that tree topology may change
2595 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2596 * move will be locked. Thus we can rank directories by the tree
2597 * (ancestors first) and rank all non-directories after them.
2598 * That works since everybody except rename does "lock parent, lookup,
2599 * lock child" and rename is under ->s_vfs_rename_mutex.
2600 * HOWEVER, it relies on the assumption that any object with ->lookup()
2601 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2602 * we'd better make sure that there's no link(2) for them.
2603 * d) some filesystems don't support opened-but-unlinked directories,
2604 * either because of layout or because they are not ready to deal with
2605 * all cases correctly. The latter will be fixed (taking this sort of
2606 * stuff into VFS), but the former is not going away. Solution: the same
2607 * trick as in rmdir().
2608 * e) conversion from fhandle to dentry may come in the wrong moment - when
2609 * we are removing the target. Solution: we will have to grab ->i_mutex
2610 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2611 * ->i_mutex on parents, which works but leads to some truely excessive
2612 * locking].
2614 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2615 struct inode *new_dir, struct dentry *new_dentry)
2617 int error = 0;
2618 struct inode *target;
2621 * If we are going to change the parent - check write permissions,
2622 * we'll need to flip '..'.
2624 if (new_dir != old_dir) {
2625 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2626 if (error)
2627 return error;
2630 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2631 if (error)
2632 return error;
2634 target = new_dentry->d_inode;
2635 if (target) {
2636 mutex_lock(&target->i_mutex);
2637 dentry_unhash(new_dentry);
2639 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2640 error = -EBUSY;
2641 else
2642 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2643 if (target) {
2644 if (!error)
2645 target->i_flags |= S_DEAD;
2646 mutex_unlock(&target->i_mutex);
2647 if (d_unhashed(new_dentry))
2648 d_rehash(new_dentry);
2649 dput(new_dentry);
2651 if (!error)
2652 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2653 d_move(old_dentry,new_dentry);
2654 return error;
2657 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2658 struct inode *new_dir, struct dentry *new_dentry)
2660 struct inode *target;
2661 int error;
2663 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2664 if (error)
2665 return error;
2667 dget(new_dentry);
2668 target = new_dentry->d_inode;
2669 if (target)
2670 mutex_lock(&target->i_mutex);
2671 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2672 error = -EBUSY;
2673 else
2674 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2675 if (!error) {
2676 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2677 d_move(old_dentry, new_dentry);
2679 if (target)
2680 mutex_unlock(&target->i_mutex);
2681 dput(new_dentry);
2682 return error;
2685 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2686 struct inode *new_dir, struct dentry *new_dentry)
2688 int error;
2689 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2690 const char *old_name;
2692 if (old_dentry->d_inode == new_dentry->d_inode)
2693 return 0;
2695 error = may_delete(old_dir, old_dentry, is_dir);
2696 if (error)
2697 return error;
2699 if (!new_dentry->d_inode)
2700 error = may_create(new_dir, new_dentry, NULL);
2701 else
2702 error = may_delete(new_dir, new_dentry, is_dir);
2703 if (error)
2704 return error;
2706 if (!old_dir->i_op || !old_dir->i_op->rename)
2707 return -EPERM;
2709 DQUOT_INIT(old_dir);
2710 DQUOT_INIT(new_dir);
2712 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2714 if (is_dir)
2715 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2716 else
2717 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2718 if (!error) {
2719 const char *new_name = old_dentry->d_name.name;
2720 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2721 new_dentry->d_inode, old_dentry);
2723 fsnotify_oldname_free(old_name);
2725 return error;
2728 static int do_rename(int olddfd, const char *oldname,
2729 int newdfd, const char *newname)
2731 int error = 0;
2732 struct dentry * old_dir, * new_dir;
2733 struct dentry * old_dentry, *new_dentry;
2734 struct dentry * trap;
2735 struct nameidata oldnd, newnd;
2737 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2738 if (error)
2739 goto exit;
2741 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2742 if (error)
2743 goto exit1;
2745 error = -EXDEV;
2746 if (oldnd.path.mnt != newnd.path.mnt)
2747 goto exit2;
2749 old_dir = oldnd.path.dentry;
2750 error = -EBUSY;
2751 if (oldnd.last_type != LAST_NORM)
2752 goto exit2;
2754 new_dir = newnd.path.dentry;
2755 if (newnd.last_type != LAST_NORM)
2756 goto exit2;
2758 trap = lock_rename(new_dir, old_dir);
2760 old_dentry = lookup_hash(&oldnd);
2761 error = PTR_ERR(old_dentry);
2762 if (IS_ERR(old_dentry))
2763 goto exit3;
2764 /* source must exist */
2765 error = -ENOENT;
2766 if (!old_dentry->d_inode)
2767 goto exit4;
2768 /* unless the source is a directory trailing slashes give -ENOTDIR */
2769 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2770 error = -ENOTDIR;
2771 if (oldnd.last.name[oldnd.last.len])
2772 goto exit4;
2773 if (newnd.last.name[newnd.last.len])
2774 goto exit4;
2776 /* source should not be ancestor of target */
2777 error = -EINVAL;
2778 if (old_dentry == trap)
2779 goto exit4;
2780 new_dentry = lookup_hash(&newnd);
2781 error = PTR_ERR(new_dentry);
2782 if (IS_ERR(new_dentry))
2783 goto exit4;
2784 /* target should not be an ancestor of source */
2785 error = -ENOTEMPTY;
2786 if (new_dentry == trap)
2787 goto exit5;
2789 error = mnt_want_write(oldnd.path.mnt);
2790 if (error)
2791 goto exit5;
2792 error = vfs_rename(old_dir->d_inode, old_dentry,
2793 new_dir->d_inode, new_dentry);
2794 mnt_drop_write(oldnd.path.mnt);
2795 exit5:
2796 dput(new_dentry);
2797 exit4:
2798 dput(old_dentry);
2799 exit3:
2800 unlock_rename(new_dir, old_dir);
2801 exit2:
2802 path_put(&newnd.path);
2803 exit1:
2804 path_put(&oldnd.path);
2805 exit:
2806 return error;
2809 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2810 int newdfd, const char __user *newname)
2812 int error;
2813 char * from;
2814 char * to;
2816 from = getname(oldname);
2817 if(IS_ERR(from))
2818 return PTR_ERR(from);
2819 to = getname(newname);
2820 error = PTR_ERR(to);
2821 if (!IS_ERR(to)) {
2822 error = do_rename(olddfd, from, newdfd, to);
2823 putname(to);
2825 putname(from);
2826 return error;
2829 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2831 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2834 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2836 int len;
2838 len = PTR_ERR(link);
2839 if (IS_ERR(link))
2840 goto out;
2842 len = strlen(link);
2843 if (len > (unsigned) buflen)
2844 len = buflen;
2845 if (copy_to_user(buffer, link, len))
2846 len = -EFAULT;
2847 out:
2848 return len;
2852 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2853 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2854 * using) it for any given inode is up to filesystem.
