2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/clocksource.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
46 #define TICK_SIZE (tick_nsec / 1000)
51 DEFINE_SPINLOCK(rtc_lock
);
54 * By default we provide the null RTC ops
56 static unsigned long null_rtc_get_time(void)
58 return mktime(2000, 1, 1, 0, 0, 0);
61 static int null_rtc_set_time(unsigned long sec
)
66 unsigned long (*rtc_mips_get_time
)(void) = null_rtc_get_time
;
67 int (*rtc_mips_set_time
)(unsigned long) = null_rtc_set_time
;
68 int (*rtc_mips_set_mmss
)(unsigned long);
71 /* how many counter cycles in a jiffy */
72 static unsigned long cycles_per_jiffy __read_mostly
;
74 /* expirelo is the count value for next CPU timer interrupt */
75 static unsigned int expirelo
;
79 * Null timer ack for systems not needing one (e.g. i8254).
81 static void null_timer_ack(void) { /* nothing */ }
84 * Null high precision timer functions for systems lacking one.
86 static unsigned int null_hpt_read(void)
91 static void __init
null_hpt_init(void)
98 * Timer ack for an R4k-compatible timer of a known frequency.
100 static void c0_timer_ack(void)
104 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
105 /* Ack this timer interrupt and set the next one. */
106 expirelo
+= cycles_per_jiffy
;
108 write_c0_compare(expirelo
);
110 /* Check to see if we have missed any timer interrupts. */
111 while (((count
= read_c0_count()) - expirelo
) < 0x7fffffff) {
112 /* missed_timer_count++; */
113 expirelo
= count
+ cycles_per_jiffy
;
114 write_c0_compare(expirelo
);
119 * High precision timer functions for a R4k-compatible timer.
121 static unsigned int c0_hpt_read(void)
123 return read_c0_count();
126 /* For use both as a high precision timer and an interrupt source. */
127 static void __init
c0_hpt_timer_init(void)
129 expirelo
= read_c0_count() + cycles_per_jiffy
;
130 write_c0_compare(expirelo
);
133 int (*mips_timer_state
)(void);
134 void (*mips_timer_ack
)(void);
135 unsigned int (*mips_hpt_read
)(void);
136 void (*mips_hpt_init
)(void) __initdata
= null_hpt_init
;
137 unsigned int mips_hpt_mask
= 0xffffffff;
139 /* last time when xtime and rtc are sync'ed up */
140 static long last_rtc_update
;
143 * local_timer_interrupt() does profiling and process accounting
144 * on a per-CPU basis.
146 * In UP mode, it is invoked from the (global) timer_interrupt.
148 * In SMP mode, it might invoked by per-CPU timer interrupt, or
149 * a broadcasted inter-processor interrupt which itself is triggered
150 * by the global timer interrupt.
152 void local_timer_interrupt(int irq
, void *dev_id
)
154 profile_tick(CPU_PROFILING
);
155 update_process_times(user_mode(get_irq_regs()));
159 * High-level timer interrupt service routines. This function
160 * is set as irqaction->handler and is invoked through do_IRQ.
162 irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
164 write_seqlock(&xtime_lock
);
169 * call the generic timer interrupt handling
174 * If we have an externally synchronized Linux clock, then update
175 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
176 * called as close as possible to 500 ms before the new second starts.
179 xtime
.tv_sec
> last_rtc_update
+ 660 &&
180 (xtime
.tv_nsec
/ 1000) >= 500000 - ((unsigned) TICK_SIZE
) / 2 &&
181 (xtime
.tv_nsec
/ 1000) <= 500000 + ((unsigned) TICK_SIZE
) / 2) {
182 if (rtc_mips_set_mmss(xtime
.tv_sec
) == 0) {
183 last_rtc_update
= xtime
.tv_sec
;
185 /* do it again in 60 s */
186 last_rtc_update
= xtime
.tv_sec
- 600;
190 write_sequnlock(&xtime_lock
);
193 * In UP mode, we call local_timer_interrupt() to do profiling
194 * and process accouting.
