signals: fix sigqueue_free() vs __exit_signal() race
[linux-2.6/openmoko-kernel/knife-kernel.git] / fs / aio.c
blobb5253e77eb2f137ee5b1346f848514ad991801e1
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
54 static struct workqueue_struct *aio_wq;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init aio_setup(void)
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 return 0;
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
85 long i;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
99 info->nr = 0;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size;
108 int nr_pages;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 if (nr_pages < 0)
118 return -EINVAL;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 info->nr = 0;
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
127 return -ENOMEM;
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0;
139 aio_free_ring(ctx);
140 return -EAGAIN;
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx);
151 return -EAGAIN;
154 ctx->user_id = info->mmap_base;
156 info->nr = nr_events; /* trusted copy */
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
168 return 0;
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
195 /* __put_ioctx
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
199 static void __put_ioctx(struct kioctx *ctx)
201 unsigned nr_events = ctx->max_reqs;
203 BUG_ON(ctx->reqs_active);
205 cancel_delayed_work(&ctx->wq);
206 cancel_work_sync(&ctx->wq.work);
207 aio_free_ring(ctx);
208 mmdrop(ctx->mm);
209 ctx->mm = NULL;
210 pr_debug("__put_ioctx: freeing %p\n", ctx);
211 kmem_cache_free(kioctx_cachep, ctx);
213 if (nr_events) {
214 spin_lock(&aio_nr_lock);
215 BUG_ON(aio_nr - nr_events > aio_nr);
216 aio_nr -= nr_events;
217 spin_unlock(&aio_nr_lock);
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
224 } while (0)
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
229 } while (0)
231 /* ioctx_alloc
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 struct mm_struct *mm;
237 struct kioctx *ctx;
239 /* Prevent overflows */
240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL);
246 if ((unsigned long)nr_events > aio_max_nr)
247 return ERR_PTR(-EAGAIN);
249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 if (!ctx)
251 return ERR_PTR(-ENOMEM);
253 ctx->max_reqs = nr_events;
254 mm = ctx->mm = current->mm;
255 atomic_inc(&mm->mm_count);
257 atomic_set(&ctx->users, 1);
258 spin_lock_init(&ctx->ctx_lock);
259 spin_lock_init(&ctx->ring_info.ring_lock);
260 init_waitqueue_head(&ctx->wait);
262 INIT_LIST_HEAD(&ctx->active_reqs);
263 INIT_LIST_HEAD(&ctx->run_list);
264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
266 if (aio_setup_ring(ctx) < 0)
267 goto out_freectx;
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock);
271 if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 aio_nr + ctx->max_reqs < aio_nr)
273 ctx->max_reqs = 0;
274 else
275 aio_nr += ctx->max_reqs;
276 spin_unlock(&aio_nr_lock);
277 if (ctx->max_reqs == 0)
278 goto out_cleanup;
280 /* now link into global list. */
281 write_lock(&mm->ioctx_list_lock);
282 ctx->next = mm->ioctx_list;
283 mm->ioctx_list = ctx;
284 write_unlock(&mm->ioctx_list_lock);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 return ctx;
290 out_cleanup:
291 __put_ioctx(ctx);
292 return ERR_PTR(-EAGAIN);
294 out_freectx:
295 mmdrop(mm);
296 kmem_cache_free(kioctx_cachep, ctx);
297 ctx = ERR_PTR(-ENOMEM);
299 dprintk("aio: error allocating ioctx %p\n", ctx);
300 return ctx;
303 /* aio_cancel_all
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
308 static void aio_cancel_all(struct kioctx *ctx)
310 int (*cancel)(struct kiocb *, struct io_event *);
311 struct io_event res;
312 spin_lock_irq(&ctx->ctx_lock);
313 ctx->dead = 1;
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
320 if (cancel) {
321 iocb->ki_users++;
322 spin_unlock_irq(&ctx->ctx_lock);
323 cancel(iocb, &res);
324 spin_lock_irq(&ctx->ctx_lock);
327 spin_unlock_irq(&ctx->ctx_lock);
330 static void wait_for_all_aios(struct kioctx *ctx)
332 struct task_struct *tsk = current;
333 DECLARE_WAITQUEUE(wait, tsk);
335 spin_lock_irq(&ctx->ctx_lock);
336 if (!ctx->reqs_active)
337 goto out;
339 add_wait_queue(&ctx->wait, &wait);
340 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 while (ctx->reqs_active) {
342 spin_unlock_irq(&ctx->ctx_lock);
343 io_schedule();
344 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 spin_lock_irq(&ctx->ctx_lock);
347 __set_task_state(tsk, TASK_RUNNING);
348 remove_wait_queue(&ctx->wait, &wait);
350 out:
351 spin_unlock_irq(&ctx->ctx_lock);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
359 while (iocb->ki_users) {
360 set_current_state(TASK_UNINTERRUPTIBLE);
361 if (!iocb->ki_users)
362 break;
363 io_schedule();
365 __set_current_state(TASK_RUNNING);
366 return iocb->ki_user_data;
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
376 void exit_aio(struct mm_struct *mm)
378 struct kioctx *ctx = mm->ioctx_list;
379 mm->ioctx_list = NULL;
380 while (ctx) {
381 struct kioctx *next = ctx->next;
382 ctx->next = NULL;
383 aio_cancel_all(ctx);
385 wait_for_all_aios(ctx);
387 * Ensure we don't leave the ctx on the aio_wq
389 cancel_work_sync(&ctx->wq.work);
391 if (1 != atomic_read(&ctx->users))
392 printk(KERN_DEBUG
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx->users), ctx->dead,
395 ctx->reqs_active);
396 put_ioctx(ctx);
