2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled
= false;
51 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
53 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
68 #if defined(MMU_DEBUG) || defined(AUDIT)
70 module_param(dbg
, bool, 0644);
74 #define ASSERT(x) do { } while (0)
78 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
79 __FILE__, __LINE__, #x); \
83 #define PT_FIRST_AVAIL_BITS_SHIFT 9
84 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
86 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
88 #define PT64_LEVEL_BITS 9
90 #define PT64_LEVEL_SHIFT(level) \
91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93 #define PT64_LEVEL_MASK(level) \
94 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
96 #define PT64_INDEX(address, level)\
97 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
100 #define PT32_LEVEL_BITS 10
102 #define PT32_LEVEL_SHIFT(level) \
103 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
105 #define PT32_LEVEL_MASK(level) \
106 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
108 #define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
112 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
113 #define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
120 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
123 #define PFERR_PRESENT_MASK (1U << 0)
124 #define PFERR_WRITE_MASK (1U << 1)
125 #define PFERR_USER_MASK (1U << 2)
126 #define PFERR_FETCH_MASK (1U << 4)
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
133 #define ACC_EXEC_MASK 1
134 #define ACC_WRITE_MASK PT_WRITABLE_MASK
135 #define ACC_USER_MASK PT_USER_MASK
136 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
138 struct kvm_pv_mmu_op_buffer
{
142 char buf
[512] __aligned(sizeof(long));
145 struct kvm_rmap_desc
{
146 u64
*shadow_ptes
[RMAP_EXT
];
147 struct kvm_rmap_desc
*more
;
150 static struct kmem_cache
*pte_chain_cache
;
151 static struct kmem_cache
*rmap_desc_cache
;
152 static struct kmem_cache
*mmu_page_header_cache
;
154 static u64 __read_mostly shadow_trap_nonpresent_pte
;
155 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
156 static u64 __read_mostly shadow_base_present_pte
;
157 static u64 __read_mostly shadow_nx_mask
;
158 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
159 static u64 __read_mostly shadow_user_mask
;
160 static u64 __read_mostly shadow_accessed_mask
;
161 static u64 __read_mostly shadow_dirty_mask
;
163 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
165 shadow_trap_nonpresent_pte
= trap_pte
;
166 shadow_notrap_nonpresent_pte
= notrap_pte
;
168 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
170 void kvm_mmu_set_base_ptes(u64 base_pte
)
172 shadow_base_present_pte
= base_pte
;
174 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes
);
176 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
177 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
179 shadow_user_mask
= user_mask
;
180 shadow_accessed_mask
= accessed_mask
;
181 shadow_dirty_mask
= dirty_mask
;
182 shadow_nx_mask
= nx_mask
;
183 shadow_x_mask
= x_mask
;
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
187 static int is_write_protection(struct kvm_vcpu
*vcpu
)
189 return vcpu
->arch
.cr0
& X86_CR0_WP
;
192 static int is_cpuid_PSE36(void)
197 static int is_nx(struct kvm_vcpu
*vcpu
)
199 return vcpu
->arch
.shadow_efer
& EFER_NX
;
202 static int is_present_pte(unsigned long pte
)
204 return pte
& PT_PRESENT_MASK
;
207 static int is_shadow_present_pte(u64 pte
)
209 return pte
!= shadow_trap_nonpresent_pte
210 && pte
!= shadow_notrap_nonpresent_pte
;
213 static int is_large_pte(u64 pte
)
215 return pte
& PT_PAGE_SIZE_MASK
;
218 static int is_writeble_pte(unsigned long pte
)
220 return pte
& PT_WRITABLE_MASK
;
223 static int is_dirty_pte(unsigned long pte
)
225 return pte
& shadow_dirty_mask
;
228 static int is_rmap_pte(u64 pte
)
230 return is_shadow_present_pte(pte
);
233 static pfn_t
spte_to_pfn(u64 pte
)
235 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
238 static gfn_t
pse36_gfn_delta(u32 gpte
)
240 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
242 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
245 static void set_shadow_pte(u64
*sptep
, u64 spte
)
248 set_64bit((unsigned long *)sptep
, spte
);
250 set_64bit((unsigned long long *)sptep
, spte
);
254 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
255 struct kmem_cache
*base_cache
, int min
)
259 if (cache
->nobjs
>= min
)
261 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
262 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
265 cache
->objects
[cache
->nobjs
++] = obj
;
270 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
273 kfree(mc
->objects
[--mc
->nobjs
]);
276 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
281 if (cache
->nobjs
>= min
)
283 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
284 page
= alloc_page(GFP_KERNEL
);
287 set_page_private(page
, 0);
288 cache
->objects
[cache
->nobjs
++] = page_address(page
);
293 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
296 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
299 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
303 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
307 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
311 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
314 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
315 mmu_page_header_cache
, 4);
320 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
322 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
);
323 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
);
324 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
325 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
);
328 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
334 p
= mc
->objects
[--mc
->nobjs
];
339 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
341 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
342 sizeof(struct kvm_pte_chain
));
345 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
350 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
352 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
353 sizeof(struct kvm_rmap_desc
));
356 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
362 * Return the pointer to the largepage write count for a given
363 * gfn, handling slots that are not large page aligned.
365 static int *slot_largepage_idx(gfn_t gfn
, struct kvm_memory_slot
*slot
)
369 idx
= (gfn
/ KVM_PAGES_PER_HPAGE
) -
370 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE
);
371 return &slot
->lpage_info
[idx
].write_count
;
374 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
378 write_count
= slot_largepage_idx(gfn
, gfn_to_memslot(kvm
, gfn
));
382 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
386 write_count
= slot_largepage_idx(gfn
, gfn_to_memslot(kvm
, gfn
));
388 WARN_ON(*write_count
< 0);
391 static int has_wrprotected_page(struct kvm
*kvm
, gfn_t gfn
)
393 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
397 largepage_idx
= slot_largepage_idx(gfn
, slot
);
398 return *largepage_idx
;
404 static int host_largepage_backed(struct kvm
*kvm
, gfn_t gfn
)
406 struct vm_area_struct
*vma
;
409 addr
= gfn_to_hva(kvm
, gfn
);
410 if (kvm_is_error_hva(addr
))
413 vma
= find_vma(current
->mm
, addr
);
414 if (vma
&& is_vm_hugetlb_page(vma
))
420 static int is_largepage_backed(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
422 struct kvm_memory_slot
*slot
;
424 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
))
427 if (!host_largepage_backed(vcpu
->kvm
, large_gfn
))
430 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
431 if (slot
&& slot
->dirty_bitmap
)
438 * Take gfn and return the reverse mapping to it.
