Linux 2.6.18.8
[linux-2.6/suspend2-2.6.18.git] / mm / memory.c
blob7c2c4c93e203b4851696d8284e1657ec29451598
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/tlb.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
59 #include <linux/swapops.h>
60 #include <linux/elf.h>
62 #ifndef CONFIG_NEED_MULTIPLE_NODES
63 /* use the per-pgdat data instead for discontigmem - mbligh */
64 unsigned long max_mapnr;
65 struct page *mem_map;
67 EXPORT_SYMBOL(max_mapnr);
68 EXPORT_SYMBOL(mem_map);
69 #endif
71 unsigned long num_physpages;
73 * A number of key systems in x86 including ioremap() rely on the assumption
74 * that high_memory defines the upper bound on direct map memory, then end
75 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
76 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
77 * and ZONE_HIGHMEM.
79 void * high_memory;
80 unsigned long vmalloc_earlyreserve;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 int randomize_va_space __read_mostly = 1;
88 static int __init disable_randmaps(char *s)
90 randomize_va_space = 0;
91 return 1;
93 __setup("norandmaps", disable_randmaps);
97 * If a p?d_bad entry is found while walking page tables, report
98 * the error, before resetting entry to p?d_none. Usually (but
99 * very seldom) called out from the p?d_none_or_clear_bad macros.
102 void pgd_clear_bad(pgd_t *pgd)
104 pgd_ERROR(*pgd);
105 pgd_clear(pgd);
108 void pud_clear_bad(pud_t *pud)
110 pud_ERROR(*pud);
111 pud_clear(pud);
114 void pmd_clear_bad(pmd_t *pmd)
116 pmd_ERROR(*pmd);
117 pmd_clear(pmd);
121 * Note: this doesn't free the actual pages themselves. That
122 * has been handled earlier when unmapping all the memory regions.
124 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126 struct page *page = pmd_page(*pmd);
127 pmd_clear(pmd);
128 pte_lock_deinit(page);
129 pte_free_tlb(tlb, page);
130 dec_zone_page_state(page, NR_PAGETABLE);
131 tlb->mm->nr_ptes--;
134 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
135 unsigned long addr, unsigned long end,
136 unsigned long floor, unsigned long ceiling)
138 pmd_t *pmd;
139 unsigned long next;
140 unsigned long start;
142 start = addr;
143 pmd = pmd_offset(pud, addr);
144 do {
145 next = pmd_addr_end(addr, end);
146 if (pmd_none_or_clear_bad(pmd))
147 continue;
148 free_pte_range(tlb, pmd);
149 } while (pmd++, addr = next, addr != end);
151 start &= PUD_MASK;
152 if (start < floor)
153 return;
154 if (ceiling) {
155 ceiling &= PUD_MASK;
156 if (!ceiling)
157 return;
159 if (end - 1 > ceiling - 1)
160 return;
162 pmd = pmd_offset(pud, start);
163 pud_clear(pud);
164 pmd_free_tlb(tlb, pmd);
167 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
168 unsigned long addr, unsigned long end,
169 unsigned long floor, unsigned long ceiling)
171 pud_t *pud;
172 unsigned long next;
173 unsigned long start;
175 start = addr;
176 pud = pud_offset(pgd, addr);
177 do {
178 next = pud_addr_end(addr, end);
179 if (pud_none_or_clear_bad(pud))
180 continue;
181 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
182 } while (pud++, addr = next, addr != end);
184 start &= PGDIR_MASK;
185 if (start < floor)
186 return;
187 if (ceiling) {
188 ceiling &= PGDIR_MASK;
189 if (!ceiling)
190 return;
192 if (end - 1 > ceiling - 1)
193 return;
195 pud = pud_offset(pgd, start);
196 pgd_clear(pgd);
197 pud_free_tlb(tlb, pud);
201 * This function frees user-level page tables of a process.
203 * Must be called with pagetable lock held.
205 void free_pgd_range(struct mmu_gather **tlb,
206 unsigned long addr, unsigned long end,
207 unsigned long floor, unsigned long ceiling)
209 pgd_t *pgd;
210 unsigned long next;
211 unsigned long start;
214 * The next few lines have given us lots of grief...
216 * Why are we testing PMD* at this top level? Because often
217 * there will be no work to do at all, and we'd prefer not to
218 * go all the way down to the bottom just to discover that.
220 * Why all these "- 1"s? Because 0 represents both the bottom
221 * of the address space and the top of it (using -1 for the
222 * top wouldn't help much: the masks would do the wrong thing).
223 * The rule is that addr 0 and floor 0 refer to the bottom of
224 * the address space, but end 0 and ceiling 0 refer to the top
225 * Comparisons need to use "end - 1" and "ceiling - 1" (though
226 * that end 0 case should be mythical).
228 * Wherever addr is brought up or ceiling brought down, we must
229 * be careful to reject "the opposite 0" before it confuses the
230 * subsequent tests. But what about where end is brought down
231 * by PMD_SIZE below? no, end can't go down to 0 there.
233 * Whereas we round start (addr) and ceiling down, by different
234 * masks at different levels, in order to test whether a table
235 * now has no other vmas using it, so can be freed, we don't
236 * bother to round floor or end up - the tests don't need that.
239 addr &= PMD_MASK;
240 if (addr < floor) {
241 addr += PMD_SIZE;
242 if (!addr)
243 return;
245 if (ceiling) {
246 ceiling &= PMD_MASK;
247 if (!ceiling)
248 return;
250 if (end - 1 > ceiling - 1)
251 end -= PMD_SIZE;
252 if (addr > end - 1)
253 return;
255 start = addr;
256 pgd = pgd_offset((*tlb)->mm, addr);
257 do {
258 next = pgd_addr_end(addr, end);
259 if (pgd_none_or_clear_bad(pgd))
260 continue;
261 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
262 } while (pgd++, addr = next, addr != end);
264 if (!(*tlb)->fullmm)
265 flush_tlb_pgtables((*tlb)->mm, start, end);
268 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
269 unsigned long floor, unsigned long ceiling)
271 while (vma) {
272 struct vm_area_struct *next = vma->vm_next;
273 unsigned long addr = vma->vm_start;
276 * Hide vma from rmap and vmtruncate before freeing pgtables
278 anon_vma_unlink(vma);
279 unlink_file_vma(vma);
281 if (is_vm_hugetlb_page(vma)) {
282 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
283 floor, next? next->vm_start: ceiling);
284 } else {
286 * Optimization: gather nearby vmas into one call down
288 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
289 && !is_vm_hugetlb_page(next)) {
290 vma = next;
291 next = vma->vm_next;
292 anon_vma_unlink(vma);
293 unlink_file_vma(vma);
295 free_pgd_range(tlb, addr, vma->vm_end,
296 floor, next? next->vm_start: ceiling);
298 vma = next;
302 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 struct page *new = pte_alloc_one(mm, address);
305 if (!new)
306 return -ENOMEM;
308 pte_lock_init(new);
309 spin_lock(&mm->page_table_lock);
310 if (pmd_present(*pmd)) { /* Another has populated it */
311 pte_lock_deinit(new);
312 pte_free(new);
313 } else {
314 mm->nr_ptes++;
315 inc_zone_page_state(new, NR_PAGETABLE);
316 pmd_populate(mm, pmd, new);
318 spin_unlock(&mm->page_table_lock);
319 return 0;
322 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
325 if (!new)
326 return -ENOMEM;
328 spin_lock(&init_mm.page_table_lock);
329 if (pmd_present(*pmd)) /* Another has populated it */
330 pte_free_kernel(new);
331 else
332 pmd_populate_kernel(&init_mm, pmd, new);
333 spin_unlock(&init_mm.page_table_lock);
334 return 0;
337 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 if (file_rss)
340 add_mm_counter(mm, file_rss, file_rss);
341 if (anon_rss)
342 add_mm_counter(mm, anon_rss, anon_rss);
346 * This function is called to print an error when a bad pte
347 * is found. For example, we might have a PFN-mapped pte in
348 * a region that doesn't allow it.
350 * The calling function must still handle the error.
352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 "vm_flags = %lx, vaddr = %lx\n",
356 (long long)pte_val(pte),
357 (vma->vm_mm == current->mm ? current->comm : "???"),
358 vma->vm_flags, vaddr);
359 dump_stack();
362 static inline int is_cow_mapping(unsigned int flags)
364 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
368 * This function gets the "struct page" associated with a pte.
370 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
371 * will have each page table entry just pointing to a raw page frame
372 * number, and as far as the VM layer is concerned, those do not have
373 * pages associated with them - even if the PFN might point to memory
374 * that otherwise is perfectly fine and has a "struct page".
376 * The way we recognize those mappings is through the rules set up
377 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
378 * and the vm_pgoff will point to the first PFN mapped: thus every
379 * page that is a raw mapping will always honor the rule
381 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 * and if that isn't true, the page has been COW'ed (in which case it
384 * _does_ have a "struct page" associated with it even if it is in a
385 * VM_PFNMAP range).
