2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios
= { /* for the benefit of tty drivers */
116 .c_iflag
= ICRNL
| IXON
,
117 .c_oflag
= OPOST
| ONLCR
,
118 .c_cflag
= B38400
| CS8
| CREAD
| HUPCL
,
119 .c_lflag
= ISIG
| ICANON
| ECHO
| ECHOE
| ECHOK
|
120 ECHOCTL
| ECHOKE
| IEXTEN
,
126 EXPORT_SYMBOL(tty_std_termios
);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
132 LIST_HEAD(tty_drivers
); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex
);
137 EXPORT_SYMBOL(tty_mutex
);
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver
*ptm_driver
; /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode
*, struct file
*);
144 static void initialize_tty_struct(struct tty_struct
*tty
);
146 static ssize_t
tty_read(struct file
*, char __user
*, size_t, loff_t
*);
147 static ssize_t
tty_write(struct file
*, const char __user
*, size_t, loff_t
*);
148 ssize_t
redirected_tty_write(struct file
*, const char __user
*,
150 static unsigned int tty_poll(struct file
*, poll_table
*);
151 static int tty_open(struct inode
*, struct file
*);
152 static int tty_release(struct inode
*, struct file
*);
153 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
155 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
158 #define tty_compat_ioctl NULL
160 static int tty_fasync(int fd
, struct file
*filp
, int on
);
161 static void release_tty(struct tty_struct
*tty
, int idx
);
162 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
163 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
174 static struct tty_struct
*alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct
), GFP_KERNEL
);
179 static void tty_buffer_free_all(struct tty_struct
*);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct
*tty
)
192 kfree(tty
->write_buf
);
193 tty_buffer_free_all(tty
);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
210 char *tty_name(struct tty_struct
*tty
, char *buf
)
212 if (!tty
) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf
, "NULL tty");
215 strcpy(buf
, tty
->name
);
219 EXPORT_SYMBOL(tty_name
);
221 int tty_paranoia_check(struct tty_struct
*tty
, struct inode
*inode
,
224 #ifdef TTY_PARANOIA_CHECK
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode
), iminor(inode
), routine
);
231 if (tty
->magic
!= TTY_MAGIC
) {
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode
), iminor(inode
), routine
);
241 static int check_tty_count(struct tty_struct
*tty
, const char *routine
)
243 #ifdef CHECK_TTY_COUNT
248 list_for_each(p
, &tty
->tty_files
) {
252 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
253 tty
->driver
->subtype
== PTY_TYPE_SLAVE
&&
254 tty
->link
&& tty
->link
->count
)
256 if (tty
->count
!= count
) {
257 printk(KERN_WARNING
"Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty
->name
, tty
->count
, count
, routine
);
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
280 static void tty_buffer_free_all(struct tty_struct
*tty
)
282 struct tty_buffer
*thead
;
283 while ((thead
= tty
->buf
.head
) != NULL
) {
284 tty
->buf
.head
= thead
->next
;
287 while ((thead
= tty
->buf
.free
) != NULL
) {
288 tty
->buf
.free
= thead
->next
;
291 tty
->buf
.tail
= NULL
;
292 tty
->buf
.memory_used
= 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
305 static void tty_buffer_init(struct tty_struct
*tty
)
307 spin_lock_init(&tty
->buf
.lock
);
308 tty
->buf
.head
= NULL
;
309 tty
->buf
.tail
= NULL
;
310 tty
->buf
.free
= NULL
;
311 tty
->buf
.memory_used
= 0;
315 * tty_buffer_alloc - allocate a tty buffer
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer
*tty_buffer_alloc(struct tty_struct
*tty
, size_t size
)
328 struct tty_buffer
*p
;
330 if (tty
->buf
.memory_used
+ size
> 65536)
332 p
= kmalloc(sizeof(struct tty_buffer
) + 2 * size
, GFP_ATOMIC
);
340 p
->char_buf_ptr
= (char *)(p
->data
);
341 p
->flag_buf_ptr
= (unsigned char *)p
->char_buf_ptr
+ size
;
342 tty
->buf
.memory_used
+= size
;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct
*tty
, struct tty_buffer
*b
)
359 /* Dumb strategy for now - should keep some stats */
360 tty
->buf
.memory_used
-= b
->size
;
361 WARN_ON(tty
->buf
.memory_used
< 0);
366 b
->next
= tty
->buf
.free
;
372 * __tty_buffer_flush - flush full tty buffers
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
379 * Locking: Caller must hold tty->buf.lock
382 static void __tty_buffer_flush(struct tty_struct
*tty
)
384 struct tty_buffer
*thead
;
386 while ((thead
= tty
->buf
.head
) != NULL
) {
387 tty
->buf
.head
= thead
->next
;
388 tty_buffer_free(tty
, thead
);
390 tty
->buf
.tail
= NULL
;
394 * tty_buffer_flush - flush full tty buffers
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
404 static void tty_buffer_flush(struct tty_struct
*tty
)
407 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING
, &tty
->flags
)) {
413 set_bit(TTY_FLUSHPENDING
, &tty
->flags
);
414 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
415 wait_event(tty
->read_wait
,
416 test_bit(TTY_FLUSHPENDING
, &tty
->flags
) == 0);
419 __tty_buffer_flush(tty
);
420 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
432 * Locking: Caller must hold tty->buf.lock
435 static struct tty_buffer
*tty_buffer_find(struct tty_struct
*tty
, size_t size
)
437 struct tty_buffer
**tbh
= &tty
->buf
.free
;
438 while ((*tbh
) != NULL
) {
439 struct tty_buffer
*t
= *tbh
;
440 if (t
->size
>= size
) {
446 tty
->buf
.memory_used
+= t
->size
;
449 tbh
= &((*tbh
)->next
);
451 /* Round the buffer size out */
452 size
= (size
+ 0xFF) & ~0xFF;
453 return tty_buffer_alloc(tty
, size
);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
466 * Locking: Takes tty->buf.lock
468 int tty_buffer_request_room(struct tty_struct
*tty
, size_t size
)
470 struct tty_buffer
*b
, *n
;
474 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
479 if ((b
= tty
->buf
.tail
) != NULL
)
480 left
= b
->size
- b
->used
;
485 /* This is the slow path - looking for new buffers to use */
486 if ((n
= tty_buffer_find(tty
, size
)) != NULL
) {
497 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room
);
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
511 * Locking: Called functions may take tty->buf.lock
514 int tty_insert_flip_string(struct tty_struct
*tty
, const unsigned char *chars
,
519 int space
= tty_buffer_request_room(tty
, size
- copied
);
520 struct tty_buffer
*tb
= tty
->buf
.tail
;
521 /* If there is no space then tb may be NULL */
522 if (unlikely(space
== 0))
524 memcpy(tb
->char_buf_ptr
+ tb
->used
, chars
, space
);
525 memset(tb
->flag_buf_ptr
+ tb
->used
, TTY_NORMAL
, space
);
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size
> copied
));
534 EXPORT_SYMBOL(tty_insert_flip_string
);
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
547 * Locking: Called functions may take tty->buf.lock
550 int tty_insert_flip_string_flags(struct tty_struct
*tty
,
551 const unsigned char *chars
, const char *flags
, size_t size
)
555 int space
= tty_buffer_request_room(tty
, size
- copied
);
556 struct tty_buffer
*tb
= tty
->buf
.tail
;
557 /* If there is no space then tb may be NULL */
558 if (unlikely(space
== 0))
560 memcpy(tb
->char_buf_ptr
+ tb
->used
, chars
, space
);
561 memcpy(tb
->flag_buf_ptr
+ tb
->used
, flags
, space
);
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size
> copied
));
571 EXPORT_SYMBOL(tty_insert_flip_string_flags
);
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
581 * Locking: Takes tty->buf.lock
584 void tty_schedule_flip(struct tty_struct
*tty
)
587 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
588 if (tty
->buf
.tail
!= NULL
)
589 tty
->buf
.tail
->commit
= tty
->buf
.tail
->used
;
590 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
591 schedule_delayed_work(&tty
->buf
.work
, 1);
593 EXPORT_SYMBOL(tty_schedule_flip
);
596 * tty_prepare_flip_string - make room for characters
598 * @chars: return pointer for character write area
599 * @size: desired size
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
607 * Locking: May call functions taking tty->buf.lock
610 int tty_prepare_flip_string(struct tty_struct
*tty
, unsigned char **chars
,
613 int space
= tty_buffer_request_room(tty
, size
);
615 struct tty_buffer
*tb
= tty
->buf
.tail
;
616 *chars
= tb
->char_buf_ptr
+ tb
->used
;
617 memset(tb
->flag_buf_ptr
+ tb
->used
, TTY_NORMAL
, space
);
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string
);
626 * tty_prepare_flip_string_flags - make room for characters
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
638 * Locking: May call functions taking tty->buf.lock
641 int tty_prepare_flip_string_flags(struct tty_struct
*tty
,
642 unsigned char **chars
, char **flags
, size_t size
)
644 int space
= tty_buffer_request_room(tty
, size
);
646 struct tty_buffer
*tb
= tty
->buf
.tail
;
647 *chars
= tb
->char_buf_ptr
+ tb
->used
;
648 *flags
= tb
->flag_buf_ptr
+ tb
->used
;
654 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags
);
659 * get_tty_driver - find device of a tty
660 * @dev_t: device identifier
661 * @index: returns the index of the tty
663 * This routine returns a tty driver structure, given a device number
664 * and also passes back the index number.