439 * Note: gfn must be unaliased before this function get called
442 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int lpage
)
444 struct kvm_memory_slot
*slot
;
447 slot
= gfn_to_memslot(kvm
, gfn
);
449 return &slot
->rmap
[gfn
- slot
->base_gfn
];
451 idx
= (gfn
/ KVM_PAGES_PER_HPAGE
) -
452 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE
);
454 return &slot
->lpage_info
[idx
].rmap_pde
;
458 * Reverse mapping data structures:
460 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
461 * that points to page_address(page).
463 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
464 * containing more mappings.
466 static void rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
, int lpage
)
468 struct kvm_mmu_page
*sp
;
469 struct kvm_rmap_desc
*desc
;
470 unsigned long *rmapp
;
473 if (!is_rmap_pte(*spte
))
475 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
476 sp
= page_header(__pa(spte
));
477 sp
->gfns
[spte
- sp
->spt
] = gfn
;
478 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, lpage
);
480 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
481 *rmapp
= (unsigned long)spte
;
482 } else if (!(*rmapp
& 1)) {
483 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
484 desc
= mmu_alloc_rmap_desc(vcpu
);
485 desc
->shadow_ptes
[0] = (u64
*)*rmapp
;
486 desc
->shadow_ptes
[1] = spte
;
487 *rmapp
= (unsigned long)desc
| 1;
489 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
490 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
491 while (desc
->shadow_ptes
[RMAP_EXT
-1] && desc
->more
)
493 if (desc
->shadow_ptes
[RMAP_EXT
-1]) {
494 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
497 for (i
= 0; desc
->shadow_ptes
[i
]; ++i
)
499 desc
->shadow_ptes
[i
] = spte
;
503 static void rmap_desc_remove_entry(unsigned long *rmapp
,
504 struct kvm_rmap_desc
*desc
,
506 struct kvm_rmap_desc
*prev_desc
)
510 for (j
= RMAP_EXT
- 1; !desc
->shadow_ptes
[j
] && j
> i
; --j
)
512 desc
->shadow_ptes
[i
] = desc
->shadow_ptes
[j
];
513 desc
->shadow_ptes
[j
] = NULL
;
516 if (!prev_desc
&& !desc
->more
)
517 *rmapp
= (unsigned long)desc
->shadow_ptes
[0];
520 prev_desc
->more
= desc
->more
;
522 *rmapp
= (unsigned long)desc
->more
| 1;
523 mmu_free_rmap_desc(desc
);
526 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
528 struct kvm_rmap_desc
*desc
;
529 struct kvm_rmap_desc
*prev_desc
;
530 struct kvm_mmu_page
*sp
;
532 unsigned long *rmapp
;
535 if (!is_rmap_pte(*spte
))
537 sp
= page_header(__pa(spte
));
538 pfn
= spte_to_pfn(*spte
);
539 if (*spte
& shadow_accessed_mask
)
540 kvm_set_pfn_accessed(pfn
);
541 if (is_writeble_pte(*spte
))
542 kvm_release_pfn_dirty(pfn
);
544 kvm_release_pfn_clean(pfn
);
545 rmapp
= gfn_to_rmap(kvm
, sp
->gfns
[spte
- sp
->spt
], is_large_pte(*spte
));
547 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
549 } else if (!(*rmapp
& 1)) {
550 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
551 if ((u64
*)*rmapp
!= spte
) {
552 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
558 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
559 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
562 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
)
563 if (desc
->shadow_ptes
[i
] == spte
) {
564 rmap_desc_remove_entry(rmapp
,
576 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
578 struct kvm_rmap_desc
*desc
;
579 struct kvm_rmap_desc
*prev_desc
;
585 else if (!(*rmapp
& 1)) {
587 return (u64
*)*rmapp
;
590 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
594 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
) {
595 if (prev_spte
== spte
)
596 return desc
->shadow_ptes
[i
];
597 prev_spte
= desc
->shadow_ptes
[i
];
604 static void rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
606 unsigned long *rmapp
;
608 int write_protected
= 0;
610 gfn
= unalias_gfn(kvm
, gfn
);
611 rmapp
= gfn_to_rmap(kvm
, gfn
, 0);
613 spte
= rmap_next(kvm
, rmapp
, NULL
);
616 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
617 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
618 if (is_writeble_pte(*spte
)) {
619 set_shadow_pte(spte
, *spte
& ~PT_WRITABLE_MASK
);
622 spte
= rmap_next(kvm
, rmapp
, spte
);
624 if (write_protected
) {
627 spte
= rmap_next(kvm
, rmapp
, NULL
);
628 pfn
= spte_to_pfn(*spte
);
629 kvm_set_pfn_dirty(pfn
);
632 /* check for huge page mappings */
633 rmapp
= gfn_to_rmap(kvm
, gfn
, 1);
634 spte
= rmap_next(kvm
, rmapp
, NULL
);
637 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
638 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
639 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
640 if (is_writeble_pte(*spte
)) {
641 rmap_remove(kvm
, spte
);
643 set_shadow_pte(spte
, shadow_trap_nonpresent_pte
);
647 spte
= rmap_next(kvm
, rmapp
, spte
);
651 kvm_flush_remote_tlbs(kvm
);
653 account_shadowed(kvm
, gfn
);
656 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
)
659 int need_tlb_flush
= 0;
661 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
662 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
663 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
664 rmap_remove(kvm
, spte
);
665 set_shadow_pte(spte
, shadow_trap_nonpresent_pte
);
668 return need_tlb_flush
;
671 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
672 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
))
678 * If mmap_sem isn't taken, we can look the memslots with only
679 * the mmu_lock by skipping over the slots with userspace_addr == 0.
