2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
35 #include <asm/mipsregs.h>
36 #include <asm/mipsmtregs.h>
37 #include <asm/module.h>
38 #include <asm/pgtable.h>
39 #include <asm/ptrace.h>
40 #include <asm/sections.h>
41 #include <asm/system.h>
42 #include <asm/tlbdebug.h>
43 #include <asm/traps.h>
44 #include <asm/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/types.h>
47 #include <asm/stacktrace.h>
49 extern void check_wait(void);
50 extern asmlinkage
void r4k_wait(void);
51 extern asmlinkage
void rollback_handle_int(void);
52 extern asmlinkage
void handle_int(void);
53 extern asmlinkage
void handle_tlbm(void);
54 extern asmlinkage
void handle_tlbl(void);
55 extern asmlinkage
void handle_tlbs(void);
56 extern asmlinkage
void handle_adel(void);
57 extern asmlinkage
void handle_ades(void);
58 extern asmlinkage
void handle_ibe(void);
59 extern asmlinkage
void handle_dbe(void);
60 extern asmlinkage
void handle_sys(void);
61 extern asmlinkage
void handle_bp(void);
62 extern asmlinkage
void handle_ri(void);
63 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
64 extern asmlinkage
void handle_ri_rdhwr(void);
65 extern asmlinkage
void handle_cpu(void);
66 extern asmlinkage
void handle_ov(void);
67 extern asmlinkage
void handle_tr(void);
68 extern asmlinkage
void handle_fpe(void);
69 extern asmlinkage
void handle_mdmx(void);
70 extern asmlinkage
void handle_watch(void);
71 extern asmlinkage
void handle_mt(void);
72 extern asmlinkage
void handle_dsp(void);
73 extern asmlinkage
void handle_mcheck(void);
74 extern asmlinkage
void handle_reserved(void);
76 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
77 struct mips_fpu_struct
*ctx
, int has_fpu
);
79 void (*board_be_init
)(void);
80 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
81 void (*board_nmi_handler_setup
)(void);
82 void (*board_ejtag_handler_setup
)(void);
83 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
86 static void show_raw_backtrace(unsigned long reg29
)
88 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
91 printk("Call Trace:");
92 #ifdef CONFIG_KALLSYMS
95 while (!kstack_end(sp
)) {
96 unsigned long __user
*p
=
97 (unsigned long __user
*)(unsigned long)sp
++;
98 if (__get_user(addr
, p
)) {
99 printk(" (Bad stack address)");
102 if (__kernel_text_address(addr
))
108 #ifdef CONFIG_KALLSYMS
110 static int __init
set_raw_show_trace(char *str
)
115 __setup("raw_show_trace", set_raw_show_trace
);
118 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
120 unsigned long sp
= regs
->regs
[29];
121 unsigned long ra
= regs
->regs
[31];
122 unsigned long pc
= regs
->cp0_epc
;
124 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
125 show_raw_backtrace(sp
);
128 printk("Call Trace:\n");
131 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
137 * This routine abuses get_user()/put_user() to reference pointers
138 * with at least a bit of error checking ...
140 static void show_stacktrace(struct task_struct
*task
,
141 const struct pt_regs
*regs
)
143 const int field
= 2 * sizeof(unsigned long);
146 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
150 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
151 if (i
&& ((i
% (64 / field
)) == 0))
158 if (__get_user(stackdata
, sp
++)) {
159 printk(" (Bad stack address)");
163 printk(" %0*lx", field
, stackdata
);
167 show_backtrace(task
, regs
);
170 void show_stack(struct task_struct
*task
, unsigned long *sp
)
174 regs
.regs
[29] = (unsigned long)sp
;
178 if (task
&& task
!= current
) {
179 regs
.regs
[29] = task
->thread
.reg29
;
181 regs
.cp0_epc
= task
->thread
.reg31
;
183 prepare_frametrace(®s
);
186 show_stacktrace(task
, ®s
);
190 * The architecture-independent dump_stack generator
192 void dump_stack(void)
196 prepare_frametrace(®s
);
197 show_backtrace(current
, ®s
);
200 EXPORT_SYMBOL(dump_stack
);
202 static void show_code(unsigned int __user
*pc
)
205 unsigned short __user
*pc16
= NULL
;
209 if ((unsigned long)pc
& 1)
210 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
211 for(i
= -3 ; i
< 6 ; i
++) {
213 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
214 printk(" (Bad address in epc)\n");
217 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
221 static void __show_regs(const struct pt_regs
*regs
)
223 const int field
= 2 * sizeof(unsigned long);
224 unsigned int cause
= regs
->cp0_cause
;
227 printk("Cpu %d\n", smp_processor_id());
230 * Saved main processor registers
232 for (i
= 0; i
< 32; ) {
236 printk(" %0*lx", field
, 0UL);
237 else if (i
== 26 || i
== 27)
238 printk(" %*s", field
, "");
240 printk(" %0*lx", field
, regs
->regs
[i
]);
247 #ifdef CONFIG_CPU_HAS_SMARTMIPS
248 printk("Acx : %0*lx\n", field
, regs
->acx
);
250 printk("Hi : %0*lx\n", field
, regs
->hi
);
251 printk("Lo : %0*lx\n", field
, regs
->lo
);
254 * Saved cp0 registers
256 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
257 (void *) regs
->cp0_epc
);
258 printk(" %s\n", print_tainted());
259 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
260 (void *) regs
->regs
[31]);
262 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
264 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
265 if (regs
->cp0_status
& ST0_KUO
)
267 if (regs
->cp0_status
& ST0_IEO
)
269 if (regs
->cp0_status
& ST0_KUP
)
271 if (regs
->cp0_status
& ST0_IEP
)
273 if (regs
->cp0_status
& ST0_KUC
)
275 if (regs
->cp0_status
& ST0_IEC
)
278 if (regs
->cp0_status
& ST0_KX
)
280 if (regs
->cp0_status
& ST0_SX
)
282 if (regs
->cp0_status
& ST0_UX
)
284 switch (regs
->cp0_status
& ST0_KSU
) {
289 printk("SUPERVISOR ");
298 if (regs
->cp0_status
& ST0_ERL
)
300 if (regs
->cp0_status
& ST0_EXL
)
302 if (regs
->cp0_status
& ST0_IE
)
307 printk("Cause : %08x\n", cause
);
309 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
310 if (1 <= cause
&& cause
<= 5)
311 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
313 printk("PrId : %08x (%s)\n", read_c0_prid(),
318 * FIXME: really the generic show_regs should take a const pointer argument.