666 * Locking: caller must hold tty_mutex
669 static struct tty_driver
*get_tty_driver(dev_t device
, int *index
)
671 struct tty_driver
*p
;
673 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
674 dev_t base
= MKDEV(p
->major
, p
->minor_start
);
675 if (device
< base
|| device
>= base
+ p
->num
)
677 *index
= device
- base
;
683 #ifdef CONFIG_CONSOLE_POLL
686 * tty_find_polling_driver - find device of a polled tty
687 * @name: name string to match
688 * @line: pointer to resulting tty line nr
690 * This routine returns a tty driver structure, given a name
691 * and the condition that the tty driver is capable of polled
694 struct tty_driver
*tty_find_polling_driver(char *name
, int *line
)
696 struct tty_driver
*p
, *res
= NULL
;
701 for (str
= name
; *str
; str
++)
702 if ((*str
>= '0' && *str
<= '9') || *str
== ',')
708 tty_line
= simple_strtoul(str
, &str
, 10);
710 mutex_lock(&tty_mutex
);
711 /* Search through the tty devices to look for a match */
712 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
713 if (strncmp(name
, p
->name
, len
) != 0)
720 if (tty_line
>= 0 && tty_line
<= p
->num
&& p
->ops
&&
721 p
->ops
->poll_init
&& !p
->ops
->poll_init(p
, tty_line
, str
)) {
727 mutex_unlock(&tty_mutex
);
731 EXPORT_SYMBOL_GPL(tty_find_polling_driver
);
735 * tty_check_change - check for POSIX terminal changes
738 * If we try to write to, or set the state of, a terminal and we're
739 * not in the foreground, send a SIGTTOU. If the signal is blocked or
740 * ignored, go ahead and perform the operation. (POSIX 7.2)
745 int tty_check_change(struct tty_struct
*tty
)
750 if (current
->signal
->tty
!= tty
)
753 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
756 printk(KERN_WARNING
"tty_check_change: tty->pgrp == NULL!\n");
759 if (task_pgrp(current
) == tty
->pgrp
)
761 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
762 if (is_ignored(SIGTTOU
))
764 if (is_current_pgrp_orphaned()) {
768 kill_pgrp(task_pgrp(current
), SIGTTOU
, 1);
769 set_thread_flag(TIF_SIGPENDING
);
774 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
778 EXPORT_SYMBOL(tty_check_change
);
780 static ssize_t
hung_up_tty_read(struct file
*file
, char __user
*buf
,
781 size_t count
, loff_t
*ppos
)
786 static ssize_t
hung_up_tty_write(struct file
*file
, const char __user
*buf
,
787 size_t count
, loff_t
*ppos
)
792 /* No kernel lock held - none needed ;) */
793 static unsigned int hung_up_tty_poll(struct file
*filp
, poll_table
*wait
)
795 return POLLIN
| POLLOUT
| POLLERR
| POLLHUP
| POLLRDNORM
| POLLWRNORM
;
798 static long hung_up_tty_ioctl(struct file
*file
, unsigned int cmd
,
801 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
804 static long hung_up_tty_compat_ioctl(struct file
*file
,
805 unsigned int cmd
, unsigned long arg
)
807 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
810 static const struct file_operations tty_fops
= {
815 .unlocked_ioctl
= tty_ioctl
,
816 .compat_ioctl
= tty_compat_ioctl
,
818 .release
= tty_release
,
819 .fasync
= tty_fasync
,
822 #ifdef CONFIG_UNIX98_PTYS
823 static const struct file_operations ptmx_fops
= {
828 .unlocked_ioctl
= tty_ioctl
,
829 .compat_ioctl
= tty_compat_ioctl
,
831 .release
= tty_release
,
832 .fasync
= tty_fasync
,
836 static const struct file_operations console_fops
= {
839 .write
= redirected_tty_write
,
841 .unlocked_ioctl
= tty_ioctl
,
842 .compat_ioctl
= tty_compat_ioctl
,
844 .release
= tty_release
,
845 .fasync
= tty_fasync
,
848 static const struct file_operations hung_up_tty_fops
= {
850 .read
= hung_up_tty_read
,
851 .write
= hung_up_tty_write
,
852 .poll
= hung_up_tty_poll
,
853 .unlocked_ioctl
= hung_up_tty_ioctl
,
854 .compat_ioctl
= hung_up_tty_compat_ioctl
,
855 .release
= tty_release
,
858 static DEFINE_SPINLOCK(redirect_lock
);
859 static struct file
*redirect
;
862 * tty_wakeup - request more data
865 * Internal and external helper for wakeups of tty. This function
866 * informs the line discipline if present that the driver is ready
867 * to receive more output data.
870 void tty_wakeup(struct tty_struct
*tty
)
872 struct tty_ldisc
*ld
;
874 if (test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) {
875 ld
= tty_ldisc_ref(tty
);
877 if (ld
->ops
->write_wakeup
)
878 ld
->ops
->write_wakeup(tty
);
882 wake_up_interruptible(&tty
->write_wait
);
885 EXPORT_SYMBOL_GPL(tty_wakeup
);
888 * tty_ldisc_flush - flush line discipline queue
891 * Flush the line discipline queue (if any) for this tty. If there
892 * is no line discipline active this is a no-op.
895 void tty_ldisc_flush(struct tty_struct
*tty
)
897 struct tty_ldisc
*ld
= tty_ldisc_ref(tty
);
899 if (ld
->ops
->flush_buffer
)
900 ld
->ops
->flush_buffer(tty
);
903 tty_buffer_flush(tty
);
906 EXPORT_SYMBOL_GPL(tty_ldisc_flush
);
909 * tty_reset_termios - reset terminal state
912 * Restore a terminal to the driver default state
915 static void tty_reset_termios(struct tty_struct
*tty
)
917 mutex_lock(&tty
->termios_mutex
);
918 *tty
->termios
= tty
->driver
->init_termios
;
919 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
920 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
921 mutex_unlock(&tty
->termios_mutex
);
925 * do_tty_hangup - actual handler for hangup events
928 * This can be called by the "eventd" kernel thread. That is process
929 * synchronous but doesn't hold any locks, so we need to make sure we
930 * have the appropriate locks for what we're doing.
932 * The hangup event clears any pending redirections onto the hung up
933 * device. It ensures future writes will error and it does the needed
934 * line discipline hangup and signal delivery. The tty object itself
939 * redirect lock for undoing redirection
940 * file list lock for manipulating list of ttys
941 * tty_ldisc_lock from called functions
942 * termios_mutex resetting termios data
943 * tasklist_lock to walk task list for hangup event
944 * ->siglock to protect ->signal/->sighand
946 static void do_tty_hangup(struct work_struct
*work
)
948 struct tty_struct
*tty
=
949 container_of(work
, struct tty_struct
, hangup_work
);
950 struct file
*cons_filp
= NULL
;
951 struct file
*filp
, *f
= NULL
;
952 struct task_struct
*p
;
953 struct tty_ldisc
*ld
;
954 int closecount
= 0, n
;
960 /* inuse_filps is protected by the single kernel lock */
963 spin_lock(&redirect_lock
);
964 if (redirect
&& redirect
->private_data
== tty
) {
968 spin_unlock(&redirect_lock
);
970 check_tty_count(tty
, "do_tty_hangup");
972 /* This breaks for file handles being sent over AF_UNIX sockets ? */
973 list_for_each_entry(filp
, &tty
->tty_files
, f_u
.fu_list
) {
974 if (filp
->f_op
->write
== redirected_tty_write
)
976 if (filp
->f_op
->write
!= tty_write
)
979 tty_fasync(-1, filp
, 0); /* can't block */
980 filp
->f_op
= &hung_up_tty_fops
;
984 * FIXME! What are the locking issues here? This may me overdoing
985 * things... This question is especially important now that we've
986 * removed the irqlock.
988 ld
= tty_ldisc_ref(tty
);
990 /* We may have no line discipline at this point */
991 if (ld
->ops
->flush_buffer
)
992 ld
->ops
->flush_buffer(tty
);
993 tty_driver_flush_buffer(tty
);
994 if ((test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) &&
995 ld
->ops
->write_wakeup
)
996 ld
->ops
->write_wakeup(tty
);
998 ld
->ops
->hangup(tty
);
1001 * FIXME: Once we trust the LDISC code better we can wait here for
1002 * ldisc completion and fix the driver call race
1004 wake_up_interruptible(&tty
->write_wait
);
1005 wake_up_interruptible(&tty
->read_wait
);
1007 * Shutdown the current line discipline, and reset it to
1010 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
)
1011 tty_reset_termios(tty
);
1012 /* Defer ldisc switch */
1013 /* tty_deferred_ldisc_switch(N_TTY);
1015 This should get done automatically when the port closes and
1016 tty_release is called */
1018 read_lock(&tasklist_lock
);
1020 do_each_pid_task(tty
->session
, PIDTYPE_SID
, p
) {
1021 spin_lock_irq(&p
->sighand
->siglock
);
1022 if (p
->signal
->tty
== tty
)
1023 p
->signal
->tty
= NULL
;
1024 if (!p
->signal
->leader
) {
1025 spin_unlock_irq(&p
->sighand
->siglock
);
1028 __group_send_sig_info(SIGHUP
, SEND_SIG_PRIV
, p
);
1029 __group_send_sig_info(SIGCONT
, SEND_SIG_PRIV
, p
);
1030 put_pid(p
->signal
->tty_old_pgrp
); /* A noop */
1031 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
1033 p
->signal
->tty_old_pgrp
= get_pid(tty
->pgrp
);
1034 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1035 spin_unlock_irq(&p
->sighand
->siglock
);
1036 } while_each_pid_task(tty
->session
, PIDTYPE_SID
, p
);
1038 read_unlock(&tasklist_lock
);
1040 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
1042 put_pid(tty
->session
);
1044 tty
->session
= NULL
;
1046 tty
->ctrl_status
= 0;
1047 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1050 * If one of the devices matches a console pointer, we
1051 * cannot just call hangup() because that will cause
1052 * tty->count and state->count to go out of sync.
1053 * So we just call close() the right number of times.
1056 if (tty
->ops
->close
)
1057 for (n
= 0; n
< closecount
; n
++)
1058 tty
->ops
->close(tty
, cons_filp
);
1059 } else if (tty
->ops
->hangup
)
1060 (tty
->ops
->hangup
)(tty
);
1062 * We don't want to have driver/ldisc interactions beyond
1063 * the ones we did here. The driver layer expects no
1064 * calls after ->hangup() from the ldisc side. However we
1065 * can't yet guarantee all that.
1067 set_bit(TTY_HUPPED
, &tty
->flags
);
1069 tty_ldisc_enable(tty
);
1070 tty_ldisc_deref(ld
);
1078 * tty_hangup - trigger a hangup event
1079 * @tty: tty to hangup
1081 * A carrier loss (virtual or otherwise) has occurred on this like
1082 * schedule a hangup sequence to run after this event.
1085 void tty_hangup(struct tty_struct
*tty
)
1087 #ifdef TTY_DEBUG_HANGUP
1089 printk(KERN_DEBUG
"%s hangup...\n", tty_name(tty
, buf
));
1091 schedule_work(&tty
->hangup_work
);
1094 EXPORT_SYMBOL(tty_hangup
);
1097 * tty_vhangup - process vhangup
1098 * @tty: tty to hangup
1100 * The user has asked via system call for the terminal to be hung up.
1101 * We do this synchronously so that when the syscall returns the process
1102 * is complete. That guarantee is necessary for security reasons.
1105 void tty_vhangup(struct tty_struct
*tty
)
1107 #ifdef TTY_DEBUG_HANGUP
1110 printk(KERN_DEBUG
"%s vhangup...\n", tty_name(tty
, buf
));
1112 do_tty_hangup(&tty
->hangup_work
);
1115 EXPORT_SYMBOL(tty_vhangup
);
1118 * tty_hung_up_p - was tty hung up
1119 * @filp: file pointer of tty
1121 * Return true if the tty has been subject to a vhangup or a carrier
1125 int tty_hung_up_p(struct file
*filp
)
1127 return (filp
->f_op
== &hung_up_tty_fops
);
1130 EXPORT_SYMBOL(tty_hung_up_p
);
1132 static void session_clear_tty(struct pid
*session
)
1134 struct task_struct
*p
;
1135 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
1137 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
1141 * disassociate_ctty - disconnect controlling tty
1142 * @on_exit: true if exiting so need to "hang up" the session
1144 * This function is typically called only by the session leader, when
1145 * it wants to disassociate itself from its controlling tty.