397 ctx = next;
401 /* aio_get_req
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
413 struct kiocb *req = NULL;
414 struct aio_ring *ring;
415 int okay = 0;
417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 if (unlikely(!req))
419 return NULL;
421 req->ki_flags = 0;
422 req->ki_users = 2;
423 req->ki_key = 0;
424 req->ki_ctx = ctx;
425 req->ki_cancel = NULL;
426 req->ki_retry = NULL;
427 req->ki_dtor = NULL;
428 req->private = NULL;
429 req->ki_iovec = NULL;
430 INIT_LIST_HEAD(&req->ki_run_list);
431 req->ki_eventfd = ERR_PTR(-EINVAL);
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
436 spin_lock_irq(&ctx->ctx_lock);
437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 list_add(&req->ki_list, &ctx->active_reqs);
440 ctx->reqs_active++;
441 okay = 1;
443 kunmap_atomic(ring, KM_USER0);
444 spin_unlock_irq(&ctx->ctx_lock);
446 if (!okay) {
447 kmem_cache_free(kiocb_cachep, req);
448 req = NULL;
451 return req;
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
456 struct kiocb *req;
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
461 req = __aio_get_req(ctx);
462 if (unlikely(NULL == req)) {
463 aio_fput_routine(NULL);
464 req = __aio_get_req(ctx);
466 return req;
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
471 assert_spin_locked(&ctx->ctx_lock);
473 if (!IS_ERR(req->ki_eventfd))
474 fput(req->ki_eventfd);
475 if (req->ki_dtor)
476 req->ki_dtor(req);
477 if (req->ki_iovec != &req->ki_inline_vec)
478 kfree(req->ki_iovec);
479 kmem_cache_free(kiocb_cachep, req);
480 ctx->reqs_active--;
482 if (unlikely(!ctx->reqs_active && ctx->dead))
483 wake_up(&ctx->wait);
486 static void aio_fput_routine(struct work_struct *data)
488 spin_lock_irq(&fput_lock);
489 while (likely(!list_empty(&fput_head))) {
490 struct kiocb *req = list_kiocb(fput_head.next);
491 struct kioctx *ctx = req->ki_ctx;
493 list_del(&req->ki_list);
494 spin_unlock_irq(&fput_lock);
496 /* Complete the fput */
497 __fput(req->ki_filp);
499 /* Link the iocb into the context's free list */
500 spin_lock_irq(&ctx->ctx_lock);
501 really_put_req(ctx, req);
502 spin_unlock_irq(&ctx->ctx_lock);
504 put_ioctx(ctx);
505 spin_lock_irq(&fput_lock);
507 spin_unlock_irq(&fput_lock);
510 /* __aio_put_req
511 * Returns true if this put was the last user of the request.
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
516 req, atomic_read(&req->ki_filp->f_count));
518 assert_spin_locked(&ctx->ctx_lock);
520 req->ki_users --;
521 BUG_ON(req->ki_users < 0);
522 if (likely(req->ki_users))
523 return 0;
524 list_del(&req->ki_list); /* remove from active_reqs */
525 req->ki_cancel = NULL;
526 req->ki_retry = NULL;
528 /* Must be done under the lock to serialise against cancellation.
529 * Call this aio_fput as it duplicates fput via the fput_work.
531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
532 get_ioctx(ctx);
533 spin_lock(&fput_lock);
534 list_add(&req->ki_list, &fput_head);
535 spin_unlock(&fput_lock);
536 queue_work(aio_wq, &fput_work);
537 } else
538 really_put_req(ctx, req);
539 return 1;
542 /* aio_put_req
543 * Returns true if this put was the last user of the kiocb,
544 * false if the request is still in use.
546 int aio_put_req(struct kiocb *req)
548 struct kioctx *ctx = req->ki_ctx;
549 int ret;
550 spin_lock_irq(&ctx->ctx_lock);
551 ret = __aio_put_req(ctx, req);
552 spin_unlock_irq(&ctx->ctx_lock);
553 return ret;
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
558 struct kioctx *ioctx;
559 struct mm_struct *mm;
561 mm = current->mm;
562 read_lock(&mm->ioctx_list_lock);
563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
565 get_ioctx(ioctx);
566 break;
568 read_unlock(&mm->ioctx_list_lock);
570 return ioctx;
574 * use_mm
575 * Makes the calling kernel thread take on the specified
576 * mm context.
577 * Called by the retry thread execute retries within the
578 * iocb issuer's mm context, so that copy_from/to_user
579 * operations work seamlessly for aio.
580 * (Note: this routine is intended to be called only
581 * from a kernel thread context)
583 static void use_mm(struct mm_struct *mm)
585 struct mm_struct *active_mm;
586 struct task_struct *tsk = current;
588 task_lock(tsk);
589 tsk->flags |= PF_BORROWED_MM;
590 active_mm = tsk->active_mm;
591 atomic_inc(&mm->mm_count);
592 tsk->mm = mm;
593 tsk->active_mm = mm;
595 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
596 * it won't work. Update it accordingly if you change it here
598 switch_mm(active_mm, mm, tsk);
599 task_unlock(tsk);
601 mmdrop(active_mm);
605 * unuse_mm
606 * Reverses the effect of use_mm, i.e. releases the
607 * specified mm context which was earlier taken on
608 * by the calling kernel thread
609 * (Note: this routine is intended to be called only
610 * from a kernel thread context)
612 static void unuse_mm(struct mm_struct *mm)
614 struct task_struct *tsk = current;
616 task_lock(tsk);
617 tsk->flags &= ~PF_BORROWED_MM;
618 tsk->mm = NULL;
619 /* active_mm is still 'mm' */
620 enter_lazy_tlb(mm, tsk);
621 task_unlock(tsk);
625 * Queue up a kiocb to be retried. Assumes that the kiocb
626 * has already been marked as kicked, and places it on
627 * the retry run list for the corresponding ioctx, if it
628 * isn't already queued. Returns 1 if it actually queued
629 * the kiocb (to tell the caller to activate the work
630 * queue to process it), or 0, if it found that it was
631 * already queued.