681 for (i
= 0; i
< kvm
->nmemslots
; i
++) {
682 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
683 unsigned long start
= memslot
->userspace_addr
;
686 /* mmu_lock protects userspace_addr */
690 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
691 if (hva
>= start
&& hva
< end
) {
692 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
693 retval
|= handler(kvm
, &memslot
->rmap
[gfn_offset
]);
694 retval
|= handler(kvm
,
695 &memslot
->lpage_info
[
697 KVM_PAGES_PER_HPAGE
].rmap_pde
);
704 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
706 return kvm_handle_hva(kvm
, hva
, kvm_unmap_rmapp
);
709 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
)
714 /* always return old for EPT */
715 if (!shadow_accessed_mask
)
718 spte
= rmap_next(kvm
, rmapp
, NULL
);
722 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
723 _young
= _spte
& PT_ACCESSED_MASK
;
726 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
728 spte
= rmap_next(kvm
, rmapp
, spte
);
733 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
735 return kvm_handle_hva(kvm
, hva
, kvm_age_rmapp
);
739 static int is_empty_shadow_page(u64
*spt
)
744 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
745 if (is_shadow_present_pte(*pos
)) {
746 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
754 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
756 ASSERT(is_empty_shadow_page(sp
->spt
));
758 __free_page(virt_to_page(sp
->spt
));
759 __free_page(virt_to_page(sp
->gfns
));
761 ++kvm
->arch
.n_free_mmu_pages
;
764 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
766 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
769 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
772 struct kvm_mmu_page
*sp
;
774 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
775 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
776 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
777 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
778 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
779 ASSERT(is_empty_shadow_page(sp
->spt
));
782 sp
->parent_pte
= parent_pte
;
783 --vcpu
->kvm
->arch
.n_free_mmu_pages
;
787 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
788 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
790 struct kvm_pte_chain
*pte_chain
;
791 struct hlist_node
*node
;
796 if (!sp
->multimapped
) {
797 u64
*old
= sp
->parent_pte
;
800 sp
->parent_pte
= parent_pte
;
804 pte_chain
= mmu_alloc_pte_chain(vcpu
);
805 INIT_HLIST_HEAD(&sp
->parent_ptes
);
806 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
807 pte_chain
->parent_ptes
[0] = old
;
809 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
810 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
812 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
813 if (!pte_chain
->parent_ptes
[i
]) {
814 pte_chain
->parent_ptes
[i
] = parent_pte
;
818 pte_chain
= mmu_alloc_pte_chain(vcpu
);
820 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
821 pte_chain
->parent_ptes
[0] = parent_pte
;
824 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
827 struct kvm_pte_chain
*pte_chain
;
828 struct hlist_node
*node
;
831 if (!sp
->multimapped
) {
832 BUG_ON(sp
->parent_pte
!= parent_pte
);
833 sp
->parent_pte
= NULL
;
836 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
837 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
838 if (!pte_chain
->parent_ptes
[i
])
840 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
842 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
843 && pte_chain
->parent_ptes
[i
+ 1]) {
844 pte_chain
->parent_ptes
[i
]
845 = pte_chain
->parent_ptes
[i
+ 1];
848 pte_chain
->parent_ptes
[i
] = NULL
;
850 hlist_del(&pte_chain
->link
);
851 mmu_free_pte_chain(pte_chain
);
852 if (hlist_empty(&sp
->parent_ptes
)) {
854 sp
->parent_pte
= NULL
;
862 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
863 struct kvm_mmu_page
*sp
)
867 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
868 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
871 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm
*kvm
, gfn_t gfn
)
874 struct hlist_head
*bucket
;
875 struct kvm_mmu_page
*sp
;
876 struct hlist_node
*node
;
878 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
879 index
= kvm_page_table_hashfn(gfn
);
880 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
881 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
882 if (sp
->gfn
== gfn
&& !sp
->role
.metaphysical
883 && !sp
->role
.invalid
) {
884 pgprintk("%s: found role %x\n",
885 __func__
, sp
->role
.word
);
891 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
899 union kvm_mmu_page_role role
;
902 struct hlist_head
*bucket
;
903 struct kvm_mmu_page
*sp
;
904 struct hlist_node
*node
;
907 role
.glevels
= vcpu
->arch
.mmu
.root_level
;
909 role
.metaphysical
= metaphysical
;
910 role
.access
= access
;
911 if (vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
912 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
913 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
914 role
.quadrant
= quadrant
;
916 pgprintk("%s: looking gfn %lx role %x\n", __func__
,
918 index
= kvm_page_table_hashfn(gfn
);
919 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
920 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
921 if (sp
->gfn
== gfn
&& sp
->role
.word
== role
.word
) {
922 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
923 pgprintk("%s: found\n", __func__
);
926 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
927 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
930 pgprintk("%s: adding gfn %lx role %x\n", __func__
, gfn
, role
.word
);
933 hlist_add_head(&sp
->hash_link
, bucket
);
935 rmap_write_protect(vcpu
->kvm
, gfn
);
936 if (shadow_trap_nonpresent_pte
!= shadow_notrap_nonpresent_pte
)
937 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
939 nonpaging_prefetch_page(vcpu
, sp
);
943 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
944 struct kvm_mmu_page
*sp
)
952 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
953 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
954 if (is_shadow_present_pte(pt
[i
]))
955 rmap_remove(kvm
, &pt
[i
]);
956 pt
[i
] = shadow_trap_nonpresent_pte
;
958 kvm_flush_remote_tlbs(kvm
);
962 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
965 if (is_shadow_present_pte(ent
)) {
966 if (!is_large_pte(ent
)) {
967 ent
&= PT64_BASE_ADDR_MASK
;
968 mmu_page_remove_parent_pte(page_header(ent
),
972 rmap_remove(kvm
, &pt
[i
]);
975 pt
[i
] = shadow_trap_nonpresent_pte
;
977 kvm_flush_remote_tlbs(kvm
);
980 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
982 mmu_page_remove_parent_pte(sp
, parent_pte
);
985 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
989 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
991 kvm
->vcpus
[i
]->arch
.last_pte_updated
= NULL
;
994 static void kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
998 ++kvm
->stat
.mmu_shadow_zapped
;
999 while (sp
->multimapped
|| sp
->parent_pte
) {
1000 if (!sp
->multimapped
)
1001 parent_pte
= sp
->parent_pte
;
1003 struct kvm_pte_chain
*chain
;
1005 chain
= container_of(sp
->parent_ptes
.first
,
1006 struct kvm_pte_chain
, link
);
1007 parent_pte
= chain
->parent_ptes
[0];
1009 BUG_ON(!parent_pte
);
