Linux 2.6.26-rc4
[linux-2.6/openmoko-kernel/knife-kernel.git] / kernel / exit.c
blob8f6185e69b691265746f81a1ca4ce9de9fd8a640
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
54 static void exit_mm(struct task_struct * tsk);
56 static inline int task_detached(struct task_struct *p)
58 return p->exit_signal == -1;
61 static void __unhash_process(struct task_struct *p)
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
69 list_del_rcu(&p->tasks);
70 __get_cpu_var(process_counts)--;
72 list_del_rcu(&p->thread_group);
73 remove_parent(p);
77 * This function expects the tasklist_lock write-locked.
79 static void __exit_signal(struct task_struct *tsk)
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
87 rcu_read_lock();
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
96 * If there is any task waiting for the group exit
97 * then notify it:
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
127 __unhash_process(tsk);
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 flush_sigqueue(&tsk->pending);
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138 rcu_read_unlock();
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (sig) {
143 flush_sigqueue(&sig->shared_pending);
144 taskstats_tgid_free(sig);
145 __cleanup_signal(sig);
149 static void delayed_put_task_struct(struct rcu_head *rhp)
151 put_task_struct(container_of(rhp, struct task_struct, rcu));
154 void release_task(struct task_struct * p)
156 struct task_struct *leader;
157 int zap_leader;
158 repeat:
159 atomic_dec(&p->user->processes);
160 proc_flush_task(p);
161 write_lock_irq(&tasklist_lock);
162 ptrace_unlink(p);
163 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
164 __exit_signal(p);
167 * If we are the last non-leader member of the thread
168 * group, and the leader is zombie, then notify the
169 * group leader's parent process. (if it wants notification.)
171 zap_leader = 0;
172 leader = p->group_leader;
173 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
174 BUG_ON(task_detached(leader));
175 do_notify_parent(leader, leader->exit_signal);
177 * If we were the last child thread and the leader has
178 * exited already, and the leader's parent ignores SIGCHLD,
179 * then we are the one who should release the leader.
181 * do_notify_parent() will have marked it self-reaping in
182 * that case.
184 zap_leader = task_detached(leader);
187 write_unlock_irq(&tasklist_lock);
188 release_thread(p);
189 call_rcu(&p->rcu, delayed_put_task_struct);
191 p = leader;
192 if (unlikely(zap_leader))
193 goto repeat;
197 * This checks not only the pgrp, but falls back on the pid if no
198 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
199 * without this...
201 * The caller must hold rcu lock or the tasklist lock.
203 struct pid *session_of_pgrp(struct pid *pgrp)
205 struct task_struct *p;
206 struct pid *sid = NULL;
208 p = pid_task(pgrp, PIDTYPE_PGID);
209 if (p == NULL)
210 p = pid_task(pgrp, PIDTYPE_PID);
211 if (p != NULL)
212 sid = task_session(p);
214 return sid;
218 * Determine if a process group is "orphaned", according to the POSIX
219 * definition in 2.2.2.52. Orphaned process groups are not to be affected
220 * by terminal-generated stop signals. Newly orphaned process groups are
221 * to receive a SIGHUP and a SIGCONT.
223 * "I ask you, have you ever known what it is to be an orphan?"
225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
227 struct task_struct *p;
229 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230 if ((p == ignored_task) ||
231 (p->exit_state && thread_group_empty(p)) ||
232 is_global_init(p->real_parent))
233 continue;
235 if (task_pgrp(p->real_parent) != pgrp &&
236 task_session(p->real_parent) == task_session(p))
237 return 0;
238 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240 return 1;
243 int is_current_pgrp_orphaned(void)
245 int retval;
247 read_lock(&tasklist_lock);
248 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249 read_unlock(&tasklist_lock);
251 return retval;
254 static int has_stopped_jobs(struct pid *pgrp)
256 int retval = 0;
257 struct task_struct *p;
259 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 if (!task_is_stopped(p))
261 continue;
262 retval = 1;
263 break;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 return retval;
269 * Check to see if any process groups have become orphaned as
270 * a result of our exiting, and if they have any stopped jobs,
271 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
273 static void
274 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
276 struct pid *pgrp = task_pgrp(tsk);
277 struct task_struct *ignored_task = tsk;
279 if (!parent)
280 /* exit: our father is in a different pgrp than
281 * we are and we were the only connection outside.
283 parent = tsk->real_parent;
284 else
285 /* reparent: our child is in a different pgrp than
286 * we are, and it was the only connection outside.
288 ignored_task = NULL;
290 if (task_pgrp(parent) != pgrp &&
291 task_session(parent) == task_session(tsk) &&
292 will_become_orphaned_pgrp(pgrp, ignored_task) &&
293 has_stopped_jobs(pgrp)) {
294 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
295 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
300 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
302 * If a kernel thread is launched as a result of a system call, or if
303 * it ever exits, it should generally reparent itself to kthreadd so it
304 * isn't in the way of other processes and is correctly cleaned up on exit.
306 * The various task state such as scheduling policy and priority may have
307 * been inherited from a user process, so we reset them to sane values here.