633 static inline int __queue_kicked_iocb(struct kiocb *iocb)
635 struct kioctx *ctx = iocb->ki_ctx;
637 assert_spin_locked(&ctx->ctx_lock);
639 if (list_empty(&iocb->ki_run_list)) {
640 list_add_tail(&iocb->ki_run_list,
641 &ctx->run_list);
642 return 1;
644 return 0;
647 /* aio_run_iocb
648 * This is the core aio execution routine. It is
649 * invoked both for initial i/o submission and
650 * subsequent retries via the aio_kick_handler.
651 * Expects to be invoked with iocb->ki_ctx->lock
652 * already held. The lock is released and reacquired
653 * as needed during processing.
655 * Calls the iocb retry method (already setup for the
656 * iocb on initial submission) for operation specific
657 * handling, but takes care of most of common retry
658 * execution details for a given iocb. The retry method
659 * needs to be non-blocking as far as possible, to avoid
660 * holding up other iocbs waiting to be serviced by the
661 * retry kernel thread.
663 * The trickier parts in this code have to do with
664 * ensuring that only one retry instance is in progress
665 * for a given iocb at any time. Providing that guarantee
666 * simplifies the coding of individual aio operations as
667 * it avoids various potential races.
669 static ssize_t aio_run_iocb(struct kiocb *iocb)
671 struct kioctx *ctx = iocb->ki_ctx;
672 ssize_t (*retry)(struct kiocb *);
673 ssize_t ret;
675 if (!(retry = iocb->ki_retry)) {
676 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
677 return 0;
681 * We don't want the next retry iteration for this
682 * operation to start until this one has returned and
683 * updated the iocb state. However, wait_queue functions
684 * can trigger a kick_iocb from interrupt context in the
685 * meantime, indicating that data is available for the next
686 * iteration. We want to remember that and enable the
687 * next retry iteration _after_ we are through with
688 * this one.
690 * So, in order to be able to register a "kick", but
691 * prevent it from being queued now, we clear the kick
692 * flag, but make the kick code *think* that the iocb is
693 * still on the run list until we are actually done.
694 * When we are done with this iteration, we check if
695 * the iocb was kicked in the meantime and if so, queue
696 * it up afresh.
699 kiocbClearKicked(iocb);
702 * This is so that aio_complete knows it doesn't need to
703 * pull the iocb off the run list (We can't just call
704 * INIT_LIST_HEAD because we don't want a kick_iocb to
705 * queue this on the run list yet)
707 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
708 spin_unlock_irq(&ctx->ctx_lock);
710 /* Quit retrying if the i/o has been cancelled */
711 if (kiocbIsCancelled(iocb)) {
712 ret = -EINTR;
713 aio_complete(iocb, ret, 0);
714 /* must not access the iocb after this */
715 goto out;
719 * Now we are all set to call the retry method in async
720 * context.
722 ret = retry(iocb);
724 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
725 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
726 aio_complete(iocb, ret, 0);
728 out:
729 spin_lock_irq(&ctx->ctx_lock);
731 if (-EIOCBRETRY == ret) {
733 * OK, now that we are done with this iteration
734 * and know that there is more left to go,
735 * this is where we let go so that a subsequent
736 * "kick" can start the next iteration
739 /* will make __queue_kicked_iocb succeed from here on */
740 INIT_LIST_HEAD(&iocb->ki_run_list);
741 /* we must queue the next iteration ourselves, if it
742 * has already been kicked */
743 if (kiocbIsKicked(iocb)) {
744 __queue_kicked_iocb(iocb);
747 * __queue_kicked_iocb will always return 1 here, because
748 * iocb->ki_run_list is empty at this point so it should
749 * be safe to unconditionally queue the context into the
750 * work queue.
752 aio_queue_work(ctx);
755 return ret;
759 * __aio_run_iocbs:
760 * Process all pending retries queued on the ioctx
761 * run list.
762 * Assumes it is operating within the aio issuer's mm
763 * context.
765 static int __aio_run_iocbs(struct kioctx *ctx)
767 struct kiocb *iocb;
768 struct list_head run_list;
770 assert_spin_locked(&ctx->ctx_lock);
772 list_replace_init(&ctx->run_list, &run_list);
773 while (!list_empty(&run_list)) {
774 iocb = list_entry(run_list.next, struct kiocb,
775 ki_run_list);
776 list_del(&iocb->ki_run_list);
778 * Hold an extra reference while retrying i/o.
780 iocb->ki_users++; /* grab extra reference */
781 aio_run_iocb(iocb);
782 __aio_put_req(ctx, iocb);
784 if (!list_empty(&ctx->run_list))
785 return 1;
786 return 0;
789 static void aio_queue_work(struct kioctx * ctx)
791 unsigned long timeout;
793 * if someone is waiting, get the work started right
794 * away, otherwise, use a longer delay
796 smp_mb();
797 if (waitqueue_active(&ctx->wait))
798 timeout = 1;
799 else
800 timeout = HZ/10;
801 queue_delayed_work(aio_wq, &ctx->wq, timeout);
806 * aio_run_iocbs:
807 * Process all pending retries queued on the ioctx
808 * run list.
809 * Assumes it is operating within the aio issuer's mm
810 * context.