1147 * It performs the following functions:
1148 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1149 * (2) Clears the tty from being controlling the session
1150 * (3) Clears the controlling tty for all processes in the
1153 * The argument on_exit is set to 1 if called when a process is
1154 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1157 * BKL is taken for hysterical raisins
1158 * tty_mutex is taken to protect tty
1159 * ->siglock is taken to protect ->signal/->sighand
1160 * tasklist_lock is taken to walk process list for sessions
1161 * ->siglock is taken to protect ->signal/->sighand
1164 void disassociate_ctty(int on_exit
)
1166 struct tty_struct
*tty
;
1167 struct pid
*tty_pgrp
= NULL
;
1170 mutex_lock(&tty_mutex
);
1171 tty
= get_current_tty();
1173 tty_pgrp
= get_pid(tty
->pgrp
);
1175 mutex_unlock(&tty_mutex
);
1176 /* XXX: here we race, there is nothing protecting tty */
1177 if (on_exit
&& tty
->driver
->type
!= TTY_DRIVER_TYPE_PTY
)
1180 } else if (on_exit
) {
1181 struct pid
*old_pgrp
;
1182 spin_lock_irq(¤t
->sighand
->siglock
);
1183 old_pgrp
= current
->signal
->tty_old_pgrp
;
1184 current
->signal
->tty_old_pgrp
= NULL
;
1185 spin_unlock_irq(¤t
->sighand
->siglock
);
1187 kill_pgrp(old_pgrp
, SIGHUP
, on_exit
);
1188 kill_pgrp(old_pgrp
, SIGCONT
, on_exit
);
1191 mutex_unlock(&tty_mutex
);
1195 kill_pgrp(tty_pgrp
, SIGHUP
, on_exit
);
1197 kill_pgrp(tty_pgrp
, SIGCONT
, on_exit
);
1201 spin_lock_irq(¤t
->sighand
->siglock
);
1202 put_pid(current
->signal
->tty_old_pgrp
);
1203 current
->signal
->tty_old_pgrp
= NULL
;
1204 spin_unlock_irq(¤t
->sighand
->siglock
);
1206 mutex_lock(&tty_mutex
);
1207 /* It is possible that do_tty_hangup has free'd this tty */
1208 tty
= get_current_tty();
1210 unsigned long flags
;
1211 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
1212 put_pid(tty
->session
);
1214 tty
->session
= NULL
;
1216 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1218 #ifdef TTY_DEBUG_HANGUP
1219 printk(KERN_DEBUG
"error attempted to write to tty [0x%p]"
1223 mutex_unlock(&tty_mutex
);
1225 /* Now clear signal->tty under the lock */
1226 read_lock(&tasklist_lock
);
1227 session_clear_tty(task_session(current
));
1228 read_unlock(&tasklist_lock
);
1233 * no_tty - Ensure the current process does not have a controlling tty
1237 struct task_struct
*tsk
= current
;
1239 if (tsk
->signal
->leader
)
1240 disassociate_ctty(0);
1242 proc_clear_tty(tsk
);
1247 * stop_tty - propagate flow control
1250 * Perform flow control to the driver. For PTY/TTY pairs we
1251 * must also propagate the TIOCKPKT status. May be called
1252 * on an already stopped device and will not re-call the driver
1255 * This functionality is used by both the line disciplines for
1256 * halting incoming flow and by the driver. It may therefore be
1257 * called from any context, may be under the tty atomic_write_lock
1261 * Uses the tty control lock internally
1264 void stop_tty(struct tty_struct
*tty
)
1266 unsigned long flags
;
1267 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
1269 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1273 if (tty
->link
&& tty
->link
->packet
) {
1274 tty
->ctrl_status
&= ~TIOCPKT_START
;
1275 tty
->ctrl_status
|= TIOCPKT_STOP
;
1276 wake_up_interruptible(&tty
->link
->read_wait
);
1278 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1280 (tty
->ops
->stop
)(tty
);
1283 EXPORT_SYMBOL(stop_tty
);
1286 * start_tty - propagate flow control
1287 * @tty: tty to start
1289 * Start a tty that has been stopped if at all possible. Perform
1290 * any necessary wakeups and propagate the TIOCPKT status. If this
1291 * is the tty was previous stopped and is being started then the
1292 * driver start method is invoked and the line discipline woken.
1298 void start_tty(struct tty_struct
*tty
)
1300 unsigned long flags
;
1301 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
1302 if (!tty
->stopped
|| tty
->flow_stopped
) {
1303 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1307 if (tty
->link
&& tty
->link
->packet
) {
1308 tty
->ctrl_status
&= ~TIOCPKT_STOP
;
1309 tty
->ctrl_status
|= TIOCPKT_START
;
1310 wake_up_interruptible(&tty
->link
->read_wait
);
1312 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
1313 if (tty
->ops
->start
)
1314 (tty
->ops
->start
)(tty
);
1315 /* If we have a running line discipline it may need kicking */
1319 EXPORT_SYMBOL(start_tty
);
1322 * tty_read - read method for tty device files
1323 * @file: pointer to tty file
1325 * @count: size of user buffer
1328 * Perform the read system call function on this terminal device. Checks
1329 * for hung up devices before calling the line discipline method.
1332 * Locks the line discipline internally while needed. Multiple
1333 * read calls may be outstanding in parallel.
1336 static ssize_t
tty_read(struct file
*file
, char __user
*buf
, size_t count
,
1340 struct tty_struct
*tty
;
1341 struct inode
*inode
;
1342 struct tty_ldisc
*ld
;
1344 tty
= (struct tty_struct
*)file
->private_data
;
1345 inode
= file
->f_path
.dentry
->d_inode
;
1346 if (tty_paranoia_check(tty
, inode
, "tty_read"))
1348 if (!tty
|| (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1351 /* We want to wait for the line discipline to sort out in this
1353 ld
= tty_ldisc_ref_wait(tty
);
1355 i
= (ld
->ops
->read
)(tty
, file
, buf
, count
);
1358 tty_ldisc_deref(ld
);
1360 inode
->i_atime
= current_fs_time(inode
->i_sb
);
1364 void tty_write_unlock(struct tty_struct
*tty
)
1366 mutex_unlock(&tty
->atomic_write_lock
);
1367 wake_up_interruptible(&tty
->write_wait
);
1370 int tty_write_lock(struct tty_struct
*tty
, int ndelay
)
1372 if (!mutex_trylock(&tty
->atomic_write_lock
)) {
1375 if (mutex_lock_interruptible(&tty
->atomic_write_lock
))
1376 return -ERESTARTSYS
;
1382 * Split writes up in sane blocksizes to avoid
1383 * denial-of-service type attacks
1385 static inline ssize_t
do_tty_write(
1386 ssize_t (*write
)(struct tty_struct
*, struct file
*, const unsigned char *, size_t),
1387 struct tty_struct
*tty
,
1389 const char __user
*buf
,
1392 ssize_t ret
, written
= 0;
1395 ret
= tty_write_lock(tty
, file
->f_flags
& O_NDELAY
);
1400 * We chunk up writes into a temporary buffer. This
1401 * simplifies low-level drivers immensely, since they
1402 * don't have locking issues and user mode accesses.
1404 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1407 * The default chunk-size is 2kB, because the NTTY
1408 * layer has problems with bigger chunks. It will
1409 * claim to be able to handle more characters than
1412 * FIXME: This can probably go away now except that 64K chunks
1413 * are too likely to fail unless switched to vmalloc...
1416 if (test_bit(TTY_NO_WRITE_SPLIT
, &tty
->flags
))
1421 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1422 if (tty
->write_cnt
< chunk
) {
1428 buf
= kmalloc(chunk
, GFP_KERNEL
);
1433 kfree(tty
->write_buf
);
1434 tty
->write_cnt
= chunk
;
1435 tty
->write_buf
= buf
;
1438 /* Do the write .. */
1440 size_t size
= count
;
1444 if (copy_from_user(tty
->write_buf
, buf
, size
))
1446 ret
= write(tty
, file
, tty
->write_buf
, size
);
1455 if (signal_pending(current
))
1460 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1461 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1465 tty_write_unlock(tty
);
1471 * tty_write - write method for tty device file
1472 * @file: tty file pointer
1473 * @buf: user data to write
1474 * @count: bytes to write
1477 * Write data to a tty device via the line discipline.
1480 * Locks the line discipline as required
1481 * Writes to the tty driver are serialized by the atomic_write_lock
1482 * and are then processed in chunks to the device. The line discipline
1483 * write method will not be involked in parallel for each device
1484 * The line discipline write method is called under the big
1485 * kernel lock for historical reasons. New code should not rely on this.
1488 static ssize_t
tty_write(struct file
*file
, const char __user
*buf
,
1489 size_t count
, loff_t
*ppos
)
1491 struct tty_struct
*tty
;
1492 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1494 struct tty_ldisc
*ld
;
1496 tty
= (struct tty_struct
*)file
->private_data
;
1497 if (tty_paranoia_check(tty
, inode
, "tty_write"))
1499 if (!tty
|| !tty
->ops
->write
||
1500 (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1502 /* Short term debug to catch buggy drivers */
1503 if (tty
->ops
->write_room
== NULL
)
1504 printk(KERN_ERR
"tty driver %s lacks a write_room method.\n",
1506 ld
= tty_ldisc_ref_wait(tty
);
1507 if (!ld
->ops
->write
)
1510 ret
= do_tty_write(ld
->ops
->write
, tty
, file
, buf
, count
);
1511 tty_ldisc_deref(ld
);
1515 ssize_t
redirected_tty_write(struct file
*file
, const char __user
*buf
,
1516 size_t count
, loff_t
*ppos
)
1518 struct file
*p
= NULL
;
1520 spin_lock(&redirect_lock
);
1525 spin_unlock(&redirect_lock
);
1529 res
= vfs_write(p
, buf
, count
, &p
->f_pos
);
1533 return tty_write(file
, buf
, count
, ppos
);
1536 void tty_port_init(struct tty_port
*port
)
1538 memset(port
, 0, sizeof(*port
));
1539 init_waitqueue_head(&port
->open_wait
);
1540 init_waitqueue_head(&port
->close_wait
);
1541 mutex_init(&port
->mutex
);
1542 port
->close_delay
= (50 * HZ
) / 100;
1543 port
->closing_wait
= (3000 * HZ
) / 100;
1545 EXPORT_SYMBOL(tty_port_init
);
1547 int tty_port_alloc_xmit_buf(struct tty_port
*port
)
1549 /* We may sleep in get_zeroed_page() */
1550 mutex_lock(&port
->mutex
);
1551 if (port
->xmit_buf
== NULL
)
1552 port
->xmit_buf
= (unsigned char *)get_zeroed_page(GFP_KERNEL
);
1553 mutex_unlock(&port
->mutex
);
1554 if (port
->xmit_buf
== NULL
)
1558 EXPORT_SYMBOL(tty_port_alloc_xmit_buf
);
1560 void tty_port_free_xmit_buf(struct tty_port
*port
)
1562 mutex_lock(&port
->mutex
);
1563 if (port
->xmit_buf
!= NULL
) {
1564 free_page((unsigned long)port
->xmit_buf
);
1565 port
->xmit_buf
= NULL
;
1567 mutex_unlock(&port
->mutex
);
1569 EXPORT_SYMBOL(tty_port_free_xmit_buf
);
1572 static char ptychar
[] = "pqrstuvwxyzabcde";
1575 * pty_line_name - generate name for a pty
1576 * @driver: the tty driver in use
1577 * @index: the minor number
1578 * @p: output buffer of at least 6 bytes
1580 * Generate a name from a driver reference and write it to the output
1585 static void pty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1587 int i
= index
+ driver
->name_base
;
1588 /* ->name is initialized to "ttyp", but "tty" is expected */
1589 sprintf(p
, "%s%c%x",
1590 driver
->subtype
== PTY_TYPE_SLAVE
? "tty" : driver
->name
,
1591 ptychar
[i
>> 4 & 0xf], i
& 0xf);
1595 * pty_line_name - generate name for a tty
1596 * @driver: the tty driver in use
1597 * @index: the minor number
1598 * @p: output buffer of at least 7 bytes
1600 * Generate a name from a driver reference and write it to the output
1605 static void tty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1607 sprintf(p
, "%s%d", driver
->name
, index
+ driver
->name_base
);
1611 * init_dev - initialise a tty device
1612 * @driver: tty driver we are opening a device on
1613 * @idx: device index
1614 * @tty: returned tty structure
1616 * Prepare a tty device. This may not be a "new" clean device but
1617 * could also be an active device. The pty drivers require special
1618 * handling because of this.
