2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
74 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 static inline struct task_struct
*task_of(struct sched_entity
*se
)
82 return container_of(se
, struct task_struct
, se
);
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
100 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
120 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
122 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
129 /* Do the two (enqueued) entities belong to the same group ? */
131 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
133 if (se
->cfs_rq
== pse
->cfs_rq
)
139 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
144 #else /* CONFIG_FAIR_GROUP_SCHED */
146 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
148 return container_of(cfs_rq
, struct rq
, cfs
);
151 #define entity_is_task(se) 1
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
156 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
158 return &task_rq(p
)->cfs
;
161 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
163 struct task_struct
*p
= task_of(se
);
164 struct rq
*rq
= task_rq(p
);
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
175 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
177 return &cpu_rq(this_cpu
)->cfs
;
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
189 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
201 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
203 s64 delta
= (s64
)(vruntime
- min_vruntime
);
205 min_vruntime
= vruntime
;
210 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
212 s64 delta
= (s64
)(vruntime
- min_vruntime
);
214 min_vruntime
= vruntime
;
219 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
221 return se
->vruntime
- cfs_rq
->min_vruntime
;
225 * Enqueue an entity into the rb-tree:
227 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
229 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
230 struct rb_node
*parent
= NULL
;
231 struct sched_entity
*entry
;
232 s64 key
= entity_key(cfs_rq
, se
);
236 * Find the right place in the rbtree:
240 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
245 if (key
< entity_key(cfs_rq
, entry
)) {
246 link
= &parent
->rb_left
;
248 link
= &parent
->rb_right
;
254 * Maintain a cache of leftmost tree entries (it is frequently
258 cfs_rq
->rb_leftmost
= &se
->run_node
;
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
263 cfs_rq
->min_vruntime
=
264 max_vruntime(cfs_rq
->min_vruntime
, se
->vruntime
);
267 rb_link_node(&se
->run_node
, parent
, link
);
268 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
271 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
273 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
274 struct rb_node
*next_node
;
275 struct sched_entity
*next
;
277 next_node
= rb_next(&se
->run_node
);
278 cfs_rq
->rb_leftmost
= next_node
;
281 next
= rb_entry(next_node
,
282 struct sched_entity
, run_node
);
283 cfs_rq
->min_vruntime
=
284 max_vruntime(cfs_rq
->min_vruntime
,
289 if (cfs_rq
->next
== se
)
292 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
295 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
297 return cfs_rq
->rb_leftmost
;
300 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
302 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
305 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
307 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
312 return rb_entry(last
, struct sched_entity
, run_node
);
315 /**************************************************************
316 * Scheduling class statistics methods:
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
321 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
324 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
329 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
330 sysctl_sched_min_granularity
);
337 * The idea is to set a period in which each task runs once.
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
342 * p = (nr <= nl) ? l : l*nr/nl
344 static u64
__sched_period(unsigned long nr_running
)
346 u64 period
= sysctl_sched_latency
;
347 unsigned long nr_latency
= sched_nr_latency
;
349 if (unlikely(nr_running
> nr_latency
)) {
350 period
= sysctl_sched_min_granularity
;
351 period
*= nr_running
;
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
363 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
365 u64 slice
= __sched_period(cfs_rq
->nr_running
);
367 for_each_sched_entity(se
) {
368 cfs_rq
= cfs_rq_of(se
);
370 slice
*= se
->load
.weight
;
371 do_div(slice
, cfs_rq
->load
.weight
);
379 * We calculate the vruntime slice of a to be inserted task
383 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
385 unsigned long nr_running
= cfs_rq
->nr_running
;
386 unsigned long weight
;
392 vslice
= __sched_period(nr_running
);
394 for_each_sched_entity(se
) {
395 cfs_rq
= cfs_rq_of(se
);
397 weight
= cfs_rq
->load
.weight
;
399 weight
+= se
->load
.weight
;
401 vslice
*= NICE_0_LOAD
;
402 do_div(vslice
, weight
);
409 * Update the current task's runtime statistics. Skip current tasks that
410 * are not in our scheduling class.