812 static inline void aio_run_iocbs(struct kioctx *ctx)
814 int requeue;
816 spin_lock_irq(&ctx->ctx_lock);
818 requeue = __aio_run_iocbs(ctx);
819 spin_unlock_irq(&ctx->ctx_lock);
820 if (requeue)
821 aio_queue_work(ctx);
825 * just like aio_run_iocbs, but keeps running them until
826 * the list stays empty
828 static inline void aio_run_all_iocbs(struct kioctx *ctx)
830 spin_lock_irq(&ctx->ctx_lock);
831 while (__aio_run_iocbs(ctx))
833 spin_unlock_irq(&ctx->ctx_lock);
837 * aio_kick_handler:
838 * Work queue handler triggered to process pending
839 * retries on an ioctx. Takes on the aio issuer's
840 * mm context before running the iocbs, so that
841 * copy_xxx_user operates on the issuer's address
842 * space.
843 * Run on aiod's context.
845 static void aio_kick_handler(struct work_struct *work)
847 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
848 mm_segment_t oldfs = get_fs();
849 struct mm_struct *mm;
850 int requeue;
852 set_fs(USER_DS);
853 use_mm(ctx->mm);
854 spin_lock_irq(&ctx->ctx_lock);
855 requeue =__aio_run_iocbs(ctx);
856 mm = ctx->mm;
857 spin_unlock_irq(&ctx->ctx_lock);
858 unuse_mm(mm);
859 set_fs(oldfs);
861 * we're in a worker thread already, don't use queue_delayed_work,
863 if (requeue)
864 queue_delayed_work(aio_wq, &ctx->wq, 0);
869 * Called by kick_iocb to queue the kiocb for retry
870 * and if required activate the aio work queue to process
871 * it
873 static void try_queue_kicked_iocb(struct kiocb *iocb)
875 struct kioctx *ctx = iocb->ki_ctx;
876 unsigned long flags;
877 int run = 0;
879 /* We're supposed to be the only path putting the iocb back on the run
880 * list. If we find that the iocb is *back* on a wait queue already
881 * than retry has happened before we could queue the iocb. This also
882 * means that the retry could have completed and freed our iocb, no
883 * good. */
884 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
886 spin_lock_irqsave(&ctx->ctx_lock, flags);
887 /* set this inside the lock so that we can't race with aio_run_iocb()
888 * testing it and putting the iocb on the run list under the lock */
889 if (!kiocbTryKick(iocb))
890 run = __queue_kicked_iocb(iocb);
891 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
892 if (run)
893 aio_queue_work(ctx);
897 * kick_iocb:
898 * Called typically from a wait queue callback context
899 * (aio_wake_function) to trigger a retry of the iocb.
900 * The retry is usually executed by aio workqueue
901 * threads (See aio_kick_handler).
903 void kick_iocb(struct kiocb *iocb)
905 /* sync iocbs are easy: they can only ever be executing from a
906 * single context. */
907 if (is_sync_kiocb(iocb)) {
908 kiocbSetKicked(iocb);
909 wake_up_process(iocb->ki_obj.tsk);
910 return;
913 try_queue_kicked_iocb(iocb);
915 EXPORT_SYMBOL(kick_iocb);
917 /* aio_complete
918 * Called when the io request on the given iocb is complete.
919 * Returns true if this is the last user of the request. The
920 * only other user of the request can be the cancellation code.
922 int aio_complete(struct kiocb *iocb, long res, long res2)
924 struct kioctx *ctx = iocb->ki_ctx;
925 struct aio_ring_info *info;
926 struct aio_ring *ring;
927 struct io_event *event;
928 unsigned long flags;
929 unsigned long tail;
930 int ret;
933 * Special case handling for sync iocbs:
934 * - events go directly into the iocb for fast handling
935 * - the sync task with the iocb in its stack holds the single iocb
936 * ref, no other paths have a way to get another ref
937 * - the sync task helpfully left a reference to itself in the iocb
939 if (is_sync_kiocb(iocb)) {
940 BUG_ON(iocb->ki_users != 1);
941 iocb->ki_user_data = res;
942 iocb->ki_users = 0;
943 wake_up_process(iocb->ki_obj.tsk);
944 return 1;
947 info = &ctx->ring_info;
949 /* add a completion event to the ring buffer.
950 * must be done holding ctx->ctx_lock to prevent
951 * other code from messing with the tail
952 * pointer since we might be called from irq
953 * context.
955 spin_lock_irqsave(&ctx->ctx_lock, flags);
957 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
958 list_del_init(&iocb->ki_run_list);
961 * cancelled requests don't get events, userland was given one
962 * when the event got cancelled.
964 if (kiocbIsCancelled(iocb))
965 goto put_rq;
967 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
969 tail = info->tail;
970 event = aio_ring_event(info, tail, KM_IRQ0);
971 if (++tail >= info->nr)
972 tail = 0;
974 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
975 event->data = iocb->ki_user_data;
976 event->res = res;
977 event->res2 = res2;
979 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
980 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
981 res, res2);
983 /* after flagging the request as done, we
984 * must never even look at it again
986 smp_wmb(); /* make event visible before updating tail */
988 info->tail = tail;
989 ring->tail = tail;
991 put_aio_ring_event(event, KM_IRQ0);
992 kunmap_atomic(ring, KM_IRQ1);
994 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
997 * Check if the user asked us to deliver the result through an
998 * eventfd. The eventfd_signal() function is safe to be called
999 * from IRQ context.
1001 if (!IS_ERR(iocb->ki_eventfd))
1002 eventfd_signal(iocb->ki_eventfd, 1);
1004 put_rq:
1005 /* everything turned out well, dispose of the aiocb. */
1006 ret = __aio_put_req(ctx, iocb);
1009 * We have to order our ring_info tail store above and test
1010 * of the wait list below outside the wait lock. This is
1011 * like in wake_up_bit() where clearing a bit has to be
1012 * ordered with the unlocked test.