1621 * The function is called under the tty_mutex, which
1622 * protects us from the tty struct or driver itself going away.
1624 * On exit the tty device has the line discipline attached and
1625 * a reference count of 1. If a pair was created for pty/tty use
1626 * and the other was a pty master then it too has a reference count of 1.
1628 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1629 * failed open. The new code protects the open with a mutex, so it's
1630 * really quite straightforward. The mutex locking can probably be
1631 * relaxed for the (most common) case of reopening a tty.
1634 static int init_dev(struct tty_driver
*driver
, int idx
,
1635 struct tty_struct
**ret_tty
)
1637 struct tty_struct
*tty
, *o_tty
;
1638 struct ktermios
*tp
, **tp_loc
, *o_tp
, **o_tp_loc
;
1639 struct ktermios
*ltp
, **ltp_loc
, *o_ltp
, **o_ltp_loc
;
1642 /* check whether we're reopening an existing tty */
1643 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1644 tty
= devpts_get_tty(idx
);
1646 * If we don't have a tty here on a slave open, it's because
1647 * the master already started the close process and there's
1648 * no relation between devpts file and tty anymore.
1650 if (!tty
&& driver
->subtype
== PTY_TYPE_SLAVE
) {
1655 * It's safe from now on because init_dev() is called with
1656 * tty_mutex held and release_dev() won't change tty->count
1657 * or tty->flags without having to grab tty_mutex
1659 if (tty
&& driver
->subtype
== PTY_TYPE_MASTER
)
1662 tty
= driver
->ttys
[idx
];
1664 if (tty
) goto fast_track
;
1667 * First time open is complex, especially for PTY devices.
1668 * This code guarantees that either everything succeeds and the
1669 * TTY is ready for operation, or else the table slots are vacated
1670 * and the allocated memory released. (Except that the termios
1671 * and locked termios may be retained.)
1674 if (!try_module_get(driver
->owner
)) {
1683 tty
= alloc_tty_struct();
1686 initialize_tty_struct(tty
);
1687 tty
->driver
= driver
;
1688 tty
->ops
= driver
->ops
;
1690 tty_line_name(driver
, idx
, tty
->name
);
1692 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1693 tp_loc
= &tty
->termios
;
1694 ltp_loc
= &tty
->termios_locked
;
1696 tp_loc
= &driver
->termios
[idx
];
1697 ltp_loc
= &driver
->termios_locked
[idx
];
1701 tp
= kmalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1704 *tp
= driver
->init_termios
;
1708 ltp
= kzalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1713 if (driver
->type
== TTY_DRIVER_TYPE_PTY
) {
1714 o_tty
= alloc_tty_struct();
1717 initialize_tty_struct(o_tty
);
1718 o_tty
->driver
= driver
->other
;
1719 o_tty
->ops
= driver
->ops
;
1721 tty_line_name(driver
->other
, idx
, o_tty
->name
);
1723 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1724 o_tp_loc
= &o_tty
->termios
;
1725 o_ltp_loc
= &o_tty
->termios_locked
;
1727 o_tp_loc
= &driver
->other
->termios
[idx
];
1728 o_ltp_loc
= &driver
->other
->termios_locked
[idx
];
1732 o_tp
= kmalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1735 *o_tp
= driver
->other
->init_termios
;
1739 o_ltp
= kzalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1745 * Everything allocated ... set up the o_tty structure.
1747 if (!(driver
->other
->flags
& TTY_DRIVER_DEVPTS_MEM
))
1748 driver
->other
->ttys
[idx
] = o_tty
;
1753 o_tty
->termios
= *o_tp_loc
;
1754 o_tty
->termios_locked
= *o_ltp_loc
;
1755 driver
->other
->refcount
++;
1756 if (driver
->subtype
== PTY_TYPE_MASTER
)
1759 /* Establish the links in both directions */
1765 * All structures have been allocated, so now we install them.
1766 * Failures after this point use release_tty to clean up, so
1767 * there's no need to null out the local pointers.
1769 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
))
1770 driver
->ttys
[idx
] = tty
;
1776 tty
->termios
= *tp_loc
;
1777 tty
->termios_locked
= *ltp_loc
;
1778 /* Compatibility until drivers always set this */
1779 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
1780 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
1785 * Structures all installed ... call the ldisc open routines.
1786 * If we fail here just call release_tty to clean up. No need
1787 * to decrement the use counts, as release_tty doesn't care.
1790 retval
= tty_ldisc_setup(tty
, o_tty
);
1793 goto release_mem_out
;
1797 * This fast open can be used if the tty is already open.
1798 * No memory is allocated, and the only failures are from
1799 * attempting to open a closing tty or attempting multiple
1800 * opens on a pty master.
1803 if (test_bit(TTY_CLOSING
, &tty
->flags
)) {
1807 if (driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1808 driver
->subtype
== PTY_TYPE_MASTER
) {
1810 * special case for PTY masters: only one open permitted,
1811 * and the slave side open count is incremented as well.
1820 tty
->driver
= driver
; /* N.B. why do this every time?? */
1823 if (!test_bit(TTY_LDISC
, &tty
->flags
))
1824 printk(KERN_ERR
"init_dev but no ldisc\n");
1828 /* All paths come through here to release the mutex */
1832 /* Release locally allocated memory ... nothing placed in slots */
1836 free_tty_struct(o_tty
);
1839 free_tty_struct(tty
);
1842 module_put(driver
->owner
);
1846 /* call the tty release_tty routine to clean out this slot */
1848 if (printk_ratelimit())
1849 printk(KERN_INFO
"init_dev: ldisc open failed, "
1850 "clearing slot %d\n", idx
);
1851 release_tty(tty
, idx
);
1856 * release_one_tty - release tty structure memory
1858 * Releases memory associated with a tty structure, and clears out the
1859 * driver table slots. This function is called when a device is no longer
1860 * in use. It also gets called when setup of a device fails.
1863 * tty_mutex - sometimes only
1864 * takes the file list lock internally when working on the list
1865 * of ttys that the driver keeps.
1866 * FIXME: should we require tty_mutex is held here ??
1868 static void release_one_tty(struct tty_struct
*tty
, int idx
)
1870 int devpts
= tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
;
1871 struct ktermios
*tp
;
1874 tty
->driver
->ttys
[idx
] = NULL
;
1876 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
) {
1879 tty
->driver
->termios
[idx
] = NULL
;
1882 tp
= tty
->termios_locked
;
1884 tty
->driver
->termios_locked
[idx
] = NULL
;
1890 tty
->driver
->refcount
--;
1893 list_del_init(&tty
->tty_files
);
1896 free_tty_struct(tty
);
1900 * release_tty - release tty structure memory
1902 * Release both @tty and a possible linked partner (think pty pair),
1903 * and decrement the refcount of the backing module.
1906 * tty_mutex - sometimes only
1907 * takes the file list lock internally when working on the list
1908 * of ttys that the driver keeps.
1909 * FIXME: should we require tty_mutex is held here ??
1911 static void release_tty(struct tty_struct
*tty
, int idx
)
1913 struct tty_driver
*driver
= tty
->driver
;
1916 release_one_tty(tty
->link
, idx
);
1917 release_one_tty(tty
, idx
);
1918 module_put(driver
->owner
);
1922 * Even releasing the tty structures is a tricky business.. We have
1923 * to be very careful that the structures are all released at the
1924 * same time, as interrupts might otherwise get the wrong pointers.
1926 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1927 * lead to double frees or releasing memory still in use.
1929 static void release_dev(struct file
*filp
)
1931 struct tty_struct
*tty
, *o_tty
;
1932 int pty_master
, tty_closing
, o_tty_closing
, do_sleep
;
1937 tty
= (struct tty_struct
*)filp
->private_data
;
1938 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
,
1942 check_tty_count(tty
, "release_dev");
1944 tty_fasync(-1, filp
, 0);
1947 pty_master
= (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1948 tty
->driver
->subtype
== PTY_TYPE_MASTER
);
1949 devpts
= (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) != 0;
1952 #ifdef TTY_PARANOIA_CHECK
1953 if (idx
< 0 || idx
>= tty
->driver
->num
) {
1954 printk(KERN_DEBUG
"release_dev: bad idx when trying to "
1955 "free (%s)\n", tty
->name
);
1958 if (!(tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
1959 if (tty
!= tty
->driver
->ttys
[idx
]) {
1960 printk(KERN_DEBUG
"release_dev: driver.table[%d] not tty "
1961 "for (%s)\n", idx
, tty
->name
);
1964 if (tty
->termios
!= tty
->driver
->termios
[idx
]) {
1965 printk(KERN_DEBUG
"release_dev: driver.termios[%d] not termios "
1970 if (tty
->termios_locked
!= tty
->driver
->termios_locked
[idx
]) {
1971 printk(KERN_DEBUG
"release_dev: driver.termios_locked[%d] not "
1972 "termios_locked for (%s)\n",
1979 #ifdef TTY_DEBUG_HANGUP
1980 printk(KERN_DEBUG
"release_dev of %s (tty count=%d)...",
1981 tty_name(tty
, buf
), tty
->count
);
1984 #ifdef TTY_PARANOIA_CHECK
1985 if (tty
->driver
->other
&&
1986 !(tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
1987 if (o_tty
!= tty
->driver
->other
->ttys
[idx
]) {
1988 printk(KERN_DEBUG
"release_dev: other->table[%d] "
1989 "not o_tty for (%s)\n",
1993 if (o_tty
->termios
!= tty
->driver
->other
->termios
[idx
]) {
1994 printk(KERN_DEBUG
"release_dev: other->termios[%d] "
1995 "not o_termios for (%s)\n",
1999 if (o_tty
->termios_locked
!=
2000 tty
->driver
->other
->termios_locked
[idx
]) {
2001 printk(KERN_DEBUG
"release_dev: other->termios_locked["
2002 "%d] not o_termios_locked for (%s)\n",
2006 if (o_tty
->link
!= tty
) {
2007 printk(KERN_DEBUG
"release_dev: bad pty pointers\n");
2012 if (tty
->ops
->close
)
2013 tty
->ops
->close(tty
, filp
);
2016 * Sanity check: if tty->count is going to zero, there shouldn't be
2017 * any waiters on tty->read_wait or tty->write_wait. We test the
2018 * wait queues and kick everyone out _before_ actually starting to
2019 * close. This ensures that we won't block while releasing the tty
2022 * The test for the o_tty closing is necessary, since the master and
2023 * slave sides may close in any order. If the slave side closes out
2024 * first, its count will be one, since the master side holds an open.