309 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
311 static void reparent_to_kthreadd(void)
313 write_lock_irq(&tasklist_lock);
315 ptrace_unlink(current);
316 /* Reparent to init */
317 remove_parent(current);
318 current->real_parent = current->parent = kthreadd_task;
319 add_parent(current);
321 /* Set the exit signal to SIGCHLD so we signal init on exit */
322 current->exit_signal = SIGCHLD;
324 if (task_nice(current) < 0)
325 set_user_nice(current, 0);
326 /* cpus_allowed? */
327 /* rt_priority? */
328 /* signals? */
329 security_task_reparent_to_init(current);
330 memcpy(current->signal->rlim, init_task.signal->rlim,
331 sizeof(current->signal->rlim));
332 atomic_inc(&(INIT_USER->__count));
333 write_unlock_irq(&tasklist_lock);
334 switch_uid(INIT_USER);
337 void __set_special_pids(struct pid *pid)
339 struct task_struct *curr = current->group_leader;
340 pid_t nr = pid_nr(pid);
342 if (task_session(curr) != pid) {
343 change_pid(curr, PIDTYPE_SID, pid);
344 set_task_session(curr, nr);
346 if (task_pgrp(curr) != pid) {
347 change_pid(curr, PIDTYPE_PGID, pid);
348 set_task_pgrp(curr, nr);
352 static void set_special_pids(struct pid *pid)
354 write_lock_irq(&tasklist_lock);
355 __set_special_pids(pid);
356 write_unlock_irq(&tasklist_lock);
360 * Let kernel threads use this to say that they
361 * allow a certain signal (since daemonize() will
362 * have disabled all of them by default).
364 int allow_signal(int sig)
366 if (!valid_signal(sig) || sig < 1)
367 return -EINVAL;
369 spin_lock_irq(&current->sighand->siglock);
370 sigdelset(&current->blocked, sig);
371 if (!current->mm) {
372 /* Kernel threads handle their own signals.
373 Let the signal code know it'll be handled, so
374 that they don't get converted to SIGKILL or
375 just silently dropped */
376 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
378 recalc_sigpending();
379 spin_unlock_irq(&current->sighand->siglock);
380 return 0;
383 EXPORT_SYMBOL(allow_signal);
385 int disallow_signal(int sig)
387 if (!valid_signal(sig) || sig < 1)
388 return -EINVAL;
390 spin_lock_irq(&current->sighand->siglock);
391 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
392 recalc_sigpending();
393 spin_unlock_irq(&current->sighand->siglock);
394 return 0;
397 EXPORT_SYMBOL(disallow_signal);
400 * Put all the gunge required to become a kernel thread without
401 * attached user resources in one place where it belongs.
404 void daemonize(const char *name, ...)
406 va_list args;
407 struct fs_struct *fs;
408 sigset_t blocked;
410 va_start(args, name);
411 vsnprintf(current->comm, sizeof(current->comm), name, args);
412 va_end(args);
415 * If we were started as result of loading a module, close all of the
416 * user space pages. We don't need them, and if we didn't close them
417 * they would be locked into memory.
419 exit_mm(current);
421 * We don't want to have TIF_FREEZE set if the system-wide hibernation
422 * or suspend transition begins right now.
424 current->flags |= PF_NOFREEZE;
426 if (current->nsproxy != &init_nsproxy) {
427 get_nsproxy(&init_nsproxy);
428 switch_task_namespaces(current, &init_nsproxy);
430 set_special_pids(&init_struct_pid);
431 proc_clear_tty(current);
433 /* Block and flush all signals */
434 sigfillset(&blocked);
435 sigprocmask(SIG_BLOCK, &blocked, NULL);
436 flush_signals(current);
438 /* Become as one with the init task */
440 exit_fs(current); /* current->fs->count--; */
441 fs = init_task.fs;
442 current->fs = fs;
443 atomic_inc(&fs->count);
445 exit_files(current);
446 current->files = init_task.files;
447 atomic_inc(&current->files->count);
449 reparent_to_kthreadd();
452 EXPORT_SYMBOL(daemonize);
454 static void close_files(struct files_struct * files)
456 int i, j;
457 struct fdtable *fdt;
459 j = 0;
462 * It is safe to dereference the fd table without RCU or
463 * ->file_lock because this is the last reference to the
464 * files structure.
466 fdt = files_fdtable(files);
467 for (;;) {
468 unsigned long set;
469 i = j * __NFDBITS;
470 if (i >= fdt->max_fds)
471 break;
472 set = fdt->open_fds->fds_bits[j++];
473 while (set) {
474 if (set & 1) {
475 struct file * file = xchg(&fdt->fd[i], NULL);
476 if (file) {
477 filp_close(file, files);
478 cond_resched();
481 i++;
482 set >>= 1;
487 struct files_struct *get_files_struct(struct task_struct *task)
489 struct files_struct *files;
491 task_lock(task);
492 files = task->files;
493 if (files)
494 atomic_inc(&files->count);
495 task_unlock(task);
497 return files;
500 void put_files_struct(struct files_struct *files)
502 struct fdtable *fdt;
504 if (atomic_dec_and_test(&files->count)) {
505 close_files(files);
507 * Free the fd and fdset arrays if we expanded them.
508 * If the fdtable was embedded, pass files for freeing
509 * at the end of the RCU grace period. Otherwise,
510 * you can free files immediately.
512 fdt = files_fdtable(files);
513 if (fdt != &files->fdtab)
514 kmem_cache_free(files_cachep, files);
515 free_fdtable(fdt);
519 void reset_files_struct(struct files_struct *files)
521 struct task_struct *tsk = current;
522 struct files_struct *old;
524 old = tsk->files;
525 task_lock(tsk);
526 tsk->files = files;
527 task_unlock(tsk);
528 put_files_struct(old);
531 void exit_files(struct task_struct *tsk)
533 struct files_struct * files = tsk->files;
535 if (files) {
536 task_lock(tsk);
537 tsk->files = NULL;
538 task_unlock(tsk);
539 put_files_struct(files);
543 void put_fs_struct(struct fs_struct *fs)
545 /* No need to hold fs->lock if we are killing it */
546 if (atomic_dec_and_test(&fs->count)) {
547 path_put(&fs->root);
548 path_put(&fs->pwd);
549 if (fs->altroot.dentry)
550 path_put(&fs->altroot);
551 kmem_cache_free(fs_cachep, fs);
555 void exit_fs(struct task_struct *tsk)
557 struct fs_struct * fs = tsk->fs;
559 if (fs) {
560 task_lock(tsk);
561 tsk->fs = NULL;
562 task_unlock(tsk);
563 put_fs_struct(fs);
567 EXPORT_SYMBOL_GPL(exit_fs);
569 #ifdef CONFIG_MM_OWNER
571 * Task p is exiting and it owned mm, lets find a new owner for it
573 static inline int
574 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
577 * If there are other users of the mm and the owner (us) is exiting
578 * we need to find a new owner to take on the responsibility.
