2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk
, int raid_disks
)
104 return (disk
< raid_disks
) ? disk
: 0;
107 static void return_io(struct bio
*return_bi
)
109 struct bio
*bi
= return_bi
;
111 int bytes
= bi
->bi_size
;
113 return_bi
= bi
->bi_next
;
116 bi
->bi_end_io(bi
, bytes
,
117 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
123 static void print_raid5_conf (raid5_conf_t
*conf
);
125 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
127 if (atomic_dec_and_test(&sh
->count
)) {
128 BUG_ON(!list_empty(&sh
->lru
));
129 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
130 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
131 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
132 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
133 blk_plug_device(conf
->mddev
->queue
);
134 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
135 sh
->bm_seq
- conf
->seq_write
> 0) {
136 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
137 blk_plug_device(conf
->mddev
->queue
);
139 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
140 list_add_tail(&sh
->lru
, &conf
->handle_list
);
142 md_wakeup_thread(conf
->mddev
->thread
);
144 BUG_ON(sh
->ops
.pending
);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
146 atomic_dec(&conf
->preread_active_stripes
);
147 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
148 md_wakeup_thread(conf
->mddev
->thread
);
150 atomic_dec(&conf
->active_stripes
);
151 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
152 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
153 wake_up(&conf
->wait_for_stripe
);
154 if (conf
->retry_read_aligned
)
155 md_wakeup_thread(conf
->mddev
->thread
);
160 static void release_stripe(struct stripe_head
*sh
)
162 raid5_conf_t
*conf
= sh
->raid_conf
;
165 spin_lock_irqsave(&conf
->device_lock
, flags
);
166 __release_stripe(conf
, sh
);
167 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
170 static inline void remove_hash(struct stripe_head
*sh
)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh
->sector
);
175 hlist_del_init(&sh
->hash
);
178 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
180 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh
->sector
);
186 hlist_add_head(&sh
->hash
, hp
);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
193 struct stripe_head
*sh
= NULL
;
194 struct list_head
*first
;
197 if (list_empty(&conf
->inactive_list
))
199 first
= conf
->inactive_list
.next
;
200 sh
= list_entry(first
, struct stripe_head
, lru
);
201 list_del_init(first
);
203 atomic_inc(&conf
->active_stripes
);
208 static void shrink_buffers(struct stripe_head
*sh
, int num
)
213 for (i
=0; i
<num
; i
++) {
217 sh
->dev
[i
].page
= NULL
;
222 static int grow_buffers(struct stripe_head
*sh
, int num
)
226 for (i
=0; i
<num
; i
++) {
229 if (!(page
= alloc_page(GFP_KERNEL
))) {
232 sh
->dev
[i
].page
= page
;
237 static void raid5_build_block (struct stripe_head
*sh
, int i
);
239 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
241 raid5_conf_t
*conf
= sh
->raid_conf
;
244 BUG_ON(atomic_read(&sh
->count
) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
246 BUG_ON(sh
->ops
.pending
|| sh
->ops
.ack
|| sh
->ops
.complete
);
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh
->sector
);
260 for (i
= sh
->disks
; i
--; ) {
261 struct r5dev
*dev
= &sh
->dev
[i
];
263 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
264 test_bit(R5_LOCKED
, &dev
->flags
)) {
265 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh
->sector
, i
, dev
->toread
,
267 dev
->read
, dev
->towrite
, dev
->written
,
268 test_bit(R5_LOCKED
, &dev
->flags
));
272 raid5_build_block(sh
, i
);
274 insert_hash(conf
, sh
);
277 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
279 struct stripe_head
*sh
;
280 struct hlist_node
*hn
;
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
284 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
285 if (sh
->sector
== sector
&& sh
->disks
== disks
)
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
291 static void unplug_slaves(mddev_t
*mddev
);
292 static void raid5_unplug_device(request_queue_t
*q
);
294 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
295 int pd_idx
, int noblock
)
297 struct stripe_head
*sh
;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
301 spin_lock_irq(&conf
->device_lock
);
304 wait_event_lock_irq(conf
->wait_for_stripe
,
306 conf
->device_lock
, /* nothing */);
307 sh
= __find_stripe(conf
, sector
, disks
);
309 if (!conf
->inactive_blocked
)
310 sh
= get_free_stripe(conf
);
311 if (noblock
&& sh
== NULL
)
314 conf
->inactive_blocked
= 1;
315 wait_event_lock_irq(conf
->wait_for_stripe
,
316 !list_empty(&conf
->inactive_list
) &&
317 (atomic_read(&conf
->active_stripes
)
318 < (conf
->max_nr_stripes
*3/4)
319 || !conf
->inactive_blocked
),
321 raid5_unplug_device(conf
->mddev
->queue
)
323 conf
->inactive_blocked
= 0;
325 init_stripe(sh
, sector
, pd_idx
, disks
);
327 if (atomic_read(&sh
->count
)) {
328 BUG_ON(!list_empty(&sh
->lru
));
330 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
331 atomic_inc(&conf
->active_stripes
);
332 if (list_empty(&sh
->lru
) &&
333 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
335 list_del_init(&sh
->lru
);
338 } while (sh
== NULL
);
341 atomic_inc(&sh
->count
);
343 spin_unlock_irq(&conf
->device_lock
);
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
357 clear_bit(op, &pend); \
360 /* find new work to run, do not resubmit work that is already
363 static unsigned long get_stripe_work(struct stripe_head
*sh
)
365 unsigned long pending
;
368 pending
= sh
->ops
.pending
;
370 test_and_ack_op(STRIPE_OP_BIOFILL
, pending
);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK
, pending
);
372 test_and_ack_op(STRIPE_OP_PREXOR
, pending
);
373 test_and_ack_op(STRIPE_OP_BIODRAIN
, pending
);
374 test_and_ack_op(STRIPE_OP_POSTXOR
, pending
);
375 test_and_ack_op(STRIPE_OP_CHECK
, pending
);
376 if (test_and_clear_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
379 sh
->ops
.count
-= ack
;
380 BUG_ON(sh
->ops
.count
< 0);
386 raid5_end_read_request(struct bio
*bi
, unsigned int bytes_done
, int error
);
388 raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
, int error
);
390 static void ops_run_io(struct stripe_head
*sh
)
392 raid5_conf_t
*conf
= sh
->raid_conf
;
393 int i
, disks
= sh
->disks
;
397 for (i
= disks
; i
--; ) {
401 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
403 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
408 bi
= &sh
->dev
[i
].req
;
412 bi
->bi_end_io
= raid5_end_write_request
;
414 bi
->bi_end_io
= raid5_end_read_request
;
417 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
418 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
421 atomic_inc(&rdev
->nr_pending
);
425 if (test_bit(STRIPE_SYNCING
, &sh
->state
) ||
426 test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) ||
427 test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
428 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
430 bi
->bi_bdev
= rdev
->bdev
;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__
, (unsigned long long)sh
->sector
,
434 atomic_inc(&sh
->count
);
435 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
436 bi
->bi_flags
= 1 << BIO_UPTODATE
;
440 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
441 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
442 bi
->bi_io_vec
[0].bv_offset
= 0;
443 bi
->bi_size
= STRIPE_SIZE
;
446 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
447 atomic_add(STRIPE_SECTORS
,
448 &rdev
->corrected_errors
);
449 generic_make_request(bi
);
452 set_bit(STRIPE_DEGRADED
, &sh
->state
);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
455 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
456 set_bit(STRIPE_HANDLE
, &sh
->state
);
461 static struct dma_async_tx_descriptor
*
462 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
463 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
466 struct page
*bio_page
;
470 if (bio
->bi_sector
>= sector
)
471 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
473 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
474 bio_for_each_segment(bvl
, bio