2025 * Thus this test wouldn't be triggered at the time the slave closes,
2028 * Note that it's possible for the tty to be opened again while we're
2029 * flushing out waiters. By recalculating the closing flags before
2030 * each iteration we avoid any problems.
2033 /* Guard against races with tty->count changes elsewhere and
2034 opens on /dev/tty */
2036 mutex_lock(&tty_mutex
);
2037 tty_closing
= tty
->count
<= 1;
2038 o_tty_closing
= o_tty
&&
2039 (o_tty
->count
<= (pty_master
? 1 : 0));
2043 if (waitqueue_active(&tty
->read_wait
)) {
2044 wake_up(&tty
->read_wait
);
2047 if (waitqueue_active(&tty
->write_wait
)) {
2048 wake_up(&tty
->write_wait
);
2052 if (o_tty_closing
) {
2053 if (waitqueue_active(&o_tty
->read_wait
)) {
2054 wake_up(&o_tty
->read_wait
);
2057 if (waitqueue_active(&o_tty
->write_wait
)) {
2058 wake_up(&o_tty
->write_wait
);
2065 printk(KERN_WARNING
"release_dev: %s: read/write wait queue "
2066 "active!\n", tty_name(tty
, buf
));
2067 mutex_unlock(&tty_mutex
);
2072 * The closing flags are now consistent with the open counts on
2073 * both sides, and we've completed the last operation that could
2074 * block, so it's safe to proceed with closing.
2077 if (--o_tty
->count
< 0) {
2078 printk(KERN_WARNING
"release_dev: bad pty slave count "
2080 o_tty
->count
, tty_name(o_tty
, buf
));
2084 if (--tty
->count
< 0) {
2085 printk(KERN_WARNING
"release_dev: bad tty->count (%d) for %s\n",
2086 tty
->count
, tty_name(tty
, buf
));
2091 * We've decremented tty->count, so we need to remove this file
2092 * descriptor off the tty->tty_files list; this serves two
2094 * - check_tty_count sees the correct number of file descriptors
2095 * associated with this tty.
2096 * - do_tty_hangup no longer sees this file descriptor as
2097 * something that needs to be handled for hangups.
2100 filp
->private_data
= NULL
;
2103 * Perform some housekeeping before deciding whether to return.
2105 * Set the TTY_CLOSING flag if this was the last open. In the
2106 * case of a pty we may have to wait around for the other side
2107 * to close, and TTY_CLOSING makes sure we can't be reopened.
2110 set_bit(TTY_CLOSING
, &tty
->flags
);
2112 set_bit(TTY_CLOSING
, &o_tty
->flags
);
2115 * If _either_ side is closing, make sure there aren't any
2116 * processes that still think tty or o_tty is their controlling
2119 if (tty_closing
|| o_tty_closing
) {
2120 read_lock(&tasklist_lock
);
2121 session_clear_tty(tty
->session
);
2123 session_clear_tty(o_tty
->session
);
2124 read_unlock(&tasklist_lock
);
2127 mutex_unlock(&tty_mutex
);
2129 /* check whether both sides are closing ... */
2130 if (!tty_closing
|| (o_tty
&& !o_tty_closing
))
2133 #ifdef TTY_DEBUG_HANGUP
2134 printk(KERN_DEBUG
"freeing tty structure...");
2137 * Ask the line discipline code to release its structures
2139 tty_ldisc_release(tty
, o_tty
);
2141 * The release_tty function takes care of the details of clearing
2142 * the slots and preserving the termios structure.
2144 release_tty(tty
, idx
);
2146 /* Make this pty number available for reallocation */
2148 devpts_kill_index(idx
);
2152 * tty_open - open a tty device
2153 * @inode: inode of device file
2154 * @filp: file pointer to tty
2156 * tty_open and tty_release keep up the tty count that contains the
2157 * number of opens done on a tty. We cannot use the inode-count, as
2158 * different inodes might point to the same tty.
2160 * Open-counting is needed for pty masters, as well as for keeping
2161 * track of serial lines: DTR is dropped when the last close happens.
2162 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2164 * The termios state of a pty is reset on first open so that
2165 * settings don't persist across reuse.
2167 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2168 * tty->count should protect the rest.
2169 * ->siglock protects ->signal/->sighand
2172 static int __tty_open(struct inode
*inode
, struct file
*filp
)
2174 struct tty_struct
*tty
;
2176 struct tty_driver
*driver
;
2178 dev_t device
= inode
->i_rdev
;
2179 unsigned short saved_flags
= filp
->f_flags
;
2181 nonseekable_open(inode
, filp
);
2184 noctty
= filp
->f_flags
& O_NOCTTY
;
2188 mutex_lock(&tty_mutex
);
2190 if (device
== MKDEV(TTYAUX_MAJOR
, 0)) {
2191 tty
= get_current_tty();
2193 mutex_unlock(&tty_mutex
);
2196 driver
= tty
->driver
;
2198 filp
->f_flags
|= O_NONBLOCK
; /* Don't let /dev/tty block */
2203 if (device
== MKDEV(TTY_MAJOR
, 0)) {
2204 extern struct tty_driver
*console_driver
;
2205 driver
= console_driver
;
2211 if (device
== MKDEV(TTYAUX_MAJOR
, 1)) {
2212 driver
= console_device(&index
);
2214 /* Don't let /dev/console block */
2215 filp
->f_flags
|= O_NONBLOCK
;
2219 mutex_unlock(&tty_mutex
);
2223 driver
= get_tty_driver(device
, &index
);
2225 mutex_unlock(&tty_mutex
);
2229 retval
= init_dev(driver
, index
, &tty
);
2230 mutex_unlock(&tty_mutex
);
2234 filp
->private_data
= tty
;
2235 file_move(filp
, &tty
->tty_files
);
2236 check_tty_count(tty
, "tty_open");
2237 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2238 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2240 #ifdef TTY_DEBUG_HANGUP
2241 printk(KERN_DEBUG
"opening %s...", tty
->name
);
2245 retval
= tty
->ops
->open(tty
, filp
);
2249 filp
->f_flags
= saved_flags
;
2251 if (!retval
&& test_bit(TTY_EXCLUSIVE
, &tty
->flags
) &&
2252 !capable(CAP_SYS_ADMIN
))
2256 #ifdef TTY_DEBUG_HANGUP
2257 printk(KERN_DEBUG
"error %d in opening %s...", retval
,
2261 if (retval
!= -ERESTARTSYS
)
2263 if (signal_pending(current
))
2267 * Need to reset f_op in case a hangup happened.
2269 if (filp
->f_op
== &hung_up_tty_fops
)
2270 filp
->f_op
= &tty_fops
;
2274 mutex_lock(&tty_mutex
);
2275 spin_lock_irq(¤t
->sighand
->siglock
);
2277 current
->signal
->leader
&&
2278 !current
->signal
->tty
&&
2279 tty
->session
== NULL
)
2280 __proc_set_tty(current
, tty
);
2281 spin_unlock_irq(¤t
->sighand
->siglock
);
2282 mutex_unlock(&tty_mutex
);
2286 /* BKL pushdown: scary code avoidance wrapper */
2287 static int tty_open(struct inode
*inode
, struct file
*filp
)
2292 ret
= __tty_open(inode
, filp
);
2299 #ifdef CONFIG_UNIX98_PTYS
2301 * ptmx_open - open a unix 98 pty master
2302 * @inode: inode of device file
2303 * @filp: file pointer to tty
2305 * Allocate a unix98 pty master device from the ptmx driver.
2307 * Locking: tty_mutex protects theinit_dev work. tty->count should
2309 * allocated_ptys_lock handles the list of free pty numbers
2312 static int __ptmx_open(struct inode
*inode
, struct file
*filp
)
2314 struct tty_struct
*tty
;
2318 nonseekable_open(inode
, filp
);
2320 /* find a device that is not in use. */
2321 index
= devpts_new_index();
2325 mutex_lock(&tty_mutex
);
2326 retval
= init_dev(ptm_driver
, index
, &tty
);
2327 mutex_unlock(&tty_mutex
);
2332 set_bit(TTY_PTY_LOCK
, &tty
->flags
); /* LOCK THE SLAVE */
2333 filp
->private_data
= tty
;
2334 file_move(filp
, &tty
->tty_files
);
2336 retval
= devpts_pty_new(tty
->link
);
2340 check_tty_count(tty
, "ptmx_open");
2341 retval
= ptm_driver
->ops
->open(tty
, filp
);
2348 devpts_kill_index(index
);
2352 static int ptmx_open(struct inode
*inode
, struct file
*filp
)
2357 ret
= __ptmx_open(inode
, filp
);
2364 * tty_release - vfs callback for close
2365 * @inode: inode of tty
2366 * @filp: file pointer for handle to tty
2368 * Called the last time each file handle is closed that references
2369 * this tty. There may however be several such references.
2372 * Takes bkl. See release_dev
2375 static int tty_release(struct inode
*inode
, struct file
*filp
)
2384 * tty_poll - check tty status
2385 * @filp: file being polled
2386 * @wait: poll wait structures to update
2388 * Call the line discipline polling method to obtain the poll
2389 * status of the device.
2391 * Locking: locks called line discipline but ldisc poll method
2392 * may be re-entered freely by other callers.
2395 static unsigned int tty_poll(struct file
*filp
, poll_table
*wait
)
2397 struct tty_struct
*tty
;
2398 struct tty_ldisc
*ld
;
2401 tty
= (struct tty_struct
*)filp
->private_data
;
2402 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_poll"))
2405 ld
= tty_ldisc_ref_wait(tty
);
2407 ret
= (ld
->ops
->poll
)(tty
, filp
, wait
);
2408 tty_ldisc_deref(ld
);
2412 static int tty_fasync(int fd
, struct file
*filp
, int on
)
2414 struct tty_struct
*tty
;
2415 unsigned long flags
;
2419 tty
= (struct tty_struct
*)filp
->private_data
;
2420 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_fasync"))
2423 retval
= fasync_helper(fd
, filp
, on
, &tty
->fasync
);
2430 if (!waitqueue_active(&tty
->read_wait
))
2431 tty
->minimum_to_wake
= 1;
2432 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2435 type
= PIDTYPE_PGID
;
2437 pid
= task_pid(current
);
2440 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2441 retval
= __f_setown(filp
, pid
, type
, 0);
2445 if (!tty
->fasync
&& !waitqueue_active(&tty
->read_wait
))
2446 tty
->minimum_to_wake
= N_TTY_BUF_SIZE
;
2455 * tiocsti - fake input character
2456 * @tty: tty to fake input into
2457 * @p: pointer to character
2459 * Fake input to a tty device. Does the necessary locking and
2462 * FIXME: does not honour flow control ??