580 if (!mm)
581 return 0;
582 if (atomic_read(&mm->mm_users) <= 1)
583 return 0;
584 if (mm->owner != p)
585 return 0;
586 return 1;
589 void mm_update_next_owner(struct mm_struct *mm)
591 struct task_struct *c, *g, *p = current;
593 retry:
594 if (!mm_need_new_owner(mm, p))
595 return;
597 read_lock(&tasklist_lock);
599 * Search in the children
601 list_for_each_entry(c, &p->children, sibling) {
602 if (c->mm == mm)
603 goto assign_new_owner;
607 * Search in the siblings
609 list_for_each_entry(c, &p->parent->children, sibling) {
610 if (c->mm == mm)
611 goto assign_new_owner;
615 * Search through everything else. We should not get
616 * here often
618 do_each_thread(g, c) {
619 if (c->mm == mm)
620 goto assign_new_owner;
621 } while_each_thread(g, c);
623 read_unlock(&tasklist_lock);
624 return;
626 assign_new_owner:
627 BUG_ON(c == p);
628 get_task_struct(c);
630 * The task_lock protects c->mm from changing.
631 * We always want mm->owner->mm == mm
633 task_lock(c);
635 * Delay read_unlock() till we have the task_lock()
636 * to ensure that c does not slip away underneath us
638 read_unlock(&tasklist_lock);
639 if (c->mm != mm) {
640 task_unlock(c);
641 put_task_struct(c);
642 goto retry;
644 cgroup_mm_owner_callbacks(mm->owner, c);
645 mm->owner = c;
646 task_unlock(c);
647 put_task_struct(c);
649 #endif /* CONFIG_MM_OWNER */
652 * Turn us into a lazy TLB process if we
653 * aren't already..
655 static void exit_mm(struct task_struct * tsk)
657 struct mm_struct *mm = tsk->mm;
659 mm_release(tsk, mm);
660 if (!mm)
661 return;
663 * Serialize with any possible pending coredump.
664 * We must hold mmap_sem around checking core_waiters
665 * and clearing tsk->mm. The core-inducing thread
666 * will increment core_waiters for each thread in the
667 * group with ->mm != NULL.
669 down_read(&mm->mmap_sem);
670 if (mm->core_waiters) {
671 up_read(&mm->mmap_sem);
672 down_write(&mm->mmap_sem);
673 if (!--mm->core_waiters)
674 complete(mm->core_startup_done);
675 up_write(&mm->mmap_sem);
677 wait_for_completion(&mm->core_done);
678 down_read(&mm->mmap_sem);
680 atomic_inc(&mm->mm_count);
681 BUG_ON(mm != tsk->active_mm);
682 /* more a memory barrier than a real lock */
683 task_lock(tsk);
684 tsk->mm = NULL;
685 up_read(&mm->mmap_sem);
686 enter_lazy_tlb(mm, current);
687 /* We don't want this task to be frozen prematurely */
688 clear_freeze_flag(tsk);
689 task_unlock(tsk);
690 mm_update_next_owner(mm);
691 mmput(mm);
694 static void
695 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
697 if (p->pdeath_signal)
698 /* We already hold the tasklist_lock here. */
699 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
701 /* Move the child from its dying parent to the new one. */
702 if (unlikely(traced)) {
703 /* Preserve ptrace links if someone else is tracing this child. */
704 list_del_init(&p->ptrace_list);
705 if (ptrace_reparented(p))
706 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
707 } else {
708 /* If this child is being traced, then we're the one tracing it
709 * anyway, so let go of it.
711 p->ptrace = 0;
712 remove_parent(p);
713 p->parent = p->real_parent;
714 add_parent(p);
716 if (task_is_traced(p)) {
718 * If it was at a trace stop, turn it into
719 * a normal stop since it's no longer being
720 * traced.
722 ptrace_untrace(p);
726 /* If this is a threaded reparent there is no need to
727 * notify anyone anything has happened.
729 if (same_thread_group(p->real_parent, father))
730 return;
732 /* We don't want people slaying init. */
733 if (!task_detached(p))
734 p->exit_signal = SIGCHLD;
736 /* If we'd notified the old parent about this child's death,
737 * also notify the new parent.
739 if (!traced && p->exit_state == EXIT_ZOMBIE &&
740 !task_detached(p) && thread_group_empty(p))
741 do_notify_parent(p, p->exit_signal);
743 kill_orphaned_pgrp(p, father);
747 * When we die, we re-parent all our children.
748 * Try to give them to another thread in our thread
749 * group, and if no such member exists, give it to
750 * the child reaper process (ie "init") in our pid
751 * space.
753 static void forget_original_parent(struct task_struct *father)
755 struct task_struct *p, *n, *reaper = father;
756 struct list_head ptrace_dead;
758 INIT_LIST_HEAD(&ptrace_dead);
760 write_lock_irq(&tasklist_lock);
762 do {
763 reaper = next_thread(reaper);
764 if (reaper == father) {
765 reaper = task_child_reaper(father);
766 break;
768 } while (reaper->flags & PF_EXITING);
771 * There are only two places where our children can be:
773 * - in our child list
774 * - in our ptraced child list
776 * Search them and reparent children.