387 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 unsigned long pfn = pte_pfn(pte);
391 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
392 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
393 if (pfn == vma->vm_pgoff + off)
394 return NULL;
395 if (!is_cow_mapping(vma->vm_flags))
396 return NULL;
400 * Add some anal sanity checks for now. Eventually,
401 * we should just do "return pfn_to_page(pfn)", but
402 * in the meantime we check that we get a valid pfn,
403 * and that the resulting page looks ok.
405 if (unlikely(!pfn_valid(pfn))) {
406 print_bad_pte(vma, pte, addr);
407 return NULL;
411 * NOTE! We still have PageReserved() pages in the page
412 * tables.
414 * The PAGE_ZERO() pages and various VDSO mappings can
415 * cause them to exist.
417 return pfn_to_page(pfn);
421 * copy one vm_area from one task to the other. Assumes the page tables
422 * already present in the new task to be cleared in the whole range
423 * covered by this vma.
426 static inline void
427 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
428 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
429 unsigned long addr, int *rss)
431 unsigned long vm_flags = vma->vm_flags;
432 pte_t pte = *src_pte;
433 struct page *page;
435 /* pte contains position in swap or file, so copy. */
436 if (unlikely(!pte_present(pte))) {
437 if (!pte_file(pte)) {
438 swp_entry_t entry = pte_to_swp_entry(pte);
440 swap_duplicate(entry);
441 /* make sure dst_mm is on swapoff's mmlist. */
442 if (unlikely(list_empty(&dst_mm->mmlist))) {
443 spin_lock(&mmlist_lock);
444 if (list_empty(&dst_mm->mmlist))
445 list_add(&dst_mm->mmlist,
446 &src_mm->mmlist);
447 spin_unlock(&mmlist_lock);
449 if (is_write_migration_entry(entry) &&
450 is_cow_mapping(vm_flags)) {
452 * COW mappings require pages in both parent
453 * and child to be set to read.
455 make_migration_entry_read(&entry);
456 pte = swp_entry_to_pte(entry);
457 set_pte_at(src_mm, addr, src_pte, pte);
460 goto out_set_pte;
464 * If it's a COW mapping, write protect it both
465 * in the parent and the child
467 if (is_cow_mapping(vm_flags)) {
468 ptep_set_wrprotect(src_mm, addr, src_pte);
469 pte = *src_pte;
473 * If it's a shared mapping, mark it clean in
474 * the child
476 if (vm_flags & VM_SHARED)
477 pte = pte_mkclean(pte);
478 pte = pte_mkold(pte);
480 page = vm_normal_page(vma, addr, pte);
481 if (page) {
482 get_page(page);
483 page_dup_rmap(page);
484 rss[!!PageAnon(page)]++;
487 out_set_pte:
488 set_pte_at(dst_mm, addr, dst_pte, pte);
491 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
492 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
493 unsigned long addr, unsigned long end)
495 pte_t *src_pte, *dst_pte;
496 spinlock_t *src_ptl, *dst_ptl;
497 int progress = 0;
498 int rss[2];
500 again:
501 rss[1] = rss[0] = 0;
502 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
503 if (!dst_pte)
504 return -ENOMEM;
505 src_pte = pte_offset_map_nested(src_pmd, addr);
506 src_ptl = pte_lockptr(src_mm, src_pmd);
507 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509 do {
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
514 if (progress >= 32) {
515 progress = 0;
516 if (need_resched() ||
517 need_lockbreak(src_ptl) ||
518 need_lockbreak(dst_ptl))
519 break;
521 if (pte_none(*src_pte)) {
522 progress++;
523 continue;
525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526 progress += 8;
527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
529 spin_unlock(src_ptl);
530 pte_unmap_nested(src_pte - 1);
531 add_mm_rss(dst_mm, rss[0], rss[1]);
532 pte_unmap_unlock(dst_pte - 1, dst_ptl);
533 cond_resched();
534 if (addr != end)
535 goto again;
536 return 0;
539 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
540 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
541 unsigned long addr, unsigned long end)
543 pmd_t *src_pmd, *dst_pmd;
544 unsigned long next;
546 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
547 if (!dst_pmd)
548 return -ENOMEM;
549 src_pmd = pmd_offset(src_pud, addr);
550 do {
551 next = pmd_addr_end(addr, end);
552 if (pmd_none_or_clear_bad(src_pmd))
553 continue;
554 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
555 vma, addr, next))
556 return -ENOMEM;
557 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
558 return 0;
561 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
562 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
563 unsigned long addr, unsigned long end)
565 pud_t *src_pud, *dst_pud;
566 unsigned long next;
568 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
569 if (!dst_pud)
570 return -ENOMEM;
571 src_pud = pud_offset(src_pgd, addr);
572 do {
573 next = pud_addr_end(addr, end);
574 if (pud_none_or_clear_bad(src_pud))
575 continue;
576 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
577 vma, addr, next))
578 return -ENOMEM;
579 } while (dst_pud++, src_pud++, addr = next, addr != end);
580 return 0;
583 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
584 struct vm_area_struct *vma)
586 pgd_t *src_pgd, *dst_pgd;
587 unsigned long next;
588 unsigned long addr = vma->vm_start;
589 unsigned long end = vma->vm_end;
592 * Don't copy ptes where a page fault will fill them correctly.
593 * Fork becomes much lighter when there are big shared or private
594 * readonly mappings. The tradeoff is that copy_page_range is more
595 * efficient than faulting.
597 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
598 if (!vma->anon_vma)
599 return 0;
602 if (is_vm_hugetlb_page(vma))
603 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605 dst_pgd = pgd_offset(dst_mm, addr);
606 src_pgd = pgd_offset(src_mm, addr);
607 do {
608 next = pgd_addr_end(addr, end);
609 if (pgd_none_or_clear_bad(src_pgd))
610 continue;
611 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
612 vma, addr, next))
613 return -ENOMEM;
614 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
615 return 0;
618 static unsigned long zap_pte_range(struct mmu_gather *tlb,
619 struct vm_area_struct *vma, pmd_t *pmd,
620 unsigned long addr, unsigned long end,
621 long *zap_work, struct zap_details *details)
623 struct mm_struct *mm = tlb->mm;
624 pte_t *pte;
625 spinlock_t *ptl;
626 int file_rss = 0;
627 int anon_rss = 0;
629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630 do {
631 pte_t ptent = *pte;
632 if (pte_none(ptent)) {
633 (*zap_work)--;
634 continue;
637 (*zap_work) -= PAGE_SIZE;
639 if (pte_present(ptent)) {
640 struct page *page;
642 page = vm_normal_page(vma, addr, ptent);
643 if (unlikely(details) && page) {
645 * unmap_shared_mapping_pages() wants to
646 * invalidate cache without truncating:
647 * unmap shared but keep private pages.
649 if (details->check_mapping &&
650 details->check_mapping != page->mapping)
651 continue;
653 * Each page->index must be checked when
654 * invalidating or truncating nonlinear.
656 if (details->nonlinear_vma &&
657 (page->index < details->first_index ||
658 page->index > details->last_index))
659 continue;
661 ptent = ptep_get_and_clear_full(mm, addr, pte,
662 tlb->fullmm);
663 tlb_remove_tlb_entry(tlb, pte, addr);
664 if (unlikely(!page))
665 continue;
666 if (unlikely(details) && details->nonlinear_vma
667 && linear_page_index(details->nonlinear_vma,
668 addr) != page->index)
669 set_pte_at(mm, addr, pte,
670 pgoff_to_pte(page->index));
671 if (PageAnon(page))
672 anon_rss--;
673 else {
674 if (pte_dirty(ptent))
675 set_page_dirty(page);
676 if (pte_young(ptent))
677 mark_page_accessed(page);
678 file_rss--;
680 page_remove_rmap(page);
681 tlb_remove_page(tlb, page);
682 continue;
685 * If details->check_mapping, we leave swap entries;
686 * if details->nonlinear_vma, we leave file entries.