, i
) {
475 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
479 if (page_offset
< 0) {
480 b_offset
= -page_offset
;
481 page_offset
+= b_offset
;
485 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
486 clen
= STRIPE_SIZE
- page_offset
;
491 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
492 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
494 tx
= async_memcpy(page
, bio_page
, page_offset
,
496 ASYNC_TX_DEP_ACK
| ASYNC_TX_KMAP_SRC
,
499 tx
= async_memcpy(bio_page
, page
, b_offset
,
501 ASYNC_TX_DEP_ACK
| ASYNC_TX_KMAP_DST
,
504 if (clen
< len
) /* hit end of page */
512 static void ops_complete_biofill(void *stripe_head_ref
)
514 struct stripe_head
*sh
= stripe_head_ref
;
515 struct bio
*return_bi
= NULL
;
516 raid5_conf_t
*conf
= sh
->raid_conf
;
517 int i
, more_to_read
= 0;
519 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
520 (unsigned long long)sh
->sector
);
522 /* clear completed biofills */
523 for (i
= sh
->disks
; i
--; ) {
524 struct r5dev
*dev
= &sh
->dev
[i
];
525 /* check if this stripe has new incoming reads */
529 /* acknowledge completion of a biofill operation */
530 /* and check if we need to reply to a read request
532 if (test_bit(R5_Wantfill
, &dev
->flags
) && !dev
->toread
) {
533 struct bio
*rbi
, *rbi2
;
534 clear_bit(R5_Wantfill
, &dev
->flags
);
536 /* The access to dev->read is outside of the
537 * spin_lock_irq(&conf->device_lock), but is protected
538 * by the STRIPE_OP_BIOFILL pending bit
543 while (rbi
&& rbi
->bi_sector
<
544 dev
->sector
+ STRIPE_SECTORS
) {
545 rbi2
= r5_next_bio(rbi
, dev
->sector
);
546 spin_lock_irq(&conf
->device_lock
);
547 if (--rbi
->bi_phys_segments
== 0) {
548 rbi
->bi_next
= return_bi
;
551 spin_unlock_irq(&conf
->device_lock
);
556 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.ack
);
557 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
);
559 return_io(return_bi
);
562 set_bit(STRIPE_HANDLE
, &sh
->state
);
566 static void ops_run_biofill(struct stripe_head
*sh
)
568 struct dma_async_tx_descriptor
*tx
= NULL
;
569 raid5_conf_t
*conf
= sh
->raid_conf
;
572 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
573 (unsigned long long)sh
->sector
);
575 for (i
= sh
->disks
; i
--; ) {
576 struct r5dev
*dev
= &sh
->dev
[i
];
577 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
579 spin_lock_irq(&conf
->device_lock
);
580 dev
->read
= rbi
= dev
->toread
;
582 spin_unlock_irq(&conf
->device_lock
);
583 while (rbi
&& rbi
->bi_sector
<
584 dev
->sector
+ STRIPE_SECTORS
) {
585 tx
= async_copy_data(0, rbi
, dev
->page
,
587 rbi
= r5_next_bio(rbi
, dev
->sector
);
592 atomic_inc(&sh
->count
);
593 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
594 ops_complete_biofill
, sh
);
597 static void ops_complete_compute5(void *stripe_head_ref
)
599 struct stripe_head
*sh
= stripe_head_ref
;
600 int target
= sh
->ops
.target
;
601 struct r5dev
*tgt
= &sh
->dev
[target
];
603 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
604 (unsigned long long)sh
->sector
);
606 set_bit(R5_UPTODATE
, &tgt
->flags
);
607 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
608 clear_bit(R5_Wantcompute
, &tgt
->flags
);
609 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
610 set_bit(STRIPE_HANDLE
, &sh
->state
);
614 static struct dma_async_tx_descriptor
*
615 ops_run_compute5(struct stripe_head
*sh
, unsigned long pending
)
617 /* kernel stack size limits the total number of disks */
618 int disks
= sh
->disks
;
619 struct page
*xor_srcs
[disks
];
620 int target
= sh
->ops
.target
;
621 struct r5dev
*tgt
= &sh
->dev
[target
];
622 struct page
*xor_dest
= tgt
->page
;
624 struct dma_async_tx_descriptor
*tx
;
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__
, (unsigned long long)sh
->sector
, target
);
629 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
631 for (i
= disks
; i
--; )
633 xor_srcs
[count
++] = sh
->dev
[i
].page
;
635 atomic_inc(&sh
->count
);
637 if (unlikely(count
== 1))
638 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
639 0, NULL
, ops_complete_compute5
, sh
);
641 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
642 ASYNC_TX_XOR_ZERO_DST
, NULL
,
643 ops_complete_compute5
, sh
);
645 /* ack now if postxor is not set to be run */
646 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &pending
))
652 static void ops_complete_prexor(void *stripe_head_ref
)
654 struct stripe_head
*sh
= stripe_head_ref
;
656 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
657 (unsigned long long)sh
->sector
);
659 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
662 static struct dma_async_tx_descriptor
*
663 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
665 /* kernel stack size limits the total number of disks */
666 int disks
= sh
->disks
;
667 struct page
*xor_srcs
[disks
];
668 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
670 /* existing parity data subtracted */
671 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
673 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
674 (unsigned long long)sh
->sector
);
676 for (i
= disks
; i
--; ) {
677 struct r5dev
*dev
= &sh
->dev
[i
];
678 /* Only process blocks that are known to be uptodate */
679 if (dev
->towrite
&& test_bit(R5_Wantprexor
, &dev
->flags
))
680 xor_srcs
[count
++] = dev
->page
;
683 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
684 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
685 ops_complete_prexor
, sh
);
690 static struct dma_async_tx_descriptor
*
691 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
693 int disks
= sh
->disks
;
694 int pd_idx
= sh
->pd_idx
, i
;
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
699 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
701 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
702 (unsigned long long)sh
->sector
);
704 for (i
= disks
; i
--; ) {
705 struct r5dev
*dev
= &sh
->dev
[i
];
710 if (prexor
) { /* rmw */
712 test_bit(R5_Wantprexor
, &dev
->flags
))
715 if (i
!= pd_idx
&& dev
->towrite
&&
716 test_bit(R5_LOCKED
, &dev
->flags
))
723 spin_lock(&sh
->lock
);
724 chosen
= dev
->towrite
;
726 BUG_ON(dev
->written
);
727 wbi
= dev
->written
= chosen
;
728 spin_unlock(&sh
->lock
);
730 while (wbi
&& wbi
->bi_sector
<
731 dev
->sector
+ STRIPE_SECTORS
) {
732 tx
= async_copy_data(1, wbi
, dev
->page
,
734 wbi
= r5_next_bio(wbi
, dev
->sector
);
742 static void ops_complete_postxor(void *stripe_head_ref
)
744 struct stripe_head
*sh
= stripe_head_ref
;
746 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
747 (unsigned long long)sh
->sector
);
749 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
750 set_bit(STRIPE_HANDLE
, &sh
->state
);
754 static void ops_complete_write(void *stripe_head_ref
)
756 struct stripe_head
*sh
= stripe_head_ref
;
757 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
759 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
760 (unsigned long long)sh
->sector
);
762 for (i
= disks
; i
--; ) {
763 struct r5dev
*dev
= &sh
->dev
[i
];
764 if (dev
->written
|| i
== pd_idx
)
765 set_bit(R5_UPTODATE
, &dev
->flags
);
768 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
769 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
771 set_bit(STRIPE_HANDLE
, &sh
->state
);
776 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
778 /* kernel stack size limits the total number of disks */
779 int disks
= sh
->disks
;
780 struct page
*xor_srcs
[disks
];
782 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
783 struct page
*xor_dest
;
784 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
786 dma_async_tx_callback callback
;
788 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
789 (unsigned long long)sh
->sector
);
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
795 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
796 for (i
= disks
; i
--; ) {
797 struct r5dev
*dev
= &sh
->dev
[i
];
799 xor_srcs
[count
++] = dev
->page
;
802 xor_dest
= sh
->dev
[pd_idx
].page
;
803 for (i
= disks
; i
--; ) {
804 struct r5dev
*dev
= &sh
->dev
[i
];
806 xor_srcs
[count
++] = dev
->page
;
810 /* check whether this postxor is part of a write */
811 callback
= test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
) ?