1010 kvm_mmu_put_page(sp
, parent_pte
);
1011 set_shadow_pte(parent_pte
, shadow_trap_nonpresent_pte
);
1013 kvm_mmu_page_unlink_children(kvm
, sp
);
1014 if (!sp
->root_count
) {
1015 if (!sp
->role
.metaphysical
&& !sp
->role
.invalid
)
1016 unaccount_shadowed(kvm
, sp
->gfn
);
1017 hlist_del(&sp
->hash_link
);
1018 kvm_mmu_free_page(kvm
, sp
);
1020 int invalid
= sp
->role
.invalid
;
1021 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1022 sp
->role
.invalid
= 1;
1023 kvm_reload_remote_mmus(kvm
);
1024 if (!sp
->role
.metaphysical
&& !invalid
)
1025 unaccount_shadowed(kvm
, sp
->gfn
);
1027 kvm_mmu_reset_last_pte_updated(kvm
);
1031 * Changing the number of mmu pages allocated to the vm
1032 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1034 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int kvm_nr_mmu_pages
)
1037 * If we set the number of mmu pages to be smaller be than the
1038 * number of actived pages , we must to free some mmu pages before we
1042 if ((kvm
->arch
.n_alloc_mmu_pages
- kvm
->arch
.n_free_mmu_pages
) >
1044 int n_used_mmu_pages
= kvm
->arch
.n_alloc_mmu_pages
1045 - kvm
->arch
.n_free_mmu_pages
;
1047 while (n_used_mmu_pages
> kvm_nr_mmu_pages
) {
1048 struct kvm_mmu_page
*page
;
1050 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1051 struct kvm_mmu_page
, link
);
1052 kvm_mmu_zap_page(kvm
, page
);
1055 kvm
->arch
.n_free_mmu_pages
= 0;
1058 kvm
->arch
.n_free_mmu_pages
+= kvm_nr_mmu_pages
1059 - kvm
->arch
.n_alloc_mmu_pages
;
1061 kvm
->arch
.n_alloc_mmu_pages
= kvm_nr_mmu_pages
;
1064 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1067 struct hlist_head
*bucket
;
1068 struct kvm_mmu_page
*sp
;
1069 struct hlist_node
*node
, *n
;
1072 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1074 index
= kvm_page_table_hashfn(gfn
);
1075 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1076 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
)
1077 if (sp
->gfn
== gfn
&& !sp
->role
.metaphysical
) {
1078 pgprintk("%s: gfn %lx role %x\n", __func__
, gfn
,
1080 kvm_mmu_zap_page(kvm
, sp
);
1086 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
1088 struct kvm_mmu_page
*sp
;
1090 while ((sp
= kvm_mmu_lookup_page(kvm
, gfn
)) != NULL
) {
1091 pgprintk("%s: zap %lx %x\n", __func__
, gfn
, sp
->role
.word
);
1092 kvm_mmu_zap_page(kvm
, sp
);
1096 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
1098 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gfn
));
1099 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1101 __set_bit(slot
, &sp
->slot_bitmap
);
1104 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
1108 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1110 if (gpa
== UNMAPPED_GVA
)
1113 down_read(¤t
->mm
->mmap_sem
);
1114 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1115 up_read(¤t
->mm
->mmap_sem
);
1120 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*shadow_pte
,
1121 unsigned pt_access
, unsigned pte_access
,
1122 int user_fault
, int write_fault
, int dirty
,
1123 int *ptwrite
, int largepage
, gfn_t gfn
,
1124 pfn_t pfn
, bool speculative
)
1127 int was_rmapped
= 0;
1128 int was_writeble
= is_writeble_pte(*shadow_pte
);
1130 pgprintk("%s: spte %llx access %x write_fault %d"
1131 " user_fault %d gfn %lx\n",
1132 __func__
, *shadow_pte
, pt_access
,
1133 write_fault
, user_fault
, gfn
);
1135 if (is_rmap_pte(*shadow_pte
)) {
1137 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1138 * the parent of the now unreachable PTE.
1140 if (largepage
&& !is_large_pte(*shadow_pte
)) {
1141 struct kvm_mmu_page
*child
;
1142 u64 pte
= *shadow_pte
;
1144 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1145 mmu_page_remove_parent_pte(child
, shadow_pte
);
1146 } else if (pfn
!= spte_to_pfn(*shadow_pte
)) {
1147 pgprintk("hfn old %lx new %lx\n",
1148 spte_to_pfn(*shadow_pte
), pfn
);
1149 rmap_remove(vcpu
->kvm
, shadow_pte
);
1152 was_rmapped
= is_large_pte(*shadow_pte
);
1159 * We don't set the accessed bit, since we sometimes want to see
1160 * whether the guest actually used the pte (in order to detect
1163 spte
= shadow_base_present_pte
| shadow_dirty_mask
;
1165 pte_access
|= PT_ACCESSED_MASK
;
1167 pte_access
&= ~ACC_WRITE_MASK
;
1168 if (pte_access
& ACC_EXEC_MASK
)
1169 spte
|= shadow_x_mask
;
1171 spte
|= shadow_nx_mask
;
1172 if (pte_access
& ACC_USER_MASK
)
1173 spte
|= shadow_user_mask
;
1175 spte
|= PT_PAGE_SIZE_MASK
;
1177 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
1179 if ((pte_access
& ACC_WRITE_MASK
)
1180 || (write_fault
&& !is_write_protection(vcpu
) && !user_fault
)) {
1181 struct kvm_mmu_page
*shadow
;
1183 spte
|= PT_WRITABLE_MASK
;
1185 shadow
= kvm_mmu_lookup_page(vcpu
->kvm
, gfn
);
1187 (largepage
&& has_wrprotected_page(vcpu
->kvm
, gfn
))) {
1188 pgprintk("%s: found shadow page for %lx, marking ro\n",
1190 pte_access
&= ~ACC_WRITE_MASK
;
1191 if (is_writeble_pte(spte
)) {
1192 spte
&= ~PT_WRITABLE_MASK
;
1193 kvm_x86_ops
->tlb_flush(vcpu
);
1200 if (pte_access
& ACC_WRITE_MASK
)
1201 mark_page_dirty(vcpu
->kvm
, gfn
);
1203 pgprintk("%s: setting spte %llx\n", __func__
, spte
);
1204 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1205 (spte
&PT_PAGE_SIZE_MASK
)? "2MB" : "4kB",
1206 (spte
&PT_WRITABLE_MASK
)?"RW":"R", gfn
, spte
, shadow_pte
);
1207 set_shadow_pte(shadow_pte
, spte
);
1208 if (!was_rmapped
&& (spte
& PT_PAGE_SIZE_MASK
)
1209 && (spte
& PT_PRESENT_MASK
))
1210 ++vcpu
->kvm
->stat
.lpages
;
1212 page_header_update_slot(vcpu
->kvm
, shadow_pte
, gfn
);
1214 rmap_add(vcpu
, shadow_pte
, gfn
, largepage
);
1215 if (!is_rmap_pte(*shadow_pte
))
1216 kvm_release_pfn_clean(pfn
);
1219 kvm_release_pfn_dirty(pfn
);
1221 kvm_release_pfn_clean(pfn
);
1224 vcpu
->arch
.last_pte_updated
= shadow_pte
;
1225 vcpu
->arch
.last_pte_gfn
= gfn
;
1229 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
1233 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
1234 int largepage
, gfn_t gfn
, pfn_t pfn
,
1237 hpa_t table_addr
= vcpu
->arch
.mmu
.root_hpa
;
1241 u32 index
= PT64_INDEX(v
, level
);
1244 ASSERT(VALID_PAGE(table_addr
));
1245 table
= __va(table_addr
);
1248 mmu_set_spte(vcpu
, &table
[index
], ACC_ALL
, ACC_ALL
,
1249 0, write
, 1, &pt_write
, 0, gfn
, pfn
, false);
1253 if (largepage
&& level
== 2) {
1254 mmu_set_spte(vcpu
, &table
[index
], ACC_ALL
, ACC_ALL
,
1255 0, write
, 1, &pt_write
, 1, gfn
, pfn
, false);
1259 if (table
[index
] == shadow_trap_nonpresent_pte
) {
1260 struct kvm_mmu_page
*new_table
;
1263 pseudo_gfn
= (v
& PT64_DIR_BASE_ADDR_MASK
)
1265 new_table
= kvm_mmu_get_page(vcpu
, pseudo_gfn
,
1267 1, ACC_ALL
, &table
[index
]);
1269 pgprintk("nonpaging_map: ENOMEM\n");
1270 kvm_release_pfn_clean(pfn
);
1274 set_shadow_pte(&table
[index
],
1275 __pa(new_table
->spt
)
1276 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
1277 | shadow_user_mask
| shadow_x_mask
);
1279 table_addr
= table
[index
] & PT64_BASE_ADDR_MASK
;
1283 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
)
1288 unsigned long mmu_seq
;
1290 down_read(¤t
->mm
->mmap_sem
);
1291 if (is_largepage_backed(vcpu
, gfn
& ~(KVM_PAGES_PER_HPAGE
-1))) {
1292 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1296 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1297 /* implicit mb(), we'll read before PT lock is unlocked */