320 void show_regs(struct pt_regs
*regs
)
322 __show_regs((struct pt_regs
*)regs
);
325 void show_registers(const struct pt_regs
*regs
)
327 const int field
= 2 * sizeof(unsigned long);
331 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
332 current
->comm
, current
->pid
, current_thread_info(), current
,
333 field
, current_thread_info()->tp_value
);
334 if (cpu_has_userlocal
) {
337 tls
= read_c0_userlocal();
338 if (tls
!= current_thread_info()->tp_value
)
339 printk("*HwTLS: %0*lx\n", field
, tls
);
342 show_stacktrace(current
, regs
);
343 show_code((unsigned int __user
*) regs
->cp0_epc
);
347 static DEFINE_SPINLOCK(die_lock
);
349 void __noreturn
die(const char * str
, const struct pt_regs
* regs
)
351 static int die_counter
;
352 #ifdef CONFIG_MIPS_MT_SMTC
353 unsigned long dvpret
= dvpe();
354 #endif /* CONFIG_MIPS_MT_SMTC */
357 spin_lock_irq(&die_lock
);
359 #ifdef CONFIG_MIPS_MT_SMTC
360 mips_mt_regdump(dvpret
);
361 #endif /* CONFIG_MIPS_MT_SMTC */
362 printk("%s[#%d]:\n", str
, ++die_counter
);
363 show_registers(regs
);
364 add_taint(TAINT_DIE
);
365 spin_unlock_irq(&die_lock
);
368 panic("Fatal exception in interrupt");
371 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
373 panic("Fatal exception");
379 extern struct exception_table_entry __start___dbe_table
[];
380 extern struct exception_table_entry __stop___dbe_table
[];
383 " .section __dbe_table, \"a\"\n"
386 /* Given an address, look for it in the exception tables. */
387 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
389 const struct exception_table_entry
*e
;
391 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
393 e
= search_module_dbetables(addr
);
397 asmlinkage
void do_be(struct pt_regs
*regs
)
399 const int field
= 2 * sizeof(unsigned long);
400 const struct exception_table_entry
*fixup
= NULL
;
401 int data
= regs
->cp0_cause
& 4;
402 int action
= MIPS_BE_FATAL
;
404 /* XXX For now. Fixme, this searches the wrong table ... */
405 if (data
&& !user_mode(regs
))
406 fixup
= search_dbe_tables(exception_epc(regs
));
409 action
= MIPS_BE_FIXUP
;
411 if (board_be_handler
)
412 action
= board_be_handler(regs
, fixup
!= NULL
);
415 case MIPS_BE_DISCARD
:
419 regs
->cp0_epc
= fixup
->nextinsn
;
428 * Assume it would be too dangerous to continue ...
430 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
431 data
? "Data" : "Instruction",
432 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
433 if (notify_die(DIE_OOPS
, "bus error", regs
, SIGBUS
, 0, 0)
437 die_if_kernel("Oops", regs
);
438 force_sig(SIGBUS
, current
);
442 * ll/sc, rdhwr, sync emulation
445 #define OPCODE 0xfc000000
446 #define BASE 0x03e00000
447 #define RT 0x001f0000
448 #define OFFSET 0x0000ffff
449 #define LL 0xc0000000
450 #define SC 0xe0000000
451 #define SPEC0 0x00000000
452 #define SPEC3 0x7c000000
453 #define RD 0x0000f800
454 #define FUNC 0x0000003f
455 #define SYNC 0x0000000f
456 #define RDHWR 0x0000003b
459 * The ll_bit is cleared by r*_switch.S
462 unsigned long ll_bit
;
464 static struct task_struct
*ll_task
= NULL
;
466 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
468 unsigned long value
, __user
*vaddr
;
472 * analyse the ll instruction that just caused a ri exception
473 * and put the referenced address to addr.