413 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
414 unsigned long delta_exec
)
416 unsigned long delta_exec_weighted
;
418 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
420 curr
->sum_exec_runtime
+= delta_exec
;
421 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
422 delta_exec_weighted
= delta_exec
;
423 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
424 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
427 curr
->vruntime
+= delta_exec_weighted
;
430 static void update_curr(struct cfs_rq
*cfs_rq
)
432 struct sched_entity
*curr
= cfs_rq
->curr
;
433 u64 now
= rq_of(cfs_rq
)->clock
;
434 unsigned long delta_exec
;
440 * Get the amount of time the current task was running
441 * since the last time we changed load (this cannot
442 * overflow on 32 bits):
444 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
446 __update_curr(cfs_rq
, curr
, delta_exec
);
447 curr
->exec_start
= now
;
449 if (entity_is_task(curr
)) {
450 struct task_struct
*curtask
= task_of(curr
);
452 cpuacct_charge(curtask
, delta_exec
);
457 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
459 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
463 * Task is being enqueued - update stats:
465 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
471 if (se
!= cfs_rq
->curr
)
472 update_stats_wait_start(cfs_rq
, se
);
476 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
478 schedstat_set(se
->wait_max
, max(se
->wait_max
,
479 rq_of(cfs_rq
)->clock
- se
->wait_start
));
480 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
481 schedstat_set(se
->wait_sum
, se
->wait_sum
+
482 rq_of(cfs_rq
)->clock
- se
->wait_start
);
483 schedstat_set(se
->wait_start
, 0);
487 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
490 * Mark the end of the wait period if dequeueing a
493 if (se
!= cfs_rq
->curr
)
494 update_stats_wait_end(cfs_rq
, se
);
498 * We are picking a new current task - update its stats:
501 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
504 * We are starting a new run period:
506 se
->exec_start
= rq_of(cfs_rq
)->clock
;
509 /**************************************************
510 * Scheduling class queueing methods:
513 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
515 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
517 cfs_rq
->task_weight
+= weight
;
521 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
527 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
529 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
530 if (!parent_entity(se
))
531 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
532 if (entity_is_task(se
))
533 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
534 cfs_rq
->nr_running
++;
536 list_add(&se
->group_node
, &cfs_rq
->tasks
);
540 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
542 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
543 if (!parent_entity(se
))
544 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
545 if (entity_is_task(se
))
546 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
547 cfs_rq
->nr_running
--;
549 list_del_init(&se
->group_node
);
552 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
554 #ifdef CONFIG_SCHEDSTATS
555 if (se
->sleep_start
) {
556 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
557 struct task_struct
*tsk
= task_of(se
);
562 if (unlikely(delta
> se
->sleep_max
))
563 se
->sleep_max
= delta
;
566 se
->sum_sleep_runtime
+= delta
;
568 account_scheduler_latency(tsk
, delta
>> 10, 1);
570 if (se
->block_start
) {
571 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
572 struct task_struct
*tsk
= task_of(se
);
577 if (unlikely(delta
> se
->block_max
))
578 se
->block_max
= delta
;
581 se
->sum_sleep_runtime
+= delta
;
584 * Blocking time is in units of nanosecs, so shift by 20 to
585 * get a milliseconds-range estimation of the amount of
586 * time that the task spent sleeping:
588 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
590 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
593 account_scheduler_latency(tsk
, delta
>> 10, 0);
598 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
600 #ifdef CONFIG_SCHED_DEBUG
601 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
606 if (d
> 3*sysctl_sched_latency
)
607 schedstat_inc(cfs_rq
, nr_spread_over
);
612 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
616 if (first_fair(cfs_rq
)) {
617 vruntime
= min_vruntime(cfs_rq
->min_vruntime
,
618 __pick_next_entity(cfs_rq
)->vruntime
);
620 vruntime
= cfs_rq
->min_vruntime
;
623 * The 'current' period is already promised to the current tasks,
624 * however the extra weight of the new task will slow them down a
625 * little, place the new task so that it fits in the slot that
626 * stays open at the end.
628 if (initial
&& sched_feat(START_DEBIT
))
629 vruntime
+= sched_vslice_add(cfs_rq
, se
);
632 /* sleeps upto a single latency don't count. */
633 if (sched_feat(NEW_FAIR_SLEEPERS
))
634 vruntime
-= sysctl_sched_latency
;
636 /* ensure we never gain time by being placed backwards. */
637 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
640 se
->vruntime
= vruntime
;
644 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
647 * Update run-time statistics of the 'current'.