1298 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1299 up_read(¤t
->mm
->mmap_sem
);
1302 if (is_error_pfn(pfn
)) {
1303 kvm_release_pfn_clean(pfn
);
1307 spin_lock(&vcpu
->kvm
->mmu_lock
);
1308 if (mmu_notifier_retry(vcpu
, mmu_seq
))
1310 kvm_mmu_free_some_pages(vcpu
);
1311 r
= __direct_map(vcpu
, v
, write
, largepage
, gfn
, pfn
,
1313 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1319 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1320 kvm_release_pfn_clean(pfn
);
1325 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
1328 struct kvm_mmu_page
*sp
;
1330 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
1332 spin_lock(&vcpu
->kvm
->mmu_lock
);
1333 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
1334 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
1336 sp
= page_header(root
);
1338 if (!sp
->root_count
&& sp
->role
.invalid
)
1339 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1340 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1341 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1344 for (i
= 0; i
< 4; ++i
) {
1345 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
1348 root
&= PT64_BASE_ADDR_MASK
;
1349 sp
= page_header(root
);
1351 if (!sp
->root_count
&& sp
->role
.invalid
)
1352 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1354 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
1356 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1357 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1360 static void mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
1364 struct kvm_mmu_page
*sp
;
1365 int metaphysical
= 0;
1367 root_gfn
= vcpu
->arch
.cr3
>> PAGE_SHIFT
;
1369 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
1370 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
1372 ASSERT(!VALID_PAGE(root
));
1375 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
1376 PT64_ROOT_LEVEL
, metaphysical
,
1378 root
= __pa(sp
->spt
);
1380 vcpu
->arch
.mmu
.root_hpa
= root
;
1383 metaphysical
= !is_paging(vcpu
);
1386 for (i
= 0; i
< 4; ++i
) {
1387 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
1389 ASSERT(!VALID_PAGE(root
));
1390 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
1391 if (!is_present_pte(vcpu
->arch
.pdptrs
[i
])) {
1392 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
1395 root_gfn
= vcpu
->arch
.pdptrs
[i
] >> PAGE_SHIFT
;
1396 } else if (vcpu
->arch
.mmu
.root_level
== 0)
1398 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
1399 PT32_ROOT_LEVEL
, metaphysical
,
1401 root
= __pa(sp
->spt
);
1403 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
1405 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
1408 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
1413 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
1419 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
1420 r
= mmu_topup_memory_caches(vcpu
);
1425 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1427 gfn
= gva
>> PAGE_SHIFT
;
1429 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
1430 error_code
& PFERR_WRITE_MASK
, gfn
);
1433 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
,
1439 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1440 unsigned long mmu_seq
;
1443 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1445 r
= mmu_topup_memory_caches(vcpu
);
1449 down_read(¤t
->mm
->mmap_sem
);
1450 if (is_largepage_backed(vcpu
, gfn
& ~(KVM_PAGES_PER_HPAGE
-1))) {
1451 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1454 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1455 /* implicit mb(), we'll read before PT lock is unlocked */
1456 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1457 up_read(¤t
->mm
->mmap_sem
);
1458 if (is_error_pfn(pfn
)) {
1459 kvm_release_pfn_clean(pfn
);
1462 spin_lock(&vcpu
->kvm
->mmu_lock
);
1463 if (mmu_notifier_retry(vcpu
, mmu_seq
))
1465 kvm_mmu_free_some_pages(vcpu
);
1466 r
= __direct_map(vcpu
, gpa
, error_code
& PFERR_WRITE_MASK
,
1467 largepage
, gfn
, pfn
, kvm_x86_ops
->get_tdp_level());
1468 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1473 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1474 kvm_release_pfn_clean(pfn
);
1478 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
1480 mmu_free_roots(vcpu
);
1483 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
1485 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1487 context
->new_cr3
= nonpaging_new_cr3
;
1488 context
->page_fault
= nonpaging_page_fault
;
1489 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
1490 context
->free
= nonpaging_free
;
1491 context
->prefetch_page
= nonpaging_prefetch_page
;
1492 context
->root_level
= 0;
1493 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1494 context
->root_hpa
= INVALID_PAGE
;
1498 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
1500 ++vcpu
->stat
.tlb_flush
;
1501 kvm_x86_ops
->tlb_flush(vcpu
);
1504 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
1506 pgprintk("%s: cr3 %lx\n", __func__
, vcpu
->arch
.cr3
);
1507 mmu_free_roots(vcpu
);
1510 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
1514 kvm_inject_page_fault(vcpu
, addr
, err_code
);
1517 static void paging_free(struct kvm_vcpu
*vcpu
)
1519 nonpaging_free(vcpu
);
1523 #include "paging_tmpl.h"
1527 #include "paging_tmpl.h"
1530 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
1532 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1534 ASSERT(is_pae(vcpu
));
1535 context
->new_cr3
= paging_new_cr3
;
1536 context
->page_fault
= paging64_page_fault
;
1537 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1538 context
->prefetch_page
= paging64_prefetch_page
;
1539 context
->free
= paging_free
;
1540 context
->root_level
= level
;
1541 context
->shadow_root_level
= level
;
1542 context
->root_hpa
= INVALID_PAGE
;
1546 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
1548 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
1551 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
1553 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1555 context
->new_cr3
= paging_new_cr3
;
1556 context
->page_fault
= paging32_page_fault
;
1557 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1558 context
->free
= paging_free
;
1559 context
->prefetch_page
= paging32_prefetch_page
;
1560 context
->root_level
= PT32_ROOT_LEVEL
;
1561 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1562 context
->root_hpa
= INVALID_PAGE
;
1566 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
1568 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
1571 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
1573 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1575 context
->new_cr3
= nonpaging_new_cr3
;
1576 context
->page_fault
= tdp_page_fault
;
1577 context
->free
= nonpaging_free
;
1578 context
->prefetch_page
= nonpaging_prefetch_page
;
1579 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
1580 context
->root_hpa
= INVALID_PAGE
;
1582 if (!is_paging(vcpu
)) {
1583 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
1584 context
->root_level
= 0;
1585 } else if (is_long_mode(vcpu
)) {
1586 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1587 context
->root_level
= PT64_ROOT_LEVEL
;
1588 } else if (is_pae(vcpu
)) {