778 list_for_each_entry_safe(p, n, &father->children, sibling) {
779 int ptrace;
781 ptrace = p->ptrace;
783 /* if father isn't the real parent, then ptrace must be enabled */
784 BUG_ON(father != p->real_parent && !ptrace);
786 if (father == p->real_parent) {
787 /* reparent with a reaper, real father it's us */
788 p->real_parent = reaper;
789 reparent_thread(p, father, 0);
790 } else {
791 /* reparent ptraced task to its real parent */
792 __ptrace_unlink (p);
793 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
794 thread_group_empty(p))
795 do_notify_parent(p, p->exit_signal);
799 * if the ptraced child is a detached zombie we must collect
800 * it before we exit, or it will remain zombie forever since
801 * we prevented it from self-reap itself while it was being
802 * traced by us, to be able to see it in wait4.
804 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
805 list_add(&p->ptrace_list, &ptrace_dead);
808 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
809 p->real_parent = reaper;
810 reparent_thread(p, father, 1);
813 write_unlock_irq(&tasklist_lock);
814 BUG_ON(!list_empty(&father->children));
815 BUG_ON(!list_empty(&father->ptrace_children));
817 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
818 list_del_init(&p->ptrace_list);
819 release_task(p);
825 * Send signals to all our closest relatives so that they know
826 * to properly mourn us..
828 static void exit_notify(struct task_struct *tsk, int group_dead)
830 int state;
833 * This does two things:
835 * A. Make init inherit all the child processes
836 * B. Check to see if any process groups have become orphaned
837 * as a result of our exiting, and if they have any stopped
838 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
840 forget_original_parent(tsk);
841 exit_task_namespaces(tsk);
843 write_lock_irq(&tasklist_lock);
844 if (group_dead)
845 kill_orphaned_pgrp(tsk->group_leader, NULL);
847 /* Let father know we died
849 * Thread signals are configurable, but you aren't going to use
850 * that to send signals to arbitary processes.
851 * That stops right now.
853 * If the parent exec id doesn't match the exec id we saved
854 * when we started then we know the parent has changed security
855 * domain.
857 * If our self_exec id doesn't match our parent_exec_id then
858 * we have changed execution domain as these two values started
859 * the same after a fork.
861 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
862 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
863 tsk->self_exec_id != tsk->parent_exec_id) &&
864 !capable(CAP_KILL))
865 tsk->exit_signal = SIGCHLD;
867 /* If something other than our normal parent is ptracing us, then
868 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
869 * only has special meaning to our real parent.
871 if (!task_detached(tsk) && thread_group_empty(tsk)) {
872 int signal = ptrace_reparented(tsk) ?
873 SIGCHLD : tsk->exit_signal;
874 do_notify_parent(tsk, signal);
875 } else if (tsk->ptrace) {
876 do_notify_parent(tsk, SIGCHLD);
879 state = EXIT_ZOMBIE;
880 if (task_detached(tsk) && likely(!tsk->ptrace))
881 state = EXIT_DEAD;
882 tsk->exit_state = state;
884 /* mt-exec, de_thread() is waiting for us */
885 if (thread_group_leader(tsk) &&
886 tsk->signal->notify_count < 0 &&
887 tsk->signal->group_exit_task)
888 wake_up_process(tsk->signal->group_exit_task);
890 write_unlock_irq(&tasklist_lock);
892 /* If the process is dead, release it - nobody will wait for it */
893 if (state == EXIT_DEAD)
894 release_task(tsk);
897 #ifdef CONFIG_DEBUG_STACK_USAGE
898 static void check_stack_usage(void)
900 static DEFINE_SPINLOCK(low_water_lock);
901 static int lowest_to_date = THREAD_SIZE;
902 unsigned long *n = end_of_stack(current);
903 unsigned long free;
905 while (*n == 0)
906 n++;
907 free = (unsigned long)n - (unsigned long)end_of_stack(current);
909 if (free >= lowest_to_date)
910 return;
912 spin_lock(&low_water_lock);
913 if (free < lowest_to_date) {
914 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
915 "left\n",
916 current->comm, free);
917 lowest_to_date = free;
919 spin_unlock(&low_water_lock);
921 #else
922 static inline void check_stack_usage(void) {}
923 #endif
925 static inline void exit_child_reaper(struct task_struct *tsk)
927 if (likely(tsk->group_leader != task_child_reaper(tsk)))
928 return;
930 if (tsk->nsproxy->pid_ns == &init_pid_ns)
931 panic("Attempted to kill init!");
934 * @tsk is the last thread in the 'cgroup-init' and is exiting.
935 * Terminate all remaining processes in the namespace and reap them
936 * before exiting @tsk.
938 * Note that @tsk (last thread of cgroup-init) may not necessarily
939 * be the child-reaper (i.e main thread of cgroup-init) of the
940 * namespace i.e the child_reaper may have already exited.
942 * Even after a child_reaper exits, we let it inherit orphaned children,
943 * because, pid_ns->child_reaper remains valid as long as there is
944 * at least one living sub-thread in the cgroup init.
946 * This living sub-thread of the cgroup-init will be notified when
947 * a child inherited by the 'child-reaper' exits (do_notify_parent()
948 * uses __group_send_sig_info()). Further, when reaping child processes,
949 * do_wait() iterates over children of all living sub threads.
951 * i.e even though 'child_reaper' thread is listed as the parent of the
952 * orphaned children, any living sub-thread in the cgroup-init can
953 * perform the role of the child_reaper.