650 account_entity_enqueue(cfs_rq
, se
);
653 place_entity(cfs_rq
, se
, 0);
654 enqueue_sleeper(cfs_rq
, se
);
657 update_stats_enqueue(cfs_rq
, se
);
658 check_spread(cfs_rq
, se
);
659 if (se
!= cfs_rq
->curr
)
660 __enqueue_entity(cfs_rq
, se
);
663 static void update_avg(u64
*avg
, u64 sample
)
665 s64 diff
= sample
- *avg
;
669 static void update_avg_stats(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
671 if (!se
->last_wakeup
)
674 update_avg(&se
->avg_overlap
, se
->sum_exec_runtime
- se
->last_wakeup
);
679 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
682 * Update run-time statistics of the 'current'.
686 update_stats_dequeue(cfs_rq
, se
);
688 update_avg_stats(cfs_rq
, se
);
689 #ifdef CONFIG_SCHEDSTATS
690 if (entity_is_task(se
)) {
691 struct task_struct
*tsk
= task_of(se
);
693 if (tsk
->state
& TASK_INTERRUPTIBLE
)
694 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
695 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
696 se
->block_start
= rq_of(cfs_rq
)->clock
;
701 if (se
!= cfs_rq
->curr
)
702 __dequeue_entity(cfs_rq
, se
);
703 account_entity_dequeue(cfs_rq
, se
);
707 * Preempt the current task with a newly woken task if needed:
710 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
712 unsigned long ideal_runtime
, delta_exec
;
714 ideal_runtime
= sched_slice(cfs_rq
, curr
);
715 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
716 if (delta_exec
> ideal_runtime
)
717 resched_task(rq_of(cfs_rq
)->curr
);
721 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
723 /* 'current' is not kept within the tree. */
726 * Any task has to be enqueued before it get to execute on
727 * a CPU. So account for the time it spent waiting on the
730 update_stats_wait_end(cfs_rq
, se
);
731 __dequeue_entity(cfs_rq
, se
);
734 update_stats_curr_start(cfs_rq
, se
);
736 #ifdef CONFIG_SCHEDSTATS
738 * Track our maximum slice length, if the CPU's load is at
739 * least twice that of our own weight (i.e. dont track it
740 * when there are only lesser-weight tasks around):
742 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
743 se
->slice_max
= max(se
->slice_max
,
744 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
747 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
751 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
753 static struct sched_entity
*
754 pick_next(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
759 if (wakeup_preempt_entity(cfs_rq
->next
, se
) != 0)
765 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
767 struct sched_entity
*se
= NULL
;
769 if (first_fair(cfs_rq
)) {
770 se
= __pick_next_entity(cfs_rq
);
771 se
= pick_next(cfs_rq
, se
);
772 set_next_entity(cfs_rq
, se
);
778 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
781 * If still on the runqueue then deactivate_task()
782 * was not called and update_curr() has to be done:
787 check_spread(cfs_rq
, prev
);
789 update_stats_wait_start(cfs_rq
, prev
);
790 /* Put 'current' back into the tree. */
791 __enqueue_entity(cfs_rq
, prev
);
797 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
800 * Update run-time statistics of the 'current'.
804 #ifdef CONFIG_SCHED_HRTICK
806 * queued ticks are scheduled to match the slice, so don't bother
807 * validating it and just reschedule.
810 resched_task(rq_of(cfs_rq
)->curr
);
814 * don't let the period tick interfere with the hrtick preemption
816 if (!sched_feat(DOUBLE_TICK
) &&
817 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
821 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
822 check_preempt_tick(cfs_rq
, curr
);
825 /**************************************************
826 * CFS operations on tasks:
829 #ifdef CONFIG_SCHED_HRTICK
830 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
832 int requeue
= rq
->curr
== p
;
833 struct sched_entity
*se
= &p
->se
;
834 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
836 WARN_ON(task_rq(p
) != rq
);
838 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
839 u64 slice
= sched_slice(cfs_rq
, se
);
840 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
841 s64 delta
= slice
- ran
;
850 * Don't schedule slices shorter than 10000ns, that just
851 * doesn't make sense. Rely on vruntime for fairness.