2465 * Called functions take tty_ldisc_lock
2466 * current->signal->tty check is safe without locks
2468 * FIXME: may race normal receive processing
2471 static int tiocsti(struct tty_struct
*tty
, char __user
*p
)
2474 struct tty_ldisc
*ld
;
2476 if ((current
->signal
->tty
!= tty
) && !capable(CAP_SYS_ADMIN
))
2478 if (get_user(ch
, p
))
2480 ld
= tty_ldisc_ref_wait(tty
);
2481 ld
->ops
->receive_buf(tty
, &ch
, &mbz
, 1);
2482 tty_ldisc_deref(ld
);
2487 * tiocgwinsz - implement window query ioctl
2489 * @arg: user buffer for result
2491 * Copies the kernel idea of the window size into the user buffer.
2493 * Locking: tty->termios_mutex is taken to ensure the winsize data
2497 static int tiocgwinsz(struct tty_struct
*tty
, struct winsize __user
*arg
)
2501 mutex_lock(&tty
->termios_mutex
);
2502 err
= copy_to_user(arg
, &tty
->winsize
, sizeof(*arg
));
2503 mutex_unlock(&tty
->termios_mutex
);
2505 return err
? -EFAULT
: 0;
2509 * tty_do_resize - resize event
2510 * @tty: tty being resized
2511 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2512 * @rows: rows (character)
2513 * @cols: cols (character)
2515 * Update the termios variables and send the neccessary signals to
2516 * peform a terminal resize correctly
2519 int tty_do_resize(struct tty_struct
*tty
, struct tty_struct
*real_tty
,
2522 struct pid
*pgrp
, *rpgrp
;
2523 unsigned long flags
;
2525 /* For a PTY we need to lock the tty side */
2526 mutex_lock(&real_tty
->termios_mutex
);
2527 if (!memcmp(ws
, &tty
->winsize
, sizeof(*ws
)))
2529 /* Get the PID values and reference them so we can
2530 avoid holding the tty ctrl lock while sending signals */
2531 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2532 pgrp
= get_pid(tty
->pgrp
);
2533 rpgrp
= get_pid(real_tty
->pgrp
);
2534 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2537 kill_pgrp(pgrp
, SIGWINCH
, 1);
2538 if (rpgrp
!= pgrp
&& rpgrp
)
2539 kill_pgrp(rpgrp
, SIGWINCH
, 1);
2545 real_tty
->winsize
= *ws
;
2547 mutex_unlock(&real_tty
->termios_mutex
);
2552 * tiocswinsz - implement window size set ioctl
2554 * @arg: user buffer for result
2556 * Copies the user idea of the window size to the kernel. Traditionally
2557 * this is just advisory information but for the Linux console it
2558 * actually has driver level meaning and triggers a VC resize.
2561 * Driver dependant. The default do_resize method takes the
2562 * tty termios mutex and ctrl_lock. The console takes its own lock
2563 * then calls into the default method.
2566 static int tiocswinsz(struct tty_struct
*tty
, struct tty_struct
*real_tty
,
2567 struct winsize __user
*arg
)
2569 struct winsize tmp_ws
;
2570 if (copy_from_user(&tmp_ws
, arg
, sizeof(*arg
)))
2573 if (tty
->ops
->resize
)
2574 return tty
->ops
->resize(tty
, real_tty
, &tmp_ws
);
2576 return tty_do_resize(tty
, real_tty
, &tmp_ws
);
2580 * tioccons - allow admin to move logical console
2581 * @file: the file to become console
2583 * Allow the adminstrator to move the redirected console device
2585 * Locking: uses redirect_lock to guard the redirect information
2588 static int tioccons(struct file
*file
)
2590 if (!capable(CAP_SYS_ADMIN
))
2592 if (file
->f_op
->write
== redirected_tty_write
) {
2594 spin_lock(&redirect_lock
);
2597 spin_unlock(&redirect_lock
);
2602 spin_lock(&redirect_lock
);
2604 spin_unlock(&redirect_lock
);
2609 spin_unlock(&redirect_lock
);
2614 * fionbio - non blocking ioctl
2615 * @file: file to set blocking value
2616 * @p: user parameter
2618 * Historical tty interfaces had a blocking control ioctl before
2619 * the generic functionality existed. This piece of history is preserved
2620 * in the expected tty API of posix OS's.
2622 * Locking: none, the open fle handle ensures it won't go away.
2625 static int fionbio(struct file
*file
, int __user
*p
)
2629 if (get_user(nonblock
, p
))
2632 /* file->f_flags is still BKL protected in the fs layer - vomit */
2635 file
->f_flags
|= O_NONBLOCK
;
2637 file
->f_flags
&= ~O_NONBLOCK
;
2643 * tiocsctty - set controlling tty
2644 * @tty: tty structure
2645 * @arg: user argument
2647 * This ioctl is used to manage job control. It permits a session
2648 * leader to set this tty as the controlling tty for the session.
2651 * Takes tty_mutex() to protect tty instance
2652 * Takes tasklist_lock internally to walk sessions
2653 * Takes ->siglock() when updating signal->tty
2656 static int tiocsctty(struct tty_struct
*tty
, int arg
)
2659 if (current
->signal
->leader
&& (task_session(current
) == tty
->session
))
2662 mutex_lock(&tty_mutex
);
2664 * The process must be a session leader and
2665 * not have a controlling tty already.
2667 if (!current
->signal
->leader
|| current
->signal
->tty
) {
2674 * This tty is already the controlling
2675 * tty for another session group!
2677 if (arg
== 1 && capable(CAP_SYS_ADMIN
)) {
2681 read_lock(&tasklist_lock
);
2682 session_clear_tty(tty
->session
);
2683 read_unlock(&tasklist_lock
);
2689 proc_set_tty(current
, tty
);
2691 mutex_unlock(&tty_mutex
);
2696 * tty_get_pgrp - return a ref counted pgrp pid
2699 * Returns a refcounted instance of the pid struct for the process
2700 * group controlling the tty.
2703 struct pid
*tty_get_pgrp(struct tty_struct
*tty
)
2705 unsigned long flags
;
2708 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2709 pgrp
= get_pid(tty
->pgrp
);
2710 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2714 EXPORT_SYMBOL_GPL(tty_get_pgrp
);
2717 * tiocgpgrp - get process group
2718 * @tty: tty passed by user
2719 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2722 * Obtain the process group of the tty. If there is no process group
2725 * Locking: none. Reference to current->signal->tty is safe.
2728 static int tiocgpgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2733 * (tty == real_tty) is a cheap way of
2734 * testing if the tty is NOT a master pty.
2736 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2738 pid
= tty_get_pgrp(real_tty
);
2739 ret
= put_user(pid_vnr(pid
), p
);
2745 * tiocspgrp - attempt to set process group
2746 * @tty: tty passed by user
2747 * @real_tty: tty side device matching tty passed by user
2750 * Set the process group of the tty to the session passed. Only
2751 * permitted where the tty session is our session.
2753 * Locking: RCU, ctrl lock
2756 static int tiocspgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2760 int retval
= tty_check_change(real_tty
);
2761 unsigned long flags
;
2767 if (!current
->signal
->tty
||
2768 (current
->signal
->tty
!= real_tty
) ||
2769 (real_tty
->session
!= task_session(current
)))
2771 if (get_user(pgrp_nr
, p
))
2776 pgrp
= find_vpid(pgrp_nr
);
2781 if (session_of_pgrp(pgrp
) != task_session(current
))
2784 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2785 put_pid(real_tty
->pgrp
);
2786 real_tty
->pgrp
= get_pid(pgrp
);
2787 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2794 * tiocgsid - get session id
2795 * @tty: tty passed by user
2796 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2797 * @p: pointer to returned session id
2799 * Obtain the session id of the tty. If there is no session
2802 * Locking: none. Reference to current->signal->tty is safe.
2805 static int tiocgsid(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2808 * (tty == real_tty) is a cheap way of
2809 * testing if the tty is NOT a master pty.
2811 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2813 if (!real_tty
->session
)
2815 return put_user(pid_vnr(real_tty
->session
), p
);
2819 * tiocsetd - set line discipline
2821 * @p: pointer to user data
2823 * Set the line discipline according to user request.
2825 * Locking: see tty_set_ldisc, this function is just a helper
2828 static int tiocsetd(struct tty_struct
*tty
, int __user
*p
)
2833 if (get_user(ldisc
, p
))
2837 ret
= tty_set_ldisc(tty
, ldisc
);
2844 * send_break - performed time break
2845 * @tty: device to break on
2846 * @duration: timeout in mS
2848 * Perform a timed break on hardware that lacks its own driver level
2849 * timed break functionality.
2852 * atomic_write_lock serializes
2856 static int send_break(struct tty_struct
*tty
, unsigned int duration
)
2860 if (tty
->ops
->break_ctl
== NULL
)
2863 if (tty
->driver
->flags
& TTY_DRIVER_HARDWARE_BREAK
)
2864 retval
= tty
->ops
->break_ctl(tty
, duration
);
2866 /* Do the work ourselves */
2867 if (tty_write_lock(tty
, 0) < 0)
2869 retval
= tty
->ops
->break_ctl(tty
, -1);
2872 if (!signal_pending(current
))
2873 msleep_interruptible(duration
);
2874 retval
= tty
->ops
->break_ctl(tty
, 0);
2876 tty_write_unlock(tty
);
2877 if (signal_pending(current
))
2884 * tty_tiocmget - get modem status
2886 * @file: user file pointer
2887 * @p: pointer to result
2889 * Obtain the modem status bits from the tty driver if the feature
2890 * is supported. Return -EINVAL if it is not available.
2892 * Locking: none (up to the driver)
2895 static int tty_tiocmget(struct tty_struct
*tty
, struct file
*file
, int __user
*p
)
2897 int retval
= -EINVAL
;
2899 if (tty
->ops
->tiocmget
) {
2900 retval
= tty
->ops
->tiocmget(tty
, file
);
2903 retval
= put_user(retval
, p
);
2909 * tty_tiocmset - set modem status
2911 * @file: user file pointer
2912 * @cmd: command - clear bits, set bits or set all
2913 * @p: pointer to desired bits
2915 * Set the modem status bits from the tty driver if the feature
2916 * is supported. Return -EINVAL if it is not available.
2918 * Locking: none (up to the driver)
2921 static int tty_tiocmset(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
,
2925 unsigned int set
, clear
, val
;
2927 if (tty
->ops
->tiocmset
== NULL
)
2930 retval
= get_user(val
, p
);
2946 set
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2947 clear
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2948 return tty
->ops
->tiocmset(tty
, file
, set
, clear
);
2952 * Split this up, as gcc can choke on it otherwise..