955 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
958 NORET_TYPE void do_exit(long code)
960 struct task_struct *tsk = current;
961 int group_dead;
963 profile_task_exit(tsk);
965 WARN_ON(atomic_read(&tsk->fs_excl));
967 if (unlikely(in_interrupt()))
968 panic("Aiee, killing interrupt handler!");
969 if (unlikely(!tsk->pid))
970 panic("Attempted to kill the idle task!");
972 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
973 current->ptrace_message = code;
974 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
978 * We're taking recursive faults here in do_exit. Safest is to just
979 * leave this task alone and wait for reboot.
981 if (unlikely(tsk->flags & PF_EXITING)) {
982 printk(KERN_ALERT
983 "Fixing recursive fault but reboot is needed!\n");
985 * We can do this unlocked here. The futex code uses
986 * this flag just to verify whether the pi state
987 * cleanup has been done or not. In the worst case it
988 * loops once more. We pretend that the cleanup was
989 * done as there is no way to return. Either the
990 * OWNER_DIED bit is set by now or we push the blocked
991 * task into the wait for ever nirwana as well.
993 tsk->flags |= PF_EXITPIDONE;
994 if (tsk->io_context)
995 exit_io_context();
996 set_current_state(TASK_UNINTERRUPTIBLE);
997 schedule();
1000 exit_signals(tsk); /* sets PF_EXITING */
1002 * tsk->flags are checked in the futex code to protect against
1003 * an exiting task cleaning up the robust pi futexes.
1005 smp_mb();
1006 spin_unlock_wait(&tsk->pi_lock);
1008 if (unlikely(in_atomic()))
1009 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1010 current->comm, task_pid_nr(current),
1011 preempt_count());
1013 acct_update_integrals(tsk);
1014 if (tsk->mm) {
1015 update_hiwater_rss(tsk->mm);
1016 update_hiwater_vm(tsk->mm);
1018 group_dead = atomic_dec_and_test(&tsk->signal->live);
1019 if (group_dead) {
1020 exit_child_reaper(tsk);
1021 hrtimer_cancel(&tsk->signal->real_timer);
1022 exit_itimers(tsk->signal);
1024 acct_collect(code, group_dead);
1025 #ifdef CONFIG_FUTEX
1026 if (unlikely(tsk->robust_list))
1027 exit_robust_list(tsk);
1028 #ifdef CONFIG_COMPAT
1029 if (unlikely(tsk->compat_robust_list))
1030 compat_exit_robust_list(tsk);
1031 #endif
1032 #endif
1033 if (group_dead)
1034 tty_audit_exit();
1035 if (unlikely(tsk->audit_context))
1036 audit_free(tsk);
1038 tsk->exit_code = code;
1039 taskstats_exit(tsk, group_dead);
1041 exit_mm(tsk);
1043 if (group_dead)
1044 acct_process();
1045 exit_sem(tsk);
1046 exit_files(tsk);
1047 exit_fs(tsk);
1048 check_stack_usage();
1049 exit_thread();
1050 cgroup_exit(tsk, 1);
1051 exit_keys(tsk);
1053 if (group_dead && tsk->signal->leader)
1054 disassociate_ctty(1);
1056 module_put(task_thread_info(tsk)->exec_domain->module);
1057 if (tsk->binfmt)
1058 module_put(tsk->binfmt->module);
1060 proc_exit_connector(tsk);
1061 exit_notify(tsk, group_dead);
1062 #ifdef CONFIG_NUMA
1063 mpol_put(tsk->mempolicy);
1064 tsk->mempolicy = NULL;
1065 #endif
1066 #ifdef CONFIG_FUTEX
1068 * This must happen late, after the PID is not
1069 * hashed anymore:
1071 if (unlikely(!list_empty(&tsk->pi_state_list)))
1072 exit_pi_state_list(tsk);
1073 if (unlikely(current->pi_state_cache))
1074 kfree(current->pi_state_cache);
1075 #endif
1077 * Make sure we are holding no locks:
1079 debug_check_no_locks_held(tsk);
1081 * We can do this unlocked here. The futex code uses this flag
1082 * just to verify whether the pi state cleanup has been done
1083 * or not. In the worst case it loops once more.
1085 tsk->flags |= PF_EXITPIDONE;
1087 if (tsk->io_context)
1088 exit_io_context();
1090 if (tsk->splice_pipe)
1091 __free_pipe_info(tsk->splice_pipe);
1093 preempt_disable();
1094 /* causes final put_task_struct in finish_task_switch(). */
1095 tsk->state = TASK_DEAD;
1097 schedule();
1098 BUG();
1099 /* Avoid "noreturn function does return". */
1100 for (;;)
1101 cpu_relax(); /* For when BUG is null */
1104 EXPORT_SYMBOL_GPL(do_exit);
1106 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1108 if (comp)
1109 complete(comp);
1111 do_exit(code);
1114 EXPORT_SYMBOL(complete_and_exit);
1116 asmlinkage long sys_exit(int error_code)
1118 do_exit((error_code&0xff)<<8);
1122 * Take down every thread in the group. This is called by fatal signals
1123 * as well as by sys_exit_group (below).
1125 NORET_TYPE void
1126 do_group_exit(int exit_code)
1128 struct signal_struct *sig = current->signal;
1130 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1132 if (signal_group_exit(sig))
1133 exit_code = sig->group_exit_code;
1134 else if (!thread_group_empty(current)) {
1135 struct sighand_struct *const sighand = current->sighand;
1136 spin_lock_irq(&sighand->siglock);
1137 if (signal_group_exit(sig))
1138 /* Another thread got here before we took the lock. */
1139 exit_code = sig->group_exit_code;
1140 else {
1141 sig->group_exit_code = exit_code;
1142 sig->flags = SIGNAL_GROUP_EXIT;
1143 zap_other_threads(current);
1145 spin_unlock_irq(&sighand->siglock);
1148 do_exit(exit_code);
1149 /* NOTREACHED */
1153 * this kills every thread in the thread group. Note that any externally
1154 * wait4()-ing process will get the correct exit code - even if this
1155 * thread is not the thread group leader.