196 * In SMP mode, local_timer_interrupt() is invoked by appropriate
197 * low-level local timer interrupt handler.
199 local_timer_interrupt(irq
, dev_id
);
204 int null_perf_irq(void)
209 int (*perf_irq
)(void) = null_perf_irq
;
211 EXPORT_SYMBOL(null_perf_irq
);
212 EXPORT_SYMBOL(perf_irq
);
214 asmlinkage
void ll_timer_interrupt(int irq
)
216 int r2
= cpu_has_mips_r2
;
219 kstat_this_cpu
.irqs
[irq
]++;
223 * Before R2 of the architecture there was no way to see if a
224 * performance counter interrupt was pending, so we have to run the
225 * performance counter interrupt handler anyway.
227 if (!r2
|| (read_c0_cause() & (1 << 26)))
231 /* we keep interrupt disabled all the time */
232 if (!r2
|| (read_c0_cause() & (1 << 30)))
233 timer_interrupt(irq
, NULL
);
239 asmlinkage
void ll_local_timer_interrupt(int irq
)
242 if (smp_processor_id() != 0)
243 kstat_this_cpu
.irqs
[irq
]++;
245 /* we keep interrupt disabled all the time */
246 local_timer_interrupt(irq
, NULL
);
252 * time_init() - it does the following things.
254 * 1) board_time_init() -
255 * a) (optional) set up RTC routines,
256 * b) (optional) calibrate and set the mips_hpt_frequency
257 * (only needed if you intended to use cpu counter as timer interrupt
259 * 2) setup xtime based on rtc_mips_get_time().
260 * 3) calculate a couple of cached variables for later usage
261 * 4) plat_timer_setup() -
262 * a) (optional) over-write any choices made above by time_init().
263 * b) machine specific code should setup the timer irqaction.
264 * c) enable the timer interrupt
267 void (*board_time_init
)(void);
269 unsigned int mips_hpt_frequency
;
271 static struct irqaction timer_irqaction
= {
272 .handler
= timer_interrupt
,
273 .flags
= IRQF_DISABLED
,
277 static unsigned int __init
calibrate_hpt(void)
280 u32 hpt_start
, hpt_end
, hpt_count
, hz
;
282 const int loops
= HZ
/ 10;
287 * We want to calibrate for 0.1s, but to avoid a 64-bit
288 * division we round the number of loops up to the nearest
291 while (loops
> 1 << log_2_loops
)
293 i
= 1 << log_2_loops
;
296 * Wait for a rising edge of the timer interrupt.
298 while (mips_timer_state());
299 while (!mips_timer_state());
302 * Now see how many high precision timer ticks happen
303 * during the calculated number of periods between timer
306 hpt_start
= mips_hpt_read();
308 while (mips_timer_state());
309 while (!mips_timer_state());
311 hpt_end
= mips_hpt_read();
313 hpt_count
= (hpt_end
- hpt_start
) & mips_hpt_mask
;
315 frequency
= (u64
)hpt_count
* (u64
)hz
;
317 return frequency
>> log_2_loops
;
320 static cycle_t
read_mips_hpt(void)
322 return (cycle_t
)mips_hpt_read();
325 static struct clocksource clocksource_mips
= {
327 .read
= read_mips_hpt
,
331 static void __init
init_mips_clocksource(void)
336 if (!mips_hpt_frequency
|| mips_hpt_read
== null_hpt_read
)
339 /* Calclate a somewhat reasonable rating value */
340 clocksource_mips
.rating
= 200 + mips_hpt_frequency
/ 10000000;
341 /* Find a shift value */
342 for (shift
= 32; shift
> 0; shift
--) {
343 temp
= (u64
) NSEC_PER_SEC
<< shift
;
344 do_div(temp
, mips_hpt_frequency
);
345 if ((temp
>> 32) == 0)
348 clocksource_mips
.shift
= shift
;
349 clocksource_mips
.mult
= (u32
)temp
;
350 clocksource_mips
.mask
= mips_hpt_mask
;
352 clocksource_register(&clocksource_mips
);
355 void __init
time_init(void)