812 ops_complete_write
: ops_complete_postxor
;
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
819 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
820 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
822 atomic_inc(&sh
->count
);
824 if (unlikely(count
== 1)) {
825 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
826 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
827 flags
, tx
, callback
, sh
);
829 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
830 flags
, tx
, callback
, sh
);
833 static void ops_complete_check(void *stripe_head_ref
)
835 struct stripe_head
*sh
= stripe_head_ref
;
836 int pd_idx
= sh
->pd_idx
;
838 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
839 (unsigned long long)sh
->sector
);
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
) &&
842 sh
->ops
.zero_sum_result
== 0)
843 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
845 set_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
);
846 set_bit(STRIPE_HANDLE
, &sh
->state
);
850 static void ops_run_check(struct stripe_head
*sh
)
852 /* kernel stack size limits the total number of disks */
853 int disks
= sh
->disks
;
854 struct page
*xor_srcs
[disks
];
855 struct dma_async_tx_descriptor
*tx
;
857 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
858 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
860 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
861 (unsigned long long)sh
->sector
);
863 for (i
= disks
; i
--; ) {
864 struct r5dev
*dev
= &sh
->dev
[i
];
866 xor_srcs
[count
++] = dev
->page
;
869 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
870 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
873 set_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
877 atomic_inc(&sh
->count
);
878 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
879 ops_complete_check
, sh
);
882 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long pending
)
884 int overlap_clear
= 0, i
, disks
= sh
->disks
;
885 struct dma_async_tx_descriptor
*tx
= NULL
;
887 if (test_bit(STRIPE_OP_BIOFILL
, &pending
)) {
892 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &pending
))
893 tx
= ops_run_compute5(sh
, pending
);
895 if (test_bit(STRIPE_OP_PREXOR
, &pending
))
896 tx
= ops_run_prexor(sh
, tx
);
898 if (test_bit(STRIPE_OP_BIODRAIN
, &pending
)) {
899 tx
= ops_run_biodrain(sh
, tx
);
903 if (test_bit(STRIPE_OP_POSTXOR
, &pending
))
904 ops_run_postxor(sh
, tx
);
906 if (test_bit(STRIPE_OP_CHECK
, &pending
))
909 if (test_bit(STRIPE_OP_IO
, &pending
))
913 for (i
= disks
; i
--; ) {
914 struct r5dev
*dev
= &sh
->dev
[i
];
915 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
916 wake_up(&sh
->raid_conf
->wait_for_overlap
);
920 static int grow_one_stripe(raid5_conf_t
*conf
)
922 struct stripe_head
*sh
;
923 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
926 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
927 sh
->raid_conf
= conf
;
928 spin_lock_init(&sh
->lock
);
930 if (grow_buffers(sh
, conf
->raid_disks
)) {
931 shrink_buffers(sh
, conf
->raid_disks
);
932 kmem_cache_free(conf
->slab_cache
, sh
);
935 sh
->disks
= conf
->raid_disks
;
936 /* we just created an active stripe so... */
937 atomic_set(&sh
->count
, 1);
938 atomic_inc(&conf
->active_stripes
);
939 INIT_LIST_HEAD(&sh
->lru
);
944 static int grow_stripes(raid5_conf_t
*conf
, int num
)
946 struct kmem_cache
*sc
;
947 int devs
= conf
->raid_disks
;
949 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
950 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
951 conf
->active_name
= 0;
952 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
953 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
957 conf
->slab_cache
= sc
;
958 conf
->pool_size
= devs
;
960 if (!grow_one_stripe(conf
))
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
991 struct stripe_head
*osh
, *nsh
;
992 LIST_HEAD(newstripes
);
993 struct disk_info
*ndisks
;
995 struct kmem_cache
*sc
;
998 if (newsize
<= conf
->pool_size
)
999 return 0; /* never bother to shrink */
1001 md_allow_write(conf
->mddev
);
1004 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1005 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1010 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1011 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1015 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1017 nsh
->raid_conf
= conf
;
1018 spin_lock_init(&nsh
->lock
);
1020 list_add(&nsh
->lru
, &newstripes
);
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes
)) {
1025 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1026 list_del(&nsh
->lru
);
1027 kmem_cache_free(sc
, nsh
);
1029 kmem_cache_destroy(sc
);
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1036 list_for_each_entry(nsh
, &newstripes
, lru
) {
1037 spin_lock_irq(&conf
->device_lock
);
1038 wait_event_lock_irq(conf
->wait_for_stripe
,
1039 !list_empty(&conf
->inactive_list
),
1041 unplug_slaves(conf
->mddev
)
1043 osh
= get_free_stripe(conf
);
1044 spin_unlock_irq(&conf
->device_lock
);
1045 atomic_set(&nsh
->count
, 1);
1046 for(i
=0; i
<conf
->pool_size
; i
++)
1047 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1048 for( ; i
<newsize
; i
++)
1049 nsh
->dev
[i
].page
= NULL
;
1050 kmem_cache_free(conf
->slab_cache
, osh
);
1052 kmem_cache_destroy(conf
->slab_cache
);
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1059 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1061 for (i
=0; i
<conf
->raid_disks
; i
++)
1062 ndisks
[i
] = conf
->disks
[i
];
1064 conf
->disks
= ndisks
;
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes
)) {
1070 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1071 list_del_init(&nsh
->lru
);
1072 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1073 if (nsh
->dev
[i
].page
== NULL
) {
1074 struct page
*p
= alloc_page(GFP_NOIO
);
1075 nsh
->dev
[i
].page
= p
;
1079 release_stripe(nsh
);
1081 /* critical section pass, GFP_NOIO no longer needed */
1083 conf
->slab_cache
= sc
;
1084 conf
->active_name
= 1-conf
->active_name
;
1085 conf
->pool_size
= newsize
;
1090 static int drop_one_stripe(raid5_conf_t
*conf
)
1092 struct stripe_head
*sh
;
1094 spin_lock_irq(&conf
->device_lock
);
1095 sh
= get_free_stripe(conf
);
1096 spin_unlock_irq(&conf
->device_lock
);
1099 BUG_ON(atomic_read(&sh
->count
));
1100 shrink_buffers(sh
, conf
->pool_size
);
1101 kmem_cache_free(conf
->slab_cache
, sh
);
1102 atomic_dec(&conf
->active_stripes
);
1106 static void shrink_stripes(raid5_conf_t
*conf
)
1108 while (drop_one_stripe(conf
))
1111 if (conf
->slab_cache
)
1112 kmem_cache_destroy(conf
->slab_cache
);
1113 conf
->slab_cache
= NULL
;
1116 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
1119 struct stripe_head
*sh
= bi
->bi_private
;
1120 raid5_conf_t
*conf
= sh
->raid_conf
;
1121 int disks
= sh
->disks
, i
;
1122 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1123 char b
[BDEVNAME_SIZE
];
1129 for (i
=0 ; i
<disks
; i
++)
1130 if (bi
== &sh
->dev
[i
].req
)
1133 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1142 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1143 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1144 rdev
= conf
->disks
[i
].rdev
;
1145 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 mdname(conf
->mddev
), STRIPE_SECTORS
,
1147 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1148 bdevname(rdev
->bdev
, b
));
1149 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1150 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1152 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1153 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1155 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1157 rdev