476 /* sign extend offset */
477 offset
= opcode
& OFFSET
;
481 vaddr
= (unsigned long __user
*)
482 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
484 if ((unsigned long)vaddr
& 3)
486 if (get_user(value
, vaddr
))
491 if (ll_task
== NULL
|| ll_task
== current
) {
500 regs
->regs
[(opcode
& RT
) >> 16] = value
;
505 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
507 unsigned long __user
*vaddr
;
512 * analyse the sc instruction that just caused a ri exception
513 * and put the referenced address to addr.
516 /* sign extend offset */
517 offset
= opcode
& OFFSET
;
521 vaddr
= (unsigned long __user
*)
522 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
523 reg
= (opcode
& RT
) >> 16;
525 if ((unsigned long)vaddr
& 3)
530 if (ll_bit
== 0 || ll_task
!= current
) {
538 if (put_user(regs
->regs
[reg
], vaddr
))
547 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
548 * opcodes are supposed to result in coprocessor unusable exceptions if
549 * executed on ll/sc-less processors. That's the theory. In practice a
550 * few processors such as NEC's VR4100 throw reserved instruction exceptions
551 * instead, so we're doing the emulation thing in both exception handlers.
553 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
555 if ((opcode
& OPCODE
) == LL
)
556 return simulate_ll(regs
, opcode
);
557 if ((opcode
& OPCODE
) == SC
)
558 return simulate_sc(regs
, opcode
);
560 return -1; /* Must be something else ... */
564 * Simulate trapping 'rdhwr' instructions to provide user accessible
565 * registers not implemented in hardware.
567 static int simulate_rdhwr(struct pt_regs
*regs
, unsigned int opcode
)
569 struct thread_info
*ti
= task_thread_info(current
);
571 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
572 int rd
= (opcode
& RD
) >> 11;
573 int rt
= (opcode
& RT
) >> 16;
575 case 0: /* CPU number */
576 regs
->regs
[rt
] = smp_processor_id();
578 case 1: /* SYNCI length */
579 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
580 current_cpu_data
.icache
.linesz
);
582 case 2: /* Read count register */
583 regs
->regs
[rt
] = read_c0_count();
585 case 3: /* Count register resolution */
586 switch (current_cpu_data
.cputype
) {
596 regs
->regs
[rt
] = ti
->tp_value
;
607 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
609 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
)
612 return -1; /* Must be something else ... */
615 asmlinkage
void do_ov(struct pt_regs
*regs
)
619 die_if_kernel("Integer overflow", regs
);
621 info
.si_code
= FPE_INTOVF
;
622 info
.si_signo
= SIGFPE
;
624 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
625 force_sig_info(SIGFPE
, &info
, current
);
629 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
631 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
635 if (notify_die(DIE_FP
, "FP exception", regs
, SIGFPE
, 0, 0)
638 die_if_kernel("FP exception in kernel code", regs
);
640 if (fcr31
& FPU_CSR_UNI_X
) {
644 * Unimplemented operation exception. If we've got the full
645 * software emulator on-board, let's use it...
647 * Force FPU to dump state into task/thread context. We're
648 * moving a lot of data here for what is probably a single
649 * instruction, but the alternative is to pre-decode the FP
650 * register operands before invoking the emulator, which seems
651 * a bit extreme for what should be an infrequent event.
653 /* Ensure 'resume' not overwrite saved fp context again. */
656 /* Run the emulator */
657 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1);
660 * We can't allow the emulated instruction to leave any of
661 * the cause bit set in $fcr31.
663 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
665 /* Restore the hardware register state */
666 own_fpu(1); /* Using the FPU again. */
668 /* If something went wrong, signal */
670 force_sig(sig
, current
);
673 } else if (fcr31
& FPU_CSR_INV_X
)
674 info
.si_code
= FPE_FLTINV
;
675 else if (fcr31
& FPU_CSR_DIV_X
)
676 info
.si_code
= FPE_FLTDIV
;
677 else if (fcr31
& FPU_CSR_OVF_X
)
678 info
.si_code
= FPE_FLTOVF
;
679 else if (fcr31
& FPU_CSR_UDF_X
)
680 info
.si_code
= FPE_FLTUND
;
681 else if (fcr31
& FPU_CSR_INE_X
)
682 info
.si_code
= FPE_FLTRES
;
684 info
.si_code
= __SI_FAULT
;
685 info
.si_signo
= SIGFPE
;
687 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
688 force_sig_info(SIGFPE
, &info
, current
);
691 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
697 if (notify_die(DIE_TRAP
, str
, regs
, code
, 0, 0) == NOTIFY_STOP
)
701 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
702 * insns, even for trap and break codes that indicate arithmetic
703 * failures. Weird ...
