Linux 2.6.19.7
[linux-2.6/suspend2-2.6.19.git] / arch / mips / kernel / time.c
blobe535f86efa2f3f4fc79b7784cdceae9bebea8d7c
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/clocksource.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
46 #define TICK_SIZE (tick_nsec / 1000)
49 * forward reference
51 DEFINE_SPINLOCK(rtc_lock);
54 * By default we provide the null RTC ops
56 static unsigned long null_rtc_get_time(void)
58 return mktime(2000, 1, 1, 0, 0, 0);
61 static int null_rtc_set_time(unsigned long sec)
63 return 0;
66 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
67 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
68 int (*rtc_mips_set_mmss)(unsigned long);
71 /* how many counter cycles in a jiffy */
72 static unsigned long cycles_per_jiffy __read_mostly;
74 /* expirelo is the count value for next CPU timer interrupt */
75 static unsigned int expirelo;
79 * Null timer ack for systems not needing one (e.g. i8254).
81 static void null_timer_ack(void) { /* nothing */ }
84 * Null high precision timer functions for systems lacking one.
86 static unsigned int null_hpt_read(void)
88 return 0;
91 static void __init null_hpt_init(void)
93 /* nothing */
98 * Timer ack for an R4k-compatible timer of a known frequency.
100 static void c0_timer_ack(void)
102 unsigned int count;
104 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
105 /* Ack this timer interrupt and set the next one. */
106 expirelo += cycles_per_jiffy;
107 #endif
108 write_c0_compare(expirelo);
110 /* Check to see if we have missed any timer interrupts. */
111 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
112 /* missed_timer_count++; */
113 expirelo = count + cycles_per_jiffy;
114 write_c0_compare(expirelo);
119 * High precision timer functions for a R4k-compatible timer.
121 static unsigned int c0_hpt_read(void)
123 return read_c0_count();
126 /* For use both as a high precision timer and an interrupt source. */
127 static void __init c0_hpt_timer_init(void)
129 expirelo = read_c0_count() + cycles_per_jiffy;
130 write_c0_compare(expirelo);
133 int (*mips_timer_state)(void);
134 void (*mips_timer_ack)(void);
135 unsigned int (*mips_hpt_read)(void);
136 void (*mips_hpt_init)(void) __initdata = null_hpt_init;
137 unsigned int mips_hpt_mask = 0xffffffff;
139 /* last time when xtime and rtc are sync'ed up */
140 static long last_rtc_update;
143 * local_timer_interrupt() does profiling and process accounting
144 * on a per-CPU basis.
146 * In UP mode, it is invoked from the (global) timer_interrupt.
148 * In SMP mode, it might invoked by per-CPU timer interrupt, or
149 * a broadcasted inter-processor interrupt which itself is triggered
150 * by the global timer interrupt.
152 void local_timer_interrupt(int irq, void *dev_id)
154 profile_tick(CPU_PROFILING);
155 update_process_times(user_mode(get_irq_regs()));
159 * High-level timer interrupt service routines. This function
160 * is set as irqaction->handler and is invoked through do_IRQ.
162 irqreturn_t timer_interrupt(int irq, void *dev_id)
164 write_seqlock(&xtime_lock);
166 mips_timer_ack();
169 * call the generic timer interrupt handling
171 do_timer(1);
174 * If we have an externally synchronized Linux clock, then update
175 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
176 * called as close as possible to 500 ms before the new second starts.
178 if (ntp_synced() &&
179 xtime.tv_sec > last_rtc_update + 660 &&
180 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
181 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
182 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
183 last_rtc_update = xtime.tv_sec;
184 } else {
185 /* do it again in 60 s */
186 last_rtc_update = xtime.tv_sec - 600;
190 write_sequnlock(&xtime_lock);
193 * In UP mode, we call local_timer_interrupt() to do profiling
194 * and process accouting.
196 * In SMP mode, local_timer_interrupt() is invoked by appropriate
197 * low-level local timer interrupt handler.
