Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/openmoko-kernel/knife-kernel.git] / drivers / spi / spi.c
blob1ad12afc6ba0ace916c817c571b265dc49cc1398
1 /*
2 * spi.c - SPI init/core code
4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
29 /* SPI bustype and spi_master class are registered after board init code
30 * provides the SPI device tables, ensuring that both are present by the
31 * time controller driver registration causes spi_devices to "enumerate".
33 static void spidev_release(struct device *dev)
35 struct spi_device *spi = to_spi_device(dev);
37 /* spi masters may cleanup for released devices */
38 if (spi->master->cleanup)
39 spi->master->cleanup(spi);
41 spi_master_put(spi->master);
42 kfree(dev);
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 const struct spi_device *spi = to_spi_device(dev);
50 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
53 static struct device_attribute spi_dev_attrs[] = {
54 __ATTR_RO(modalias),
55 __ATTR_NULL,
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59 * and the sysfs version makes coldplug work too.
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 const struct spi_device *spi = to_spi_device(dev);
66 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
71 const struct spi_device *spi = to_spi_device(dev);
73 add_uevent_var(env, "MODALIAS=%s", spi->modalias);
74 return 0;
77 #ifdef CONFIG_PM
79 static int spi_suspend(struct device *dev, pm_message_t message)
81 int value = 0;
82 struct spi_driver *drv = to_spi_driver(dev->driver);
84 /* suspend will stop irqs and dma; no more i/o */
85 if (drv) {
86 if (drv->suspend)
87 value = drv->suspend(to_spi_device(dev), message);
88 else
89 dev_dbg(dev, "... can't suspend\n");
91 return value;
94 static int spi_resume(struct device *dev)
96 int value = 0;
97 struct spi_driver *drv = to_spi_driver(dev->driver);
99 /* resume may restart the i/o queue */
100 if (drv) {
101 if (drv->resume)
102 value = drv->resume(to_spi_device(dev));
103 else
104 dev_dbg(dev, "... can't resume\n");
106 return value;
109 #else
110 #define spi_suspend NULL
111 #define spi_resume NULL
112 #endif
114 struct bus_type spi_bus_type = {
115 .name = "spi",
116 .dev_attrs = spi_dev_attrs,
117 .match = spi_match_device,
118 .uevent = spi_uevent,
119 .suspend = spi_suspend,
120 .resume = spi_resume,
122 EXPORT_SYMBOL_GPL(spi_bus_type);
125 static int spi_drv_probe(struct device *dev)
127 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
129 return sdrv->probe(to_spi_device(dev));
132 static int spi_drv_remove(struct device *dev)
134 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
136 return sdrv->remove(to_spi_device(dev));
139 static void spi_drv_shutdown(struct device *dev)
141 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
143 sdrv->shutdown(to_spi_device(dev));
147 * spi_register_driver - register a SPI driver
148 * @sdrv: the driver to register
149 * Context: can sleep
151 int spi_register_driver(struct spi_driver *sdrv)
153 sdrv->driver.bus = &spi_bus_type;
154 if (sdrv->probe)
155 sdrv->driver.probe = spi_drv_probe;
156 if (sdrv->remove)
157 sdrv->driver.remove = spi_drv_remove;
158 if (sdrv->shutdown)
159 sdrv->driver.shutdown = spi_drv_shutdown;
160 return driver_register(&sdrv->driver);
162 EXPORT_SYMBOL_GPL(spi_register_driver);
164 /*-------------------------------------------------------------------------*/
166 /* SPI devices should normally not be created by SPI device drivers; that
167 * would make them board-specific. Similarly with SPI master drivers.
168 * Device registration normally goes into like arch/.../mach.../board-YYY.c
169 * with other readonly (flashable) information about mainboard devices.
172 struct boardinfo {
173 struct list_head list;
174 unsigned n_board_info;
175 struct spi_board_info board_info[0];
178 static LIST_HEAD(board_list);
179 static DEFINE_MUTEX(board_lock);
183 * spi_new_device - instantiate one new SPI device
184 * @master: Controller to which device is connected
185 * @chip: Describes the SPI device
186 * Context: can sleep
188 * On typical mainboards, this is purely internal; and it's not needed
189 * after board init creates the hard-wired devices. Some development
190 * platforms may not be able to use spi_register_board_info though, and
191 * this is exported so that for example a USB or parport based adapter
192 * driver could add devices (which it would learn about out-of-band).
194 * Returns the new device, or NULL.
196 struct spi_device *spi_new_device(struct spi_master *master,
197 struct spi_board_info *chip)
199 struct spi_device *proxy;
200 struct device *dev = master->dev.parent;
201 int status;
203 /* NOTE: caller did any chip->bus_num checks necessary.