1589 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1590 context
->root_level
= PT32E_ROOT_LEVEL
;
1592 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1593 context
->root_level
= PT32_ROOT_LEVEL
;
1599 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
1602 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1604 if (!is_paging(vcpu
))
1605 return nonpaging_init_context(vcpu
);
1606 else if (is_long_mode(vcpu
))
1607 return paging64_init_context(vcpu
);
1608 else if (is_pae(vcpu
))
1609 return paging32E_init_context(vcpu
);
1611 return paging32_init_context(vcpu
);
1614 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
1616 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
1619 return init_kvm_tdp_mmu(vcpu
);
1621 return init_kvm_softmmu(vcpu
);
1624 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
1627 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
1628 vcpu
->arch
.mmu
.free(vcpu
);
1629 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1633 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
1635 destroy_kvm_mmu(vcpu
);
1636 return init_kvm_mmu(vcpu
);
1638 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
1640 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
1644 r
= mmu_topup_memory_caches(vcpu
);
1647 spin_lock(&vcpu
->kvm
->mmu_lock
);
1648 kvm_mmu_free_some_pages(vcpu
);
1649 mmu_alloc_roots(vcpu
);
1650 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1651 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
1652 kvm_mmu_flush_tlb(vcpu
);
1656 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
1658 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
1660 mmu_free_roots(vcpu
);
1663 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
1664 struct kvm_mmu_page
*sp
,
1668 struct kvm_mmu_page
*child
;
1671 if (is_shadow_present_pte(pte
)) {
1672 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
||
1674 rmap_remove(vcpu
->kvm
, spte
);
1676 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1677 mmu_page_remove_parent_pte(child
, spte
);
1680 set_shadow_pte(spte
, shadow_trap_nonpresent_pte
);
1681 if (is_large_pte(pte
))
1682 --vcpu
->kvm
->stat
.lpages
;
1685 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
1686 struct kvm_mmu_page
*sp
,
1690 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
1691 if (!vcpu
->arch
.update_pte
.largepage
||
1692 sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
1693 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
1698 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
1699 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
)
1700 paging32_update_pte(vcpu
, sp
, spte
, new);
1702 paging64_update_pte(vcpu
, sp
, spte
, new);
1705 static bool need_remote_flush(u64 old
, u64
new)
1707 if (!is_shadow_present_pte(old
))
1709 if (!is_shadow_present_pte(new))
1711 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
1713 old
^= PT64_NX_MASK
;
1714 new ^= PT64_NX_MASK
;
1715 return (old
& ~new & PT64_PERM_MASK
) != 0;
1718 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, u64 old
, u64
new)
1720 if (need_remote_flush(old
, new))
1721 kvm_flush_remote_tlbs(vcpu
->kvm
);
1723 kvm_mmu_flush_tlb(vcpu
);
1726 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
1728 u64
*spte
= vcpu
->arch
.last_pte_updated
;
1730 return !!(spte
&& (*spte
& shadow_accessed_mask
));
1733 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1734 const u8
*new, int bytes
)
1741 vcpu
->arch
.update_pte
.largepage
= 0;
1743 if (bytes
!= 4 && bytes
!= 8)
1747 * Assume that the pte write on a page table of the same type
1748 * as the current vcpu paging mode. This is nearly always true
1749 * (might be false while changing modes). Note it is verified later
1753 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1754 if ((bytes
== 4) && (gpa
% 4 == 0)) {
1755 r
= kvm_read_guest(vcpu
->kvm
, gpa
& ~(u64
)7, &gpte
, 8);
1758 memcpy((void *)&gpte
+ (gpa
% 8), new, 4);
1759 } else if ((bytes
== 8) && (gpa
% 8 == 0)) {
1760 memcpy((void *)&gpte
, new, 8);
1763 if ((bytes
== 4) && (gpa
% 4 == 0))
1764 memcpy((void *)&gpte
, new, 4);
1766 if (!is_present_pte(gpte
))
1768 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
1770 down_read(¤t
->mm
->mmap_sem
);
1771 if (is_large_pte(gpte
) && is_largepage_backed(vcpu
, gfn
)) {
1772 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1773 vcpu
->arch
.update_pte
.largepage
= 1;
1775 vcpu
->arch
.update_pte
.mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1776 /* implicit mb(), we'll read before PT lock is unlocked */
1777 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1778 up_read(¤t
->mm
->mmap_sem
);
1780 if (is_error_pfn(pfn
)) {
1781 kvm_release_pfn_clean(pfn
);
1784 vcpu
->arch
.update_pte
.gfn
= gfn
;
1785 vcpu
->arch
.update_pte
.pfn
= pfn
;
1788 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1790 u64
*spte
= vcpu
->arch
.last_pte_updated
;
1793 && vcpu
->arch
.last_pte_gfn
== gfn
1794 && shadow_accessed_mask
1795 && !(*spte
& shadow_accessed_mask
)
1796 && is_shadow_present_pte(*spte
))
1797 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
1800 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1801 const u8
*new, int bytes
)
1803 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1804 struct kvm_mmu_page
*sp
;
1805 struct hlist_node
*node
, *n
;
1806 struct hlist_head
*bucket
;
1810 unsigned offset
= offset_in_page(gpa
);
1812 unsigned page_offset
;
1813 unsigned misaligned
;
1820 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
1821 mmu_guess_page_from_pte_write(vcpu
, gpa
, new, bytes
);
1822 spin_lock(&vcpu
->kvm
->mmu_lock
);
1823 kvm_mmu_access_page(vcpu
, gfn
);
1824 kvm_mmu_free_some_pages(vcpu
);
1825 ++vcpu
->kvm
->stat
.mmu_pte_write
;
1826 kvm_mmu_audit(vcpu
, "pre pte write");
1827 if (gfn
== vcpu
->arch
.last_pt_write_gfn
1828 && !last_updated_pte_accessed(vcpu
)) {
1829 ++vcpu
->arch
.last_pt_write_count
;
1830 if (vcpu
->arch
.last_pt_write_count
>= 3)
1833 vcpu
->arch
.last_pt_write_gfn
= gfn
;
1834 vcpu
->arch
.last_pt_write_count
= 1;
1835 vcpu
->arch
.last_pte_updated
= NULL
;
1837 index
= kvm_page_table_hashfn(gfn
);
1838 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1839 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
) {
1840 if (sp
->gfn
!= gfn
|| sp
->role
.metaphysical
)
1842 pte_size
= sp
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
1843 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
1844 misaligned
|= bytes
< 4;
1845 if (misaligned
|| flooded
) {
1847 * Misaligned accesses are too much trouble to fix
1848 * up; also, they usually indicate a page is not used
1851 * If we're seeing too many writes to a page,
1852 * it may no longer be a page table, or we may be
1853 * forking, in which case it is better to unmap the
1856 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1857 gpa
, bytes
, sp
->role
.word
);
1858 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1859 ++vcpu
->kvm
->stat
.mmu_flooded
;
1862 page_offset
= offset
;
1863 level
= sp
->role
.level
;
1865 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
1866 page_offset
<<= 1; /* 32->64 */
1868 * A 32-bit pde maps 4MB while the shadow pdes map
1869 * only 2MB. So we need to double the offset again
1870 * and zap two pdes instead of one.