1157 asmlinkage void sys_exit_group(int error_code)
1159 do_group_exit((error_code & 0xff) << 8);
1162 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1164 struct pid *pid = NULL;
1165 if (type == PIDTYPE_PID)
1166 pid = task->pids[type].pid;
1167 else if (type < PIDTYPE_MAX)
1168 pid = task->group_leader->pids[type].pid;
1169 return pid;
1172 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1173 struct task_struct *p)
1175 int err;
1177 if (type < PIDTYPE_MAX) {
1178 if (task_pid_type(p, type) != pid)
1179 return 0;
1183 * Do not consider detached threads that are
1184 * not ptraced:
1186 if (task_detached(p) && !p->ptrace)
1187 return 0;
1189 /* Wait for all children (clone and not) if __WALL is set;
1190 * otherwise, wait for clone children *only* if __WCLONE is
1191 * set; otherwise, wait for non-clone children *only*. (Note:
1192 * A "clone" child here is one that reports to its parent
1193 * using a signal other than SIGCHLD.) */
1194 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1195 && !(options & __WALL))
1196 return 0;
1198 err = security_task_wait(p);
1199 if (likely(!err))
1200 return 1;
1202 if (type != PIDTYPE_PID)
1203 return 0;
1204 /* This child was explicitly requested, abort */
1205 read_unlock(&tasklist_lock);
1206 return err;
1209 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1210 int why, int status,
1211 struct siginfo __user *infop,
1212 struct rusage __user *rusagep)
1214 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1216 put_task_struct(p);
1217 if (!retval)
1218 retval = put_user(SIGCHLD, &infop->si_signo);
1219 if (!retval)
1220 retval = put_user(0, &infop->si_errno);
1221 if (!retval)
1222 retval = put_user((short)why, &infop->si_code);
1223 if (!retval)
1224 retval = put_user(pid, &infop->si_pid);
1225 if (!retval)
1226 retval = put_user(uid, &infop->si_uid);
1227 if (!retval)
1228 retval = put_user(status, &infop->si_status);
1229 if (!retval)
1230 retval = pid;
1231 return retval;
1235 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1236 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1237 * the lock and this task is uninteresting. If we return nonzero, we have
1238 * released the lock and the system call should return.
1240 static int wait_task_zombie(struct task_struct *p, int noreap,
1241 struct siginfo __user *infop,
1242 int __user *stat_addr, struct rusage __user *ru)
1244 unsigned long state;
1245 int retval, status, traced;
1246 pid_t pid = task_pid_vnr(p);
1248 if (unlikely(noreap)) {
1249 uid_t uid = p->uid;
1250 int exit_code = p->exit_code;
1251 int why, status;
1253 get_task_struct(p);
1254 read_unlock(&tasklist_lock);
1255 if ((exit_code & 0x7f) == 0) {
1256 why = CLD_EXITED;
1257 status = exit_code >> 8;
1258 } else {
1259 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1260 status = exit_code & 0x7f;
1262 return wait_noreap_copyout(p, pid, uid, why,
1263 status, infop, ru);
1267 * Try to move the task's state to DEAD
1268 * only one thread is allowed to do this:
1270 state = xchg(&p->exit_state, EXIT_DEAD);
1271 if (state != EXIT_ZOMBIE) {
1272 BUG_ON(state != EXIT_DEAD);
1273 return 0;
1276 traced = ptrace_reparented(p);
1278 if (likely(!traced)) {
1279 struct signal_struct *psig;
1280 struct signal_struct *sig;
1283 * The resource counters for the group leader are in its
1284 * own task_struct. Those for dead threads in the group
1285 * are in its signal_struct, as are those for the child
1286 * processes it has previously reaped. All these
1287 * accumulate in the parent's signal_struct c* fields.
1289 * We don't bother to take a lock here to protect these
1290 * p->signal fields, because they are only touched by
1291 * __exit_signal, which runs with tasklist_lock
1292 * write-locked anyway, and so is excluded here. We do
1293 * need to protect the access to p->parent->signal fields,
1294 * as other threads in the parent group can be right
1295 * here reaping other children at the same time.
1297 spin_lock_irq(&p->parent->sighand->siglock);
1298 psig = p->parent->signal;
1299 sig = p->signal;
1300 psig->cutime =
1301 cputime_add(psig->cutime,
1302 cputime_add(p->utime,
1303 cputime_add(sig->utime,
1304 sig->cutime)));
1305 psig->cstime =
1306 cputime_add(psig->cstime,
1307 cputime_add(p->stime,
1308 cputime_add(sig->stime,
1309 sig->cstime)));
1310 psig->cgtime =
1311 cputime_add(psig->cgtime,
1312 cputime_add(p->gtime,
1313 cputime_add(sig->gtime,
1314 sig->cgtime)));
1315 psig->cmin_flt +=
1316 p->min_flt + sig->min_flt + sig->cmin_flt;
1317 psig->cmaj_flt +=
1318 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1319 psig->cnvcsw +=
1320 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1321 psig->cnivcsw +=
1322 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1323 psig->cinblock +=
1324 task_io_get_inblock(p) +
1325 sig->inblock + sig->cinblock;
1326 psig->coublock +=
1327 task_io_get_oublock(p) +
1328 sig->oublock + sig->coublock;
1329 spin_unlock_irq(&p->parent->sighand->siglock);
1333 * Now we are sure this task is interesting, and no other
1334 * thread can reap it because we set its state to EXIT_DEAD.