704 * But should we continue the brokenness??? --macro
709 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
710 die_if_kernel(b
, regs
);
711 if (code
== BRK_DIVZERO
)
712 info
.si_code
= FPE_INTDIV
;
714 info
.si_code
= FPE_INTOVF
;
715 info
.si_signo
= SIGFPE
;
717 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
718 force_sig_info(SIGFPE
, &info
, current
);
721 die_if_kernel("Kernel bug detected", regs
);
722 force_sig(SIGTRAP
, current
);
725 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
726 die_if_kernel(b
, regs
);
727 force_sig(SIGTRAP
, current
);
731 asmlinkage
void do_bp(struct pt_regs
*regs
)
733 unsigned int opcode
, bcode
;
735 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
739 * There is the ancient bug in the MIPS assemblers that the break
740 * code starts left to bit 16 instead to bit 6 in the opcode.
741 * Gas is bug-compatible, but not always, grrr...
742 * We handle both cases with a simple heuristics. --macro
744 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
745 if (bcode
>= (1 << 10))
748 do_trap_or_bp(regs
, bcode
, "Break");
752 force_sig(SIGSEGV
, current
);
755 asmlinkage
void do_tr(struct pt_regs
*regs
)
757 unsigned int opcode
, tcode
= 0;
759 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
762 /* Immediate versions don't provide a code. */
763 if (!(opcode
& OPCODE
))
764 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
766 do_trap_or_bp(regs
, tcode
, "Trap");
770 force_sig(SIGSEGV
, current
);
773 asmlinkage
void do_ri(struct pt_regs
*regs
)
775 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
776 unsigned long old_epc
= regs
->cp0_epc
;
777 unsigned int opcode
= 0;
780 if (notify_die(DIE_RI
, "RI Fault", regs
, SIGSEGV
, 0, 0)
784 die_if_kernel("Reserved instruction in kernel code", regs
);
786 if (unlikely(compute_return_epc(regs
) < 0))
789 if (unlikely(get_user(opcode
, epc
) < 0))
792 if (!cpu_has_llsc
&& status
< 0)
793 status
= simulate_llsc(regs
, opcode
);
796 status
= simulate_rdhwr(regs
, opcode
);
799 status
= simulate_sync(regs
, opcode
);
804 if (unlikely(status
> 0)) {
805 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
806 force_sig(status
, current
);
811 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
812 * emulated more than some threshold number of instructions, force migration to
813 * a "CPU" that has FP support.
815 static void mt_ase_fp_affinity(void)
817 #ifdef CONFIG_MIPS_MT_FPAFF
818 if (mt_fpemul_threshold
> 0 &&
819 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
821 * If there's no FPU present, or if the application has already
822 * restricted the allowed set to exclude any CPUs with FPUs,
823 * we'll skip the procedure.
825 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
828 current
->thread
.user_cpus_allowed
829 = current
->cpus_allowed
;
830 cpus_and(tmask
, current
->cpus_allowed
,
832 set_cpus_allowed(current
, tmask
);
833 set_thread_flag(TIF_FPUBOUND
);
836 #endif /* CONFIG_MIPS_MT_FPAFF */
839 asmlinkage
void do_cpu(struct pt_regs
*regs
)
841 unsigned int __user
*epc
;
842 unsigned long old_epc
;
847 die_if_kernel("do_cpu invoked from kernel context!", regs
);
849 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
853 epc
= (unsigned int __user
*)exception_epc(regs
);
854 old_epc
= regs
->cp0_epc
;
858 if (unlikely(compute_return_epc(regs
) < 0))
861 if (unlikely(get_user(opcode
, epc
) < 0))
864 if (!cpu_has_llsc
&& status
< 0)
865 status
= simulate_llsc(regs
, opcode
);
868 status
= simulate_rdhwr(regs
, opcode
);
873 if (unlikely(status
> 0)) {
874 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
875 force_sig(status
, current
);
881 if (used_math()) /* Using the FPU again. */
883 else { /* First time FPU user. */
888 if (!raw_cpu_has_fpu
) {
890 sig
= fpu_emulator_cop1Handler(regs
,
891 ¤t
->thread
.fpu
, 0);
893 force_sig(sig
, current
);
895 mt_ase_fp_affinity();
905 force_sig(SIGILL
, current
);
908 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
910 force_sig(SIGILL
, current
);
913 asmlinkage
void do_watch(struct pt_regs
*regs
)
916 * We use the watch exception where available to detect stack
921 panic("Caught WATCH exception - probably caused by stack overflow.");
924 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
926 const int field
= 2 * sizeof(unsigned long);
927 int multi_match
= regs
->cp0_status
& ST0_TS
;
932 printk("Index : %0x\n", read_c0_index());
933 printk("Pagemask: %0x\n", read_c0_pagemask());
934 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
935 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
936 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
941 show_code((unsigned int __user
*) regs
->cp0_epc
);
944 * Some chips may have other causes of machine check (e.g. SB1
947 panic("Caught Machine Check exception - %scaused by multiple "
948 "matching entries in the TLB.",
949 (multi_match
) ? "" : "not ");
952 asmlinkage
void do_mt(struct pt_regs
*regs
)
956 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
957 >> VPECONTROL_EXCPT_SHIFT
;
960 printk(KERN_DEBUG
"Thread Underflow\n");
963 printk(KERN_DEBUG
"Thread Overflow\n");
966 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
969 printk(KERN_DEBUG
"Gating Storage Exception\n");
972 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
975 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
978 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
982 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
984 force_sig(SIGILL
, current
);
988 asmlinkage
void do_dsp(struct pt_regs
*regs
)
991 panic("Unexpected DSP exception\n");
993 force_sig(SIGILL
, current
);
996 asmlinkage
void do_reserved(struct pt_regs
*regs
)
999 * Game over - no way to handle this if it ever occurs. Most probably
1000 * caused by a new unknown cpu type or after another deadly
1001 * hard/software error.