= conf
->disks
[i
].rdev
;
1159 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1160 atomic_inc(&rdev
->read_errors
);
1161 if (conf
->mddev
->degraded
)
1162 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 mdname(conf
->mddev
),
1164 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1166 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1168 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 mdname(conf
->mddev
),
1170 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1172 else if (atomic_read(&rdev
->read_errors
)
1173 > conf
->max_nr_stripes
)
1175 "raid5:%s: Too many read errors, failing device %s.\n",
1176 mdname(conf
->mddev
), bdn
);
1180 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1182 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1183 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1184 md_error(conf
->mddev
, rdev
);
1187 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1188 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1189 set_bit(STRIPE_HANDLE
, &sh
->state
);
1194 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
1197 struct stripe_head
*sh
= bi
->bi_private
;
1198 raid5_conf_t
*conf
= sh
->raid_conf
;
1199 int disks
= sh
->disks
, i
;
1200 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1205 for (i
=0 ; i
<disks
; i
++)
1206 if (bi
== &sh
->dev
[i
].req
)
1209 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1218 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1220 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1222 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1223 set_bit(STRIPE_HANDLE
, &sh
->state
);
1229 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1231 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1233 struct r5dev
*dev
= &sh
->dev
[i
];
1235 bio_init(&dev
->req
);
1236 dev
->req
.bi_io_vec
= &dev
->vec
;
1238 dev
->req
.bi_max_vecs
++;
1239 dev
->vec
.bv_page
= dev
->page
;
1240 dev
->vec
.bv_len
= STRIPE_SIZE
;
1241 dev
->vec
.bv_offset
= 0;
1243 dev
->req
.bi_sector
= sh
->sector
;
1244 dev
->req
.bi_private
= sh
;
1247 dev
->sector
= compute_blocknr(sh
, i
);
1250 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1252 char b
[BDEVNAME_SIZE
];
1253 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1254 pr_debug("raid5: error called\n");
1256 if (!test_bit(Faulty
, &rdev
->flags
)) {
1257 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1258 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1259 unsigned long flags
;
1260 spin_lock_irqsave(&conf
->device_lock
, flags
);
1262 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1264 * if recovery was running, make sure it aborts.
1266 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1268 set_bit(Faulty
, &rdev
->flags
);
1270 "raid5: Disk failure on %s, disabling device."
1271 " Operation continuing on %d devices\n",
1272 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1277 * Input: a 'big' sector number,
1278 * Output: index of the data and parity disk, and the sector # in them.
1280 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1281 unsigned int data_disks
, unsigned int * dd_idx
,
1282 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1285 unsigned long chunk_number
;
1286 unsigned int chunk_offset
;
1287 sector_t new_sector
;
1288 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1290 /* First compute the information on this sector */
1293 * Compute the chunk number and the sector offset inside the chunk
1295 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1296 chunk_number
= r_sector
;
1297 BUG_ON(r_sector
!= chunk_number
);
1300 * Compute the stripe number
1302 stripe
= chunk_number
/ data_disks
;
1305 * Compute the data disk and parity disk indexes inside the stripe
1307 *dd_idx
= chunk_number
% data_disks
;
1310 * Select the parity disk based on the user selected algorithm.
1312 switch(conf
->level
) {
1314 *pd_idx
= data_disks
;
1317 switch (conf
->algorithm
) {
1318 case ALGORITHM_LEFT_ASYMMETRIC
:
1319 *pd_idx
= data_disks
- stripe
% raid_disks
;
1320 if (*dd_idx
>= *pd_idx
)
1323 case ALGORITHM_RIGHT_ASYMMETRIC
:
1324 *pd_idx
= stripe
% raid_disks
;
1325 if (*dd_idx
>= *pd_idx
)
1328 case ALGORITHM_LEFT_SYMMETRIC
:
1329 *pd_idx
= data_disks
- stripe
% raid_disks
;
1330 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1332 case ALGORITHM_RIGHT_SYMMETRIC
:
1333 *pd_idx
= stripe
% raid_disks
;
1334 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1337 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1343 /**** FIX THIS ****/
1344 switch (conf
->algorithm
) {
1345 case ALGORITHM_LEFT_ASYMMETRIC
:
1346 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1347 if (*pd_idx
== raid_disks
-1)
1348 (*dd_idx
)++; /* Q D D D P */
1349 else if (*dd_idx
>= *pd_idx
)
1350 (*dd_idx
) += 2; /* D D P Q D */
1352 case ALGORITHM_RIGHT_ASYMMETRIC
:
1353 *pd_idx
= stripe
% raid_disks
;
1354 if (*pd_idx
== raid_disks
-1)
1355 (*dd_idx
)++; /* Q D D D P */
1356 else if (*dd_idx
>= *pd_idx
)
1357 (*dd_idx
) += 2; /* D D P Q D */
1359 case ALGORITHM_LEFT_SYMMETRIC
:
1360 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1361 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1363 case ALGORITHM_RIGHT_SYMMETRIC
:
1364 *pd_idx
= stripe
% raid_disks
;
1365 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1368 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1375 * Finally, compute the new sector number
1377 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1382 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1384 raid5_conf_t
*conf
= sh
->raid_conf
;
1385 int raid_disks
= sh
->disks
;
1386 int data_disks
= raid_disks
- conf
->max_degraded
;
1387 sector_t new_sector
= sh
->sector
, check
;
1388 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1391 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1395 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1396 stripe
= new_sector
;
1397 BUG_ON(new_sector
!= stripe
);
1399 if (i
== sh
->pd_idx
)
1401 switch(conf
->level
) {
1404 switch (conf
->algorithm
) {
1405 case ALGORITHM_LEFT_ASYMMETRIC
:
1406 case ALGORITHM_RIGHT_ASYMMETRIC
:
1410 case ALGORITHM_LEFT_SYMMETRIC
:
1411 case ALGORITHM_RIGHT_SYMMETRIC
:
1414 i
-= (sh
->pd_idx
+ 1);
1417 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1422 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1423 return 0; /* It is the Q disk */
1424 switch (conf
->algorithm
) {
1425 case ALGORITHM_LEFT_ASYMMETRIC
:
1426 case ALGORITHM_RIGHT_ASYMMETRIC
:
1427 if (sh
->pd_idx
== raid_disks
-1)
1428 i
--; /* Q D D D P */
1429 else if (i
> sh
->pd_idx
)
1430 i
-= 2; /* D D P Q D */
1432 case ALGORITHM_LEFT_SYMMETRIC
:
1433 case ALGORITHM_RIGHT_SYMMETRIC
:
1434 if (sh
->pd_idx
== raid_disks
-1)
1435 i
--; /* Q D D D P */
1440 i
-= (sh
->pd_idx
+ 2);
1444 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1450 chunk_number
= stripe
* data_disks
+ i
;
1451 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1453 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1454 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1455 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1464 * Copy data between a page in the stripe cache, and one or more bion
1465 * The page could align with the middle of the bio, or there could be
1466 * several bion, each with several bio_vecs, which cover part of the page
1467 * Multiple bion are linked together on bi_next. There may be extras
1468 * at the end of this list. We ignore them.