199 local_timer_interrupt(irq, dev_id);
201 return IRQ_HANDLED;
204 int null_perf_irq(void)
206 return 0;
209 int (*perf_irq)(void) = null_perf_irq;
211 EXPORT_SYMBOL(null_perf_irq);
212 EXPORT_SYMBOL(perf_irq);
214 asmlinkage void ll_timer_interrupt(int irq)
216 int r2 = cpu_has_mips_r2;
218 irq_enter();
219 kstat_this_cpu.irqs[irq]++;
222 * Suckage alert:
223 * Before R2 of the architecture there was no way to see if a
224 * performance counter interrupt was pending, so we have to run the
225 * performance counter interrupt handler anyway.
227 if (!r2 || (read_c0_cause() & (1 << 26)))
228 if (perf_irq())
229 goto out;
231 /* we keep interrupt disabled all the time */
232 if (!r2 || (read_c0_cause() & (1 << 30)))
233 timer_interrupt(irq, NULL);
235 out:
236 irq_exit();
239 asmlinkage void ll_local_timer_interrupt(int irq)
241 irq_enter();
242 if (smp_processor_id() != 0)
243 kstat_this_cpu.irqs[irq]++;
245 /* we keep interrupt disabled all the time */
246 local_timer_interrupt(irq, NULL);
248 irq_exit();
252 * time_init() - it does the following things.
254 * 1) board_time_init() -
255 * a) (optional) set up RTC routines,
256 * b) (optional) calibrate and set the mips_hpt_frequency
257 * (only needed if you intended to use cpu counter as timer interrupt
258 * source)
259 * 2) setup xtime based on rtc_mips_get_time().
260 * 3) calculate a couple of cached variables for later usage
261 * 4) plat_timer_setup() -
262 * a) (optional) over-write any choices made above by time_init().
263 * b) machine specific code should setup the timer irqaction.
264 * c) enable the timer interrupt
267 void (*board_time_init)(void);
269 unsigned int mips_hpt_frequency;
271 static struct irqaction timer_irqaction = {
272 .handler = timer_interrupt,
273 .flags = IRQF_DISABLED,
274 .name = "timer",
277 static unsigned int __init calibrate_hpt(void)
279 u64 frequency;
280 u32 hpt_start, hpt_end, hpt_count, hz;
282 const int loops = HZ / 10;
283 int log_2_loops = 0;
284 int i;
287 * We want to calibrate for 0.1s, but to avoid a 64-bit
288 * division we round the number of loops up to the nearest
289 * power of 2.
291 while (loops > 1 << log_2_loops)
292 log_2_loops++;
293 i = 1 << log_2_loops;
296 * Wait for a rising edge of the timer interrupt.
298 while (mips_timer_state());
299 while (!mips_timer_state());
302 * Now see how many high precision timer ticks happen
303 * during the calculated number of periods between timer
304 * interrupts.
306 hpt_start = mips_hpt_read();
307 do {
308 while (mips_timer_state());
309 while (!mips_timer_state());
310 } while (--i);
311 hpt_end = mips_hpt_read();
313 hpt_count = (hpt_end - hpt_start) & mips_hpt_mask;
314 hz = HZ;
315 frequency = (u64)hpt_count * (u64)hz;
317 return frequency >> log_2_loops;
320 static cycle_t read_mips_hpt(void)
322 return (cycle_t)mips_hpt_read();
325 static struct clocksource clocksource_mips = {
326 .name = "MIPS",
327 .read = read_mips_hpt,
328 .is_continuous = 1,
331 static void __init init_mips_clocksource(void)
333 u64 temp;
334 u32 shift;
336 if (!mips_hpt_frequency || mips_hpt_read == null_hpt_read)
337 return;
339 /* Calclate a somewhat reasonable rating value */
340 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
341 /* Find a shift value */
342 for (shift = 32; shift > 0; shift--) {
343 temp = (u64) NSEC_PER_SEC << shift;
344 do_div(temp, mips_hpt_frequency);
345 if ((temp >> 32) == 0)
346 break;
348 clocksource_mips.shift = shift;
349 clocksource_mips.mult = (u32)temp;
350 clocksource_mips.mask = mips_hpt_mask;
352 clocksource_register(&clocksource_mips);