1336 read_unlock(&tasklist_lock);
1338 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1339 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1340 ? p->signal->group_exit_code : p->exit_code;
1341 if (!retval && stat_addr)
1342 retval = put_user(status, stat_addr);
1343 if (!retval && infop)
1344 retval = put_user(SIGCHLD, &infop->si_signo);
1345 if (!retval && infop)
1346 retval = put_user(0, &infop->si_errno);
1347 if (!retval && infop) {
1348 int why;
1350 if ((status & 0x7f) == 0) {
1351 why = CLD_EXITED;
1352 status >>= 8;
1353 } else {
1354 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1355 status &= 0x7f;
1357 retval = put_user((short)why, &infop->si_code);
1358 if (!retval)
1359 retval = put_user(status, &infop->si_status);
1361 if (!retval && infop)
1362 retval = put_user(pid, &infop->si_pid);
1363 if (!retval && infop)
1364 retval = put_user(p->uid, &infop->si_uid);
1365 if (!retval)
1366 retval = pid;
1368 if (traced) {
1369 write_lock_irq(&tasklist_lock);
1370 /* We dropped tasklist, ptracer could die and untrace */
1371 ptrace_unlink(p);
1373 * If this is not a detached task, notify the parent.
1374 * If it's still not detached after that, don't release
1375 * it now.
1377 if (!task_detached(p)) {
1378 do_notify_parent(p, p->exit_signal);
1379 if (!task_detached(p)) {
1380 p->exit_state = EXIT_ZOMBIE;
1381 p = NULL;
1384 write_unlock_irq(&tasklist_lock);
1386 if (p != NULL)
1387 release_task(p);
1389 return retval;
1393 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1394 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1395 * the lock and this task is uninteresting. If we return nonzero, we have
1396 * released the lock and the system call should return.
1398 static int wait_task_stopped(struct task_struct *p,
1399 int noreap, struct siginfo __user *infop,
1400 int __user *stat_addr, struct rusage __user *ru)
1402 int retval, exit_code, why;
1403 uid_t uid = 0; /* unneeded, required by compiler */
1404 pid_t pid;
1406 exit_code = 0;
1407 spin_lock_irq(&p->sighand->siglock);
1409 if (unlikely(!task_is_stopped_or_traced(p)))
1410 goto unlock_sig;
1412 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1414 * A group stop is in progress and this is the group leader.
1415 * We won't report until all threads have stopped.
1417 goto unlock_sig;
1419 exit_code = p->exit_code;
1420 if (!exit_code)
1421 goto unlock_sig;
1423 if (!noreap)
1424 p->exit_code = 0;
1426 uid = p->uid;
1427 unlock_sig:
1428 spin_unlock_irq(&p->sighand->siglock);
1429 if (!exit_code)
1430 return 0;
1433 * Now we are pretty sure this task is interesting.
1434 * Make sure it doesn't get reaped out from under us while we
1435 * give up the lock and then examine it below. We don't want to
1436 * keep holding onto the tasklist_lock while we call getrusage and
1437 * possibly take page faults for user memory.
1439 get_task_struct(p);
1440 pid = task_pid_vnr(p);
1441 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1442 read_unlock(&tasklist_lock);
1444 if (unlikely(noreap))
1445 return wait_noreap_copyout(p, pid, uid,
1446 why, exit_code,
1447 infop, ru);
1449 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1450 if (!retval && stat_addr)
1451 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1452 if (!retval && infop)
1453 retval = put_user(SIGCHLD, &infop->si_signo);
1454 if (!retval && infop)
1455 retval = put_user(0, &infop->si_errno);
1456 if (!retval && infop)
1457 retval = put_user((short)why, &infop->si_code);
1458 if (!retval && infop)
1459 retval = put_user(exit_code, &infop->si_status);
1460 if (!retval && infop)
1461 retval = put_user(pid, &infop->si_pid);
1462 if (!retval && infop)
1463 retval = put_user(uid, &infop->si_uid);
1464 if (!retval)
1465 retval = pid;
1466 put_task_struct(p);
1468 BUG_ON(!retval);
1469 return retval;
1473 * Handle do_wait work for one task in a live, non-stopped state.
1474 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1475 * the lock and this task is uninteresting. If we return nonzero, we have
1476 * released the lock and the system call should return.
1478 static int wait_task_continued(struct task_struct *p, int noreap,
1479 struct siginfo __user *infop,
1480 int __user *stat_addr, struct rusage __user *ru)
1482 int retval;
1483 pid_t pid;
1484 uid_t uid;
1486 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1487 return 0;
1489 spin_lock_irq(&p->sighand->siglock);
1490 /* Re-check with the lock held. */
1491 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1492 spin_unlock_irq(&p->sighand->siglock);
1493 return 0;
1495 if (!noreap)
1496 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1497 spin_unlock_irq(&p->sighand->siglock);
1499 pid = task_pid_vnr(p);
1500 uid = p->uid;
1501 get_task_struct(p);
1502 read_unlock(&tasklist_lock);
1504 if (!infop) {
1505 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1506 put_task_struct(p);
1507 if (!retval && stat_addr)
1508 retval = put_user(0xffff, stat_addr);
1509 if (!retval)
1510 retval = pid;
1511 } else {
1512 retval = wait_noreap_copyout(p, pid, uid,
1513 CLD_CONTINUED, SIGCONT,
1514 infop, ru);
1515 BUG_ON(retval == 0);
1518 return retval;
1521 static long do_wait(enum pid_type type, struct pid *pid, int options,
1522 struct siginfo __user *infop, int __user *stat_addr,
1523 struct rusage __user *ru)
1525 DECLARE_WAITQUEUE(wait, current);
1526 struct task_struct *tsk;
1527 int flag, retval;
1529 add_wait_queue(&current->signal->wait_chldexit,&wait);
1530 repeat:
1531 /* If there is nothing that can match our critier just get out */
1532 retval = -ECHILD;
1533 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1534 goto end;
1537 * We will set this flag if we see any child that might later
1538 * match our criteria, even if we are not able to reap it yet.