1470 static void copy_data(int frombio
, struct bio
*bio
,
1474 char *pa
= page_address(page
);
1475 struct bio_vec
*bvl
;
1479 if (bio
->bi_sector
>= sector
)
1480 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1482 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1483 bio_for_each_segment(bvl
, bio
, i
) {
1484 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1488 if (page_offset
< 0) {
1489 b_offset
= -page_offset
;
1490 page_offset
+= b_offset
;
1494 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1495 clen
= STRIPE_SIZE
- page_offset
;
1499 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1501 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1503 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1504 __bio_kunmap_atomic(ba
, KM_USER0
);
1506 if (clen
< len
) /* hit end of page */
1512 #define check_xor() do { \
1513 if (count == MAX_XOR_BLOCKS) { \
1514 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1519 static void compute_parity6(struct stripe_head
*sh
, int method
)
1521 raid6_conf_t
*conf
= sh
->raid_conf
;
1522 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1524 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1527 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1528 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1530 pr_debug("compute_parity, stripe %llu, method %d\n",
1531 (unsigned long long)sh
->sector
, method
);
1534 case READ_MODIFY_WRITE
:
1535 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1536 case RECONSTRUCT_WRITE
:
1537 for (i
= disks
; i
-- ;)
1538 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1539 chosen
= sh
->dev
[i
].towrite
;
1540 sh
->dev
[i
].towrite
= NULL
;
1542 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1543 wake_up(&conf
->wait_for_overlap
);
1545 BUG_ON(sh
->dev
[i
].written
);
1546 sh
->dev
[i
].written
= chosen
;
1550 BUG(); /* Not implemented yet */
1553 for (i
= disks
; i
--;)
1554 if (sh
->dev
[i
].written
) {
1555 sector_t sector
= sh
->dev
[i
].sector
;
1556 struct bio
*wbi
= sh
->dev
[i
].written
;
1557 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1558 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1559 wbi
= r5_next_bio(wbi
, sector
);
1562 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1563 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1567 // case RECONSTRUCT_WRITE:
1568 // case CHECK_PARITY:
1569 // case UPDATE_PARITY:
1570 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1571 /* FIX: Is this ordering of drives even remotely optimal? */
1575 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1576 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1577 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1578 i
= raid6_next_disk(i
, disks
);
1579 } while ( i
!= d0_idx
);
1583 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1586 case RECONSTRUCT_WRITE
:
1587 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1588 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1589 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1590 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1593 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1594 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1600 /* Compute one missing block */
1601 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1603 int i
, count
, disks
= sh
->disks
;
1604 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1605 int pd_idx
= sh
->pd_idx
;
1606 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1608 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1609 (unsigned long long)sh
->sector
, dd_idx
);
1611 if ( dd_idx
== qd_idx
) {
1612 /* We're actually computing the Q drive */
1613 compute_parity6(sh
, UPDATE_PARITY
);
1615 dest
= page_address(sh
->dev
[dd_idx
].page
);
1616 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1618 for (i
= disks
; i
--; ) {
1619 if (i
== dd_idx
|| i
== qd_idx
)
1621 p
= page_address(sh
->dev
[i
].page
);
1622 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1625 printk("compute_block() %d, stripe %llu, %d"
1626 " not present\n", dd_idx
,
1627 (unsigned long long)sh
->sector
, i
);
1632 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1633 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1634 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1638 /* Compute two missing blocks */
1639 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1641 int i
, count
, disks
= sh
->disks
;
1642 int pd_idx
= sh
->pd_idx
;
1643 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1644 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1647 /* faila and failb are disk numbers relative to d0_idx */
1648 /* pd_idx become disks-2 and qd_idx become disks-1 */
1649 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1650 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1652 BUG_ON(faila
== failb
);
1653 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1655 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1656 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1658 if ( failb
== disks
-1 ) {
1659 /* Q disk is one of the missing disks */
1660 if ( faila
== disks
-2 ) {
1661 /* Missing P+Q, just recompute */
1662 compute_parity6(sh
, UPDATE_PARITY
);
1665 /* We're missing D+Q; recompute D from P */
1666 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1667 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1672 /* We're missing D+P or D+D; build pointer table */
1674 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1680 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1681 i
= raid6_next_disk(i
, disks
);
1682 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1683 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1684 printk("compute_2 with missing block %d/%d\n", count
, i
);
1685 } while ( i
!= d0_idx
);
1687 if ( failb
== disks
-2 ) {
1688 /* We're missing D+P. */
1689 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1691 /* We're missing D+D. */
1692 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1695 /* Both the above update both missing blocks */
1696 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1697 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1702 handle_write_operations5(struct stripe_head
*sh
, int rcw
, int expand
)
1704 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1708 /* if we are not expanding this is a proper write request, and
1709 * there will be bios with new data to be drained into the
1713 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1717 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1720 for (i
= disks
; i
--; ) {
1721 struct r5dev
*dev
= &sh
->dev
[i
];
1724 set_bit(R5_LOCKED
, &dev
->flags
);
1726 clear_bit(R5_UPTODATE
, &dev
->flags
);
1731 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1732 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1734 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
1735 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1736 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1740 for (i
= disks
; i
--; ) {
1741 struct r5dev
*dev
= &sh
->dev
[i
];
1745 /* For a read-modify write there may be blocks that are
1746 * locked for reading while others are ready to be
1747 * written so we distinguish these blocks by the
1751 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1752 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1753 set_bit(R5_Wantprexor
, &dev
->flags
);
1754 set_bit(R5_LOCKED
, &dev
->flags
);
1755 clear_bit(R5_UPTODATE
, &dev
->flags
);
1761 /* keep the parity disk locked while asynchronous operations
1764 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1765 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1768 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1769 __FUNCTION__
, (unsigned long long)sh
->sector
,
1770 locked
, sh
->ops
.pending
);
1776 * Each stripe/dev can have one or more bion attached.