1872 if (level
== PT32_ROOT_LEVEL
) {
1873 page_offset
&= ~7; /* kill rounding error */
1877 quadrant
= page_offset
>> PAGE_SHIFT
;
1878 page_offset
&= ~PAGE_MASK
;
1879 if (quadrant
!= sp
->role
.quadrant
)
1882 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
1883 if ((gpa
& (pte_size
- 1)) || (bytes
< pte_size
)) {
1885 r
= kvm_read_guest_atomic(vcpu
->kvm
,
1886 gpa
& ~(u64
)(pte_size
- 1),
1888 new = (const void *)&gentry
;
1894 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
1896 mmu_pte_write_new_pte(vcpu
, sp
, spte
, new);
1897 mmu_pte_write_flush_tlb(vcpu
, entry
, *spte
);
1901 kvm_mmu_audit(vcpu
, "post pte write");
1902 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1903 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
1904 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
1905 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
1909 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
1914 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1916 spin_lock(&vcpu
->kvm
->mmu_lock
);
1917 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1918 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1921 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
1923 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
1925 while (vcpu
->kvm
->arch
.n_free_mmu_pages
< KVM_REFILL_PAGES
) {
1926 struct kvm_mmu_page
*sp
;
1928 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
1929 struct kvm_mmu_page
, link
);
1930 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1931 ++vcpu
->kvm
->stat
.mmu_recycled
;
1935 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
)
1938 enum emulation_result er
;
1940 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
);
1949 r
= mmu_topup_memory_caches(vcpu
);
1953 er
= emulate_instruction(vcpu
, vcpu
->run
, cr2
, error_code
, 0);
1958 case EMULATE_DO_MMIO
:
1959 ++vcpu
->stat
.mmio_exits
;
1962 kvm_report_emulation_failure(vcpu
, "pagetable");
1970 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
1972 void kvm_enable_tdp(void)
1976 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
1978 void kvm_disable_tdp(void)
1980 tdp_enabled
= false;
1982 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
1984 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
1986 struct kvm_mmu_page
*sp
;
1988 while (!list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
1989 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.next
,
1990 struct kvm_mmu_page
, link
);
1991 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1994 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
1997 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
2004 if (vcpu
->kvm
->arch
.n_requested_mmu_pages
)
2005 vcpu
->kvm
->arch
.n_free_mmu_pages
=
2006 vcpu
->kvm
->arch
.n_requested_mmu_pages
;
2008 vcpu
->kvm
->arch
.n_free_mmu_pages
=
2009 vcpu
->kvm
->arch
.n_alloc_mmu_pages
;
2011 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2012 * Therefore we need to allocate shadow page tables in the first
2013 * 4GB of memory, which happens to fit the DMA32 zone.
2015 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
2018 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
2019 for (i
= 0; i
< 4; ++i
)
2020 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2025 free_mmu_pages(vcpu
);
2029 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
2032 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2034 return alloc_mmu_pages(vcpu
);
2037 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
2040 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2042 return init_kvm_mmu(vcpu
);
2045 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
2049 destroy_kvm_mmu(vcpu
);
2050 free_mmu_pages(vcpu
);
2051 mmu_free_memory_caches(vcpu
);
2054 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
2056 struct kvm_mmu_page
*sp
;
2058 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
2062 if (!test_bit(slot
, &sp
->slot_bitmap
))
2066 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2068 if (pt
[i
] & PT_WRITABLE_MASK
)
2069 pt
[i
] &= ~PT_WRITABLE_MASK
;
2073 void kvm_mmu_zap_all(struct kvm
*kvm
)
2075 struct kvm_mmu_page
*sp
, *node
;
2077 spin_lock(&kvm
->mmu_lock
);
2078 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
2079 kvm_mmu_zap_page(kvm
, sp
);
2080 spin_unlock(&kvm
->mmu_lock
);
2082 kvm_flush_remote_tlbs(kvm
);
2085 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm
*kvm
)
2087 struct kvm_mmu_page
*page
;
2089 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
2090 struct kvm_mmu_page
, link
);
2091 kvm_mmu_zap_page(kvm
, page
);
2094 static int mmu_shrink(int nr_to_scan
, gfp_t gfp_mask
)
2097 struct kvm
*kvm_freed
= NULL
;
2098 int cache_count
= 0;
2100 spin_lock(&kvm_lock
);
2102 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2105 if (!down_read_trylock(&kvm
->slots_lock
))
2107 spin_lock(&kvm
->mmu_lock
);
2108 npages
= kvm
->arch
.n_alloc_mmu_pages
-
2109 kvm
->arch
.n_free_mmu_pages
;
2110 cache_count
+= npages
;
2111 if (!kvm_freed
&& nr_to_scan
> 0 && npages
> 0) {
2112 kvm_mmu_remove_one_alloc_mmu_page(kvm
);
2118 spin_unlock(&kvm
->mmu_lock
);
2119 up_read(&kvm
->slots_lock
);
2122 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
2124 spin_unlock(&kvm_lock
);
2129 static struct shrinker mmu_shrinker
= {
2130 .shrink
= mmu_shrink
,
2131 .seeks
= DEFAULT_SEEKS
* 10,
2134 static void mmu_destroy_caches(void)
2136 if (pte_chain_cache
)
2137 kmem_cache_destroy(pte_chain_cache
);
2138 if (rmap_desc_cache
)
2139 kmem_cache_destroy(rmap_desc_cache
);
2140 if (mmu_page_header_cache
)
2141 kmem_cache_destroy(mmu_page_header_cache
);
2144 void kvm_mmu_module_exit(void)
2146 mmu_destroy_caches();
2147 unregister_shrinker(&mmu_shrinker
);
2150 int kvm_mmu_module_init(void)
2152 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
2153 sizeof(struct kvm_pte_chain
),
2155 if (!pte_chain_cache
)
2157 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
2158 sizeof(struct kvm_rmap_desc
),
2160 if (!rmap_desc_cache
)
2163 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
2164 sizeof(struct kvm_mmu_page
),
2166 if (!mmu_page_header_cache
)
2169 register_shrinker(&mmu_shrinker
);
2174 mmu_destroy_caches();
2179 * Caculate mmu pages needed for kvm.