1014 smp_mb();
1016 if (waitqueue_active(&ctx->wait))
1017 wake_up(&ctx->wait);
1019 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1020 return ret;
1023 /* aio_read_evt
1024 * Pull an event off of the ioctx's event ring. Returns the number of
1025 * events fetched (0 or 1 ;-)
1026 * FIXME: make this use cmpxchg.
1027 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1029 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1031 struct aio_ring_info *info = &ioctx->ring_info;
1032 struct aio_ring *ring;
1033 unsigned long head;
1034 int ret = 0;
1036 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1037 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1038 (unsigned long)ring->head, (unsigned long)ring->tail,
1039 (unsigned long)ring->nr);
1041 if (ring->head == ring->tail)
1042 goto out;
1044 spin_lock(&info->ring_lock);
1046 head = ring->head % info->nr;
1047 if (head != ring->tail) {
1048 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1049 *ent = *evp;
1050 head = (head + 1) % info->nr;
1051 smp_mb(); /* finish reading the event before updatng the head */
1052 ring->head = head;
1053 ret = 1;
1054 put_aio_ring_event(evp, KM_USER1);
1056 spin_unlock(&info->ring_lock);
1058 out:
1059 kunmap_atomic(ring, KM_USER0);
1060 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1061 (unsigned long)ring->head, (unsigned long)ring->tail);
1062 return ret;
1065 struct aio_timeout {
1066 struct timer_list timer;
1067 int timed_out;
1068 struct task_struct *p;
1071 static void timeout_func(unsigned long data)
1073 struct aio_timeout *to = (struct aio_timeout *)data;
1075 to->timed_out = 1;
1076 wake_up_process(to->p);
1079 static inline void init_timeout(struct aio_timeout *to)
1081 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1082 to->timed_out = 0;
1083 to->p = current;
1086 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1087 const struct timespec *ts)
1089 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1090 if (time_after(to->timer.expires, jiffies))
1091 add_timer(&to->timer);
1092 else
1093 to->timed_out = 1;
1096 static inline void clear_timeout(struct aio_timeout *to)
1098 del_singleshot_timer_sync(&to->timer);
1101 static int read_events(struct kioctx *ctx,
1102 long min_nr, long nr,
1103 struct io_event __user *event,
1104 struct timespec __user *timeout)
1106 long start_jiffies = jiffies;
1107 struct task_struct *tsk = current;
1108 DECLARE_WAITQUEUE(wait, tsk);
1109 int ret;
1110 int i = 0;
1111 struct io_event ent;
1112 struct aio_timeout to;
1113 int retry = 0;
1115 /* needed to zero any padding within an entry (there shouldn't be
1116 * any, but C is fun!
1118 memset(&ent, 0, sizeof(ent));
1119 retry:
1120 ret = 0;
1121 while (likely(i < nr)) {
1122 ret = aio_read_evt(ctx, &ent);
1123 if (unlikely(ret <= 0))
1124 break;
1126 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1127 ent.data, ent.obj, ent.res, ent.res2);
1129 /* Could we split the check in two? */
1130 ret = -EFAULT;
1131 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1132 dprintk("aio: lost an event due to EFAULT.\n");
1133 break;
1135 ret = 0;
1137 /* Good, event copied to userland, update counts. */
1138 event ++;
1139 i ++;
1142 if (min_nr <= i)
1143 return i;
1144 if (ret)
1145 return ret;
1147 /* End fast path */
1149 /* racey check, but it gets redone */
1150 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1151 retry = 1;
1152 aio_run_all_iocbs(ctx);
1153 goto retry;
1156 init_timeout(&to);
1157 if (timeout) {
1158 struct timespec ts;
1159 ret = -EFAULT;
1160 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1161 goto out;
1163 set_timeout(start_jiffies, &to, &ts);
1166 while (likely(i < nr)) {
1167 add_wait_queue_exclusive(&ctx->wait, &wait);
1168 do {
1169 set_task_state(tsk, TASK_INTERRUPTIBLE);
1170 ret = aio_read_evt(ctx, &ent);
1171 if (ret)
1172 break;
1173 if (min_nr <= i)
1174 break;
1175 if (unlikely(ctx->dead)) {
1176 ret = -EINVAL;
1177 break;
1179 if (to.timed_out) /* Only check after read evt */
1180 break;
1181 /* Try to only show up in io wait if there are ops
1182 * in flight */
1183 if (ctx->reqs_active)
1184 io_schedule();
1185 else
1186 schedule();
1187 if (signal_pending(tsk)) {
1188 ret = -EINTR;
1189 break;
1191 /*ret = aio_read_evt(ctx, &ent);*/
1192 } while (1) ;
1194 set_task_state(tsk, TASK_RUNNING);
1195 remove_wait_queue(&ctx->wait, &wait);
1197 if (unlikely(ret <= 0))
1198 break;
1200 ret = -EFAULT;
1201 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1202 dprintk("aio: lost an event due to EFAULT.\n");
1203 break;
1206 /* Good, event copied to userland, update counts. */
1207 event ++;
1208 i ++;
1211 if (timeout)
1212 clear_timeout(&to);
1213 out:
1214 destroy_timer_on_stack(&to.timer);
1215 return i ? i : ret;
1218 /* Take an ioctx and remove it from the list of ioctx's. Protects
1219 * against races with itself via ->dead.
1221 static void io_destroy(struct kioctx *ioctx)
1223 struct mm_struct *mm = current->mm;
1224 struct kioctx **tmp;
1225 int was_dead;
1227 /* delete the entry from the list is someone else hasn't already */
1228 write_lock(&mm->ioctx_list_lock);
1229 was_dead = ioctx->dead;
1230 ioctx->dead = 1;
1231 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1232 tmp = &(*tmp)->next)
1234 if (*tmp)
1235 *tmp = ioctx->next;
1236 write_unlock(&mm->ioctx_list_lock);
1238 dprintk("aio_release(%p)\n", ioctx);
1239 if (likely(!was_dead))
1240 put_ioctx(ioctx); /* twice for the list */
1242 aio_cancel_all(ioctx);
1243 wait_for_all_aios(ioctx);
1246 * Wake up any waiters. The setting of ctx->dead must be seen
1247 * by other CPUs at this point. Right now, we rely on the
1248 * locking done by the above calls to ensure this consistency.
