2 * ramdisk.c - Multiple RAM disk driver - gzip-loading version - v. 0.8 beta.
4 * (C) Chad Page, Theodore Ts'o, et. al, 1995.
6 * This RAM disk is designed to have filesystems created on it and mounted
7 * just like a regular floppy disk.
9 * It also does something suggested by Linus: use the buffer cache as the
10 * RAM disk data. This makes it possible to dynamically allocate the RAM disk
11 * buffer - with some consequences I have to deal with as I write this.
13 * This code is based on the original ramdisk.c, written mostly by
14 * Theodore Ts'o (TYT) in 1991. The code was largely rewritten by
15 * Chad Page to use the buffer cache to store the RAM disk data in
16 * 1995; Theodore then took over the driver again, and cleaned it up
17 * for inclusion in the mainline kernel.
19 * The original CRAMDISK code was written by Richard Lyons, and
20 * adapted by Chad Page to use the new RAM disk interface. Theodore
21 * Ts'o rewrote it so that both the compressed RAM disk loader and the
22 * kernel decompressor uses the same inflate.c codebase. The RAM disk
23 * loader now also loads into a dynamic (buffer cache based) RAM disk,
24 * not the old static RAM disk. Support for the old static RAM disk has
25 * been completely removed.
27 * Loadable module support added by Tom Dyas.
29 * Further cleanups by Chad Page (page0588@sundance.sjsu.edu):
30 * Cosmetic changes in #ifdef MODULE, code movement, etc.
31 * When the RAM disk module is removed, free the protected buffers
32 * Default RAM disk size changed to 2.88 MB
34 * Added initrd: Werner Almesberger & Hans Lermen, Feb '96
36 * 4/25/96 : Made RAM disk size a parameter (default is now 4 MB)
39 * Add support for fs images split across >1 disk, Paul Gortmaker, Mar '98
41 * Make block size and block size shift for RAM disks a global macro
42 * and set blk_size for -ENOSPC, Werner Fink <werner@suse.de>, Apr '99
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <asm/atomic.h>
48 #include <linux/bio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/init.h>
52 #include <linux/pagemap.h>
53 #include <linux/blkdev.h>
54 #include <linux/genhd.h>
55 #include <linux/buffer_head.h> /* for invalidate_bdev() */
56 #include <linux/backing-dev.h>
57 #include <linux/blkpg.h>
58 #include <linux/writeback.h>
60 #include <asm/uaccess.h>
62 /* Various static variables go here. Most are used only in the RAM disk code.
65 static struct gendisk
*rd_disks
[CONFIG_BLK_DEV_RAM_COUNT
];
66 static struct block_device
*rd_bdev
[CONFIG_BLK_DEV_RAM_COUNT
];/* Protected device data */
67 static struct request_queue
*rd_queue
[CONFIG_BLK_DEV_RAM_COUNT
];
70 * Parameters for the boot-loading of the RAM disk. These are set by
71 * init/main.c (from arguments to the kernel command line) or from the
72 * architecture-specific setup routine (from the stored boot sector
75 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
; /* Size of the RAM disks */
77 * It would be very desirable to have a soft-blocksize (that in the case
78 * of the ramdisk driver is also the hardblocksize ;) of PAGE_SIZE because
79 * doing that we'll achieve a far better MM footprint. Using a rd_blocksize of
80 * BLOCK_SIZE in the worst case we'll make PAGE_SIZE/BLOCK_SIZE buffer-pages
81 * unfreeable. With a rd_blocksize of PAGE_SIZE instead we are sure that only
82 * 1 page will be protected. Depending on the size of the ramdisk you
83 * may want to change the ramdisk blocksize to achieve a better or worse MM
84 * behaviour. The default is still BLOCK_SIZE (needed by rd_load_image that
85 * supposes the filesystem in the image uses a BLOCK_SIZE blocksize).
87 static int rd_blocksize
= CONFIG_BLK_DEV_RAM_BLOCKSIZE
;
90 * Copyright (C) 2000 Linus Torvalds.
91 * 2000 Transmeta Corp.
92 * aops copied from ramfs.
96 * If a ramdisk page has buffers, some may be uptodate and some may be not.
97 * To bring the page uptodate we zero out the non-uptodate buffers. The
98 * page must be locked.