688 if (unlikely(details))
689 continue;
690 if (!pte_file(ptent))
691 free_swap_and_cache(pte_to_swp_entry(ptent));
692 pte_clear_full(mm, addr, pte, tlb->fullmm);
693 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
695 add_mm_rss(mm, file_rss, anon_rss);
696 pte_unmap_unlock(pte - 1, ptl);
698 return addr;
701 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
702 struct vm_area_struct *vma, pud_t *pud,
703 unsigned long addr, unsigned long end,
704 long *zap_work, struct zap_details *details)
706 pmd_t *pmd;
707 unsigned long next;
709 pmd = pmd_offset(pud, addr);
710 do {
711 next = pmd_addr_end(addr, end);
712 if (pmd_none_or_clear_bad(pmd)) {
713 (*zap_work)--;
714 continue;
716 next = zap_pte_range(tlb, vma, pmd, addr, next,
717 zap_work, details);
718 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
720 return addr;
723 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
724 struct vm_area_struct *vma, pgd_t *pgd,
725 unsigned long addr, unsigned long end,
726 long *zap_work, struct zap_details *details)
728 pud_t *pud;
729 unsigned long next;
731 pud = pud_offset(pgd, addr);
732 do {
733 next = pud_addr_end(addr, end);
734 if (pud_none_or_clear_bad(pud)) {
735 (*zap_work)--;
736 continue;
738 next = zap_pmd_range(tlb, vma, pud, addr, next,
739 zap_work, details);
740 } while (pud++, addr = next, (addr != end && *zap_work > 0));
742 return addr;
745 static unsigned long unmap_page_range(struct mmu_gather *tlb,
746 struct vm_area_struct *vma,
747 unsigned long addr, unsigned long end,
748 long *zap_work, struct zap_details *details)
750 pgd_t *pgd;
751 unsigned long next;
753 if (details && !details->check_mapping && !details->nonlinear_vma)
754 details = NULL;
756 BUG_ON(addr >= end);
757 tlb_start_vma(tlb, vma);
758 pgd = pgd_offset(vma->vm_mm, addr);
759 do {
760 next = pgd_addr_end(addr, end);
761 if (pgd_none_or_clear_bad(pgd)) {
762 (*zap_work)--;
763 continue;
765 next = zap_pud_range(tlb, vma, pgd, addr, next,
766 zap_work, details);
767 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
768 tlb_end_vma(tlb, vma);
770 return addr;
773 #ifdef CONFIG_PREEMPT
774 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
775 #else
776 /* No preempt: go for improved straight-line efficiency */
777 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
778 #endif
781 * unmap_vmas - unmap a range of memory covered by a list of vma's
782 * @tlbp: address of the caller's struct mmu_gather
783 * @vma: the starting vma
784 * @start_addr: virtual address at which to start unmapping
785 * @end_addr: virtual address at which to end unmapping
786 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
787 * @details: details of nonlinear truncation or shared cache invalidation
789 * Returns the end address of the unmapping (restart addr if interrupted).
791 * Unmap all pages in the vma list.
793 * We aim to not hold locks for too long (for scheduling latency reasons).
794 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
795 * return the ending mmu_gather to the caller.
797 * Only addresses between `start' and `end' will be unmapped.
799 * The VMA list must be sorted in ascending virtual address order.
801 * unmap_vmas() assumes that the caller will flush the whole unmapped address
802 * range after unmap_vmas() returns. So the only responsibility here is to
803 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
804 * drops the lock and schedules.
806 unsigned long unmap_vmas(struct mmu_gather **tlbp,
807 struct vm_area_struct *vma, unsigned long start_addr,
808 unsigned long end_addr, unsigned long *nr_accounted,
809 struct zap_details *details)
811 long zap_work = ZAP_BLOCK_SIZE;
812 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
813 int tlb_start_valid = 0;
814 unsigned long start = start_addr;
815 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
816 int fullmm = (*tlbp)->fullmm;
818 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
819 unsigned long end;
821 start = max(vma->vm_start, start_addr);
822 if (start >= vma->vm_end)
823 continue;
824 end = min(vma->vm_end, end_addr);
825 if (end <= vma->vm_start)
826 continue;
828 if (vma->vm_flags & VM_ACCOUNT)
829 *nr_accounted += (end - start) >> PAGE_SHIFT;
831 while (start != end) {
832 if (!tlb_start_valid) {
833 tlb_start = start;
834 tlb_start_valid = 1;
837 if (unlikely(is_vm_hugetlb_page(vma))) {
838 unmap_hugepage_range(vma, start, end);
839 zap_work -= (end - start) /
840 (HPAGE_SIZE / PAGE_SIZE);
841 start = end;
842 } else
843 start = unmap_page_range(*tlbp, vma,
844 start, end, &zap_work, details);
846 if (zap_work > 0) {
847 BUG_ON(start != end);
848 break;
851 tlb_finish_mmu(*tlbp, tlb_start, start);
853 if (need_resched() ||
854 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
855 if (i_mmap_lock) {
856 *tlbp = NULL;
857 goto out;
859 cond_resched();
862 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
863 tlb_start_valid = 0;
864 zap_work = ZAP_BLOCK_SIZE;
867 out:
868 return start; /* which is now the end (or restart) address */
872 * zap_page_range - remove user pages in a given range
873 * @vma: vm_area_struct holding the applicable pages
874 * @address: starting address of pages to zap
875 * @size: number of bytes to zap
876 * @details: details of nonlinear truncation or shared cache invalidation
878 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
879 unsigned long size, struct zap_details *details)
881 struct mm_struct *mm = vma->vm_mm;
882 struct mmu_gather *tlb;
883 unsigned long end = address + size;
884 unsigned long nr_accounted = 0;
886 lru_add_drain();
887 tlb = tlb_gather_mmu(mm, 0);
888 update_hiwater_rss(mm);
889 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
890 if (tlb)
891 tlb_finish_mmu(tlb, address, end);
892 return end;
896 * Do a quick page-table lookup for a single page.
898 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
899 unsigned int flags)
901 pgd_t *pgd;
902 pud_t *pud;
903 pmd_t *pmd;
904 pte_t *ptep, pte;
905 spinlock_t *ptl;
906 struct page *page;
907 struct mm_struct *mm = vma->vm_mm;
909 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
910 if (!IS_ERR(page)) {
911 BUG_ON(flags & FOLL_GET);
912 goto out;
915 page = NULL;
916 pgd = pgd_offset(mm, address);
917 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
918 goto no_page_table;
920 pud = pud_offset(pgd, address);
921 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
922 goto no_page_table;
924 pmd = pmd_offset(pud, address);
925 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
926 goto no_page_table;
928 if (pmd_huge(*pmd)) {
929 BUG_ON(flags & FOLL_GET);
930 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
931 goto out;
934 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
935 if (!ptep)
936 goto out;
938 pte = *ptep;
939 if (!pte_present(pte))
940 goto unlock;
941 if ((flags & FOLL_WRITE) && !pte_write(pte))
942 goto unlock;
943 page = vm_normal_page(vma, address, pte);
944 if (unlikely(!page))
945 goto unlock;
947 if (flags & FOLL_GET)
948 get_page(page);
949 if (flags & FOLL_TOUCH) {
950 if ((flags & FOLL_WRITE) &&
951 !pte_dirty(pte) && !PageDirty(page))
952 set_page_dirty(page);
953 mark_page_accessed(page);
955 unlock:
956 pte_unmap_unlock(ptep, ptl);
957 out:
958 return page;
960 no_page_table:
962 * When core dumping an enormous anonymous area that nobody
963 * has touched so far, we don't want to allocate page tables.
965 if (flags & FOLL_ANON) {
966 page = ZERO_PAGE(address);
967 if (flags & FOLL_GET)
968 get_page(page);
969 BUG_ON(flags & FOLL_WRITE);
971 return page;
974 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
975 unsigned long start, int len, int write, int force,
976 struct page **pages, struct vm_area_struct **vmas)
978 int i;
979 unsigned int vm_flags;
982 * Require read or write permissions.
983 * If 'force' is set, we only require the "MAY" flags.
985 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
986 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
987 i = 0;
989 do {
990 struct vm_area_struct *vma;
991 unsigned int foll_flags;
993 vma = find_extend_vma(mm, start);
994 if (!vma && in_gate_area(tsk, start)) {
995 unsigned long pg = start & PAGE_MASK;
996 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
997 pgd_t *pgd;
998 pud_t *pud;
999 pmd_t *pmd;
1000 pte_t *pte;
1001 if (write) /* user gate pages are read-only */
1002 return i ? : -EFAULT;
1003 if (pg > TASK_SIZE)
1004 pgd = pgd_offset_k(pg);
1005 else
1006 pgd = pgd_offset_gate(mm, pg);
1007 BUG_ON(pgd_none(*pgd));
1008 pud = pud_offset(pgd, pg);
1009 BUG_ON(pud_none(*pud));
1010 pmd = pmd_offset(pud, pg);
1011 if (pmd_none(*pmd))
1012 return i ? : -EFAULT;
1013 pte = pte_offset_map(pmd, pg);
1014 if (pte_none(*pte)) {
1015 pte_unmap(pte);
1016 return i ? : -EFAULT;
1018 if (pages) {
1019 struct page *page = vm_normal_page(gate_vma, start, *pte);
1020 pages[i] = page;
1021 if (page)
1022 get_page(page);
1024 pte_unmap(pte);
1025 if (vmas)
1026 vmas[i] = gate_vma;
1027 i++;
1028 start += PAGE_SIZE;
1029 len--;
1030 continue;
1033 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034 || !(vm_flags & vma->vm_flags))
1035 return i ? : -EFAULT;
1037 if (is_vm_hugetlb_page(vma)) {
1038 i = follow_hugetlb_page(mm, vma, pages, vmas,
1039 &start, &len, i);
1040 continue;
1043 foll_flags = FOLL_TOUCH;
1044 if (pages)
1045 foll_flags |= FOLL_GET;
1046 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1047 (!vma->vm_ops || !vma->vm_ops->nopage))
1048 foll_flags |= FOLL_ANON;
1050 do {
1051 struct page *page;
1053 if (write)
1054 foll_flags |= FOLL_WRITE;
1056 cond_resched();
1057 while (!(page = follow_page(vma, start, foll_flags))) {
1058 int ret;
1059 ret = __handle_mm_fault(mm, vma, start,
1060 foll_flags & FOLL_WRITE);
1062 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1063 * broken COW when necessary, even if maybe_mkwrite
1064 * decided not to set pte_write. We can thus safely do
1065 * subsequent page lookups as if they were reads.