854 delta
= max(10000LL, delta
);
856 hrtick_start(rq
, delta
, requeue
);
861 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
867 * The enqueue_task method is called before nr_running is
868 * increased. Here we update the fair scheduling stats and
869 * then put the task into the rbtree:
871 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
873 struct cfs_rq
*cfs_rq
;
874 struct sched_entity
*se
= &p
->se
;
876 for_each_sched_entity(se
) {
879 cfs_rq
= cfs_rq_of(se
);
880 enqueue_entity(cfs_rq
, se
, wakeup
);
884 hrtick_start_fair(rq
, rq
->curr
);
888 * The dequeue_task method is called before nr_running is
889 * decreased. We remove the task from the rbtree and
890 * update the fair scheduling stats:
892 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
894 struct cfs_rq
*cfs_rq
;
895 struct sched_entity
*se
= &p
->se
;
897 for_each_sched_entity(se
) {
898 cfs_rq
= cfs_rq_of(se
);
899 dequeue_entity(cfs_rq
, se
, sleep
);
900 /* Don't dequeue parent if it has other entities besides us */
901 if (cfs_rq
->load
.weight
)
906 hrtick_start_fair(rq
, rq
->curr
);
910 * sched_yield() support is very simple - we dequeue and enqueue.
912 * If compat_yield is turned on then we requeue to the end of the tree.
914 static void yield_task_fair(struct rq
*rq
)
916 struct task_struct
*curr
= rq
->curr
;
917 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
918 struct sched_entity
*rightmost
, *se
= &curr
->se
;
921 * Are we the only task in the tree?
923 if (unlikely(cfs_rq
->nr_running
== 1))
926 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
929 * Update run-time statistics of the 'current'.
936 * Find the rightmost entry in the rbtree:
938 rightmost
= __pick_last_entity(cfs_rq
);
940 * Already in the rightmost position?
942 if (unlikely(!rightmost
|| rightmost
->vruntime
< se
->vruntime
))
946 * Minimally necessary key value to be last in the tree:
947 * Upon rescheduling, sched_class::put_prev_task() will place
948 * 'current' within the tree based on its new key value.
950 se
->vruntime
= rightmost
->vruntime
+ 1;
954 * wake_idle() will wake a task on an idle cpu if task->cpu is
955 * not idle and an idle cpu is available. The span of cpus to
956 * search starts with cpus closest then further out as needed,
957 * so we always favor a closer, idle cpu.
959 * Returns the CPU we should wake onto.
961 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
962 static int wake_idle(int cpu
, struct task_struct
*p
)
965 struct sched_domain
*sd
;
969 * If it is idle, then it is the best cpu to run this task.
971 * This cpu is also the best, if it has more than one task already.
972 * Siblings must be also busy(in most cases) as they didn't already
973 * pickup the extra load from this cpu and hence we need not check
974 * sibling runqueue info. This will avoid the checks and cache miss
975 * penalities associated with that.
977 if (idle_cpu(cpu
) || cpu_rq(cpu
)->cfs
.nr_running
> 1)
980 for_each_domain(cpu
, sd
) {
981 if ((sd
->flags
& SD_WAKE_IDLE
)
982 || ((sd
->flags
& SD_WAKE_IDLE_FAR
)
983 && !task_hot(p
, task_rq(p
)->clock
, sd
))) {
984 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
985 for_each_cpu_mask(i
, tmp
) {
987 if (i
!= task_cpu(p
)) {
1001 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1009 static const struct sched_class fair_sched_class
;
1012 wake_affine(struct rq
*rq
, struct sched_domain
*this_sd
, struct rq
*this_rq
,
1013 struct task_struct
*p
, int prev_cpu
, int this_cpu
, int sync
,
1014 int idx
, unsigned long load
, unsigned long this_load
,
1015 unsigned int imbalance
)
1017 struct task_struct
*curr
= this_rq
->curr
;
1018 unsigned long tl
= this_load
;
1019 unsigned long tl_per_task
;
1021 if (!(this_sd
->flags
& SD_WAKE_AFFINE
))
1025 * If the currently running task will sleep within
1026 * a reasonable amount of time then attract this newly
1029 if (sync
&& curr
->sched_class
== &fair_sched_class
) {
1030 if (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1031 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
1035 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1036 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1039 * If sync wakeup then subtract the (maximum possible)
1040 * effect of the currently running task from the load
1041 * of the current CPU:
1044 tl
-= current
->se
.load
.weight
;
1046 if ((tl
<= load
&& tl
+ target_load(prev_cpu
, idx
) <= tl_per_task
) ||
1047 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1049 * This domain has SD_WAKE_AFFINE and
1050 * p is cache cold in this domain, and
1051 * there is no bad imbalance.