100 static void make_page_uptodate(struct page
*page
)
102 if (page_has_buffers(page
)) {
103 struct buffer_head
*bh
= page_buffers(page
);
104 struct buffer_head
*head
= bh
;
107 if (!buffer_uptodate(bh
)) {
108 memset(bh
->b_data
, 0, bh
->b_size
);
110 * akpm: I'm totally undecided about this. The
111 * buffer has just been magically brought "up to
112 * date", but nobody should want to be reading
113 * it anyway, because it hasn't been used for
114 * anything yet. It is still in a "not read
115 * from disk yet" state.
117 * But non-uptodate buffers against an uptodate
118 * page are against the rules. So do it anyway.
120 set_buffer_uptodate(bh
);
122 } while ((bh
= bh
->b_this_page
) != head
);
124 memset(page_address(page
), 0, PAGE_CACHE_SIZE
);
126 flush_dcache_page(page
);
127 SetPageUptodate(page
);
130 static int ramdisk_readpage(struct file
*file
, struct page
*page
)
132 if (!PageUptodate(page
))
133 make_page_uptodate(page
);
138 static int ramdisk_prepare_write(struct file
*file
, struct page
*page
,
139 unsigned offset
, unsigned to
)
141 if (!PageUptodate(page
))
142 make_page_uptodate(page
);
146 static int ramdisk_commit_write(struct file
*file
, struct page
*page
,
147 unsigned offset
, unsigned to
)
149 set_page_dirty(page
);
154 * ->writepage to the blockdev's mapping has to redirty the page so that the
155 * VM doesn't go and steal it. We return AOP_WRITEPAGE_ACTIVATE so that the VM
156 * won't try to (pointlessly) write the page again for a while.
158 * Really, these pages should not be on the LRU at all.
160 static int ramdisk_writepage(struct page
*page
, struct writeback_control
*wbc
)
162 if (!PageUptodate(page
))
163 make_page_uptodate(page
);
165 if (wbc
->for_reclaim
)
166 return AOP_WRITEPAGE_ACTIVATE
;
172 * This is a little speedup thing: short-circuit attempts to write back the
173 * ramdisk blockdev inode to its non-existent backing store.
175 static int ramdisk_writepages(struct address_space
*mapping
,
176 struct writeback_control
*wbc
)
182 * ramdisk blockdev pages have their own ->set_page_dirty() because we don't
183 * want them to contribute to dirty memory accounting.
185 static int ramdisk_set_page_dirty(struct page
*page
)
187 if (!TestSetPageDirty(page
))
193 * releasepage is called by pagevec_strip/try_to_release_page if
194 * buffers_heads_over_limit is true. Without a releasepage function
195 * try_to_free_buffers is called instead. That can unset the dirty
196 * bit of our ram disk pages, which will be eventually freed, even
197 * if the page is still in use.
199 static int ramdisk_releasepage(struct page
*page
, gfp_t dummy
)
204 static const struct address_space_operations ramdisk_aops
= {
205 .readpage
= ramdisk_readpage
,
206 .prepare_write
= ramdisk_prepare_write
,
207 .commit_write
= ramdisk_commit_write
,
208 .writepage
= ramdisk_writepage
,
209 .set_page_dirty
= ramdisk_set_page_dirty
,
210 .writepages
= ramdisk_writepages
,
211 .releasepage
= ramdisk_releasepage
,
214 static int rd_blkdev_pagecache_IO(int rw
, struct bio_vec
*vec
, sector_t sector
,
215 struct address_space
*mapping
)
217 pgoff_t index
= sector
>> (PAGE_CACHE_SHIFT
- 9);
218 unsigned int vec_offset
= vec
->bv_offset
;
219 int offset
= (sector
<< 9) & ~PAGE_CACHE_MASK
;
220 int size
= vec
->bv_len
;
229 count
= PAGE_CACHE_SIZE
- offset
;
234 page
= grab_cache_page(mapping
, index
);
240 if (!PageUptodate(page
))
241 make_page_uptodate(page
);
246 src
= kmap_atomic(page
, KM_USER0
) + offset
;
247 dst
= kmap_atomic(vec
->bv_page
, KM_USER1
) + vec_offset
;
249 src
= kmap_atomic(vec
->bv_page
, KM_USER0
) + vec_offset
;
250 dst
= kmap_atomic(page
, KM_USER1
) + offset
;
255 memcpy(dst
, src
, count
);
257 kunmap_atomic(src
, KM_USER0
);
258 kunmap_atomic(dst
, KM_USER1
);
261 flush_dcache_page(vec
->bv_page
);
263 set_page_dirty(page
);
273 * Basically, my strategy here is to set up a buffer-head which can't be
274 * deleted, and make that my Ramdisk. If the request is outside of the
275 * allocated size, we must get rid of it...