1777 * toread/towrite point to the first in a chain.
1778 * The bi_next chain must be in order.
1780 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1783 raid5_conf_t
*conf
= sh
->raid_conf
;
1786 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1787 (unsigned long long)bi
->bi_sector
,
1788 (unsigned long long)sh
->sector
);
1791 spin_lock(&sh
->lock
);
1792 spin_lock_irq(&conf
->device_lock
);
1794 bip
= &sh
->dev
[dd_idx
].towrite
;
1795 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1798 bip
= &sh
->dev
[dd_idx
].toread
;
1799 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1800 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1802 bip
= & (*bip
)->bi_next
;
1804 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1807 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1811 bi
->bi_phys_segments
++;
1812 spin_unlock_irq(&conf
->device_lock
);
1813 spin_unlock(&sh
->lock
);
1815 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1816 (unsigned long long)bi
->bi_sector
,
1817 (unsigned long long)sh
->sector
, dd_idx
);
1819 if (conf
->mddev
->bitmap
&& firstwrite
) {
1820 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1822 sh
->bm_seq
= conf
->seq_flush
+1;
1823 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1827 /* check if page is covered */
1828 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1829 for (bi
=sh
->dev
[dd_idx
].towrite
;
1830 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1831 bi
&& bi
->bi_sector
<= sector
;
1832 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1833 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1834 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1836 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1837 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1842 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1843 spin_unlock_irq(&conf
->device_lock
);
1844 spin_unlock(&sh
->lock
);
1848 static void end_reshape(raid5_conf_t
*conf
);
1850 static int page_is_zero(struct page
*p
)
1852 char *a
= page_address(p
);
1853 return ((*(u32
*)a
) == 0 &&
1854 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1857 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1859 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1861 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1863 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1864 *sectors_per_chunk
+ chunk_offset
,
1865 disks
, disks
- conf
->max_degraded
,
1866 &dd_idx
, &pd_idx
, conf
);
1871 handle_requests_to_failed_array(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1872 struct stripe_head_state
*s
, int disks
,
1873 struct bio
**return_bi
)
1876 for (i
= disks
; i
--; ) {
1880 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1883 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1884 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1885 /* multiple read failures in one stripe */
1886 md_error(conf
->mddev
, rdev
);
1889 spin_lock_irq(&conf
->device_lock
);
1890 /* fail all writes first */
1891 bi
= sh
->dev
[i
].towrite
;
1892 sh
->dev
[i
].towrite
= NULL
;
1898 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1899 wake_up(&conf
->wait_for_overlap
);
1901 while (bi
&& bi
->bi_sector
<
1902 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1903 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1904 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1905 if (--bi
->bi_phys_segments
== 0) {
1906 md_write_end(conf
->mddev
);
1907 bi
->bi_next
= *return_bi
;
1912 /* and fail all 'written' */
1913 bi
= sh
->dev
[i
].written
;
1914 sh
->dev
[i
].written
= NULL
;
1915 if (bi
) bitmap_end
= 1;
1916 while (bi
&& bi
->bi_sector
<
1917 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1918 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1919 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1920 if (--bi
->bi_phys_segments
== 0) {
1921 md_write_end(conf
->mddev
);
1922 bi
->bi_next
= *return_bi
;
1928 /* fail any reads if this device is non-operational and
1929 * the data has not reached the cache yet.
1931 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1932 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1933 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1934 bi
= sh
->dev
[i
].toread
;
1935 sh
->dev
[i
].toread
= NULL
;
1936 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1937 wake_up(&conf
->wait_for_overlap
);
1938 if (bi
) s
->to_read
--;
1939 while (bi
&& bi
->bi_sector
<
1940 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1941 struct bio
*nextbi
=
1942 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1943 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1944 if (--bi
->bi_phys_segments
== 0) {
1945 bi
->bi_next
= *return_bi
;
1951 spin_unlock_irq(&conf
->device_lock
);
1953 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1954 STRIPE_SECTORS
, 0, 0);
1959 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1962 static int __handle_issuing_new_read_requests5(struct stripe_head
*sh
,
1963 struct stripe_head_state
*s
, int disk_idx
, int disks
)
1965 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1966 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1968 /* don't schedule compute operations or reads on the parity block while
1969 * a check is in flight
1971 if ((disk_idx
== sh
->pd_idx
) &&
1972 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
1975 /* is the data in this block needed, and can we get it? */
1976 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1977 !test_bit(R5_UPTODATE
, &dev
->flags
) && (dev
->toread
||
1978 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1979 s
->syncing
|| s
->expanding
|| (s
->failed
&&
1980 (failed_dev
->toread
|| (failed_dev
->towrite
&&
1981 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)
1983 /* 1/ We would like to get this block, possibly by computing it,
1984 * but we might not be able to.
1986 * 2/ Since parity check operations potentially make the parity
1987 * block !uptodate it will need to be refreshed before any
1988 * compute operations on data disks are scheduled.
1990 * 3/ We hold off parity block re-reads until check operations
1993 if ((s
->uptodate
== disks
- 1) &&
1994 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
1995 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
1996 set_bit(R5_Wantcompute
, &dev
->flags
);
1997 sh
->ops
.target
= disk_idx
;
2000 /* Careful: from this point on 'uptodate' is in the eye
2001 * of raid5_run_ops which services 'compute' operations
2002 * before writes. R5_Wantcompute flags a block that will
2003 * be R5_UPTODATE by the time it is needed for a
2004 * subsequent operation.
2007 return 0; /* uptodate + compute == disks */
2008 } else if ((s
->uptodate
< disks
- 1) &&
2009 test_bit(R5_Insync
, &dev
->flags
)) {
2010 /* Note: we hold off compute operations while checks are
2011 * in flight, but we still prefer 'compute' over 'read'
2012 * hence we only read if (uptodate < * disks-1)
2014 set_bit(R5_LOCKED
, &dev
->flags
);
2015 set_bit(R5_Wantread
, &dev
->flags
);
2016 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2019 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2027 static void handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2028 struct stripe_head_state
*s
, int disks
)
2032 /* Clear completed compute operations. Parity recovery
2033 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034 * later on in this routine
2036 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2037 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2038 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2039 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2043 /* look for blocks to read/compute, skip this if a compute
2044 * is already in flight, or if the stripe contents are in the
2045 * midst of changing due to a write
2047 if (!test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2048 !test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
) &&
2049 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2050 for (i
= disks
; i
--; )
2051 if (__handle_issuing_new_read_requests5(
2052 sh
, s
, i
, disks
) == 0)
2055 set_bit(STRIPE_HANDLE
, &sh
->state
);
2058 static void handle_issuing_new_read_requests6(struct stripe_head
*sh
,
2059 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2063 for (i
= disks
; i
--; ) {
2064 struct r5dev
*dev
= &sh
->dev
[i
];
2065 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2066 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2067 (dev
->toread
|| (dev
->towrite
&&
2068 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2069 s
->syncing
|| s
->expanding
||
2071 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2074 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2076 /* we would like to get this block, possibly
2077 * by computing it, but we might not be able to
2079 if (s
->uptodate
== disks
-1) {
2080 pr_debug("Computing stripe %llu block %d\n",
2081 (unsigned long long)sh
->sector
, i
);
2082 compute_block_1(sh
, i
, 0);
2084 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2085 /* Computing 2-failure is *very* expensive; only
2086 * do it if failed >= 2
2089 for (other
= disks
; other
--; ) {
2092 if (!test_bit(R5_UPTODATE
,
2093 &sh
->dev
[other
].flags
))
2097 pr_debug("Computing stripe %llu blocks %d,%d\n",
2098 (unsigned long long)sh
->sector
,
2100 compute_block_2(sh
, i
, other
);
2102 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2103 set_bit(R5_LOCKED
, &dev
->flags
);
2104 set_bit(R5_Wantread
, &dev
->flags
);
2106 pr_debug("Reading block %d (sync=%d)\n",
2111 set_bit(STRIPE_HANDLE
, &sh
->state
);
2115 /* handle_completed_write_requests
2116 * any written block on an uptodate or failed drive can be returned.