1067 if (ret & VM_FAULT_WRITE)
1068 foll_flags &= ~FOLL_WRITE;
1070 switch (ret & ~VM_FAULT_WRITE) {
1071 case VM_FAULT_MINOR:
1072 tsk->min_flt++;
1073 break;
1074 case VM_FAULT_MAJOR:
1075 tsk->maj_flt++;
1076 break;
1077 case VM_FAULT_SIGBUS:
1078 return i ? i : -EFAULT;
1079 case VM_FAULT_OOM:
1080 return i ? i : -ENOMEM;
1081 default:
1082 BUG();
1085 if (pages) {
1086 pages[i] = page;
1088 flush_anon_page(page, start);
1089 flush_dcache_page(page);
1091 if (vmas)
1092 vmas[i] = vma;
1093 i++;
1094 start += PAGE_SIZE;
1095 len--;
1096 } while (len && start < vma->vm_end);
1097 } while (len);
1098 return i;
1100 EXPORT_SYMBOL(get_user_pages);
1102 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1103 unsigned long addr, unsigned long end, pgprot_t prot)
1105 pte_t *pte;
1106 spinlock_t *ptl;
1107 int err = 0;
1109 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1110 if (!pte)
1111 return -EAGAIN;
1112 do {
1113 struct page *page = ZERO_PAGE(addr);
1114 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1116 if (unlikely(!pte_none(*pte))) {
1117 err = -EEXIST;
1118 pte++;
1119 break;
1121 page_cache_get(page);
1122 page_add_file_rmap(page);
1123 inc_mm_counter(mm, file_rss);
1124 set_pte_at(mm, addr, pte, zero_pte);
1125 } while (pte++, addr += PAGE_SIZE, addr != end);
1126 pte_unmap_unlock(pte - 1, ptl);
1127 return err;
1130 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1131 unsigned long addr, unsigned long end, pgprot_t prot)
1133 pmd_t *pmd;
1134 unsigned long next;
1135 int err;
1137 pmd = pmd_alloc(mm, pud, addr);
1138 if (!pmd)
1139 return -EAGAIN;
1140 do {
1141 next = pmd_addr_end(addr, end);
1142 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1143 if (err)
1144 break;
1145 } while (pmd++, addr = next, addr != end);
1146 return err;
1149 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1150 unsigned long addr, unsigned long end, pgprot_t prot)
1152 pud_t *pud;
1153 unsigned long next;
1154 int err;
1156 pud = pud_alloc(mm, pgd, addr);
1157 if (!pud)
1158 return -EAGAIN;
1159 do {
1160 next = pud_addr_end(addr, end);
1161 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1162 if (err)
1163 break;
1164 } while (pud++, addr = next, addr != end);
1165 return err;
1168 int zeromap_page_range(struct vm_area_struct *vma,
1169 unsigned long addr, unsigned long size, pgprot_t prot)
1171 pgd_t *pgd;
1172 unsigned long next;
1173 unsigned long end = addr + size;
1174 struct mm_struct *mm = vma->vm_mm;
1175 int err;
1177 BUG_ON(addr >= end);
1178 pgd = pgd_offset(mm, addr);
1179 flush_cache_range(vma, addr, end);
1180 do {
1181 next = pgd_addr_end(addr, end);
1182 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1183 if (err)
1184 break;
1185 } while (pgd++, addr = next, addr != end);
1186 return err;
1189 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1191 pgd_t * pgd = pgd_offset(mm, addr);
1192 pud_t * pud = pud_alloc(mm, pgd, addr);
1193 if (pud) {
1194 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1195 if (pmd)
1196 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1198 return NULL;
1202 * This is the old fallback for page remapping.
1204 * For historical reasons, it only allows reserved pages. Only
1205 * old drivers should use this, and they needed to mark their
1206 * pages reserved for the old functions anyway.
1208 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1210 int retval;
1211 pte_t *pte;
1212 spinlock_t *ptl;
1214 retval = -EINVAL;
1215 if (PageAnon(page))
1216 goto out;
1217 retval = -ENOMEM;
1218 flush_dcache_page(page);
1219 pte = get_locked_pte(mm, addr, &ptl);
1220 if (!pte)
1221 goto out;
1222 retval = -EBUSY;
1223 if (!pte_none(*pte))
1224 goto out_unlock;
1226 /* Ok, finally just insert the thing.. */
1227 get_page(page);
1228 inc_mm_counter(mm, file_rss);
1229 page_add_file_rmap(page);
1230 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1232 retval = 0;
1233 out_unlock:
1234 pte_unmap_unlock(pte, ptl);
1235 out:
1236 return retval;
1240 * This allows drivers to insert individual pages they've allocated
1241 * into a user vma.
1243 * The page has to be a nice clean _individual_ kernel allocation.
1244 * If you allocate a compound page, you need to have marked it as
1245 * such (__GFP_COMP), or manually just split the page up yourself
1246 * (see split_page()).
1248 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1249 * took an arbitrary page protection parameter. This doesn't allow
1250 * that. Your vma protection will have to be set up correctly, which
1251 * means that if you want a shared writable mapping, you'd better
1252 * ask for a shared writable mapping!
1254 * The page does not need to be reserved.
1256 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1258 if (addr < vma->vm_start || addr >= vma->vm_end)
1259 return -EFAULT;
1260 if (!page_count(page))
1261 return -EINVAL;
1262 vma->vm_flags |= VM_INSERTPAGE;
1263 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1265 EXPORT_SYMBOL(vm_insert_page);
1268 * maps a range of physical memory into the requested pages. the old
1269 * mappings are removed. any references to nonexistent pages results
1270 * in null mappings (currently treated as "copy-on-access")
1272 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1273 unsigned long addr, unsigned long end,
1274 unsigned long pfn, pgprot_t prot)
1276 pte_t *pte;
1277 spinlock_t *ptl;
1279 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1280 if (!pte)
1281 return -ENOMEM;
1282 do {
1283 BUG_ON(!pte_none(*pte));
1284 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1285 pfn++;
1286 } while (pte++, addr += PAGE_SIZE, addr != end);
1287 pte_unmap_unlock(pte - 1, ptl);
1288 return 0;
1291 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1292 unsigned long addr, unsigned long end,
1293 unsigned long pfn, pgprot_t prot)
1295 pmd_t *pmd;
1296 unsigned long next;
1298 pfn -= addr >> PAGE_SHIFT;
1299 pmd = pmd_alloc(mm, pud, addr);
1300 if (!pmd)
1301 return -ENOMEM;
1302 do {
1303 next = pmd_addr_end(addr, end);
1304 if (remap_pte_range(mm, pmd, addr, next,
1305 pfn + (addr >> PAGE_SHIFT), prot))
1306 return -ENOMEM;
1307 } while (pmd++, addr = next, addr != end);
1308 return 0;
1311 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1312 unsigned long addr, unsigned long end,
1313 unsigned long pfn, pgprot_t prot)
1315 pud_t *pud;
1316 unsigned long next;
1318 pfn -= addr >> PAGE_SHIFT;
1319 pud = pud_alloc(mm, pgd, addr);
1320 if (!pud)
1321 return -ENOMEM;
1322 do {
1323 next = pud_addr_end(addr, end);
1324 if (remap_pmd_range(mm, pud, addr, next,
1325 pfn + (addr >> PAGE_SHIFT), prot))
1326 return -ENOMEM;
1327 } while (pud++, addr = next, addr != end);
1328 return 0;
1331 /* Note: this is only safe if the mm semaphore is held when called. */
1332 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1333 unsigned long pfn, unsigned long size, pgprot_t prot)
1335 pgd_t *pgd;
1336 unsigned long next;
1337 unsigned long end = addr + PAGE_ALIGN(size);
1338 struct mm_struct *mm = vma->vm_mm;
1339 int err;
1342 * Physically remapped pages are special. Tell the
1343 * rest of the world about it:
1344 * VM_IO tells people not to look at these pages
1345 * (accesses can have side effects).
1346 * VM_RESERVED is specified all over the place, because
1347 * in 2.4 it kept swapout's vma scan off this vma; but
1348 * in 2.6 the LRU scan won't even find its pages, so this
1349 * flag means no more than count its pages in reserved_vm,
1350 * and omit it from core dump, even when VM_IO turned off.
1351 * VM_PFNMAP tells the core MM that the base pages are just
1352 * raw PFN mappings, and do not have a "struct page" associated
1353 * with them.