205 * Also, unless we change the return value convention to use
206 * error-or-pointer (not NULL-or-pointer), troubleshootability
207 * suggests syslogged diagnostics are best here (ugh).
210 /* Chipselects are numbered 0..max; validate. */
211 if (chip->chip_select >= master->num_chipselect) {
212 dev_err(dev, "cs%d > max %d\n",
213 chip->chip_select,
214 master->num_chipselect);
215 return NULL;
218 if (!spi_master_get(master))
219 return NULL;
221 proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
222 if (!proxy) {
223 dev_err(dev, "can't alloc dev for cs%d\n",
224 chip->chip_select);
225 goto fail;
227 proxy->master = master;
228 proxy->chip_select = chip->chip_select;
229 proxy->max_speed_hz = chip->max_speed_hz;
230 proxy->mode = chip->mode;
231 proxy->irq = chip->irq;
232 proxy->modalias = chip->modalias;
234 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
235 "%s.%u", master->dev.bus_id,
236 chip->chip_select);
237 proxy->dev.parent = dev;
238 proxy->dev.bus = &spi_bus_type;
239 proxy->dev.platform_data = (void *) chip->platform_data;
240 proxy->controller_data = chip->controller_data;
241 proxy->controller_state = NULL;
242 proxy->dev.release = spidev_release;
244 /* drivers may modify this initial i/o setup */
245 status = master->setup(proxy);
246 if (status < 0) {
247 dev_err(dev, "can't %s %s, status %d\n",
248 "setup", proxy->dev.bus_id, status);
249 goto fail;
252 /* driver core catches callers that misbehave by defining
253 * devices that already exist.
255 status = device_register(&proxy->dev);
256 if (status < 0) {
257 dev_err(dev, "can't %s %s, status %d\n",
258 "add", proxy->dev.bus_id, status);
259 goto fail;
261 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
262 return proxy;
264 fail:
265 spi_master_put(master);
266 kfree(proxy);
267 return NULL;
269 EXPORT_SYMBOL_GPL(spi_new_device);
272 * spi_register_board_info - register SPI devices for a given board
273 * @info: array of chip descriptors
274 * @n: how many descriptors are provided
275 * Context: can sleep
277 * Board-specific early init code calls this (probably during arch_initcall)
278 * with segments of the SPI device table. Any device nodes are created later,
279 * after the relevant parent SPI controller (bus_num) is defined. We keep
280 * this table of devices forever, so that reloading a controller driver will
281 * not make Linux forget about these hard-wired devices.
283 * Other code can also call this, e.g. a particular add-on board might provide
284 * SPI devices through its expansion connector, so code initializing that board
285 * would naturally declare its SPI devices.
287 * The board info passed can safely be __initdata ... but be careful of
288 * any embedded pointers (platform_data, etc), they're copied as-is.
290 int __init
291 spi_register_board_info(struct spi_board_info const *info, unsigned n)
293 struct boardinfo *bi;
295 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
296 if (!bi)
297 return -ENOMEM;
298 bi->n_board_info = n;
299 memcpy(bi->board_info, info, n * sizeof *info);
301 mutex_lock(&board_lock);
302 list_add_tail(&bi->list, &board_list);
303 mutex_unlock(&board_lock);
304 return 0;
307 /* FIXME someone should add support for a __setup("spi", ...) that
308 * creates board info from kernel command lines
311 static void scan_boardinfo(struct spi_master *master)
313 struct boardinfo *bi;
315 mutex_lock(&board_lock);
316 list_for_each_entry(bi, &board_list, list) {
317 struct spi_board_info *chip = bi->board_info;
318 unsigned n;
320 for (n = bi->n_board_info; n > 0; n--, chip++) {
321 if (chip->bus_num != master->bus_num)
322 continue;
323 /* NOTE: this relies on spi_new_device to
324 * issue diagnostics when given bogus inputs
326 (void) spi_new_device(master, chip);
329 mutex_unlock(&board_lock);
332 /*-------------------------------------------------------------------------*/
334 static void spi_master_release(struct device *dev)
336 struct spi_master *master;
338 master = container_of(dev, struct spi_master, dev);
339 kfree(master);
342 static struct class spi_master_class = {
343 .name = "spi_master",
344 .owner = THIS_MODULE,
345 .dev_release = spi_master_release,
350 * spi_alloc_master - allocate SPI master controller
351 * @dev: the controller, possibly using the platform_bus
352 * @size: how much zeroed driver-private data to allocate; the pointer to this
353 * memory is in the driver_data field of the returned device,
354 * accessible with spi_master_get_devdata().