277 * 19-JAN-1998 Richard Gooch <rgooch@atnf.csiro.au> Added devfs support
280 static int rd_make_request(struct request_queue
*q
, struct bio
*bio
)
282 struct block_device
*bdev
= bio
->bi_bdev
;
283 struct address_space
* mapping
= bdev
->bd_inode
->i_mapping
;
284 sector_t sector
= bio
->bi_sector
;
285 unsigned long len
= bio
->bi_size
>> 9;
286 int rw
= bio_data_dir(bio
);
287 struct bio_vec
*bvec
;
290 if (sector
+ len
> get_capacity(bdev
->bd_disk
))
296 bio_for_each_segment(bvec
, bio
, i
) {
297 ret
|= rd_blkdev_pagecache_IO(rw
, bvec
, sector
, mapping
);
298 sector
+= bvec
->bv_len
>> 9;
310 static int rd_ioctl(struct inode
*inode
, struct file
*file
,
311 unsigned int cmd
, unsigned long arg
)
314 struct block_device
*bdev
= inode
->i_bdev
;
316 if (cmd
!= BLKFLSBUF
)
320 * special: we want to release the ramdisk memory, it's not like with
321 * the other blockdevices where this ioctl only flushes away the buffer
325 mutex_lock(&bdev
->bd_mutex
);
326 if (bdev
->bd_openers
<= 2) {
327 truncate_inode_pages(bdev
->bd_inode
->i_mapping
, 0);
330 mutex_unlock(&bdev
->bd_mutex
);
335 * This is the backing_dev_info for the blockdev inode itself. It doesn't need
336 * writeback and it does not contribute to dirty memory accounting.
338 static struct backing_dev_info rd_backing_dev_info
= {
339 .ra_pages
= 0, /* No readahead */
340 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
| BDI_CAP_MAP_COPY
,
341 .unplug_io_fn
= default_unplug_io_fn
,
345 * This is the backing_dev_info for the files which live atop the ramdisk
346 * "device". These files do need writeback and they do contribute to dirty
349 static struct backing_dev_info rd_file_backing_dev_info
= {
350 .ra_pages
= 0, /* No readahead */
351 .capabilities
= BDI_CAP_MAP_COPY
, /* Does contribute to dirty memory */
352 .unplug_io_fn
= default_unplug_io_fn
,
355 static int rd_open(struct inode
*inode
, struct file
*filp
)
357 unsigned unit
= iminor(inode
);
359 if (rd_bdev
[unit
] == NULL
) {
360 struct block_device
*bdev
= inode
->i_bdev
;
361 struct address_space
*mapping
;
365 inode
= igrab(bdev
->bd_inode
);
366 rd_bdev
[unit
] = bdev
;
368 bsize
= bdev_hardsect_size(bdev
);
369 bdev
->bd_block_size
= bsize
;
370 inode
->i_blkbits
= blksize_bits(bsize
);
371 inode
->i_size
= get_capacity(bdev
->bd_disk
)<<9;
373 mapping
= inode
->i_mapping
;
374 mapping
->a_ops
= &ramdisk_aops
;
375 mapping
->backing_dev_info
= &rd_backing_dev_info
;
376 bdev
->bd_inode_backing_dev_info
= &rd_file_backing_dev_info
;
379 * Deep badness. rd_blkdev_pagecache_IO() needs to allocate
380 * pagecache pages within a request_fn. We cannot recur back
381 * into the filesystem which is mounted atop the ramdisk, because
382 * that would deadlock on fs locks. And we really don't want
383 * to reenter rd_blkdev_pagecache_IO when we're already within
386 * So we turn off __GFP_FS and __GFP_IO.