1355 * There's a horrible special case to handle copy-on-write
1356 * behaviour that some programs depend on. We mark the "original"
1357 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1359 if (is_cow_mapping(vma->vm_flags)) {
1360 if (addr != vma->vm_start || end != vma->vm_end)
1361 return -EINVAL;
1362 vma->vm_pgoff = pfn;
1365 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1367 BUG_ON(addr >= end);
1368 pfn -= addr >> PAGE_SHIFT;
1369 pgd = pgd_offset(mm, addr);
1370 flush_cache_range(vma, addr, end);
1371 do {
1372 next = pgd_addr_end(addr, end);
1373 err = remap_pud_range(mm, pgd, addr, next,
1374 pfn + (addr >> PAGE_SHIFT), prot);
1375 if (err)
1376 break;
1377 } while (pgd++, addr = next, addr != end);
1378 return err;
1380 EXPORT_SYMBOL(remap_pfn_range);
1383 * handle_pte_fault chooses page fault handler according to an entry
1384 * which was read non-atomically. Before making any commitment, on
1385 * those architectures or configurations (e.g. i386 with PAE) which
1386 * might give a mix of unmatched parts, do_swap_page and do_file_page
1387 * must check under lock before unmapping the pte and proceeding
1388 * (but do_wp_page is only called after already making such a check;
1389 * and do_anonymous_page and do_no_page can safely check later on).
1391 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1392 pte_t *page_table, pte_t orig_pte)
1394 int same = 1;
1395 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1396 if (sizeof(pte_t) > sizeof(unsigned long)) {
1397 spinlock_t *ptl = pte_lockptr(mm, pmd);
1398 spin_lock(ptl);
1399 same = pte_same(*page_table, orig_pte);
1400 spin_unlock(ptl);
1402 #endif
1403 pte_unmap(page_table);
1404 return same;
1408 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1409 * servicing faults for write access. In the normal case, do always want
1410 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1411 * that do not have writing enabled, when used by access_process_vm.
1413 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1415 if (likely(vma->vm_flags & VM_WRITE))
1416 pte = pte_mkwrite(pte);
1417 return pte;
1420 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1423 * If the source page was a PFN mapping, we don't have
1424 * a "struct page" for it. We do a best-effort copy by
1425 * just copying from the original user address. If that
1426 * fails, we just zero-fill it. Live with it.
1428 if (unlikely(!src)) {
1429 void *kaddr = kmap_atomic(dst, KM_USER0);
1430 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1433 * This really shouldn't fail, because the page is there
1434 * in the page tables. But it might just be unreadable,
1435 * in which case we just give up and fill the result with
1436 * zeroes.
1438 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1439 memset(kaddr, 0, PAGE_SIZE);
1440 kunmap_atomic(kaddr, KM_USER0);
1441 return;
1444 copy_user_highpage(dst, src, va);
1448 * This routine handles present pages, when users try to write
1449 * to a shared page. It is done by copying the page to a new address
1450 * and decrementing the shared-page counter for the old page.
1452 * Note that this routine assumes that the protection checks have been
1453 * done by the caller (the low-level page fault routine in most cases).
1454 * Thus we can safely just mark it writable once we've done any necessary
1455 * COW.
1457 * We also mark the page dirty at this point even though the page will
1458 * change only once the write actually happens. This avoids a few races,
1459 * and potentially makes it more efficient.
1461 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1462 * but allow concurrent faults), with pte both mapped and locked.
1463 * We return with mmap_sem still held, but pte unmapped and unlocked.
1465 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1466 unsigned long address, pte_t *page_table, pmd_t *pmd,
1467 spinlock_t *ptl, pte_t orig_pte)
1469 struct page *old_page, *new_page;
1470 pte_t entry;
1471 int reuse, ret = VM_FAULT_MINOR;
1473 old_page = vm_normal_page(vma, address, orig_pte);
1474 if (!old_page)
1475 goto gotten;
1477 if (unlikely((vma->vm_flags & (VM_SHARED|VM_WRITE)) ==
1478 (VM_SHARED|VM_WRITE))) {
1479 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1481 * Notify the address space that the page is about to
1482 * become writable so that it can prohibit this or wait
1483 * for the page to get into an appropriate state.
1485 * We do this without the lock held, so that it can
1486 * sleep if it needs to.
1488 page_cache_get(old_page);
1489 pte_unmap_unlock(page_table, ptl);
1491 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1492 goto unwritable_page;
1494 page_cache_release(old_page);
1497 * Since we dropped the lock we need to revalidate
1498 * the PTE as someone else may have changed it. If
1499 * they did, we just return, as we can count on the
1500 * MMU to tell us if they didn't also make it writable.
1502 page_table = pte_offset_map_lock(mm, pmd, address,
1503 &ptl);
1504 if (!pte_same(*page_table, orig_pte))
1505 goto unlock;
1508 reuse = 1;
1509 } else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1510 reuse = can_share_swap_page(old_page);
1511 unlock_page(old_page);
1512 } else {
1513 reuse = 0;
1516 if (reuse) {
1517 flush_cache_page(vma, address, pte_pfn(orig_pte));
1518 entry = pte_mkyoung(orig_pte);
1519 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1520 ptep_set_access_flags(vma, address, page_table, entry, 1);
1521 update_mmu_cache(vma, address, entry);
1522 lazy_mmu_prot_update(entry);
1523 ret |= VM_FAULT_WRITE;
1524 goto unlock;
1528 * Ok, we need to copy. Oh, well..
1530 page_cache_get(old_page);
1531 gotten:
1532 pte_unmap_unlock(page_table, ptl);
1534 if (unlikely(anon_vma_prepare(vma)))
1535 goto oom;
1536 if (old_page == ZERO_PAGE(address)) {
1537 new_page = alloc_zeroed_user_highpage(vma, address);
1538 if (!new_page)
1539 goto oom;
1540 } else {
1541 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1542 if (!new_page)
1543 goto oom;
1544 cow_user_page(new_page, old_page, address);
1548 * Re-check the pte - we dropped the lock
1550 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1551 if (likely(pte_same(*page_table, orig_pte))) {
1552 if (old_page) {
1553 page_remove_rmap(old_page);
1554 if (!PageAnon(old_page)) {
1555 dec_mm_counter(mm, file_rss);
1556 inc_mm_counter(mm, anon_rss);
1558 } else
1559 inc_mm_counter(mm, anon_rss);
1560 flush_cache_page(vma, address, pte_pfn(orig_pte));
1561 entry = mk_pte(new_page, vma->vm_page_prot);
1562 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1563 lazy_mmu_prot_update(entry);
1565 * Clear the pte entry and flush it first, before updating the
1566 * pte with the new entry. This will avoid a race condition
1567 * seen in the presence of one thread doing SMC and another
1568 * thread doing COW.
1570 ptep_clear_flush(vma, address, page_table);
1571 set_pte_at(mm, address, page_table, entry);
1572 update_mmu_cache(vma, address, entry);
1573 lru_cache_add_active(new_page);
1574 page_add_new_anon_rmap(new_page, vma, address);
1576 /* Free the old page.. */
1577 new_page = old_page;
1578 ret |= VM_FAULT_WRITE;
1580 if (new_page)
1581 page_cache_release(new_page);
1582 if (old_page)
1583 page_cache_release(old_page);
1584 unlock:
1585 pte_unmap_unlock(page_table, ptl);
1586 return ret;
1587 oom:
1588 if (old_page)
1589 page_cache_release(old_page);
1590 return VM_FAULT_OOM;
1592 unwritable_page:
1593 page_cache_release(old_page);
1594 return VM_FAULT_SIGBUS;
1598 * Helper functions for unmap_mapping_range().
1600 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1602 * We have to restart searching the prio_tree whenever we drop the lock,
1603 * since the iterator is only valid while the lock is held, and anyway
1604 * a later vma might be split and reinserted earlier while lock dropped.
1606 * The list of nonlinear vmas could be handled more efficiently, using
1607 * a placeholder, but handle it in the same way until a need is shown.
1608 * It is important to search the prio_tree before nonlinear list: a vma
1609 * may become nonlinear and be shifted from prio_tree to nonlinear list
1610 * while the lock is dropped; but never shifted from list to prio_tree.
1612 * In order to make forward progress despite restarting the search,
1613 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1614 * quickly skip it next time around. Since the prio_tree search only
1615 * shows us those vmas affected by unmapping the range in question, we
1616 * can't efficiently keep all vmas in step with mapping->truncate_count:
1617 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1618 * mapping->truncate_count and vma->vm_truncate_count are protected by
1619 * i_mmap_lock.
1621 * In order to make forward progress despite repeatedly restarting some
1622 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1623 * and restart from that address when we reach that vma again. It might
1624 * have been split or merged, shrunk or extended, but never shifted: so
1625 * restart_addr remains valid so long as it remains in the vma's range.
1626 * unmap_mapping_range forces truncate_count to leap over page-aligned
1627 * values so we can save vma's restart_addr in its truncate_count field.