2856 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2858 struct nameidata nd;
2859 void *cookie;
2861 nd.depth = 0;
2862 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2863 if (!IS_ERR(cookie)) {
2864 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2865 if (dentry->d_inode->i_op->put_link)
2866 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2867 cookie = ERR_PTR(res);
2869 return PTR_ERR(cookie);
2872 int vfs_follow_link(struct nameidata *nd, const char *link)
2874 return __vfs_follow_link(nd, link);
2877 /* get the link contents into pagecache */
2878 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2880 struct page * page;
2881 struct address_space *mapping = dentry->d_inode->i_mapping;
2882 page = read_mapping_page(mapping, 0, NULL);
2883 if (IS_ERR(page))
2884 return (char*)page;
2885 *ppage = page;
2886 return kmap(page);
2889 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2891 struct page *page = NULL;
2892 char *s = page_getlink(dentry, &page);
2893 int res = vfs_readlink(dentry,buffer,buflen,s);
2894 if (page) {
2895 kunmap(page);
2896 page_cache_release(page);
2898 return res;
2901 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2903 struct page *page = NULL;
2904 nd_set_link(nd, page_getlink(dentry, &page));
2905 return page;
2908 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2910 struct page *page = cookie;
2912 if (page) {
2913 kunmap(page);
2914 page_cache_release(page);
2918 int __page_symlink(struct inode *inode, const char *symname, int len,
2919 gfp_t gfp_mask)
2921 struct address_space *mapping = inode->i_mapping;
2922 struct page *page;
2923 void *fsdata;
2924 int err;
2925 char *kaddr;
2927 retry:
2928 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2929 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2930 if (err)
2931 goto fail;
2933 kaddr = kmap_atomic(page, KM_USER0);
2934 memcpy(kaddr, symname, len-1);
2935 kunmap_atomic(kaddr, KM_USER0);
2937 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2938 page, fsdata);
2939 if (err < 0)
2940 goto fail;
2941 if (err < len-1)
2942 goto retry;
2944 mark_inode_dirty(inode);
2945 return 0;
2946 fail:
2947 return err;
2950 int page_symlink(struct inode *inode, const char *symname, int len)
2952 return __page_symlink(inode, symname, len,
2953 mapping_gfp_mask(inode->i_mapping));
2956 const struct inode_operations page_symlink_inode_operations = {
2957 .readlink = generic_readlink,
2958 .follow_link = page_follow_link_light,
2959 .put_link = page_put_link,
2962 EXPORT_SYMBOL(__user_walk);
2963 EXPORT_SYMBOL(__user_walk_fd);
2964 EXPORT_SYMBOL(follow_down);
2965 EXPORT_SYMBOL(follow_up);
2966 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2967 EXPORT_SYMBOL(getname);
2968 EXPORT_SYMBOL(lock_rename);
2969 EXPORT_SYMBOL(lookup_one_len);
2970 EXPORT_SYMBOL(page_follow_link_light);
2971 EXPORT_SYMBOL(page_put_link);
2972 EXPORT_SYMBOL(page_readlink);
2973 EXPORT_SYMBOL(__page_symlink);
2974 EXPORT_SYMBOL(page_symlink);
2975 EXPORT_SYMBOL(page_symlink_inode_operations);
2976 EXPORT_SYMBOL(path_lookup);
2977 EXPORT_SYMBOL(vfs_path_lookup);
2978 EXPORT_SYMBOL(permission);
2979 EXPORT_SYMBOL(vfs_permission);
2980 EXPORT_SYMBOL(file_permission);
2981 EXPORT_SYMBOL(unlock_rename);
2982 EXPORT_SYMBOL(vfs_create);
2983 EXPORT_SYMBOL(vfs_follow_link);
2984 EXPORT_SYMBOL(vfs_link);
2985 EXPORT_SYMBOL(vfs_mkdir);
2986 EXPORT_SYMBOL(vfs_mknod);
2987 EXPORT_SYMBOL(generic_permission);
2988 EXPORT_SYMBOL(vfs_readlink);
2989 EXPORT_SYMBOL(vfs_rename);
2990 EXPORT_SYMBOL(vfs_rmdir);
2991 EXPORT_SYMBOL(vfs_symlink);
2992 EXPORT_SYMBOL(vfs_unlink);
2993 EXPORT_SYMBOL(dentry_unhash);
2994 EXPORT_SYMBOL(generic_readlink);