1540 flag = retval = 0;
1541 current->state = TASK_INTERRUPTIBLE;
1542 read_lock(&tasklist_lock);
1543 tsk = current;
1544 do {
1545 struct task_struct *p;
1547 list_for_each_entry(p, &tsk->children, sibling) {
1548 int ret = eligible_child(type, pid, options, p);
1549 if (!ret)
1550 continue;
1552 if (unlikely(ret < 0)) {
1553 retval = ret;
1554 } else if (task_is_stopped_or_traced(p)) {
1556 * It's stopped now, so it might later
1557 * continue, exit, or stop again.
1559 flag = 1;
1560 if (!(p->ptrace & PT_PTRACED) &&
1561 !(options & WUNTRACED))
1562 continue;
1564 retval = wait_task_stopped(p,
1565 (options & WNOWAIT), infop,
1566 stat_addr, ru);
1567 } else if (p->exit_state == EXIT_ZOMBIE &&
1568 !delay_group_leader(p)) {
1570 * We don't reap group leaders with subthreads.
1572 if (!likely(options & WEXITED))
1573 continue;
1574 retval = wait_task_zombie(p,
1575 (options & WNOWAIT), infop,
1576 stat_addr, ru);
1577 } else if (p->exit_state != EXIT_DEAD) {
1579 * It's running now, so it might later
1580 * exit, stop, or stop and then continue.
1582 flag = 1;
1583 if (!unlikely(options & WCONTINUED))
1584 continue;
1585 retval = wait_task_continued(p,
1586 (options & WNOWAIT), infop,
1587 stat_addr, ru);
1589 if (retval != 0) /* tasklist_lock released */
1590 goto end;
1592 if (!flag) {
1593 list_for_each_entry(p, &tsk->ptrace_children,
1594 ptrace_list) {
1595 flag = eligible_child(type, pid, options, p);
1596 if (!flag)
1597 continue;
1598 if (likely(flag > 0))
1599 break;
1600 retval = flag;
1601 goto end;
1604 if (options & __WNOTHREAD)
1605 break;
1606 tsk = next_thread(tsk);
1607 BUG_ON(tsk->signal != current->signal);
1608 } while (tsk != current);
1609 read_unlock(&tasklist_lock);
1611 if (flag) {
1612 if (options & WNOHANG)
1613 goto end;
1614 retval = -ERESTARTSYS;
1615 if (signal_pending(current))
1616 goto end;
1617 schedule();
1618 goto repeat;
1620 retval = -ECHILD;
1621 end:
1622 current->state = TASK_RUNNING;
1623 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1624 if (infop) {
1625 if (retval > 0)
1626 retval = 0;
1627 else {
1629 * For a WNOHANG return, clear out all the fields
1630 * we would set so the user can easily tell the
1631 * difference.
1633 if (!retval)
1634 retval = put_user(0, &infop->si_signo);
1635 if (!retval)
1636 retval = put_user(0, &infop->si_errno);
1637 if (!retval)
1638 retval = put_user(0, &infop->si_code);
1639 if (!retval)
1640 retval = put_user(0, &infop->si_pid);
1641 if (!retval)
1642 retval = put_user(0, &infop->si_uid);
1643 if (!retval)
1644 retval = put_user(0, &infop->si_status);
1647 return retval;
1650 asmlinkage long sys_waitid(int which, pid_t upid,
1651 struct siginfo __user *infop, int options,
1652 struct rusage __user *ru)
1654 struct pid *pid = NULL;
1655 enum pid_type type;
1656 long ret;
1658 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1659 return -EINVAL;
1660 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1661 return -EINVAL;
1663 switch (which) {
1664 case P_ALL:
1665 type = PIDTYPE_MAX;
1666 break;
1667 case P_PID:
1668 type = PIDTYPE_PID;
1669 if (upid <= 0)
1670 return -EINVAL;
1671 break;
1672 case P_PGID:
1673 type = PIDTYPE_PGID;
1674 if (upid <= 0)
1675 return -EINVAL;
1676 break;
1677 default:
1678 return -EINVAL;
1681 if (type < PIDTYPE_MAX)
1682 pid = find_get_pid(upid);
1683 ret = do_wait(type, pid, options, infop, NULL, ru);
1684 put_pid(pid);
1686 /* avoid REGPARM breakage on x86: */
1687 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1688 return ret;
1691 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1692 int options, struct rusage __user *ru)
1694 struct pid *pid = NULL;
1695 enum pid_type type;
1696 long ret;
1698 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1699 __WNOTHREAD|__WCLONE|__WALL))
1700 return -EINVAL;
1702 if (upid == -1)
1703 type = PIDTYPE_MAX;
1704 else if (upid < 0) {
1705 type = PIDTYPE_PGID;
1706 pid = find_get_pid(-upid);
1707 } else if (upid == 0) {
1708 type = PIDTYPE_PGID;
1709 pid = get_pid(task_pgrp(current));
1710 } else /* upid > 0 */ {
1711 type = PIDTYPE_PID;
1712 pid = find_get_pid(upid);
1715 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1716 put_pid(pid);
1718 /* avoid REGPARM breakage on x86: */
1719 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1720 return ret;
1723 #ifdef __ARCH_WANT_SYS_WAITPID
1726 * sys_waitpid() remains for compatibility. waitpid() should be
1727 * implemented by calling sys_wait4() from libc.a.
1729 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1731 return sys_wait4(pid, stat_addr, options, NULL);
1734 #endif