2954 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2956 struct tty_struct
*tty
, *real_tty
;
2957 void __user
*p
= (void __user
*)arg
;
2959 struct tty_ldisc
*ld
;
2960 struct inode
*inode
= file
->f_dentry
->d_inode
;
2962 tty
= (struct tty_struct
*)file
->private_data
;
2963 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
2967 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2968 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2969 real_tty
= tty
->link
;
2973 * Factor out some common prep work
2981 retval
= tty_check_change(tty
);
2984 if (cmd
!= TIOCCBRK
) {
2985 tty_wait_until_sent(tty
, 0);
2986 if (signal_pending(current
))
2997 return tiocsti(tty
, p
);
2999 return tiocgwinsz(tty
, p
);
3001 return tiocswinsz(tty
, real_tty
, p
);
3003 return real_tty
!= tty
? -EINVAL
: tioccons(file
);
3005 return fionbio(file
, p
);
3007 set_bit(TTY_EXCLUSIVE
, &tty
->flags
);
3010 clear_bit(TTY_EXCLUSIVE
, &tty
->flags
);
3013 if (current
->signal
->tty
!= tty
)
3018 return tiocsctty(tty
, arg
);
3020 return tiocgpgrp(tty
, real_tty
, p
);
3022 return tiocspgrp(tty
, real_tty
, p
);
3024 return tiocgsid(tty
, real_tty
, p
);
3026 return put_user(tty
->ldisc
.ops
->num
, (int __user
*)p
);
3028 return tiocsetd(tty
, p
);
3031 return tioclinux(tty
, arg
);
3036 case TIOCSBRK
: /* Turn break on, unconditionally */
3037 if (tty
->ops
->break_ctl
)
3038 return tty
->ops
->break_ctl(tty
, -1);
3040 case TIOCCBRK
: /* Turn break off, unconditionally */
3041 if (tty
->ops
->break_ctl
)
3042 return tty
->ops
->break_ctl(tty
, 0);
3044 case TCSBRK
: /* SVID version: non-zero arg --> no break */
3045 /* non-zero arg means wait for all output data
3046 * to be sent (performed above) but don't send break.
3047 * This is used by the tcdrain() termios function.
3050 return send_break(tty
, 250);
3052 case TCSBRKP
: /* support for POSIX tcsendbreak() */
3053 return send_break(tty
, arg
? arg
*100 : 250);
3056 return tty_tiocmget(tty
, file
, p
);
3060 return tty_tiocmset(tty
, file
, cmd
, p
);
3065 /* flush tty buffer and allow ldisc to process ioctl */
3066 tty_buffer_flush(tty
);
3071 if (tty
->ops
->ioctl
) {
3072 retval
= (tty
->ops
->ioctl
)(tty
, file
, cmd
, arg
);
3073 if (retval
!= -ENOIOCTLCMD
)
3076 ld
= tty_ldisc_ref_wait(tty
);
3078 if (ld
->ops
->ioctl
) {
3079 retval
= ld
->ops
->ioctl(tty
, file
, cmd
, arg
);
3080 if (retval
== -ENOIOCTLCMD
)
3083 tty_ldisc_deref(ld
);
3087 #ifdef CONFIG_COMPAT
3088 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
3091 struct inode
*inode
= file
->f_dentry
->d_inode
;
3092 struct tty_struct
*tty
= file
->private_data
;
3093 struct tty_ldisc
*ld
;
3094 int retval
= -ENOIOCTLCMD
;
3096 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
3099 if (tty
->ops
->compat_ioctl
) {
3100 retval
= (tty
->ops
->compat_ioctl
)(tty
, file
, cmd
, arg
);
3101 if (retval
!= -ENOIOCTLCMD
)
3105 ld
= tty_ldisc_ref_wait(tty
);
3106 if (ld
->ops
->compat_ioctl
)
3107 retval
= ld
->ops
->compat_ioctl(tty
, file
, cmd
, arg
);
3108 tty_ldisc_deref(ld
);
3115 * This implements the "Secure Attention Key" --- the idea is to
3116 * prevent trojan horses by killing all processes associated with this
3117 * tty when the user hits the "Secure Attention Key". Required for
3118 * super-paranoid applications --- see the Orange Book for more details.
3120 * This code could be nicer; ideally it should send a HUP, wait a few
3121 * seconds, then send a INT, and then a KILL signal. But you then
3122 * have to coordinate with the init process, since all processes associated
3123 * with the current tty must be dead before the new getty is allowed
3126 * Now, if it would be correct ;-/ The current code has a nasty hole -
3127 * it doesn't catch files in flight. We may send the descriptor to ourselves
3128 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3130 * Nasty bug: do_SAK is being called in interrupt context. This can
3131 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3133 void __do_SAK(struct tty_struct
*tty
)
3138 struct task_struct
*g
, *p
;
3139 struct pid
*session
;
3142 struct fdtable
*fdt
;
3146 session
= tty
->session
;
3148 tty_ldisc_flush(tty
);
3150 tty_driver_flush_buffer(tty
);
3152 read_lock(&tasklist_lock
);
3153 /* Kill the entire session */
3154 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
3155 printk(KERN_NOTICE
"SAK: killed process %d"
3156 " (%s): task_session_nr(p)==tty->session\n",
3157 task_pid_nr(p
), p
->comm
);
3158 send_sig(SIGKILL
, p
, 1);
3159 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
3160 /* Now kill any processes that happen to have the
3163 do_each_thread(g
, p
) {
3164 if (p
->signal
->tty
== tty
) {
3165 printk(KERN_NOTICE
"SAK: killed process %d"
3166 " (%s): task_session_nr(p)==tty->session\n",
3167 task_pid_nr(p
), p
->comm
);
3168 send_sig(SIGKILL
, p
, 1);
3174 * We don't take a ref to the file, so we must
3175 * hold ->file_lock instead.
3177 spin_lock(&p
->files
->file_lock
);
3178 fdt
= files_fdtable(p
->files
);
3179 for (i
= 0; i
< fdt
->max_fds
; i
++) {
3180 filp
= fcheck_files(p
->files
, i
);
3183 if (filp
->f_op
->read
== tty_read
&&
3184 filp
->private_data
== tty
) {
3185 printk(KERN_NOTICE
"SAK: killed process %d"
3186 " (%s): fd#%d opened to the tty\n",
3187 task_pid_nr(p
), p
->comm
, i
);
3188 force_sig(SIGKILL
, p
);
3192 spin_unlock(&p
->files
->file_lock
);
3195 } while_each_thread(g
, p
);
3196 read_unlock(&tasklist_lock
);
3200 static void do_SAK_work(struct work_struct
*work
)
3202 struct tty_struct
*tty
=
3203 container_of(work
, struct tty_struct
, SAK_work
);
3208 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3209 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3210 * the values which we write to it will be identical to the values which it
3211 * already has. --akpm
3213 void do_SAK(struct tty_struct
*tty
)
3217 schedule_work(&tty
->SAK_work
);
3220 EXPORT_SYMBOL(do_SAK
);
3224 * @work: tty structure passed from work queue.
3226 * This routine is called out of the software interrupt to flush data
3227 * from the buffer chain to the line discipline.
3229 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3230 * while invoking the line discipline receive_buf method. The
3231 * receive_buf method is single threaded for each tty instance.
3234 static void flush_to_ldisc(struct work_struct
*work
)
3236 struct tty_struct
*tty
=
3237 container_of(work
, struct tty_struct
, buf
.work
.work
);
3238 unsigned long flags
;
3239 struct tty_ldisc
*disc
;
3240 struct tty_buffer
*tbuf
, *head
;
3242 unsigned char *flag_buf
;
3244 disc
= tty_ldisc_ref(tty
);
3245 if (disc
== NULL
) /* !TTY_LDISC */
3248 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3249 /* So we know a flush is running */
3250 set_bit(TTY_FLUSHING
, &tty
->flags
);
3251 head
= tty
->buf
.head
;
3253 tty
->buf
.head
= NULL
;
3255 int count
= head
->commit
- head
->read
;
3257 if (head
->next
== NULL
)
3261 tty_buffer_free(tty
, tbuf
);
3264 /* Ldisc or user is trying to flush the buffers
3265 we are feeding to the ldisc, stop feeding the
3266 line discipline as we want to empty the queue */
3267 if (test_bit(TTY_FLUSHPENDING
, &tty
->flags
))
3269 if (!tty
->receive_room
) {
3270 schedule_delayed_work(&tty
->buf
.work
, 1);
3273 if (count
> tty
->receive_room
)
3274 count
= tty
->receive_room
;
3275 char_buf
= head
->char_buf_ptr
+ head
->read
;
3276 flag_buf
= head
->flag_buf_ptr
+ head
->read
;
3277 head
->read
+= count
;
3278 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3279 disc
->ops
->receive_buf(tty
, char_buf
,
3281 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3283 /* Restore the queue head */
3284 tty
->buf
.head
= head
;
3286 /* We may have a deferred request to flush the input buffer,
3287 if so pull the chain under the lock and empty the queue */
3288 if (test_bit(TTY_FLUSHPENDING
, &tty
->flags
)) {
3289 __tty_buffer_flush(tty
);
3290 clear_bit(TTY_FLUSHPENDING
, &tty
->flags
);
3291 wake_up(&tty
->read_wait
);
3293 clear_bit(TTY_FLUSHING
, &tty
->flags
);
3294 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3296 tty_ldisc_deref(disc
);
3300 * tty_flip_buffer_push - terminal
3303 * Queue a push of the terminal flip buffers to the line discipline. This
3304 * function must not be called from IRQ context if tty->low_latency is set.
3306 * In the event of the queue being busy for flipping the work will be
3307 * held off and retried later.
3309 * Locking: tty buffer lock. Driver locks in low latency mode.
3312 void tty_flip_buffer_push(struct tty_struct
*tty
)
3314 unsigned long flags
;
3315 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3316 if (tty
->buf
.tail
!= NULL
)
3317 tty
->buf
.tail
->commit
= tty
->buf
.tail
->used
;
3318 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3320 if (tty
->low_latency
)
3321 flush_to_ldisc(&tty
->buf
.work
.work
);
3323 schedule_delayed_work(&tty
->buf
.work
, 1);
3326 EXPORT_SYMBOL(tty_flip_buffer_push
);
3330 * initialize_tty_struct
3331 * @tty: tty to initialize
3333 * This subroutine initializes a tty structure that has been newly
3336 * Locking: none - tty in question must not be exposed at this point
3339 static void initialize_tty_struct(struct tty_struct
*tty
)
3341 memset(tty
, 0, sizeof(struct tty_struct
));
3342 tty
->magic
= TTY_MAGIC
;
3343 tty_ldisc_init(tty
);
3344 tty
->session
= NULL
;
3346 tty
->overrun_time
= jiffies
;
3347 tty
->buf
.head
= tty
->buf
.tail
= NULL
;
3348 tty_buffer_init(tty
);
3349 INIT_DELAYED_WORK(&tty
->buf
.work
, flush_to_ldisc
);
3350 mutex_init(&tty
->termios_mutex
);
3351 init_waitqueue_head(&tty
->write_wait
);
3352 init_waitqueue_head(&tty
->read_wait
);
3353 INIT_WORK(&tty
->hangup_work
, do_tty_hangup
);
3354 mutex_init(&tty
->atomic_read_lock
);
3355 mutex_init(&tty
->atomic_write_lock
);
3356 spin_lock_init(&tty
->read_lock
);
3357 spin_lock_init(&tty
->ctrl_lock
);
3358 INIT_LIST_HEAD(&tty
->tty_files
);
3359 INIT_WORK(&tty
->SAK_work
, do_SAK_work
);
3363 * tty_put_char - write one character to a tty
3367 * Write one byte to the tty using the provided put_char method
3368 * if present. Returns the number of characters successfully output.