1629 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1631 static void reset_vma_truncate_counts(struct address_space *mapping)
1633 struct vm_area_struct *vma;
1634 struct prio_tree_iter iter;
1636 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1637 vma->vm_truncate_count = 0;
1638 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1639 vma->vm_truncate_count = 0;
1642 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1643 unsigned long start_addr, unsigned long end_addr,
1644 struct zap_details *details)
1646 unsigned long restart_addr;
1647 int need_break;
1649 again:
1650 restart_addr = vma->vm_truncate_count;
1651 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1652 start_addr = restart_addr;
1653 if (start_addr >= end_addr) {
1654 /* Top of vma has been split off since last time */
1655 vma->vm_truncate_count = details->truncate_count;
1656 return 0;
1660 restart_addr = zap_page_range(vma, start_addr,
1661 end_addr - start_addr, details);
1662 need_break = need_resched() ||
1663 need_lockbreak(details->i_mmap_lock);
1665 if (restart_addr >= end_addr) {
1666 /* We have now completed this vma: mark it so */
1667 vma->vm_truncate_count = details->truncate_count;
1668 if (!need_break)
1669 return 0;
1670 } else {
1671 /* Note restart_addr in vma's truncate_count field */
1672 vma->vm_truncate_count = restart_addr;
1673 if (!need_break)
1674 goto again;
1677 spin_unlock(details->i_mmap_lock);
1678 cond_resched();
1679 spin_lock(details->i_mmap_lock);
1680 return -EINTR;
1683 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1684 struct zap_details *details)
1686 struct vm_area_struct *vma;
1687 struct prio_tree_iter iter;
1688 pgoff_t vba, vea, zba, zea;
1690 restart:
1691 vma_prio_tree_foreach(vma, &iter, root,
1692 details->first_index, details->last_index) {
1693 /* Skip quickly over those we have already dealt with */
1694 if (vma->vm_truncate_count == details->truncate_count)
1695 continue;
1697 vba = vma->vm_pgoff;
1698 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1699 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1700 zba = details->first_index;
1701 if (zba < vba)
1702 zba = vba;
1703 zea = details->last_index;
1704 if (zea > vea)
1705 zea = vea;
1707 if (unmap_mapping_range_vma(vma,
1708 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1709 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1710 details) < 0)
1711 goto restart;
1715 static inline void unmap_mapping_range_list(struct list_head *head,
1716 struct zap_details *details)
1718 struct vm_area_struct *vma;
1721 * In nonlinear VMAs there is no correspondence between virtual address
1722 * offset and file offset. So we must perform an exhaustive search
1723 * across *all* the pages in each nonlinear VMA, not just the pages
1724 * whose virtual address lies outside the file truncation point.
1726 restart:
1727 list_for_each_entry(vma, head, shared.vm_set.list) {
1728 /* Skip quickly over those we have already dealt with */
1729 if (vma->vm_truncate_count == details->truncate_count)
1730 continue;
1731 details->nonlinear_vma = vma;
1732 if (unmap_mapping_range_vma(vma, vma->vm_start,
1733 vma->vm_end, details) < 0)
1734 goto restart;
1739 * unmap_mapping_range - unmap the portion of all mmaps
1740 * in the specified address_space corresponding to the specified
1741 * page range in the underlying file.
1742 * @mapping: the address space containing mmaps to be unmapped.
1743 * @holebegin: byte in first page to unmap, relative to the start of
1744 * the underlying file. This will be rounded down to a PAGE_SIZE
1745 * boundary. Note that this is different from vmtruncate(), which
1746 * must keep the partial page. In contrast, we must get rid of
1747 * partial pages.
1748 * @holelen: size of prospective hole in bytes. This will be rounded
1749 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1750 * end of the file.
1751 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1752 * but 0 when invalidating pagecache, don't throw away private data.
1754 void unmap_mapping_range(struct address_space *mapping,
1755 loff_t const holebegin, loff_t const holelen, int even_cows)
1757 struct zap_details details;
1758 pgoff_t hba = holebegin >> PAGE_SHIFT;
1759 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761 /* Check for overflow. */
1762 if (sizeof(holelen) > sizeof(hlen)) {
1763 long long holeend =
1764 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1765 if (holeend & ~(long long)ULONG_MAX)
1766 hlen = ULONG_MAX - hba + 1;
1769 details.check_mapping = even_cows? NULL: mapping;
1770 details.nonlinear_vma = NULL;
1771 details.first_index = hba;
1772 details.last_index = hba + hlen - 1;
1773 if (details.last_index < details.first_index)
1774 details.last_index = ULONG_MAX;
1775 details.i_mmap_lock = &mapping->i_mmap_lock;
1777 spin_lock(&mapping->i_mmap_lock);
1779 /* serialize i_size write against truncate_count write */
1780 smp_wmb();
1781 /* Protect against page faults, and endless unmapping loops */
1782 mapping->truncate_count++;
1784 * For archs where spin_lock has inclusive semantics like ia64
1785 * this smp_mb() will prevent to read pagetable contents
1786 * before the truncate_count increment is visible to
1787 * other cpus.
1789 smp_mb();
1790 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1791 if (mapping->truncate_count == 0)
1792 reset_vma_truncate_counts(mapping);
1793 mapping->truncate_count++;
1795 details.truncate_count = mapping->truncate_count;
1797 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1798 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1799 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1800 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1801 spin_unlock(&mapping->i_mmap_lock);
1803 EXPORT_SYMBOL(unmap_mapping_range);
1806 * Handle all mappings that got truncated by a "truncate()"
1807 * system call.
1809 * NOTE! We have to be ready to update the memory sharing
1810 * between the file and the memory map for a potential last
1811 * incomplete page. Ugly, but necessary.
1813 int vmtruncate(struct inode * inode, loff_t offset)
1815 struct address_space *mapping = inode->i_mapping;
1816 unsigned long limit;
1818 if (inode->i_size < offset)
1819 goto do_expand;
1821 * truncation of in-use swapfiles is disallowed - it would cause
1822 * subsequent swapout to scribble on the now-freed blocks.
1824 if (IS_SWAPFILE(inode))
1825 goto out_busy;
1826 i_size_write(inode, offset);
1827 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1828 truncate_inode_pages(mapping, offset);
1829 goto out_truncate;
1831 do_expand:
1832 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1833 if (limit != RLIM_INFINITY && offset > limit)
1834 goto out_sig;
1835 if (offset > inode->i_sb->s_maxbytes)
1836 goto out_big;
1837 i_size_write(inode, offset);
1839 out_truncate:
1840 if (inode->i_op && inode->i_op->truncate)
1841 inode->i_op->truncate(inode);
1842 return 0;
1843 out_sig:
1844 send_sig(SIGXFSZ, current, 0);
1845 out_big:
1846 return -EFBIG;
1847 out_busy:
1848 return -ETXTBSY;
1850 EXPORT_SYMBOL(vmtruncate);
1852 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1854 struct address_space *mapping = inode->i_mapping;
1857 * If the underlying filesystem is not going to provide
1858 * a way to truncate a range of blocks (punch a hole) -
1859 * we should return failure right now.
1861 if (!inode->i_op || !inode->i_op->truncate_range)
1862 return -ENOSYS;
1864 mutex_lock(&inode->i_mutex);
1865 down_write(&inode->i_alloc_sem);
1866 unmap_mapping_range(mapping, offset, (end - offset), 1);
1867 truncate_inode_pages_range(mapping, offset, end);
1868 inode->i_op->truncate_range(inode, offset, end);
1869 up_write(&inode->i_alloc_sem);
1870 mutex_unlock(&inode->i_mutex);
1872 return 0;
1874 EXPORT_UNUSED_SYMBOL(vmtruncate_range); /* June 2006 */
1877 * Primitive swap readahead code. We simply read an aligned block of
1878 * (1 << page_cluster) entries in the swap area. This method is chosen
1879 * because it doesn't cost us any seek time. We also make sure to queue
1880 * the 'original' request together with the readahead ones...
1882 * This has been extended to use the NUMA policies from the mm triggering
1883 * the readahead.
1885 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1887 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1889 #ifdef CONFIG_NUMA
1890 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1891 #endif
1892 int i, num;
1893 struct page *new_page;
1894 unsigned long offset;
1897 * Get the number of handles we should do readahead io to.
1899 num = valid_swaphandles(entry, &offset);
1900 for (i = 0; i < num; offset++, i++) {
1901 /* Ok, do the async read-ahead now */
1902 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1903 offset), vma, addr);
1904 if (!new_page)
1905 break;
1906 page_cache_release(new_page);
1907 #ifdef CONFIG_NUMA
1909 * Find the next applicable VMA for the NUMA policy.
1911 addr += PAGE_SIZE;
1912 if (addr == 0)
1913 vma = NULL;
1914 if (vma) {
1915 if (addr >= vma->vm_end) {
1916 vma = next_vma;
1917 next_vma = vma ? vma->vm_next : NULL;
1919 if (vma && addr < vma->vm_start)
1920 vma = NULL;
1921 } else {
1922 if (next_vma && addr >= next_vma->vm_start) {
1923 vma = next_vma;
1924 next_vma = vma->vm_next;
1927 #endif
1929 lru_add_drain(); /* Push any new pages onto the LRU now */
1933 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1934 * but allow concurrent faults), and pte mapped but not yet locked.