1004 panic("Caught reserved exception %ld - should not happen.",
1005 (regs
->cp0_cause
& 0x7f) >> 2);
1008 static int __initdata l1parity
= 1;
1009 static int __init
nol1parity(char *s
)
1014 __setup("nol1par", nol1parity
);
1015 static int __initdata l2parity
= 1;
1016 static int __init
nol2parity(char *s
)
1021 __setup("nol2par", nol2parity
);
1024 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1025 * it different ways.
1027 static inline void parity_protection_init(void)
1029 switch (current_cpu_type()) {
1035 #define ERRCTL_PE 0x80000000
1036 #define ERRCTL_L2P 0x00800000
1037 unsigned long errctl
;
1038 unsigned int l1parity_present
, l2parity_present
;
1040 errctl
= read_c0_ecc();
1041 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1043 /* probe L1 parity support */
1044 write_c0_ecc(errctl
| ERRCTL_PE
);
1045 back_to_back_c0_hazard();
1046 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1048 /* probe L2 parity support */
1049 write_c0_ecc(errctl
|ERRCTL_L2P
);
1050 back_to_back_c0_hazard();
1051 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1053 if (l1parity_present
&& l2parity_present
) {
1055 errctl
|= ERRCTL_PE
;
1056 if (l1parity
^ l2parity
)
1057 errctl
|= ERRCTL_L2P
;
1058 } else if (l1parity_present
) {
1060 errctl
|= ERRCTL_PE
;
1061 } else if (l2parity_present
) {
1063 errctl
|= ERRCTL_L2P
;
1065 /* No parity available */
1068 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1070 write_c0_ecc(errctl
);
1071 back_to_back_c0_hazard();
1072 errctl
= read_c0_ecc();
1073 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1075 if (l1parity_present
)
1076 printk(KERN_INFO
"Cache parity protection %sabled\n",
1077 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1079 if (l2parity_present
) {
1080 if (l1parity_present
&& l1parity
)
1081 errctl
^= ERRCTL_L2P
;
1082 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1083 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1089 write_c0_ecc(0x80000000);
1090 back_to_back_c0_hazard();
1091 /* Set the PE bit (bit 31) in the c0_errctl register. */
1092 printk(KERN_INFO
"Cache parity protection %sabled\n",
1093 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1097 /* Clear the DE bit (bit 16) in the c0_status register. */
1098 printk(KERN_INFO
"Enable cache parity protection for "
1099 "MIPS 20KC/25KF CPUs.\n");
1100 clear_c0_status(ST0_DE
);
1107 asmlinkage
void cache_parity_error(void)
1109 const int field
= 2 * sizeof(unsigned long);
1110 unsigned int reg_val
;
1112 /* For the moment, report the problem and hang. */
1113 printk("Cache error exception:\n");
1114 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1115 reg_val
= read_c0_cacheerr();
1116 printk("c0_cacheerr == %08x\n", reg_val
);
1118 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1119 reg_val
& (1<<30) ? "secondary" : "primary",
1120 reg_val
& (1<<31) ? "data" : "insn");
1121 printk("Error bits: %s%s%s%s%s%s%s\n",
1122 reg_val
& (1<<29) ? "ED " : "",
1123 reg_val
& (1<<28) ? "ET " : "",
1124 reg_val
& (1<<26) ? "EE " : "",
1125 reg_val
& (1<<25) ? "EB " : "",
1126 reg_val
& (1<<24) ? "EI " : "",
1127 reg_val
& (1<<23) ? "E1 " : "",
1128 reg_val
& (1<<22) ? "E0 " : "");
1129 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1131 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1132 if (reg_val
& (1<<22))
1133 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1135 if (reg_val
& (1<<23))
1136 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1139 panic("Can't handle the cache error!");
1143 * SDBBP EJTAG debug exception handler.
1144 * We skip the instruction and return to the next instruction.
1146 void ejtag_exception_handler(struct pt_regs
*regs
)
1148 const int field
= 2 * sizeof(unsigned long);
1149 unsigned long depc
, old_epc
;
1152 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1153 depc
= read_c0_depc();
1154 debug
= read_c0_debug();
1155 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1156 if (debug
& 0x80000000) {
1158 * In branch delay slot.
1159 * We cheat a little bit here and use EPC to calculate the
1160 * debug return address (DEPC). EPC is restored after the
1163 old_epc
= regs
->cp0_epc
;
1164 regs
->cp0_epc
= depc
;
1165 __compute_return_epc(regs
);
1166 depc
= regs
->cp0_epc
;
1167 regs
->cp0_epc
= old_epc
;
1170 write_c0_depc(depc
);
1173 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1174 write_c0_debug(debug
| 0x100);
1179 * NMI exception handler.