360 if (!rtc_mips_set_mmss
)
361 rtc_mips_set_mmss
= rtc_mips_set_time
;
363 xtime
.tv_sec
= rtc_mips_get_time();
366 set_normalized_timespec(&wall_to_monotonic
,
367 -xtime
.tv_sec
, -xtime
.tv_nsec
);
369 /* Choose appropriate high precision timer routines. */
370 if (!cpu_has_counter
&& !mips_hpt_read
)
371 /* No high precision timer -- sorry. */
372 mips_hpt_read
= null_hpt_read
;
373 else if (!mips_hpt_frequency
&& !mips_timer_state
) {
374 /* A high precision timer of unknown frequency. */
376 /* No external high precision timer -- use R4k. */
377 mips_hpt_read
= c0_hpt_read
;
379 /* We know counter frequency. Or we can get it. */
380 if (!mips_hpt_read
) {
381 /* No external high precision timer -- use R4k. */
382 mips_hpt_read
= c0_hpt_read
;
384 if (!mips_timer_state
) {
385 /* No external timer interrupt -- use R4k. */
386 mips_hpt_init
= c0_hpt_timer_init
;
387 mips_timer_ack
= c0_timer_ack
;
390 if (!mips_hpt_frequency
)
391 mips_hpt_frequency
= calibrate_hpt();
393 /* Calculate cache parameters. */
394 cycles_per_jiffy
= (mips_hpt_frequency
+ HZ
/ 2) / HZ
;
396 /* Report the high precision timer rate for a reference. */
397 printk("Using %u.%03u MHz high precision timer.\n",
398 ((mips_hpt_frequency
+ 500) / 1000) / 1000,
399 ((mips_hpt_frequency
+ 500) / 1000) % 1000);
403 /* No timer interrupt ack (e.g. i8254). */
404 mips_timer_ack
= null_timer_ack
;
406 /* This sets up the high precision timer for the first interrupt. */
410 * Call board specific timer interrupt setup.
412 * this pointer must be setup in machine setup routine.
414 * Even if a machine chooses to use a low-level timer interrupt,
415 * it still needs to setup the timer_irqaction.
416 * In that case, it might be better to set timer_irqaction.handler
417 * to be NULL function so that we are sure the high-level code
418 * is not invoked accidentally.
420 plat_timer_setup(&timer_irqaction
);
422 init_mips_clocksource();
426 #define STARTOFTIME 1970
427 #define SECDAY 86400L
428 #define SECYR (SECDAY * 365)
429 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
430 #define days_in_year(y) (leapyear(y) ? 366 : 365)
431 #define days_in_month(m) (month_days[(m) - 1])
433 static int month_days
[12] = {
434 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
437 void to_tm(unsigned long tim
, struct rtc_time
*tm
)
442 gday
= day
= tim
/ SECDAY
;
445 /* Hours, minutes, seconds are easy */
446 tm
->tm_hour
= hms
/ 3600;
447 tm
->tm_min
= (hms
% 3600) / 60;
448 tm
->tm_sec
= (hms
% 3600) % 60;
450 /* Number of years in days */
451 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
452 day
-= days_in_year(i
);
455 /* Number of months in days left */
456 if (leapyear(tm
->tm_year
))
457 days_in_month(FEBRUARY
) = 29;
458 for (i
= 1; day
>= days_in_month(i
); i
++)
459 day
-= days_in_month(i
);
460 days_in_month(FEBRUARY
) = 28;
461 tm
->tm_mon
= i
- 1; /* tm_mon starts from 0 to 11 */
463 /* Days are what is left over (+1) from all that. */
464 tm
->tm_mday
= day
+ 1;
467 * Determine the day of week
469 tm
->tm_wday
= (gday
+ 4) % 7; /* 1970/1/1 was Thursday */
472 EXPORT_SYMBOL(rtc_lock
);
473 EXPORT_SYMBOL(to_tm
);
474 EXPORT_SYMBOL(rtc_mips_set_time
);
475 EXPORT_SYMBOL(rtc_mips_get_time
);
477 unsigned long long sched_clock(void)
479 return (unsigned long long)jiffies
*(1000000000/HZ
);