2117 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2118 * never LOCKED, so we don't need to test 'failed' directly.
2120 static void handle_completed_write_requests(raid5_conf_t
*conf
,
2121 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2126 for (i
= disks
; i
--; )
2127 if (sh
->dev
[i
].written
) {
2129 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2130 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2131 /* We can return any write requests */
2132 struct bio
*wbi
, *wbi2
;
2134 pr_debug("Return write for disc %d\n", i
);
2135 spin_lock_irq(&conf
->device_lock
);
2137 dev
->written
= NULL
;
2138 while (wbi
&& wbi
->bi_sector
<
2139 dev
->sector
+ STRIPE_SECTORS
) {
2140 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2141 if (--wbi
->bi_phys_segments
== 0) {
2142 md_write_end(conf
->mddev
);
2143 wbi
->bi_next
= *return_bi
;
2148 if (dev
->towrite
== NULL
)
2150 spin_unlock_irq(&conf
->device_lock
);
2152 bitmap_endwrite(conf
->mddev
->bitmap
,
2155 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2161 static void handle_issuing_new_write_requests5(raid5_conf_t
*conf
,
2162 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2164 int rmw
= 0, rcw
= 0, i
;
2165 for (i
= disks
; i
--; ) {
2166 /* would I have to read this buffer for read_modify_write */
2167 struct r5dev
*dev
= &sh
->dev
[i
];
2168 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2169 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2170 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2171 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2172 if (test_bit(R5_Insync
, &dev
->flags
))
2175 rmw
+= 2*disks
; /* cannot read it */
2177 /* Would I have to read this buffer for reconstruct_write */
2178 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2179 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2180 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2181 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2182 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2187 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2188 (unsigned long long)sh
->sector
, rmw
, rcw
);
2189 set_bit(STRIPE_HANDLE
, &sh
->state
);
2190 if (rmw
< rcw
&& rmw
> 0)
2191 /* prefer read-modify-write, but need to get some data */
2192 for (i
= disks
; i
--; ) {
2193 struct r5dev
*dev
= &sh
->dev
[i
];
2194 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2195 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2196 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2197 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2198 test_bit(R5_Insync
, &dev
->flags
)) {
2200 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2201 pr_debug("Read_old block "
2202 "%d for r-m-w\n", i
);
2203 set_bit(R5_LOCKED
, &dev
->flags
);
2204 set_bit(R5_Wantread
, &dev
->flags
);
2205 if (!test_and_set_bit(
2206 STRIPE_OP_IO
, &sh
->ops
.pending
))
2210 set_bit(STRIPE_DELAYED
, &sh
->state
);
2211 set_bit(STRIPE_HANDLE
, &sh
->state
);
2215 if (rcw
<= rmw
&& rcw
> 0)
2216 /* want reconstruct write, but need to get some data */
2217 for (i
= disks
; i
--; ) {
2218 struct r5dev
*dev
= &sh
->dev
[i
];
2219 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2221 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2222 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2223 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2224 test_bit(R5_Insync
, &dev
->flags
)) {
2226 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2227 pr_debug("Read_old block "
2228 "%d for Reconstruct\n", i
);
2229 set_bit(R5_LOCKED
, &dev
->flags
);
2230 set_bit(R5_Wantread
, &dev
->flags
);
2231 if (!test_and_set_bit(
2232 STRIPE_OP_IO
, &sh
->ops
.pending
))
2236 set_bit(STRIPE_DELAYED
, &sh
->state
);
2237 set_bit(STRIPE_HANDLE
, &sh
->state
);
2241 /* now if nothing is locked, and if we have enough data,
2242 * we can start a write request
2244 /* since handle_stripe can be called at any time we need to handle the
2245 * case where a compute block operation has been submitted and then a
2246 * subsequent call wants to start a write request. raid5_run_ops only
2247 * handles the case where compute block and postxor are requested
2248 * simultaneously. If this is not the case then new writes need to be
2249 * held off until the compute completes.
2251 if ((s
->req_compute
||
2252 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) &&
2253 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2254 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2255 s
->locked
+= handle_write_operations5(sh
, rcw
== 0, 0);
2258 static void handle_issuing_new_write_requests6(raid5_conf_t
*conf
,
2259 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2260 struct r6_state
*r6s
, int disks
)
2262 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2263 int qd_idx
= r6s
->qd_idx
;
2264 for (i
= disks
; i
--; ) {
2265 struct r5dev
*dev
= &sh
->dev
[i
];
2266 /* Would I have to read this buffer for reconstruct_write */
2267 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2268 && i
!= pd_idx
&& i
!= qd_idx
2269 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2271 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2272 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2274 pr_debug("raid6: must_compute: "
2275 "disk %d flags=%#lx\n", i
, dev
->flags
);
2280 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2281 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2282 set_bit(STRIPE_HANDLE
, &sh
->state
);
2285 /* want reconstruct write, but need to get some data */
2286 for (i
= disks
; i
--; ) {
2287 struct r5dev
*dev
= &sh
->dev
[i
];
2288 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2289 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2290 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2291 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2292 test_bit(R5_Insync
, &dev
->flags
)) {
2294 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2295 pr_debug("Read_old stripe %llu "
2296 "block %d for Reconstruct\n",
2297 (unsigned long long)sh
->sector
, i
);
2298 set_bit(R5_LOCKED
, &dev
->flags
);
2299 set_bit(R5_Wantread
, &dev
->flags
);
2302 pr_debug("Request delayed stripe %llu "
2303 "block %d for Reconstruct\n",
2304 (unsigned long long)sh
->sector
, i
);
2305 set_bit(STRIPE_DELAYED
, &sh
->state
);
2306 set_bit(STRIPE_HANDLE
, &sh
->state
);
2310 /* now if nothing is locked, and if we have enough data, we can start a
2313 if (s
->locked
== 0 && rcw
== 0 &&
2314 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2315 if (must_compute
> 0) {
2316 /* We have failed blocks and need to compute them */
2317 switch (s
->failed
) {
2321 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2324 compute_block_2(sh
, r6s
->failed_num
[0],
2325 r6s
->failed_num
[1]);
2327 default: /* This request should have been failed? */
2332 pr_debug("Computing parity for stripe %llu\n",
2333 (unsigned long long)sh
->sector
);
2334 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2335 /* now every locked buffer is ready to be written */
2336 for (i
= disks
; i
--; )
2337 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2338 pr_debug("Writing stripe %llu block %d\n",
2339 (unsigned long long)sh
->sector
, i
);
2341 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2343 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2344 set_bit(STRIPE_INSYNC
, &sh
->state
);
2346 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2347 atomic_dec(&conf
->preread_active_stripes