1053 schedstat_inc(this_sd
, ttwu_move_affine
);
1054 schedstat_inc(p
, se
.nr_wakeups_affine
);
1061 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
1063 struct sched_domain
*sd
, *this_sd
= NULL
;
1064 int prev_cpu
, this_cpu
, new_cpu
;
1065 unsigned long load
, this_load
;
1066 struct rq
*rq
, *this_rq
;
1067 unsigned int imbalance
;
1070 prev_cpu
= task_cpu(p
);
1072 this_cpu
= smp_processor_id();
1073 this_rq
= cpu_rq(this_cpu
);
1077 * 'this_sd' is the first domain that both
1078 * this_cpu and prev_cpu are present in:
1080 for_each_domain(this_cpu
, sd
) {
1081 if (cpu_isset(prev_cpu
, sd
->span
)) {
1087 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1091 * Check for affine wakeup and passive balancing possibilities.
1096 idx
= this_sd
->wake_idx
;
1098 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1100 load
= source_load(prev_cpu
, idx
);
1101 this_load
= target_load(this_cpu
, idx
);
1103 if (wake_affine(rq
, this_sd
, this_rq
, p
, prev_cpu
, this_cpu
, sync
, idx
,
1104 load
, this_load
, imbalance
))
1107 if (prev_cpu
== this_cpu
)
1111 * Start passive balancing when half the imbalance_pct
1114 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1115 if (imbalance
*this_load
<= 100*load
) {
1116 schedstat_inc(this_sd
, ttwu_move_balance
);
1117 schedstat_inc(p
, se
.nr_wakeups_passive
);
1123 return wake_idle(new_cpu
, p
);
1125 #endif /* CONFIG_SMP */
1127 static unsigned long wakeup_gran(struct sched_entity
*se
)
1129 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1132 * More easily preempt - nice tasks, while not making
1133 * it harder for + nice tasks.
1135 if (unlikely(se
->load
.weight
> NICE_0_LOAD
))
1136 gran
= calc_delta_fair(gran
, &se
->load
);
1142 * Should 'se' preempt 'curr'.
1156 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1158 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1163 gran
= wakeup_gran(curr
);
1170 /* return depth at which a sched entity is present in the hierarchy */
1171 static inline int depth_se(struct sched_entity
*se
)
1175 for_each_sched_entity(se
)
1182 * Preempt the current task with a newly woken task if needed:
1184 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1186 struct task_struct
*curr
= rq
->curr
;
1187 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1188 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1189 int se_depth
, pse_depth
;
1191 if (unlikely(rt_prio(p
->prio
))) {
1192 update_rq_clock(rq
);
1193 update_curr(cfs_rq
);
1198 se
->last_wakeup
= se
->sum_exec_runtime
;
1199 if (unlikely(se
== pse
))
1202 cfs_rq_of(pse
)->next
= pse
;
1205 * Batch tasks do not preempt (their preemption is driven by
1208 if (unlikely(p
->policy
== SCHED_BATCH
))
1211 if (!sched_feat(WAKEUP_PREEMPT
))
1215 * preemption test can be made between sibling entities who are in the
1216 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1217 * both tasks until we find their ancestors who are siblings of common
1221 /* First walk up until both entities are at same depth */
1222 se_depth
= depth_se(se
);
1223 pse_depth
= depth_se(pse
);
1225 while (se_depth
> pse_depth
) {
1227 se
= parent_entity(se
);
1230 while (pse_depth
> se_depth
) {
1232 pse
= parent_entity(pse
);
1235 while (!is_same_group(se
, pse
)) {
1236 se
= parent_entity(se
);
1237 pse
= parent_entity(pse
);
1240 if (wakeup_preempt_entity(se
, pse
) == 1)
1244 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1246 struct task_struct
*p
;
1247 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1248 struct sched_entity
*se
;
1250 if (unlikely(!cfs_rq
->nr_running
))
1254 se
= pick_next_entity(cfs_rq
);
1255 cfs_rq
= group_cfs_rq(se
);
1259 hrtick_start_fair(rq
, p
);
1265 * Account for a descheduled task:
1267 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1269 struct sched_entity
*se
= &prev
->se
;
1270 struct cfs_rq
*cfs_rq
;
1272 for_each_sched_entity(se
) {
1273 cfs_rq
= cfs_rq_of(se
);
1274 put_prev_entity(cfs_rq
, se
);
1279 /**************************************************
1280 * Fair scheduling class load-balancing methods:
1284 * Load-balancing iterator. Note: while the runqueue stays locked
1285 * during the whole iteration, the current task might be
1286 * dequeued so the iterator has to be dequeue-safe. Here we
1287 * achieve that by always pre-iterating before returning