1181 NORET_TYPE
void ATTRIB_NORET
nmi_exception_handler(struct pt_regs
*regs
)
1184 printk("NMI taken!!!!\n");
1188 #define VECTORSPACING 0x100 /* for EI/VI mode */
1190 unsigned long ebase
;
1191 unsigned long exception_handlers
[32];
1192 unsigned long vi_handlers
[64];
1195 * As a side effect of the way this is implemented we're limited
1196 * to interrupt handlers in the address range from
1197 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1199 void *set_except_vector(int n
, void *addr
)
1201 unsigned long handler
= (unsigned long) addr
;
1202 unsigned long old_handler
= exception_handlers
[n
];
1204 exception_handlers
[n
] = handler
;
1205 if (n
== 0 && cpu_has_divec
) {
1206 *(u32
*)(ebase
+ 0x200) = 0x08000000 |
1207 (0x03ffffff & (handler
>> 2));
1208 local_flush_icache_range(ebase
+ 0x200, ebase
+ 0x204);
1210 return (void *)old_handler
;
1213 static asmlinkage
void do_default_vi(void)
1215 show_regs(get_irq_regs());
1216 panic("Caught unexpected vectored interrupt.");
1219 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1221 unsigned long handler
;
1222 unsigned long old_handler
= vi_handlers
[n
];
1223 int srssets
= current_cpu_data
.srsets
;
1227 if (!cpu_has_veic
&& !cpu_has_vint
)
1231 handler
= (unsigned long) do_default_vi
;
1234 handler
= (unsigned long) addr
;
1235 vi_handlers
[n
] = (unsigned long) addr
;
1237 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1240 panic("Shadow register set %d not supported", srs
);
1243 if (board_bind_eic_interrupt
)
1244 board_bind_eic_interrupt(n
, srs
);
1245 } else if (cpu_has_vint
) {
1246 /* SRSMap is only defined if shadow sets are implemented */
1248 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1253 * If no shadow set is selected then use the default handler
1254 * that does normal register saving and a standard interrupt exit
1257 extern char except_vec_vi
, except_vec_vi_lui
;
1258 extern char except_vec_vi_ori
, except_vec_vi_end
;
1259 extern char rollback_except_vec_vi
;
1260 char *vec_start
= (cpu_wait
== r4k_wait
) ?
1261 &rollback_except_vec_vi
: &except_vec_vi
;
1262 #ifdef CONFIG_MIPS_MT_SMTC
1264 * We need to provide the SMTC vectored interrupt handler
1265 * not only with the address of the handler, but with the
1266 * Status.IM bit to be masked before going there.
1268 extern char except_vec_vi_mori
;
1269 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1270 #endif /* CONFIG_MIPS_MT_SMTC */
1271 const int handler_len
= &except_vec_vi_end
- vec_start
;
1272 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1273 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1275 if (handler_len
> VECTORSPACING
) {
1277 * Sigh... panicing won't help as the console
1278 * is probably not configured :(
1280 panic("VECTORSPACING too small");
1283 memcpy(b
, vec_start
, handler_len
);
1284 #ifdef CONFIG_MIPS_MT_SMTC
1285 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1287 w
= (u32
*)(b
+ mori_offset
);
1288 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1289 #endif /* CONFIG_MIPS_MT_SMTC */
1290 w
= (u32
*)(b
+ lui_offset
);
1291 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1292 w
= (u32
*)(b
+ ori_offset
);
1293 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1294 local_flush_icache_range((unsigned long)b
,
1295 (unsigned long)(b
+handler_len
));
1299 * In other cases jump directly to the interrupt handler
1301 * It is the handlers responsibility to save registers if required
1302 * (eg hi/lo) and return from the exception using "eret"
1305 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1307 local_flush_icache_range((unsigned long)b
,
1308 (unsigned long)(b
+8));
1311 return (void *)old_handler
;
1314 void *set_vi_handler(int n
, vi_handler_t addr
)
1316 return set_vi_srs_handler(n
, addr
, 0);
1320 * This is used by native signal handling
1322 asmlinkage
int (*save_fp_context
)(struct sigcontext __user
*sc
);
1323 asmlinkage
int (*restore_fp_context
)(struct sigcontext __user
*sc
);
1325 extern asmlinkage
int _save_fp_context(struct sigcontext __user
*sc
);
1326 extern asmlinkage
int _restore_fp_context(struct sigcontext __user
*sc
);
1328 extern asmlinkage
int fpu_emulator_save_context(struct sigcontext __user
*sc
);
1329 extern asmlinkage
int fpu_emulator_restore_context(struct sigcontext __user
*sc
);
1332 static int smp_save_fp_context(struct sigcontext __user
*sc
)
1334 return raw_cpu_has_fpu
1335 ? _save_fp_context(sc
)
1336 : fpu_emulator_save_context(sc
);