1935 * We return with mmap_sem still held, but pte unmapped and unlocked.
1937 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1938 unsigned long address, pte_t *page_table, pmd_t *pmd,
1939 int write_access, pte_t orig_pte)
1941 spinlock_t *ptl;
1942 struct page *page;
1943 swp_entry_t entry;
1944 pte_t pte;
1945 int ret = VM_FAULT_MINOR;
1947 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1948 goto out;
1950 entry = pte_to_swp_entry(orig_pte);
1951 if (is_migration_entry(entry)) {
1952 migration_entry_wait(mm, pmd, address);
1953 goto out;
1955 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1956 page = lookup_swap_cache(entry);
1957 if (!page) {
1958 swapin_readahead(entry, address, vma);
1959 page = read_swap_cache_async(entry, vma, address);
1960 if (!page) {
1962 * Back out if somebody else faulted in this pte
1963 * while we released the pte lock.
1965 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1966 if (likely(pte_same(*page_table, orig_pte)))
1967 ret = VM_FAULT_OOM;
1968 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1969 goto unlock;
1972 /* Had to read the page from swap area: Major fault */
1973 ret = VM_FAULT_MAJOR;
1974 count_vm_event(PGMAJFAULT);
1975 grab_swap_token();
1978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1979 mark_page_accessed(page);
1980 lock_page(page);
1983 * Back out if somebody else already faulted in this pte.
1985 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1986 if (unlikely(!pte_same(*page_table, orig_pte)))
1987 goto out_nomap;
1989 if (unlikely(!PageUptodate(page))) {
1990 ret = VM_FAULT_SIGBUS;
1991 goto out_nomap;
1994 /* The page isn't present yet, go ahead with the fault. */
1996 inc_mm_counter(mm, anon_rss);
1997 pte = mk_pte(page, vma->vm_page_prot);
1998 if (write_access && can_share_swap_page(page)) {
1999 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2000 write_access = 0;
2003 flush_icache_page(vma, page);
2004 set_pte_at(mm, address, page_table, pte);
2005 page_add_anon_rmap(page, vma, address);
2007 swap_free(entry);
2008 if (vm_swap_full())
2009 remove_exclusive_swap_page(page);
2010 unlock_page(page);
2012 if (write_access) {
2013 if (do_wp_page(mm, vma, address,
2014 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2015 ret = VM_FAULT_OOM;
2016 goto out;
2019 /* No need to invalidate - it was non-present before */
2020 update_mmu_cache(vma, address, pte);
2021 lazy_mmu_prot_update(pte);
2022 unlock:
2023 pte_unmap_unlock(page_table, ptl);
2024 out:
2025 return ret;
2026 out_nomap:
2027 pte_unmap_unlock(page_table, ptl);
2028 unlock_page(page);
2029 page_cache_release(page);
2030 return ret;
2034 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2035 * but allow concurrent faults), and pte mapped but not yet locked.
2036 * We return with mmap_sem still held, but pte unmapped and unlocked.
2038 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2039 unsigned long address, pte_t *page_table, pmd_t *pmd,
2040 int write_access)
2042 struct page *page;
2043 spinlock_t *ptl;
2044 pte_t entry;
2046 if (write_access) {
2047 /* Allocate our own private page. */
2048 pte_unmap(page_table);
2050 if (unlikely(anon_vma_prepare(vma)))
2051 goto oom;
2052 page = alloc_zeroed_user_highpage(vma, address);
2053 if (!page)
2054 goto oom;
2056 entry = mk_pte(page, vma->vm_page_prot);
2057 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2060 if (!pte_none(*page_table))
2061 goto release;
2062 inc_mm_counter(mm, anon_rss);
2063 lru_cache_add_active(page);
2064 page_add_new_anon_rmap(page, vma, address);
2065 } else {
2066 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2067 page = ZERO_PAGE(address);
2068 page_cache_get(page);
2069 entry = mk_pte(page, vma->vm_page_prot);
2071 ptl = pte_lockptr(mm, pmd);
2072 spin_lock(ptl);
2073 if (!pte_none(*page_table))
2074 goto release;
2075 inc_mm_counter(mm, file_rss);
2076 page_add_file_rmap(page);
2079 set_pte_at(mm, address, page_table, entry);
2081 /* No need to invalidate - it was non-present before */
2082 update_mmu_cache(vma, address, entry);
2083 lazy_mmu_prot_update(entry);
2084 unlock:
2085 pte_unmap_unlock(page_table, ptl);
2086 return VM_FAULT_MINOR;
2087 release:
2088 page_cache_release(page);
2089 goto unlock;
2090 oom:
2091 return VM_FAULT_OOM;
2095 * do_no_page() tries to create a new page mapping. It aggressively
2096 * tries to share with existing pages, but makes a separate copy if
2097 * the "write_access" parameter is true in order to avoid the next
2098 * page fault.
2100 * As this is called only for pages that do not currently exist, we
2101 * do not need to flush old virtual caches or the TLB.
2103 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2104 * but allow concurrent faults), and pte mapped but not yet locked.
2105 * We return with mmap_sem still held, but pte unmapped and unlocked.
2107 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2108 unsigned long address, pte_t *page_table, pmd_t *pmd,
2109 int write_access)
2111 spinlock_t *ptl;
2112 struct page *new_page;
2113 struct address_space *mapping = NULL;
2114 pte_t entry;
2115 unsigned int sequence = 0;
2116 int ret = VM_FAULT_MINOR;
2117 int anon = 0;
2119 pte_unmap(page_table);
2120 BUG_ON(vma->vm_flags & VM_PFNMAP);
2122 if (vma->vm_file) {
2123 mapping = vma->vm_file->f_mapping;
2124 sequence = mapping->truncate_count;
2125 smp_rmb(); /* serializes i_size against truncate_count */
2127 retry:
2128 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2130 * No smp_rmb is needed here as long as there's a full
2131 * spin_lock/unlock sequence inside the ->nopage callback
2132 * (for the pagecache lookup) that acts as an implicit
2133 * smp_mb() and prevents the i_size read to happen
2134 * after the next truncate_count read.
2137 /* no page was available -- either SIGBUS or OOM */
2138 if (new_page == NOPAGE_SIGBUS)
2139 return VM_FAULT_SIGBUS;
2140 if (new_page == NOPAGE_OOM)
2141 return VM_FAULT_OOM;
2144 * Should we do an early C-O-W break?
2146 if (write_access) {
2147 if (!(vma->vm_flags & VM_SHARED)) {
2148 struct page *page;
2150 if (unlikely(anon_vma_prepare(vma)))
2151 goto oom;
2152 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2153 if (!page)
2154 goto oom;
2155 copy_user_highpage(page, new_page, address);
2156 page_cache_release(new_page);
2157 new_page = page;
2158 anon = 1;
2160 } else {
2161 /* if the page will be shareable, see if the backing
2162 * address space wants to know that the page is about
2163 * to become writable */
2164 if (vma->vm_ops->page_mkwrite &&
2165 vma->vm_ops->page_mkwrite(vma, new_page) < 0
2167 page_cache_release(new_page);
2168 return VM_FAULT_SIGBUS;
2173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2175 * For a file-backed vma, someone could have truncated or otherwise
2176 * invalidated this page. If unmap_mapping_range got called,
2177 * retry getting the page.
2179 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2180 pte_unmap_unlock(page_table, ptl);
2181 page_cache_release(new_page);
2182 cond_resched();
2183 sequence = mapping->truncate_count;
2184 smp_rmb();
2185 goto retry;
2189 * This silly early PAGE_DIRTY setting removes a race
2190 * due to the bad i386 page protection. But it's valid
2191 * for other architectures too.
2193 * Note that if write_access is true, we either now have
2194 * an exclusive copy of the page, or this is a shared mapping,
2195 * so we can make it writable and dirty to avoid having to
2196 * handle that later.
2198 /* Only go through if we didn't race with anybody else... */
2199 if (pte_none(*page_table)) {
2200 flush_icache_page(vma, new_page);
2201 entry = mk_pte(new_page, vma->vm_page_prot);
2202 if (write_access)
2203 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2204 set_pte_at(mm, address, page_table, entry);
2205 if (anon) {
2206 inc_mm_counter(mm, anon_rss);
2207 lru_cache_add_active(new_page);
2208 page_add_new_anon_rmap(new_page, vma, address);
2209 } else {
2210 inc_mm_counter(mm, file_rss);
2211 page_add_file_rmap(new_page);
2213 } else {
2214 /* One of our sibling threads was faster, back out. */
2215 page_cache_release(new_page);
2216 goto unlock;
2219 /* no need to invalidate: a not-present page shouldn't be cached */
2220 update_mmu_cache(vma, address, entry);
2221 lazy_mmu_prot_update(entry);
2222 unlock:
2223 pte_unmap_unlock(page_table, ptl);
2224 return ret;
2225 oom:
2226 page_cache_release(new_page);
2227 return VM_FAULT_OOM;
2231 * Fault of a previously existing named mapping. Repopulate the pte
2232 * from the encoded file_pte if possible. This enables swappable
2233 * nonlinear vmas.