1290 static struct task_struct
*
1291 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1293 struct task_struct
*p
= NULL
;
1294 struct sched_entity
*se
;
1296 if (next
== &cfs_rq
->tasks
)
1299 /* Skip over entities that are not tasks */
1301 se
= list_entry(next
, struct sched_entity
, group_node
);
1303 } while (next
!= &cfs_rq
->tasks
&& !entity_is_task(se
));
1305 if (next
== &cfs_rq
->tasks
)
1308 cfs_rq
->balance_iterator
= next
;
1310 if (entity_is_task(se
))
1316 static struct task_struct
*load_balance_start_fair(void *arg
)
1318 struct cfs_rq
*cfs_rq
= arg
;
1320 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1323 static struct task_struct
*load_balance_next_fair(void *arg
)
1325 struct cfs_rq
*cfs_rq
= arg
;
1327 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1330 static unsigned long
1331 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1332 unsigned long max_load_move
, struct sched_domain
*sd
,
1333 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1334 struct cfs_rq
*cfs_rq
)
1336 struct rq_iterator cfs_rq_iterator
;
1338 cfs_rq_iterator
.start
= load_balance_start_fair
;
1339 cfs_rq_iterator
.next
= load_balance_next_fair
;
1340 cfs_rq_iterator
.arg
= cfs_rq
;
1342 return balance_tasks(this_rq
, this_cpu
, busiest
,
1343 max_load_move
, sd
, idle
, all_pinned
,
1344 this_best_prio
, &cfs_rq_iterator
);
1347 #ifdef CONFIG_FAIR_GROUP_SCHED
1348 static unsigned long
1349 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1350 unsigned long max_load_move
,
1351 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1352 int *all_pinned
, int *this_best_prio
)
1354 long rem_load_move
= max_load_move
;
1355 int busiest_cpu
= cpu_of(busiest
);
1356 struct task_group
*tg
;
1359 list_for_each_entry(tg
, &task_groups
, list
) {
1361 unsigned long this_weight
, busiest_weight
;
1362 long rem_load
, max_load
, moved_load
;
1367 if (!aggregate(tg
, sd
)->task_weight
)
1370 rem_load
= rem_load_move
* aggregate(tg
, sd
)->rq_weight
;
1371 rem_load
/= aggregate(tg
, sd
)->load
+ 1;
1373 this_weight
= tg
->cfs_rq
[this_cpu
]->task_weight
;
1374 busiest_weight
= tg
->cfs_rq
[busiest_cpu
]->task_weight
;
1376 imbalance
= (busiest_weight
- this_weight
) / 2;
1379 imbalance
= busiest_weight
;
1381 max_load
= max(rem_load
, imbalance
);
1382 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1383 max_load
, sd
, idle
, all_pinned
, this_best_prio
,
1384 tg
->cfs_rq
[busiest_cpu
]);
1389 move_group_shares(tg
, sd
, busiest_cpu
, this_cpu
);
1391 moved_load
*= aggregate(tg
, sd
)->load
;
1392 moved_load
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1394 rem_load_move
-= moved_load
;
1395 if (rem_load_move
< 0)
1400 return max_load_move
- rem_load_move
;
1403 static unsigned long
1404 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1405 unsigned long max_load_move
,
1406 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1407 int *all_pinned
, int *this_best_prio
)
1409 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1410 max_load_move
, sd
, idle
, all_pinned
,
1411 this_best_prio
, &busiest
->cfs
);
1416 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1417 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1419 struct cfs_rq
*busy_cfs_rq
;
1420 struct rq_iterator cfs_rq_iterator
;
1422 cfs_rq_iterator
.start
= load_balance_start_fair
;
1423 cfs_rq_iterator
.next
= load_balance_next_fair
;
1425 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1427 * pass busy_cfs_rq argument into
1428 * load_balance_[start|next]_fair iterators
1430 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1431 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1441 * scheduler tick hitting a task of our scheduling class:
1443 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1445 struct cfs_rq
*cfs_rq
;
1446 struct sched_entity
*se
= &curr
->se
;
1448 for_each_sched_entity(se
) {
1449 cfs_rq
= cfs_rq_of(se
);
1450 entity_tick(cfs_rq
, se
, queued
);
1454 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1457 * Share the fairness runtime between parent and child, thus the
1458 * total amount of pressure for CPU stays equal - new tasks
1459 * get a chance to run but frequent forkers are not allowed to
1460 * monopolize the CPU. Note: the parent runqueue is locked,
1461 * the child is not running yet.