1339 static int smp_restore_fp_context(struct sigcontext __user
*sc
)
1341 return raw_cpu_has_fpu
1342 ? _restore_fp_context(sc
)
1343 : fpu_emulator_restore_context(sc
);
1347 static inline void signal_init(void)
1350 /* For now just do the cpu_has_fpu check when the functions are invoked */
1351 save_fp_context
= smp_save_fp_context
;
1352 restore_fp_context
= smp_restore_fp_context
;
1355 save_fp_context
= _save_fp_context
;
1356 restore_fp_context
= _restore_fp_context
;
1358 save_fp_context
= fpu_emulator_save_context
;
1359 restore_fp_context
= fpu_emulator_restore_context
;
1364 #ifdef CONFIG_MIPS32_COMPAT
1367 * This is used by 32-bit signal stuff on the 64-bit kernel
1369 asmlinkage
int (*save_fp_context32
)(struct sigcontext32 __user
*sc
);
1370 asmlinkage
int (*restore_fp_context32
)(struct sigcontext32 __user
*sc
);
1372 extern asmlinkage
int _save_fp_context32(struct sigcontext32 __user
*sc
);
1373 extern asmlinkage
int _restore_fp_context32(struct sigcontext32 __user
*sc
);
1375 extern asmlinkage
int fpu_emulator_save_context32(struct sigcontext32 __user
*sc
);
1376 extern asmlinkage
int fpu_emulator_restore_context32(struct sigcontext32 __user
*sc
);
1378 static inline void signal32_init(void)
1381 save_fp_context32
= _save_fp_context32
;
1382 restore_fp_context32
= _restore_fp_context32
;
1384 save_fp_context32
= fpu_emulator_save_context32
;
1385 restore_fp_context32
= fpu_emulator_restore_context32
;
1390 extern void cpu_cache_init(void);
1391 extern void tlb_init(void);
1392 extern void flush_tlb_handlers(void);
1397 int cp0_compare_irq
;
1400 * Performance counter IRQ or -1 if shared with timer
1402 int cp0_perfcount_irq
;
1403 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1405 static int __cpuinitdata noulri
;
1407 static int __init
ulri_disable(char *s
)
1409 pr_info("Disabling ulri\n");
1414 __setup("noulri", ulri_disable
);
1416 void __cpuinit
per_cpu_trap_init(void)
1418 unsigned int cpu
= smp_processor_id();
1419 unsigned int status_set
= ST0_CU0
;
1420 #ifdef CONFIG_MIPS_MT_SMTC
1421 int secondaryTC
= 0;
1422 int bootTC
= (cpu
== 0);
1425 * Only do per_cpu_trap_init() for first TC of Each VPE.
1426 * Note that this hack assumes that the SMTC init code
1427 * assigns TCs consecutively and in ascending order.
1430 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1431 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1433 #endif /* CONFIG_MIPS_MT_SMTC */
1436 * Disable coprocessors and select 32-bit or 64-bit addressing
1437 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1438 * flag that some firmware may have left set and the TS bit (for
1439 * IP27). Set XX for ISA IV code to work.
1442 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1444 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1445 status_set
|= ST0_XX
;
1447 status_set
|= ST0_MX
;
1449 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1452 if (cpu_has_mips_r2
) {
1453 unsigned int enable
= 0x0000000f;
1455 if (!noulri
&& cpu_has_userlocal
)
1456 enable
|= (1 << 29);
1458 write_c0_hwrena(enable
);
1461 #ifdef CONFIG_MIPS_MT_SMTC
1463 #endif /* CONFIG_MIPS_MT_SMTC */
1465 if (cpu_has_veic
|| cpu_has_vint
) {
1466 write_c0_ebase(ebase
);
1467 /* Setting vector spacing enables EI/VI mode */
1468 change_c0_intctl(0x3e0, VECTORSPACING
);
1470 if (cpu_has_divec
) {
1471 if (cpu_has_mipsmt
) {
1472 unsigned int vpflags
= dvpe();
1473 set_c0_cause(CAUSEF_IV
);
1476 set_c0_cause(CAUSEF_IV
);
1480 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1482 * o read IntCtl.IPTI to determine the timer interrupt
1483 * o read IntCtl.IPPCI to determine the performance counter interrupt
1485 if (cpu_has_mips_r2
) {
1486 cp0_compare_irq
= (read_c0_intctl() >> 29) & 7;
1487 cp0_perfcount_irq
= (read_c0_intctl() >> 26) & 7;
1488 if (cp0_perfcount_irq
== cp0_compare_irq
)
1489 cp0_perfcount_irq
= -1;
1491 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1492 cp0_perfcount_irq
= -1;
1495 #ifdef CONFIG_MIPS_MT_SMTC
1497 #endif /* CONFIG_MIPS_MT_SMTC */
1499 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1500 TLBMISS_HANDLER_SETUP();
1502 atomic_inc(&init_mm
.mm_count
);
1503 current
->active_mm
= &init_mm
;
1504 BUG_ON(current
->mm
);
1505 enter_lazy_tlb(&init_mm
, current
);
1507 #ifdef CONFIG_MIPS_MT_SMTC
1509 #endif /* CONFIG_MIPS_MT_SMTC */
1512 #ifdef CONFIG_MIPS_MT_SMTC
1513 } else if (!secondaryTC
) {
1515 * First TC in non-boot VPE must do subset of tlb_init()
1516 * for MMU countrol registers.