1250 wake_up(&ioctx->wait);
1251 put_ioctx(ioctx); /* once for the lookup */
1254 /* sys_io_setup:
1255 * Create an aio_context capable of receiving at least nr_events.
1256 * ctxp must not point to an aio_context that already exists, and
1257 * must be initialized to 0 prior to the call. On successful
1258 * creation of the aio_context, *ctxp is filled in with the resulting
1259 * handle. May fail with -EINVAL if *ctxp is not initialized,
1260 * if the specified nr_events exceeds internal limits. May fail
1261 * with -EAGAIN if the specified nr_events exceeds the user's limit
1262 * of available events. May fail with -ENOMEM if insufficient kernel
1263 * resources are available. May fail with -EFAULT if an invalid
1264 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1265 * implemented.
1267 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1269 struct kioctx *ioctx = NULL;
1270 unsigned long ctx;
1271 long ret;
1273 ret = get_user(ctx, ctxp);
1274 if (unlikely(ret))
1275 goto out;
1277 ret = -EINVAL;
1278 if (unlikely(ctx || nr_events == 0)) {
1279 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1280 ctx, nr_events);
1281 goto out;
1284 ioctx = ioctx_alloc(nr_events);
1285 ret = PTR_ERR(ioctx);
1286 if (!IS_ERR(ioctx)) {
1287 ret = put_user(ioctx->user_id, ctxp);
1288 if (!ret)
1289 return 0;
1291 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1292 io_destroy(ioctx);
1295 out:
1296 return ret;
1299 /* sys_io_destroy:
1300 * Destroy the aio_context specified. May cancel any outstanding
1301 * AIOs and block on completion. Will fail with -ENOSYS if not
1302 * implemented. May fail with -EFAULT if the context pointed to
1303 * is invalid.
1305 asmlinkage long sys_io_destroy(aio_context_t ctx)
1307 struct kioctx *ioctx = lookup_ioctx(ctx);
1308 if (likely(NULL != ioctx)) {
1309 io_destroy(ioctx);
1310 return 0;
1312 pr_debug("EINVAL: io_destroy: invalid context id\n");
1313 return -EINVAL;
1316 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1318 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1320 BUG_ON(ret <= 0);
1322 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1323 ssize_t this = min((ssize_t)iov->iov_len, ret);
1324 iov->iov_base += this;
1325 iov->iov_len -= this;
1326 iocb->ki_left -= this;
1327 ret -= this;
1328 if (iov->iov_len == 0) {
1329 iocb->ki_cur_seg++;
1330 iov++;
1334 /* the caller should not have done more io than what fit in
1335 * the remaining iovecs */
1336 BUG_ON(ret > 0 && iocb->ki_left == 0);
1339 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1341 struct file *file = iocb->ki_filp;
1342 struct address_space *mapping = file->f_mapping;
1343 struct inode *inode = mapping->host;
1344 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1345 unsigned long, loff_t);
1346 ssize_t ret = 0;
1347 unsigned short opcode;
1349 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1350 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1351 rw_op = file->f_op->aio_read;
1352 opcode = IOCB_CMD_PREADV;
1353 } else {
1354 rw_op = file->f_op->aio_write;
1355 opcode = IOCB_CMD_PWRITEV;
1358 /* This matches the pread()/pwrite() logic */
1359 if (iocb->ki_pos < 0)
1360 return -EINVAL;
1362 do {
1363 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1364 iocb->ki_nr_segs - iocb->ki_cur_seg,
1365 iocb->ki_pos);
1366 if (ret > 0)
1367 aio_advance_iovec(iocb, ret);
1369 /* retry all partial writes. retry partial reads as long as its a
1370 * regular file. */
1371 } while (ret > 0 && iocb->ki_left > 0 &&
1372 (opcode == IOCB_CMD_PWRITEV ||
1373 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1375 /* This means we must have transferred all that we could */
1376 /* No need to retry anymore */
1377 if ((ret == 0) || (iocb->ki_left == 0))
1378 ret = iocb->ki_nbytes - iocb->ki_left;
1380 /* If we managed to write some out we return that, rather than
1381 * the eventual error. */
1382 if (opcode == IOCB_CMD_PWRITEV
1383 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1384 && iocb->ki_nbytes - iocb->ki_left)
1385 ret = iocb->ki_nbytes - iocb->ki_left;
1387 return ret;
1390 static ssize_t aio_fdsync(struct kiocb *iocb)
1392 struct file *file = iocb->ki_filp;
1393 ssize_t ret = -EINVAL;
1395 if (file->f_op->aio_fsync)
1396 ret = file->f_op->aio_fsync(iocb, 1);
1397 return ret;
1400 static ssize_t aio_fsync(struct kiocb *iocb)
1402 struct file *file = iocb->ki_filp;
1403 ssize_t ret = -EINVAL;
1405 if (file->f_op->aio_fsync)
1406 ret = file->f_op->aio_fsync(iocb, 0);
1407 return ret;
1410 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1412 ssize_t ret;
1414 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1415 kiocb->ki_nbytes, 1,
1416 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1417 if (ret < 0)
1418 goto out;
1420 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1421 kiocb->ki_cur_seg = 0;
1422 /* ki_nbytes/left now reflect bytes instead of segs */
1423 kiocb->ki_nbytes = ret;
1424 kiocb->ki_left = ret;
1426 ret = 0;
1427 out:
1428 return ret;
1431 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1433 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1434 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1435 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1436 kiocb->ki_nr_segs = 1;
1437 kiocb->ki_cur_seg = 0;
1438 return 0;
1442 * aio_setup_iocb:
1443 * Performs the initial checks and aio retry method
1444 * setup for the kiocb at the time of io submission.