355 * Context: can sleep
357 * This call is used only by SPI master controller drivers, which are the
358 * only ones directly touching chip registers. It's how they allocate
359 * an spi_master structure, prior to calling spi_register_master().
361 * This must be called from context that can sleep. It returns the SPI
362 * master structure on success, else NULL.
364 * The caller is responsible for assigning the bus number and initializing
365 * the master's methods before calling spi_register_master(); and (after errors
366 * adding the device) calling spi_master_put() to prevent a memory leak.
368 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
370 struct spi_master *master;
372 if (!dev)
373 return NULL;
375 master = kzalloc(size + sizeof *master, GFP_KERNEL);
376 if (!master)
377 return NULL;
379 device_initialize(&master->dev);
380 master->dev.class = &spi_master_class;
381 master->dev.parent = get_device(dev);
382 spi_master_set_devdata(master, &master[1]);
384 return master;
386 EXPORT_SYMBOL_GPL(spi_alloc_master);
389 * spi_register_master - register SPI master controller
390 * @master: initialized master, originally from spi_alloc_master()
391 * Context: can sleep
393 * SPI master controllers connect to their drivers using some non-SPI bus,
394 * such as the platform bus. The final stage of probe() in that code
395 * includes calling spi_register_master() to hook up to this SPI bus glue.
397 * SPI controllers use board specific (often SOC specific) bus numbers,
398 * and board-specific addressing for SPI devices combines those numbers
399 * with chip select numbers. Since SPI does not directly support dynamic
400 * device identification, boards need configuration tables telling which
401 * chip is at which address.
403 * This must be called from context that can sleep. It returns zero on
404 * success, else a negative error code (dropping the master's refcount).
405 * After a successful return, the caller is responsible for calling
406 * spi_unregister_master().
408 int spi_register_master(struct spi_master *master)
410 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
411 struct device *dev = master->dev.parent;
412 int status = -ENODEV;
413 int dynamic = 0;
415 if (!dev)
416 return -ENODEV;
418 /* even if it's just one always-selected device, there must
419 * be at least one chipselect
421 if (master->num_chipselect == 0)
422 return -EINVAL;
424 /* convention: dynamically assigned bus IDs count down from the max */
425 if (master->bus_num < 0) {
426 /* FIXME switch to an IDR based scheme, something like
427 * I2C now uses, so we can't run out of "dynamic" IDs
429 master->bus_num = atomic_dec_return(&dyn_bus_id);
430 dynamic = 1;
433 /* register the device, then userspace will see it.
434 * registration fails if the bus ID is in use.
436 snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
437 "spi%u", master->bus_num);
438 status = device_add(&master->dev);
439 if (status < 0)
440 goto done;
441 dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
442 dynamic ? " (dynamic)" : "");
444 /* populate children from any spi device tables */
445 scan_boardinfo(master);
446 status = 0;
447 done:
448 return status;
450 EXPORT_SYMBOL_GPL(spi_register_master);
453 static int __unregister(struct device *dev, void *master_dev)
455 /* note: before about 2.6.14-rc1 this would corrupt memory: */
456 if (dev != master_dev)
457 spi_unregister_device(to_spi_device(dev));
458 return 0;
462 * spi_unregister_master - unregister SPI master controller
463 * @master: the master being unregistered
464 * Context: can sleep
466 * This call is used only by SPI master controller drivers, which are the
467 * only ones directly touching chip registers.
469 * This must be called from context that can sleep.
471 void spi_unregister_master(struct spi_master *master)
473 int dummy;
475 dummy = device_for_each_child(master->dev.parent, &master->dev,
476 __unregister);
477 device_unregister(&master->dev);
479 EXPORT_SYMBOL_GPL(spi_unregister_master);
481 static int __spi_master_match(struct device *dev, void *data)
483 struct spi_master *m;
484 u16 *bus_num = data;
486 m = container_of(dev, struct spi_master, dev);
487 return m->bus_num == *bus_num;
491 * spi_busnum_to_master - look up master associated with bus_num
492 * @bus_num: the master's bus number
493 * Context: can sleep
495 * This call may be used with devices that are registered after
496 * arch init time. It returns a refcounted pointer to the relevant
497 * spi_master (which the caller must release), or NULL if there is
498 * no such master registered.