388 * And to give this thing a hope of working, turn on __GFP_HIGH.
389 * Hopefully, there's enough regular memory allocation going on
390 * for the page allocator emergency pools to keep the ramdisk
393 gfp_mask
= mapping_gfp_mask(mapping
);
394 gfp_mask
&= ~(__GFP_FS
|__GFP_IO
);
395 gfp_mask
|= __GFP_HIGH
;
396 mapping_set_gfp_mask(mapping
, gfp_mask
);
402 static struct block_device_operations rd_bd_op
= {
403 .owner
= THIS_MODULE
,
409 * Before freeing the module, invalidate all of the protected buffers!
411 static void __exit
rd_cleanup(void)
415 for (i
= 0; i
< CONFIG_BLK_DEV_RAM_COUNT
; i
++) {
416 struct block_device
*bdev
= rd_bdev
[i
];
419 invalidate_bdev(bdev
);
422 del_gendisk(rd_disks
[i
]);
423 put_disk(rd_disks
[i
]);
424 blk_cleanup_queue(rd_queue
[i
]);
426 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
428 bdi_destroy(&rd_file_backing_dev_info
);
429 bdi_destroy(&rd_backing_dev_info
);
433 * This is the registration and initialization section of the RAM disk driver
435 static int __init
rd_init(void)
440 err
= bdi_init(&rd_backing_dev_info
);
444 err
= bdi_init(&rd_file_backing_dev_info
);
446 bdi_destroy(&rd_backing_dev_info
);
452 if (rd_blocksize
> PAGE_SIZE
|| rd_blocksize
< 512 ||
453 (rd_blocksize
& (rd_blocksize
-1))) {
454 printk("RAMDISK: wrong blocksize %d, reverting to defaults\n",
456 rd_blocksize
= BLOCK_SIZE
;
459 for (i
= 0; i
< CONFIG_BLK_DEV_RAM_COUNT
; i
++) {
460 rd_disks
[i
] = alloc_disk(1);
464 rd_queue
[i
] = blk_alloc_queue(GFP_KERNEL
);
466 put_disk(rd_disks
[i
]);
471 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk")) {
476 for (i
= 0; i
< CONFIG_BLK_DEV_RAM_COUNT
; i
++) {
477 struct gendisk
*disk
= rd_disks
[i
];
479 blk_queue_make_request(rd_queue
[i
], &rd_make_request
);
480 blk_queue_hardsect_size(rd_queue
[i
], rd_blocksize
);
482 /* rd_size is given in kB */
483 disk
->major
= RAMDISK_MAJOR
;
484 disk
->first_minor
= i
;
485 disk
->fops
= &rd_bd_op
;
486 disk
->queue
= rd_queue
[i
];
487 disk
->flags
|= GENHD_FL_SUPPRESS_PARTITION_INFO
;
488 sprintf(disk
->disk_name
, "ram%d", i
);
489 set_capacity(disk
, rd_size
* 2);
490 add_disk(rd_disks
[i
]);
493 /* rd_size is given in kB */
494 printk("RAMDISK driver initialized: "
495 "%d RAM disks of %dK size %d blocksize\n",
496 CONFIG_BLK_DEV_RAM_COUNT
, rd_size
, rd_blocksize
);
501 put_disk(rd_disks
[i
]);
502 blk_cleanup_queue(rd_queue
[i
]);
504 bdi_destroy(&rd_backing_dev_info
);
505 bdi_destroy(&rd_file_backing_dev_info
);
510 module_init(rd_init
);
511 module_exit(rd_cleanup
);
513 /* options - nonmodular */
515 static int __init
ramdisk_size(char *str
)
517 rd_size
= simple_strtol(str
,NULL
,0);
520 static int __init
ramdisk_blocksize(char *str
)
522 rd_blocksize
= simple_strtol(str
,NULL
,0);
525 __setup("ramdisk_size=", ramdisk_size
);
526 __setup("ramdisk_blocksize=", ramdisk_blocksize
);
529 /* options - modular */
530 module_param(rd_size
, int, 0);
531 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
532 module_param(rd_blocksize
, int, 0);
533 MODULE_PARM_DESC(rd_blocksize
, "Blocksize of each RAM disk in bytes.");
534 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
536 MODULE_LICENSE("GPL");