1446 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1448 struct file *file = kiocb->ki_filp;
1449 ssize_t ret = 0;
1451 switch (kiocb->ki_opcode) {
1452 case IOCB_CMD_PREAD:
1453 ret = -EBADF;
1454 if (unlikely(!(file->f_mode & FMODE_READ)))
1455 break;
1456 ret = -EFAULT;
1457 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1458 kiocb->ki_left)))
1459 break;
1460 ret = security_file_permission(file, MAY_READ);
1461 if (unlikely(ret))
1462 break;
1463 ret = aio_setup_single_vector(kiocb);
1464 if (ret)
1465 break;
1466 ret = -EINVAL;
1467 if (file->f_op->aio_read)
1468 kiocb->ki_retry = aio_rw_vect_retry;
1469 break;
1470 case IOCB_CMD_PWRITE:
1471 ret = -EBADF;
1472 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1473 break;
1474 ret = -EFAULT;
1475 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1476 kiocb->ki_left)))
1477 break;
1478 ret = security_file_permission(file, MAY_WRITE);
1479 if (unlikely(ret))
1480 break;
1481 ret = aio_setup_single_vector(kiocb);
1482 if (ret)
1483 break;
1484 ret = -EINVAL;
1485 if (file->f_op->aio_write)
1486 kiocb->ki_retry = aio_rw_vect_retry;
1487 break;
1488 case IOCB_CMD_PREADV:
1489 ret = -EBADF;
1490 if (unlikely(!(file->f_mode & FMODE_READ)))
1491 break;
1492 ret = security_file_permission(file, MAY_READ);
1493 if (unlikely(ret))
1494 break;
1495 ret = aio_setup_vectored_rw(READ, kiocb);
1496 if (ret)
1497 break;
1498 ret = -EINVAL;
1499 if (file->f_op->aio_read)
1500 kiocb->ki_retry = aio_rw_vect_retry;
1501 break;
1502 case IOCB_CMD_PWRITEV:
1503 ret = -EBADF;
1504 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1505 break;
1506 ret = security_file_permission(file, MAY_WRITE);
1507 if (unlikely(ret))
1508 break;
1509 ret = aio_setup_vectored_rw(WRITE, kiocb);
1510 if (ret)
1511 break;
1512 ret = -EINVAL;
1513 if (file->f_op->aio_write)
1514 kiocb->ki_retry = aio_rw_vect_retry;
1515 break;
1516 case IOCB_CMD_FDSYNC:
1517 ret = -EINVAL;
1518 if (file->f_op->aio_fsync)
1519 kiocb->ki_retry = aio_fdsync;
1520 break;
1521 case IOCB_CMD_FSYNC:
1522 ret = -EINVAL;
1523 if (file->f_op->aio_fsync)
1524 kiocb->ki_retry = aio_fsync;
1525 break;
1526 default:
1527 dprintk("EINVAL: io_submit: no operation provided\n");
1528 ret = -EINVAL;
1531 if (!kiocb->ki_retry)
1532 return ret;
1534 return 0;
1538 * aio_wake_function:
1539 * wait queue callback function for aio notification,
1540 * Simply triggers a retry of the operation via kick_iocb.
1542 * This callback is specified in the wait queue entry in
1543 * a kiocb.
1545 * Note:
1546 * This routine is executed with the wait queue lock held.
1547 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1548 * the ioctx lock inside the wait queue lock. This is safe
1549 * because this callback isn't used for wait queues which
1550 * are nested inside ioctx lock (i.e. ctx->wait)
1552 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1553 int sync, void *key)
1555 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1557 list_del_init(&wait->task_list);
1558 kick_iocb(iocb);
1559 return 1;
1562 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1563 struct iocb *iocb)
1565 struct kiocb *req;
1566 struct file *file;
1567 ssize_t ret;
1569 /* enforce forwards compatibility on users */
1570 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1571 pr_debug("EINVAL: io_submit: reserve field set\n");
1572 return -EINVAL;
1575 /* prevent overflows */
1576 if (unlikely(
1577 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1578 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1579 ((ssize_t)iocb->aio_nbytes < 0)
1580 )) {
1581 pr_debug("EINVAL: io_submit: overflow check\n");
1582 return -EINVAL;
1585 file = fget(iocb->aio_fildes);
1586 if (unlikely(!file))
1587 return -EBADF;
1589 req = aio_get_req(ctx); /* returns with 2 references to req */
1590 if (unlikely(!req)) {
1591 fput(file);
1592 return -EAGAIN;
1594 req->ki_filp = file;
1595 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1597 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1598 * instance of the file* now. The file descriptor must be
1599 * an eventfd() fd, and will be signaled for each completed
1600 * event using the eventfd_signal() function.