1518 write_c0_pagemask(PM_DEFAULT_MASK
);
1521 #endif /* CONFIG_MIPS_MT_SMTC */
1524 /* Install CPU exception handler */
1525 void __init
set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1527 memcpy((void *)(ebase
+ offset
), addr
, size
);
1528 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1531 static char panic_null_cerr
[] __cpuinitdata
=
1532 "Trying to set NULL cache error exception handler";
1534 /* Install uncached CPU exception handler */
1535 void __cpuinit
set_uncached_handler(unsigned long offset
, void *addr
,
1539 unsigned long uncached_ebase
= KSEG1ADDR(ebase
);
1542 unsigned long uncached_ebase
= TO_UNCAC(ebase
);
1546 panic(panic_null_cerr
);
1548 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1551 static int __initdata rdhwr_noopt
;
1552 static int __init
set_rdhwr_noopt(char *str
)
1558 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1560 void __init
trap_init(void)
1562 extern char except_vec3_generic
, except_vec3_r4000
;
1563 extern char except_vec4
;
1568 rollback
= (cpu_wait
== r4k_wait
);
1570 #if defined(CONFIG_KGDB)
1571 if (kgdb_early_setup
)
1572 return; /* Already done */
1575 if (cpu_has_veic
|| cpu_has_vint
)
1576 ebase
= (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING
*64);
1580 per_cpu_trap_init();
1583 * Copy the generic exception handlers to their final destination.
1584 * This will be overriden later as suitable for a particular
1587 set_handler(0x180, &except_vec3_generic
, 0x80);
1590 * Setup default vectors
1592 for (i
= 0; i
<= 31; i
++)
1593 set_except_vector(i
, handle_reserved
);
1596 * Copy the EJTAG debug exception vector handler code to it's final
1599 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1600 board_ejtag_handler_setup();
1603 * Only some CPUs have the watch exceptions.
1606 set_except_vector(23, handle_watch
);
1609 * Initialise interrupt handlers
1611 if (cpu_has_veic
|| cpu_has_vint
) {
1612 int nvec
= cpu_has_veic
? 64 : 8;
1613 for (i
= 0; i
< nvec
; i
++)
1614 set_vi_handler(i
, NULL
);
1616 else if (cpu_has_divec
)
1617 set_handler(0x200, &except_vec4
, 0x8);
1620 * Some CPUs can enable/disable for cache parity detection, but does
1621 * it different ways.
1623 parity_protection_init();
1626 * The Data Bus Errors / Instruction Bus Errors are signaled
1627 * by external hardware. Therefore these two exceptions
1628 * may have board specific handlers.
1633 set_except_vector(0, rollback
? rollback_handle_int
: handle_int
);
1634 set_except_vector(1, handle_tlbm
);
1635 set_except_vector(2, handle_tlbl
);
1636 set_except_vector(3, handle_tlbs
);
1638 set_except_vector(4, handle_adel
);
1639 set_except_vector(5, handle_ades
);
1641 set_except_vector(6, handle_ibe
);
1642 set_except_vector(7, handle_dbe
);
1644 set_except_vector(8, handle_sys
);
1645 set_except_vector(9, handle_bp
);
1646 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1647 (cpu_has_vtag_icache
?
1648 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1649 set_except_vector(11, handle_cpu
);
1650 set_except_vector(12, handle_ov
);
1651 set_except_vector(13, handle_tr
);
1653 if (current_cpu_type() == CPU_R6000
||
1654 current_cpu_type() == CPU_R6000A
) {
1656 * The R6000 is the only R-series CPU that features a machine
1657 * check exception (similar to the R4000 cache error) and
1658 * unaligned ldc1/sdc1 exception. The handlers have not been
1659 * written yet. Well, anyway there is no R6000 machine on the
1660 * current list of targets for Linux/MIPS.
1661 * (Duh, crap, there is someone with a triple R6k machine)
1663 //set_except_vector(14, handle_mc);
1664 //set_except_vector(15, handle_ndc);
1668 if (board_nmi_handler_setup
)
1669 board_nmi_handler_setup();
1671 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1672 set_except_vector(15, handle_fpe
);
1674 set_except_vector(22, handle_mdmx
);
1677 set_except_vector(24, handle_mcheck
);
1680 set_except_vector(25, handle_mt
);
1682 set_except_vector(26, handle_dsp
);
1685 /* Special exception: R4[04]00 uses also the divec space. */
1686 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_r4000
, 0x100);
1687 else if (cpu_has_4kex
)
1688 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_generic
, 0x80);
1690 memcpy((void *)(CAC_BASE
+ 0x080), &except_vec3_generic
, 0x80);
1693 #ifdef CONFIG_MIPS32_COMPAT
1697 local_flush_icache_range(ebase
, ebase
+ 0x400);
1698 flush_tlb_handlers();
1700 sort_extable(__start___dbe_table
, __stop___dbe_table
);