3370 * Note: the specific put_char operation in the driver layer may go
3371 * away soon. Don't call it directly, use this method
3374 int tty_put_char(struct tty_struct
*tty
, unsigned char ch
)
3376 if (tty
->ops
->put_char
)
3377 return tty
->ops
->put_char(tty
, ch
);
3378 return tty
->ops
->write(tty
, &ch
, 1);
3381 EXPORT_SYMBOL_GPL(tty_put_char
);
3383 static struct class *tty_class
;
3386 * tty_register_device - register a tty device
3387 * @driver: the tty driver that describes the tty device
3388 * @index: the index in the tty driver for this tty device
3389 * @device: a struct device that is associated with this tty device.
3390 * This field is optional, if there is no known struct device
3391 * for this tty device it can be set to NULL safely.
3393 * Returns a pointer to the struct device for this tty device
3394 * (or ERR_PTR(-EFOO) on error).
3396 * This call is required to be made to register an individual tty device
3397 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3398 * that bit is not set, this function should not be called by a tty
3404 struct device
*tty_register_device(struct tty_driver
*driver
, unsigned index
,
3405 struct device
*device
)
3408 dev_t dev
= MKDEV(driver
->major
, driver
->minor_start
) + index
;
3410 if (index
>= driver
->num
) {
3411 printk(KERN_ERR
"Attempt to register invalid tty line number "
3413 return ERR_PTR(-EINVAL
);
3416 if (driver
->type
== TTY_DRIVER_TYPE_PTY
)
3417 pty_line_name(driver
, index
, name
);
3419 tty_line_name(driver
, index
, name
);
3421 return device_create_drvdata(tty_class
, device
, dev
, NULL
, name
);
3425 * tty_unregister_device - unregister a tty device
3426 * @driver: the tty driver that describes the tty device
3427 * @index: the index in the tty driver for this tty device
3429 * If a tty device is registered with a call to tty_register_device() then
3430 * this function must be called when the tty device is gone.
3435 void tty_unregister_device(struct tty_driver
*driver
, unsigned index
)
3437 device_destroy(tty_class
,
3438 MKDEV(driver
->major
, driver
->minor_start
) + index
);
3441 EXPORT_SYMBOL(tty_register_device
);
3442 EXPORT_SYMBOL(tty_unregister_device
);
3444 struct tty_driver
*alloc_tty_driver(int lines
)
3446 struct tty_driver
*driver
;
3448 driver
= kzalloc(sizeof(struct tty_driver
), GFP_KERNEL
);
3450 driver
->magic
= TTY_DRIVER_MAGIC
;
3451 driver
->num
= lines
;
3452 /* later we'll move allocation of tables here */
3457 void put_tty_driver(struct tty_driver
*driver
)
3462 void tty_set_operations(struct tty_driver
*driver
,
3463 const struct tty_operations
*op
)
3468 EXPORT_SYMBOL(alloc_tty_driver
);
3469 EXPORT_SYMBOL(put_tty_driver
);
3470 EXPORT_SYMBOL(tty_set_operations
);
3473 * Called by a tty driver to register itself.
3475 int tty_register_driver(struct tty_driver
*driver
)
3482 if (driver
->flags
& TTY_DRIVER_INSTALLED
)
3485 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) && driver
->num
) {
3486 p
= kzalloc(driver
->num
* 3 * sizeof(void *), GFP_KERNEL
);
3491 if (!driver
->major
) {
3492 error
= alloc_chrdev_region(&dev
, driver
->minor_start
,
3493 driver
->num
, driver
->name
);
3495 driver
->major
= MAJOR(dev
);
3496 driver
->minor_start
= MINOR(dev
);
3499 dev
= MKDEV(driver
->major
, driver
->minor_start
);
3500 error
= register_chrdev_region(dev
, driver
->num
, driver
->name
);
3508 driver
->ttys
= (struct tty_struct
**)p
;
3509 driver
->termios
= (struct ktermios
**)(p
+ driver
->num
);
3510 driver
->termios_locked
= (struct ktermios
**)
3511 (p
+ driver
->num
* 2);
3513 driver
->ttys
= NULL
;
3514 driver
->termios
= NULL
;
3515 driver
->termios_locked
= NULL
;
3518 cdev_init(&driver
->cdev
, &tty_fops
);
3519 driver
->cdev
.owner
= driver
->owner
;
3520 error
= cdev_add(&driver
->cdev
, dev
, driver
->num
);
3522 unregister_chrdev_region(dev
, driver
->num
);
3523 driver
->ttys
= NULL
;
3524 driver
->termios
= driver
->termios_locked
= NULL
;
3529 mutex_lock(&tty_mutex
);
3530 list_add(&driver
->tty_drivers
, &tty_drivers
);
3531 mutex_unlock(&tty_mutex
);
3533 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
)) {
3534 for (i
= 0; i
< driver
->num
; i
++)
3535 tty_register_device(driver
, i
, NULL
);
3537 proc_tty_register_driver(driver
);
3541 EXPORT_SYMBOL(tty_register_driver
);
3544 * Called by a tty driver to unregister itself.
3546 int tty_unregister_driver(struct tty_driver
*driver
)
3549 struct ktermios
*tp
;
3552 if (driver
->refcount
)
3555 unregister_chrdev_region(MKDEV(driver
->major
, driver
->minor_start
),
3557 mutex_lock(&tty_mutex
);
3558 list_del(&driver
->tty_drivers
);
3559 mutex_unlock(&tty_mutex
);
3562 * Free the termios and termios_locked structures because
3563 * we don't want to get memory leaks when modular tty
3564 * drivers are removed from the kernel.
3566 for (i
= 0; i
< driver
->num
; i
++) {
3567 tp
= driver
->termios
[i
];
3569 driver
->termios
[i
] = NULL
;
3572 tp
= driver
->termios_locked
[i
];
3574 driver
->termios_locked
[i
] = NULL
;
3577 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
))
3578 tty_unregister_device(driver
, i
);
3581 proc_tty_unregister_driver(driver
);
3582 driver
->ttys
= NULL
;
3583 driver
->termios
= driver
->termios_locked
= NULL
;
3585 cdev_del(&driver
->cdev
);
3588 EXPORT_SYMBOL(tty_unregister_driver
);
3590 dev_t
tty_devnum(struct tty_struct
*tty
)
3592 return MKDEV(tty
->driver
->major
, tty
->driver
->minor_start
) + tty
->index
;
3594 EXPORT_SYMBOL(tty_devnum
);
3596 void proc_clear_tty(struct task_struct
*p
)
3598 spin_lock_irq(&p
->sighand
->siglock
);
3599 p
->signal
->tty
= NULL
;
3600 spin_unlock_irq(&p
->sighand
->siglock
);
3603 /* Called under the sighand lock */
3605 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3608 unsigned long flags
;
3609 /* We should not have a session or pgrp to put here but.... */
3610 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
3611 put_pid(tty
->session
);
3613 tty
->pgrp
= get_pid(task_pgrp(tsk
));
3614 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
3615 tty
->session
= get_pid(task_session(tsk
));
3617 put_pid(tsk
->signal
->tty_old_pgrp
);
3618 tsk
->signal
->tty
= tty
;
3619 tsk
->signal
->tty_old_pgrp
= NULL
;
3622 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3624 spin_lock_irq(&tsk
->sighand
->siglock
);
3625 __proc_set_tty(tsk
, tty
);
3626 spin_unlock_irq(&tsk
->sighand
->siglock
);
3629 struct tty_struct
*get_current_tty(void)
3631 struct tty_struct
*tty
;
3632 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex
));
3633 tty
= current
->signal
->tty
;
3635 * session->tty can be changed/cleared from under us, make sure we
3636 * issue the load. The obtained pointer, when not NULL, is valid as
3637 * long as we hold tty_mutex.
3642 EXPORT_SYMBOL_GPL(get_current_tty
);
3645 * Initialize the console device. This is called *early*, so
3646 * we can't necessarily depend on lots of kernel help here.
3647 * Just do some early initializations, and do the complex setup
3650 void __init
console_init(void)
3654 /* Setup the default TTY line discipline. */
3658 * set up the console device so that later boot sequences can
3659 * inform about problems etc..
3661 call
= __con_initcall_start
;
3662 while (call
< __con_initcall_end
) {
3668 static int __init
tty_class_init(void)
3670 tty_class
= class_create(THIS_MODULE
, "tty");
3671 if (IS_ERR(tty_class
))
3672 return PTR_ERR(tty_class
);
3676 postcore_initcall(tty_class_init
);
3678 /* 3/2004 jmc: why do these devices exist? */
3680 static struct cdev tty_cdev
, console_cdev
;
3681 #ifdef CONFIG_UNIX98_PTYS
3682 static struct cdev ptmx_cdev
;
3685 static struct cdev vc0_cdev
;
3689 * Ok, now we can initialize the rest of the tty devices and can count
3690 * on memory allocations, interrupts etc..
3692 static int __init
tty_init(void)
3694 cdev_init(&tty_cdev
, &tty_fops
);
3695 if (cdev_add(&tty_cdev
, MKDEV(TTYAUX_MAJOR
, 0), 1) ||
3696 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 0), 1, "/dev/tty") < 0)
3697 panic("Couldn't register /dev/tty driver\n");
3698 device_create_drvdata(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 0), NULL
,
3701 cdev_init(&console_cdev
, &console_fops
);
3702 if (cdev_add(&console_cdev
, MKDEV(TTYAUX_MAJOR
, 1), 1) ||
3703 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 1), 1, "/dev/console") < 0)
3704 panic("Couldn't register /dev/console driver\n");
3705 device_create_drvdata(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 1), NULL
,
3708 #ifdef CONFIG_UNIX98_PTYS
3709 cdev_init(&ptmx_cdev
, &ptmx_fops
);
3710 if (cdev_add(&ptmx_cdev
, MKDEV(TTYAUX_MAJOR
, 2), 1) ||
3711 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 2), 1, "/dev/ptmx") < 0)
3712 panic("Couldn't register /dev/ptmx driver\n");
3713 device_create_drvdata(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 2), NULL
, "ptmx");
3717 cdev_init(&vc0_cdev
, &console_fops
);
3718 if (cdev_add(&vc0_cdev
, MKDEV(TTY_MAJOR
, 0), 1) ||
3719 register_chrdev_region(MKDEV(TTY_MAJOR
, 0), 1, "/dev/vc/0") < 0)
3720 panic("Couldn't register /dev/tty0 driver\n");
3721 device_create_drvdata(tty_class
, NULL
, MKDEV(TTY_MAJOR
, 0), NULL
, "tty0");
3727 module_init(tty_init
);