2181 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
2184 unsigned int nr_mmu_pages
;
2185 unsigned int nr_pages
= 0;
2187 for (i
= 0; i
< kvm
->nmemslots
; i
++)
2188 nr_pages
+= kvm
->memslots
[i
].npages
;
2190 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
2191 nr_mmu_pages
= max(nr_mmu_pages
,
2192 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
2194 return nr_mmu_pages
;
2197 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
2200 if (len
> buffer
->len
)
2205 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
2210 ret
= pv_mmu_peek_buffer(buffer
, len
);
2215 buffer
->processed
+= len
;
2219 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
2220 gpa_t addr
, gpa_t value
)
2225 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
2228 r
= mmu_topup_memory_caches(vcpu
);
2232 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
2238 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2240 kvm_x86_ops
->tlb_flush(vcpu
);
2244 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
2246 spin_lock(&vcpu
->kvm
->mmu_lock
);
2247 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
2248 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2252 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
2253 struct kvm_pv_mmu_op_buffer
*buffer
)
2255 struct kvm_mmu_op_header
*header
;
2257 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
2260 switch (header
->op
) {
2261 case KVM_MMU_OP_WRITE_PTE
: {
2262 struct kvm_mmu_op_write_pte
*wpte
;
2264 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
2267 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
2270 case KVM_MMU_OP_FLUSH_TLB
: {
2271 struct kvm_mmu_op_flush_tlb
*ftlb
;
2273 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
2276 return kvm_pv_mmu_flush_tlb(vcpu
);
2278 case KVM_MMU_OP_RELEASE_PT
: {
2279 struct kvm_mmu_op_release_pt
*rpt
;
2281 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
2284 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
2290 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
2291 gpa_t addr
, unsigned long *ret
)
2294 struct kvm_pv_mmu_op_buffer buffer
;
2296 buffer
.ptr
= buffer
.buf
;
2297 buffer
.len
= min_t(unsigned long, bytes
, sizeof buffer
.buf
);
2298 buffer
.processed
= 0;
2300 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
.buf
, buffer
.len
);
2304 while (buffer
.len
) {
2305 r
= kvm_pv_mmu_op_one(vcpu
, &buffer
);
2314 *ret
= buffer
.processed
;
2320 static const char *audit_msg
;
2322 static gva_t
canonicalize(gva_t gva
)
2324 #ifdef CONFIG_X86_64
2325 gva
= (long long)(gva
<< 16) >> 16;
2330 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
2331 gva_t va
, int level
)
2333 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
2335 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
2337 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
2340 if (ent
== shadow_trap_nonpresent_pte
)
2343 va
= canonicalize(va
);
2345 if (ent
== shadow_notrap_nonpresent_pte
)
2346 printk(KERN_ERR
"audit: (%s) nontrapping pte"
2347 " in nonleaf level: levels %d gva %lx"
2348 " level %d pte %llx\n", audit_msg
,
2349 vcpu
->arch
.mmu
.root_level
, va
, level
, ent
);
2351 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
2353 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, va
);
2354 hpa_t hpa
= (hpa_t
)gpa_to_pfn(vcpu
, gpa
) << PAGE_SHIFT
;
2356 if (is_shadow_present_pte(ent
)
2357 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
2358 printk(KERN_ERR
"xx audit error: (%s) levels %d"
2359 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2360 audit_msg
, vcpu
->arch
.mmu
.root_level
,
2362 is_shadow_present_pte(ent
));
2363 else if (ent
== shadow_notrap_nonpresent_pte
2364 && !is_error_hpa(hpa
))
2365 printk(KERN_ERR
"audit: (%s) notrap shadow,"
2366 " valid guest gva %lx\n", audit_msg
, va
);
2367 kvm_release_pfn_clean(pfn
);
2373 static void audit_mappings(struct kvm_vcpu
*vcpu
)
2377 if (vcpu
->arch
.mmu
.root_level
== 4)
2378 audit_mappings_page(vcpu
, vcpu
->arch
.mmu
.root_hpa
, 0, 4);
2380 for (i
= 0; i
< 4; ++i
)
2381 if (vcpu
->arch
.mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
2382 audit_mappings_page(vcpu
,
2383 vcpu
->arch
.mmu
.pae_root
[i
],
2388 static int count_rmaps(struct kvm_vcpu
*vcpu
)
2393 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
2394 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
2395 struct kvm_rmap_desc
*d
;
2397 for (j
= 0; j
< m
->npages
; ++j
) {
2398 unsigned long *rmapp
= &m
->rmap
[j
];
2402 if (!(*rmapp
& 1)) {
2406 d
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
2408 for (k
= 0; k
< RMAP_EXT
; ++k
)
2409 if (d
->shadow_ptes
[k
])
2420 static int count_writable_mappings(struct kvm_vcpu
*vcpu
)
2423 struct kvm_mmu_page
*sp
;
2426 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
2429 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2432 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
2435 if (!(ent
& PT_PRESENT_MASK
))
2437 if (!(ent
& PT_WRITABLE_MASK
))
2445 static void audit_rmap(struct kvm_vcpu
*vcpu
)
2447 int n_rmap
= count_rmaps(vcpu
);
2448 int n_actual
= count_writable_mappings(vcpu
);
2450 if (n_rmap
!= n_actual
)
2451 printk(KERN_ERR
"%s: (%s) rmap %d actual %d\n",
2452 __func__
, audit_msg
, n_rmap
, n_actual
);
2455 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
2457 struct kvm_mmu_page
*sp
;
2458 struct kvm_memory_slot
*slot
;
2459 unsigned long *rmapp
;
2462 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
2463 if (sp
->role
.metaphysical
)
2466 slot
= gfn_to_memslot(vcpu
->kvm
, sp
->gfn
);
2467 gfn
= unalias_gfn(vcpu
->kvm
, sp
->gfn
);
2468 rmapp
= &slot
->rmap
[gfn
- slot
->base_gfn
];
2470 printk(KERN_ERR
"%s: (%s) shadow page has writable"
2471 " mappings: gfn %lx role %x\n",
2472 __func__
, audit_msg
, sp
->gfn
,
2477 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
2484 audit_write_protection(vcpu
);
2485 audit_mappings(vcpu
);