2235 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2236 * but allow concurrent faults), and pte mapped but not yet locked.
2237 * We return with mmap_sem still held, but pte unmapped and unlocked.
2239 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2240 unsigned long address, pte_t *page_table, pmd_t *pmd,
2241 int write_access, pte_t orig_pte)
2243 pgoff_t pgoff;
2244 int err;
2246 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2247 return VM_FAULT_MINOR;
2249 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2251 * Page table corrupted: show pte and kill process.
2253 print_bad_pte(vma, orig_pte, address);
2254 return VM_FAULT_OOM;
2256 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2258 pgoff = pte_to_pgoff(orig_pte);
2259 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2260 vma->vm_page_prot, pgoff, 0);
2261 if (err == -ENOMEM)
2262 return VM_FAULT_OOM;
2263 if (err)
2264 return VM_FAULT_SIGBUS;
2265 return VM_FAULT_MAJOR;
2269 * These routines also need to handle stuff like marking pages dirty
2270 * and/or accessed for architectures that don't do it in hardware (most
2271 * RISC architectures). The early dirtying is also good on the i386.
2273 * There is also a hook called "update_mmu_cache()" that architectures
2274 * with external mmu caches can use to update those (ie the Sparc or
2275 * PowerPC hashed page tables that act as extended TLBs).
2277 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2278 * but allow concurrent faults), and pte mapped but not yet locked.
2279 * We return with mmap_sem still held, but pte unmapped and unlocked.
2281 static inline int handle_pte_fault(struct mm_struct *mm,
2282 struct vm_area_struct *vma, unsigned long address,
2283 pte_t *pte, pmd_t *pmd, int write_access)
2285 pte_t entry;
2286 pte_t old_entry;
2287 spinlock_t *ptl;
2289 old_entry = entry = *pte;
2290 if (!pte_present(entry)) {
2291 if (pte_none(entry)) {
2292 if (!vma->vm_ops || !vma->vm_ops->nopage)
2293 return do_anonymous_page(mm, vma, address,
2294 pte, pmd, write_access);
2295 return do_no_page(mm, vma, address,
2296 pte, pmd, write_access);
2298 if (pte_file(entry))
2299 return do_file_page(mm, vma, address,
2300 pte, pmd, write_access, entry);
2301 return do_swap_page(mm, vma, address,
2302 pte, pmd, write_access, entry);
2305 ptl = pte_lockptr(mm, pmd);
2306 spin_lock(ptl);
2307 if (unlikely(!pte_same(*pte, entry)))
2308 goto unlock;
2309 if (write_access) {
2310 if (!pte_write(entry))
2311 return do_wp_page(mm, vma, address,
2312 pte, pmd, ptl, entry);
2313 entry = pte_mkdirty(entry);
2315 entry = pte_mkyoung(entry);
2316 if (!pte_same(old_entry, entry)) {
2317 ptep_set_access_flags(vma, address, pte, entry, write_access);
2318 update_mmu_cache(vma, address, entry);
2319 lazy_mmu_prot_update(entry);
2320 } else {
2322 * This is needed only for protection faults but the arch code
2323 * is not yet telling us if this is a protection fault or not.
2324 * This still avoids useless tlb flushes for .text page faults
2325 * with threads.
2327 if (write_access)
2328 flush_tlb_page(vma, address);
2330 unlock:
2331 pte_unmap_unlock(pte, ptl);
2332 return VM_FAULT_MINOR;
2336 * By the time we get here, we already hold the mm semaphore
2338 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2339 unsigned long address, int write_access)
2341 pgd_t *pgd;
2342 pud_t *pud;
2343 pmd_t *pmd;
2344 pte_t *pte;
2346 __set_current_state(TASK_RUNNING);
2348 count_vm_event(PGFAULT);
2350 if (unlikely(is_vm_hugetlb_page(vma)))
2351 return hugetlb_fault(mm, vma, address, write_access);
2353 pgd = pgd_offset(mm, address);
2354 pud = pud_alloc(mm, pgd, address);
2355 if (!pud)
2356 return VM_FAULT_OOM;
2357 pmd = pmd_alloc(mm, pud, address);
2358 if (!pmd)
2359 return VM_FAULT_OOM;
2360 pte = pte_alloc_map(mm, pmd, address);
2361 if (!pte)
2362 return VM_FAULT_OOM;
2364 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2367 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2369 #ifndef __PAGETABLE_PUD_FOLDED
2371 * Allocate page upper directory.
2372 * We've already handled the fast-path in-line.
2374 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2376 pud_t *new = pud_alloc_one(mm, address);
2377 if (!new)
2378 return -ENOMEM;
2380 spin_lock(&mm->page_table_lock);
2381 if (pgd_present(*pgd)) /* Another has populated it */
2382 pud_free(new);
2383 else
2384 pgd_populate(mm, pgd, new);
2385 spin_unlock(&mm->page_table_lock);
2386 return 0;
2388 #else
2389 /* Workaround for gcc 2.96 */
2390 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2392 return 0;
2394 #endif /* __PAGETABLE_PUD_FOLDED */
2396 #ifndef __PAGETABLE_PMD_FOLDED
2398 * Allocate page middle directory.
2399 * We've already handled the fast-path in-line.
2401 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2403 pmd_t *new = pmd_alloc_one(mm, address);
2404 if (!new)
2405 return -ENOMEM;
2407 spin_lock(&mm->page_table_lock);
2408 #ifndef __ARCH_HAS_4LEVEL_HACK
2409 if (pud_present(*pud)) /* Another has populated it */
2410 pmd_free(new);
2411 else
2412 pud_populate(mm, pud, new);
2413 #else
2414 if (pgd_present(*pud)) /* Another has populated it */
2415 pmd_free(new);
2416 else
2417 pgd_populate(mm, pud, new);
2418 #endif /* __ARCH_HAS_4LEVEL_HACK */
2419 spin_unlock(&mm->page_table_lock);
2420 return 0;
2422 #else
2423 /* Workaround for gcc 2.96 */
2424 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2426 return 0;
2428 #endif /* __PAGETABLE_PMD_FOLDED */
2430 int make_pages_present(unsigned long addr, unsigned long end)
2432 int ret, len, write;
2433 struct vm_area_struct * vma;
2435 vma = find_vma(current->mm, addr);
2436 if (!vma)
2437 return -1;
2438 write = (vma->vm_flags & VM_WRITE) != 0;
2439 BUG_ON(addr >= end);
2440 BUG_ON(end > vma->vm_end);
2441 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2442 ret = get_user_pages(current, current->mm, addr,
2443 len, write, 0, NULL, NULL);
2444 if (ret < 0)
2445 return ret;
2446 return ret == len ? 0 : -1;
2450 * Map a vmalloc()-space virtual address to the physical page.
2452 struct page * vmalloc_to_page(void * vmalloc_addr)
2454 unsigned long addr = (unsigned long) vmalloc_addr;
2455 struct page *page = NULL;
2456 pgd_t *pgd = pgd_offset_k(addr);
2457 pud_t *pud;
2458 pmd_t *pmd;
2459 pte_t *ptep, pte;
2461 if (!pgd_none(*pgd)) {
2462 pud = pud_offset(pgd, addr);
2463 if (!pud_none(*pud)) {
2464 pmd = pmd_offset(pud, addr);
2465 if (!pmd_none(*pmd)) {
2466 ptep = pte_offset_map(pmd, addr);
2467 pte = *ptep;
2468 if (pte_present(pte))
2469 page = pte_page(pte);
2470 pte_unmap(ptep);
2474 return page;
2477 EXPORT_SYMBOL(vmalloc_to_page);
2480 * Map a vmalloc()-space virtual address to the physical page frame number.
2482 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2484 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2487 EXPORT_SYMBOL(vmalloc_to_pfn);
2489 #if !defined(__HAVE_ARCH_GATE_AREA)
2491 #if defined(AT_SYSINFO_EHDR)
2492 static struct vm_area_struct gate_vma;
2494 static int __init gate_vma_init(void)
2496 gate_vma.vm_mm = NULL;
2497 gate_vma.vm_start = FIXADDR_USER_START;
2498 gate_vma.vm_end = FIXADDR_USER_END;
2499 gate_vma.vm_page_prot = PAGE_READONLY;
2500 gate_vma.vm_flags = 0;
2501 return 0;
2503 __initcall(gate_vma_init);
2504 #endif
2506 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2508 #ifdef AT_SYSINFO_EHDR
2509 return &gate_vma;
2510 #else
2511 return NULL;
2512 #endif
2515 int in_gate_area_no_task(unsigned long addr)
2517 #ifdef AT_SYSINFO_EHDR
2518 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2519 return 1;
2520 #endif
2521 return 0;
2524 #endif /* __HAVE_ARCH_GATE_AREA */