500 struct spi_master *spi_busnum_to_master(u16 bus_num)
502 struct device *dev;
503 struct spi_master *master = NULL;
505 dev = class_find_device(&spi_master_class, &bus_num,
506 __spi_master_match);
507 if (dev)
508 master = container_of(dev, struct spi_master, dev);
509 /* reference got in class_find_device */
510 return master;
512 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
515 /*-------------------------------------------------------------------------*/
517 static void spi_complete(void *arg)
519 complete(arg);
523 * spi_sync - blocking/synchronous SPI data transfers
524 * @spi: device with which data will be exchanged
525 * @message: describes the data transfers
526 * Context: can sleep
528 * This call may only be used from a context that may sleep. The sleep
529 * is non-interruptible, and has no timeout. Low-overhead controller
530 * drivers may DMA directly into and out of the message buffers.
532 * Note that the SPI device's chip select is active during the message,
533 * and then is normally disabled between messages. Drivers for some
534 * frequently-used devices may want to minimize costs of selecting a chip,
535 * by leaving it selected in anticipation that the next message will go
536 * to the same chip. (That may increase power usage.)
538 * Also, the caller is guaranteeing that the memory associated with the
539 * message will not be freed before this call returns.
541 * It returns zero on success, else a negative error code.
543 int spi_sync(struct spi_device *spi, struct spi_message *message)
545 DECLARE_COMPLETION_ONSTACK(done);
546 int status;
548 message->complete = spi_complete;
549 message->context = &done;
550 status = spi_async(spi, message);
551 if (status == 0) {
552 wait_for_completion(&done);
553 status = message->status;
555 message->context = NULL;
556 return status;
558 EXPORT_SYMBOL_GPL(spi_sync);
560 /* portable code must never pass more than 32 bytes */
561 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
563 static u8 *buf;
566 * spi_write_then_read - SPI synchronous write followed by read
567 * @spi: device with which data will be exchanged
568 * @txbuf: data to be written (need not be dma-safe)
569 * @n_tx: size of txbuf, in bytes
570 * @rxbuf: buffer into which data will be read
571 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
572 * Context: can sleep
574 * This performs a half duplex MicroWire style transaction with the
575 * device, sending txbuf and then reading rxbuf. The return value
576 * is zero for success, else a negative errno status code.
577 * This call may only be used from a context that may sleep.
579 * Parameters to this routine are always copied using a small buffer;
580 * portable code should never use this for more than 32 bytes.
581 * Performance-sensitive or bulk transfer code should instead use
582 * spi_{async,sync}() calls with dma-safe buffers.
584 int spi_write_then_read(struct spi_device *spi,
585 const u8 *txbuf, unsigned n_tx,
586 u8 *rxbuf, unsigned n_rx)
588 static DEFINE_MUTEX(lock);
590 int status;
591 struct spi_message message;
592 struct spi_transfer x[2];
593 u8 *local_buf;
595 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
596 * (as a pure convenience thing), but we can keep heap costs
597 * out of the hot path ...
599 if ((n_tx + n_rx) > SPI_BUFSIZ)
600 return -EINVAL;
602 spi_message_init(&message);
603 memset(x, 0, sizeof x);
604 if (n_tx) {
605 x[0].len = n_tx;
606 spi_message_add_tail(&x[0], &message);
608 if (n_rx) {
609 x[1].len = n_rx;
610 spi_message_add_tail(&x[1], &message);
613 /* ... unless someone else is using the pre-allocated buffer */
614 if (!mutex_trylock(&lock)) {
615 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
616 if (!local_buf)
617 return -ENOMEM;
618 } else
619 local_buf = buf;
621 memcpy(local_buf, txbuf, n_tx);
622 x[0].tx_buf = local_buf;
623 x[1].rx_buf = local_buf + n_tx;
625 /* do the i/o */
626 status = spi_sync(spi, &message);
627 if (status == 0)
628 memcpy(rxbuf, x[1].rx_buf, n_rx);
630 if (x[0].tx_buf == buf)
631 mutex_unlock(&lock);
632 else
633 kfree(local_buf);
635 return status;
637 EXPORT_SYMBOL_GPL(spi_write_then_read);
639 /*-------------------------------------------------------------------------*/
641 static int __init spi_init(void)
643 int status;
645 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
646 if (!buf) {
647 status = -ENOMEM;
648 goto err0;
651 status = bus_register(&spi_bus_type);
652 if (status < 0)
653 goto err1;
655 status = class_register(&spi_master_class);
656 if (status < 0)
657 goto err2;
658 return 0;
660 err2:
661 bus_unregister(&spi_bus_type);
662 err1:
663 kfree(buf);
664 buf = NULL;
665 err0:
666 return status;
669 /* board_info is normally registered in arch_initcall(),
670 * but even essential drivers wait till later
672 * REVISIT only boardinfo really needs static linking. the rest (device and
673 * driver registration) _could_ be dynamically linked (modular) ... costs
674 * include needing to have boardinfo data structures be much more public.
676 subsys_initcall(spi_init);