1463 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1465 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1466 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1467 int this_cpu
= smp_processor_id();
1469 sched_info_queued(p
);
1471 update_curr(cfs_rq
);
1472 place_entity(cfs_rq
, se
, 1);
1474 /* 'curr' will be NULL if the child belongs to a different group */
1475 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1476 curr
&& curr
->vruntime
< se
->vruntime
) {
1478 * Upon rescheduling, sched_class::put_prev_task() will place
1479 * 'current' within the tree based on its new key value.
1481 swap(curr
->vruntime
, se
->vruntime
);
1484 enqueue_task_fair(rq
, p
, 0);
1485 resched_task(rq
->curr
);
1489 * Priority of the task has changed. Check to see if we preempt
1492 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1493 int oldprio
, int running
)
1496 * Reschedule if we are currently running on this runqueue and
1497 * our priority decreased, or if we are not currently running on
1498 * this runqueue and our priority is higher than the current's
1501 if (p
->prio
> oldprio
)
1502 resched_task(rq
->curr
);
1504 check_preempt_curr(rq
, p
);
1508 * We switched to the sched_fair class.
1510 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1514 * We were most likely switched from sched_rt, so
1515 * kick off the schedule if running, otherwise just see
1516 * if we can still preempt the current task.
1519 resched_task(rq
->curr
);
1521 check_preempt_curr(rq
, p
);
1524 /* Account for a task changing its policy or group.
1526 * This routine is mostly called to set cfs_rq->curr field when a task
1527 * migrates between groups/classes.
1529 static void set_curr_task_fair(struct rq
*rq
)
1531 struct sched_entity
*se
= &rq
->curr
->se
;
1533 for_each_sched_entity(se
)
1534 set_next_entity(cfs_rq_of(se
), se
);
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1538 static void moved_group_fair(struct task_struct
*p
)
1540 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1542 update_curr(cfs_rq
);
1543 place_entity(cfs_rq
, &p
->se
, 1);
1548 * All the scheduling class methods:
1550 static const struct sched_class fair_sched_class
= {
1551 .next
= &idle_sched_class
,
1552 .enqueue_task
= enqueue_task_fair
,
1553 .dequeue_task
= dequeue_task_fair
,
1554 .yield_task
= yield_task_fair
,
1556 .select_task_rq
= select_task_rq_fair
,
1557 #endif /* CONFIG_SMP */
1559 .check_preempt_curr
= check_preempt_wakeup
,
1561 .pick_next_task
= pick_next_task_fair
,
1562 .put_prev_task
= put_prev_task_fair
,
1565 .load_balance
= load_balance_fair
,
1566 .move_one_task
= move_one_task_fair
,
1569 .set_curr_task
= set_curr_task_fair
,
1570 .task_tick
= task_tick_fair
,
1571 .task_new
= task_new_fair
,
1573 .prio_changed
= prio_changed_fair
,
1574 .switched_to
= switched_to_fair
,
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1577 .moved_group
= moved_group_fair
,
1581 #ifdef CONFIG_SCHED_DEBUG
1582 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1584 struct cfs_rq
*cfs_rq
;
1587 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1588 print_cfs_rq(m
, cpu
, cfs_rq
);