355 void __init time_init(void)
357 if (board_time_init)
358 board_time_init();
360 if (!rtc_mips_set_mmss)
361 rtc_mips_set_mmss = rtc_mips_set_time;
363 xtime.tv_sec = rtc_mips_get_time();
364 xtime.tv_nsec = 0;
366 set_normalized_timespec(&wall_to_monotonic,
367 -xtime.tv_sec, -xtime.tv_nsec);
369 /* Choose appropriate high precision timer routines. */
370 if (!cpu_has_counter && !mips_hpt_read)
371 /* No high precision timer -- sorry. */
372 mips_hpt_read = null_hpt_read;
373 else if (!mips_hpt_frequency && !mips_timer_state) {
374 /* A high precision timer of unknown frequency. */
375 if (!mips_hpt_read)
376 /* No external high precision timer -- use R4k. */
377 mips_hpt_read = c0_hpt_read;
378 } else {
379 /* We know counter frequency. Or we can get it. */
380 if (!mips_hpt_read) {
381 /* No external high precision timer -- use R4k. */
382 mips_hpt_read = c0_hpt_read;
384 if (!mips_timer_state) {
385 /* No external timer interrupt -- use R4k. */
386 mips_hpt_init = c0_hpt_timer_init;
387 mips_timer_ack = c0_timer_ack;
390 if (!mips_hpt_frequency)
391 mips_hpt_frequency = calibrate_hpt();
393 /* Calculate cache parameters. */
394 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
396 /* Report the high precision timer rate for a reference. */
397 printk("Using %u.%03u MHz high precision timer.\n",
398 ((mips_hpt_frequency + 500) / 1000) / 1000,
399 ((mips_hpt_frequency + 500) / 1000) % 1000);
402 if (!mips_timer_ack)
403 /* No timer interrupt ack (e.g. i8254). */
404 mips_timer_ack = null_timer_ack;
406 /* This sets up the high precision timer for the first interrupt. */
407 mips_hpt_init();
410 * Call board specific timer interrupt setup.
412 * this pointer must be setup in machine setup routine.
414 * Even if a machine chooses to use a low-level timer interrupt,
415 * it still needs to setup the timer_irqaction.
416 * In that case, it might be better to set timer_irqaction.handler
417 * to be NULL function so that we are sure the high-level code
418 * is not invoked accidentally.
420 plat_timer_setup(&timer_irqaction);
422 init_mips_clocksource();
425 #define FEBRUARY 2
426 #define STARTOFTIME 1970
427 #define SECDAY 86400L
428 #define SECYR (SECDAY * 365)
429 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
430 #define days_in_year(y) (leapyear(y) ? 366 : 365)
431 #define days_in_month(m) (month_days[(m) - 1])
433 static int month_days[12] = {
434 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
437 void to_tm(unsigned long tim, struct rtc_time *tm)
439 long hms, day, gday;
440 int i;
442 gday = day = tim / SECDAY;
443 hms = tim % SECDAY;
445 /* Hours, minutes, seconds are easy */
446 tm->tm_hour = hms / 3600;
447 tm->tm_min = (hms % 3600) / 60;
448 tm->tm_sec = (hms % 3600) % 60;
450 /* Number of years in days */
451 for (i = STARTOFTIME; day >= days_in_year(i); i++)
452 day -= days_in_year(i);
453 tm->tm_year = i;
455 /* Number of months in days left */
456 if (leapyear(tm->tm_year))
457 days_in_month(FEBRUARY) = 29;
458 for (i = 1; day >= days_in_month(i); i++)
459 day -= days_in_month(i);
460 days_in_month(FEBRUARY) = 28;
461 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
463 /* Days are what is left over (+1) from all that. */
464 tm->tm_mday = day + 1;
467 * Determine the day of week
469 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
472 EXPORT_SYMBOL(rtc_lock);
473 EXPORT_SYMBOL(to_tm);
474 EXPORT_SYMBOL(rtc_mips_set_time);
475 EXPORT_SYMBOL(rtc_mips_get_time);
477 unsigned long long sched_clock(void)
479 return (unsigned long long)jiffies*(1000000000/HZ);