1602 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1603 if (IS_ERR(req->ki_eventfd)) {
1604 ret = PTR_ERR(req->ki_eventfd);
1605 goto out_put_req;
1609 ret = put_user(req->ki_key, &user_iocb->aio_key);
1610 if (unlikely(ret)) {
1611 dprintk("EFAULT: aio_key\n");
1612 goto out_put_req;
1615 req->ki_obj.user = user_iocb;
1616 req->ki_user_data = iocb->aio_data;
1617 req->ki_pos = iocb->aio_offset;
1619 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1620 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1621 req->ki_opcode = iocb->aio_lio_opcode;
1622 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1623 INIT_LIST_HEAD(&req->ki_wait.task_list);
1625 ret = aio_setup_iocb(req);
1627 if (ret)
1628 goto out_put_req;
1630 spin_lock_irq(&ctx->ctx_lock);
1631 aio_run_iocb(req);
1632 if (!list_empty(&ctx->run_list)) {
1633 /* drain the run list */
1634 while (__aio_run_iocbs(ctx))
1637 spin_unlock_irq(&ctx->ctx_lock);
1638 aio_put_req(req); /* drop extra ref to req */
1639 return 0;
1641 out_put_req:
1642 aio_put_req(req); /* drop extra ref to req */
1643 aio_put_req(req); /* drop i/o ref to req */
1644 return ret;
1647 /* sys_io_submit:
1648 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1649 * the number of iocbs queued. May return -EINVAL if the aio_context
1650 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1651 * *iocbpp[0] is not properly initialized, if the operation specified
1652 * is invalid for the file descriptor in the iocb. May fail with
1653 * -EFAULT if any of the data structures point to invalid data. May
1654 * fail with -EBADF if the file descriptor specified in the first
1655 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1656 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1657 * fail with -ENOSYS if not implemented.
1659 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1660 struct iocb __user * __user *iocbpp)
1662 struct kioctx *ctx;
1663 long ret = 0;
1664 int i;
1666 if (unlikely(nr < 0))
1667 return -EINVAL;
1669 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1670 return -EFAULT;
1672 ctx = lookup_ioctx(ctx_id);
1673 if (unlikely(!ctx)) {
1674 pr_debug("EINVAL: io_submit: invalid context id\n");
1675 return -EINVAL;
1679 * AKPM: should this return a partial result if some of the IOs were
1680 * successfully submitted?
1682 for (i=0; i<nr; i++) {
1683 struct iocb __user *user_iocb;
1684 struct iocb tmp;
1686 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1687 ret = -EFAULT;
1688 break;
1691 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1692 ret = -EFAULT;
1693 break;
1696 ret = io_submit_one(ctx, user_iocb, &tmp);
1697 if (ret)
1698 break;
1701 put_ioctx(ctx);
1702 return i ? i : ret;
1705 /* lookup_kiocb
1706 * Finds a given iocb for cancellation.
1708 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1709 u32 key)
1711 struct list_head *pos;
1713 assert_spin_locked(&ctx->ctx_lock);
1715 /* TODO: use a hash or array, this sucks. */
1716 list_for_each(pos, &ctx->active_reqs) {
1717 struct kiocb *kiocb = list_kiocb(pos);
1718 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1719 return kiocb;
1721 return NULL;
1724 /* sys_io_cancel:
1725 * Attempts to cancel an iocb previously passed to io_submit. If
1726 * the operation is successfully cancelled, the resulting event is
1727 * copied into the memory pointed to by result without being placed
1728 * into the completion queue and 0 is returned. May fail with
1729 * -EFAULT if any of the data structures pointed to are invalid.
1730 * May fail with -EINVAL if aio_context specified by ctx_id is
1731 * invalid. May fail with -EAGAIN if the iocb specified was not
1732 * cancelled. Will fail with -ENOSYS if not implemented.
1734 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1735 struct io_event __user *result)
1737 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1738 struct kioctx *ctx;
1739 struct kiocb *kiocb;
1740 u32 key;
1741 int ret;
1743 ret = get_user(key, &iocb->aio_key);
1744 if (unlikely(ret))
1745 return -EFAULT;
1747 ctx = lookup_ioctx(ctx_id);
1748 if (unlikely(!ctx))
1749 return -EINVAL;
1751 spin_lock_irq(&ctx->ctx_lock);
1752 ret = -EAGAIN;
1753 kiocb = lookup_kiocb(ctx, iocb, key);
1754 if (kiocb && kiocb->ki_cancel) {
1755 cancel = kiocb->ki_cancel;
1756 kiocb->ki_users ++;
1757 kiocbSetCancelled(kiocb);
1758 } else
1759 cancel = NULL;
1760 spin_unlock_irq(&ctx->ctx_lock);
1762 if (NULL != cancel) {
1763 struct io_event tmp;
1764 pr_debug("calling cancel\n");
1765 memset(&tmp, 0, sizeof(tmp));
1766 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1767 tmp.data = kiocb->ki_user_data;
1768 ret = cancel(kiocb, &tmp);
1769 if (!ret) {
1770 /* Cancellation succeeded -- copy the result
1771 * into the user's buffer.
1773 if (copy_to_user(result, &tmp, sizeof(tmp)))
1774 ret = -EFAULT;
1776 } else
1777 ret = -EINVAL;
1779 put_ioctx(ctx);
1781 return ret;
1784 /* io_getevents:
1785 * Attempts to read at least min_nr events and up to nr events from
1786 * the completion queue for the aio_context specified by ctx_id. May
1787 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1788 * if nr is out of range, if when is out of range. May fail with
1789 * -EFAULT if any of the memory specified to is invalid. May return
1790 * 0 or < min_nr if no events are available and the timeout specified
1791 * by when has elapsed, where when == NULL specifies an infinite
1792 * timeout. Note that the timeout pointed to by when is relative and
1793 * will be updated if not NULL and the operation blocks. Will fail
1794 * with -ENOSYS if not implemented.
1796 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1797 long min_nr,
1798 long nr,
1799 struct io_event __user *events,
1800 struct timespec __user *timeout)
1802 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1803 long ret = -EINVAL;
1805 if (likely(ioctx)) {
1806 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1807 ret = read_events(ioctx, min_nr, nr, events, timeout);
1808 put_ioctx(ioctx);
1811 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1812 return ret;
1815 __initcall(aio_setup);
1817 EXPORT_SYMBOL(aio_complete);
1818 EXPORT_SYMBOL(aio_put_req);
1819 EXPORT_SYMBOL(wait_on_sync_kiocb);