);
2348 if (atomic_read(&conf
->preread_active_stripes
) <
2350 md_wakeup_thread(conf
->mddev
->thread
);
2355 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2356 struct stripe_head_state
*s
, int disks
)
2358 set_bit(STRIPE_HANDLE
, &sh
->state
);
2359 /* Take one of the following actions:
2360 * 1/ start a check parity operation if (uptodate == disks)
2361 * 2/ finish a check parity operation and act on the result
2362 * 3/ skip to the writeback section if we previously
2363 * initiated a recovery operation
2365 if (s
->failed
== 0 &&
2366 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2367 if (!test_and_set_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2368 BUG_ON(s
->uptodate
!= disks
);
2369 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2373 test_and_clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
)) {
2374 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.ack
);
2375 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
);
2377 if (sh
->ops
.zero_sum_result
== 0)
2378 /* parity is correct (on disc,
2379 * not in buffer any more)
2381 set_bit(STRIPE_INSYNC
, &sh
->state
);
2383 conf
->mddev
->resync_mismatches
+=
2386 MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2387 /* don't try to repair!! */
2388 set_bit(STRIPE_INSYNC
, &sh
->state
);
2390 set_bit(STRIPE_OP_COMPUTE_BLK
,
2392 set_bit(STRIPE_OP_MOD_REPAIR_PD
,
2394 set_bit(R5_Wantcompute
,
2395 &sh
->dev
[sh
->pd_idx
].flags
);
2396 sh
->ops
.target
= sh
->pd_idx
;
2404 /* check if we can clear a parity disk reconstruct */
2405 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2406 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2408 clear_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2411 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2414 /* Wait for check parity and compute block operations to complete
2417 if (!test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2418 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) &&
2419 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) {
2421 /* either failed parity check, or recovery is happening */
2423 s
->failed_num
= sh
->pd_idx
;
2424 dev
= &sh
->dev
[s
->failed_num
];
2425 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2426 BUG_ON(s
->uptodate
!= disks
);
2428 set_bit(R5_LOCKED
, &dev
->flags
);
2429 set_bit(R5_Wantwrite
, &dev
->flags
);
2430 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2433 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2435 set_bit(STRIPE_INSYNC
, &sh
->state
);
2440 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2441 struct stripe_head_state
*s
,
2442 struct r6_state
*r6s
, struct page
*tmp_page
,
2445 int update_p
= 0, update_q
= 0;
2447 int pd_idx
= sh
->pd_idx
;
2448 int qd_idx
= r6s
->qd_idx
;
2450 set_bit(STRIPE_HANDLE
, &sh
->state
);
2452 BUG_ON(s
->failed
> 2);
2453 BUG_ON(s
->uptodate
< disks
);
2454 /* Want to check and possibly repair P and Q.
2455 * However there could be one 'failed' device, in which
2456 * case we can only check one of them, possibly using the
2457 * other to generate missing data
2460 /* If !tmp_page, we cannot do the calculations,
2461 * but as we have set STRIPE_HANDLE, we will soon be called
2462 * by stripe_handle with a tmp_page - just wait until then.
2465 if (s
->failed
== r6s
->q_failed
) {
2466 /* The only possible failed device holds 'Q', so it
2467 * makes sense to check P (If anything else were failed,
2468 * we would have used P to recreate it).
2470 compute_block_1(sh
, pd_idx
, 1);
2471 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2472 compute_block_1(sh
, pd_idx
, 0);
2476 if (!r6s
->q_failed
&& s
->failed
< 2) {
2477 /* q is not failed, and we didn't use it to generate
2478 * anything, so it makes sense to check it
2480 memcpy(page_address(tmp_page
),
2481 page_address(sh
->dev
[qd_idx
].page
),
2483 compute_parity6(sh
, UPDATE_PARITY
);
2484 if (memcmp(page_address(tmp_page
),
2485 page_address(sh
->dev
[qd_idx
].page
),
2486 STRIPE_SIZE
) != 0) {
2487 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2491 if (update_p
|| update_q
) {
2492 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2493 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2494 /* don't try to repair!! */
2495 update_p
= update_q
= 0;
2498 /* now write out any block on a failed drive,
2499 * or P or Q if they need it
2502 if (s
->failed
== 2) {
2503 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2505 set_bit(R5_LOCKED
, &dev
->flags
);
2506 set_bit(R5_Wantwrite
, &dev
->flags
);
2508 if (s
->failed
>= 1) {
2509 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2511 set_bit(R5_LOCKED
, &dev
->flags
);
2512 set_bit(R5_Wantwrite
, &dev
->flags
);
2516 dev
= &sh
->dev
[pd_idx
];
2518 set_bit(R5_LOCKED
, &dev
->flags
);
2519 set_bit(R5_Wantwrite
, &dev
->flags
);
2522 dev
= &sh
->dev
[qd_idx
];
2524 set_bit(R5_LOCKED
, &dev
->flags
);
2525 set_bit(R5_Wantwrite
, &dev
->flags
);
2527 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2529 set_bit(STRIPE_INSYNC
, &sh
->state
);
2533 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2534 struct r6_state
*r6s
)
2538 /* We have read all the blocks in this stripe and now we need to
2539 * copy some of them into a target stripe for expand.
2541 struct dma_async_tx_descriptor
*tx
= NULL
;
2542 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2543 for (i
= 0; i
< sh
->disks
; i
++)
2544 if (i
!= sh
->pd_idx
&& (r6s
&& i
!= r6s
->qd_idx
)) {
2545 int dd_idx
, pd_idx
, j
;
2546 struct stripe_head
*sh2
;
2548 sector_t bn
= compute_blocknr(sh
, i
);
2549 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2551 conf
->max_degraded
, &dd_idx
,
2553 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2556 /* so far only the early blocks of this stripe
2557 * have been requested. When later blocks
2558 * get requested, we will try again
2561 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2562 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2563 /* must have already done this block */
2564 release_stripe(sh2
);
2568 /* place all the copies on one channel */
2569 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2570 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2571 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2573 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2574 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2575 for (j
= 0; j
< conf
->raid_disks
; j
++)
2576 if (j
!= sh2
->pd_idx
&&
2577 (r6s
&& j
!= r6s
->qd_idx
) &&
2578 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2580 if (j
== conf
->raid_disks
) {
2581 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2582 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2584 release_stripe(sh2
);
2586 /* done submitting copies, wait for them to complete */
2587 if (i
+ 1 >= sh
->disks
) {
2589 dma_wait_for_async_tx(tx
);
2595 * handle_stripe - do things to a stripe.
2597 * We lock the stripe and then examine the state of various bits
2598 * to see what needs to be done.
2600 * return some read request which now have data
2601 * return some write requests which are safely on disc
2602 * schedule a read on some buffers
2603 * schedule a write of some buffers
2604 * return confirmation of parity correctness
2606 * buffers are taken off read_list or write_list, and bh_cache buffers
2607 * get BH_Lock set before the stripe lock is released.
2611 static void handle_stripe5(struct stripe_head
*sh
)
2613 raid5_conf_t
*conf
= sh
->raid_conf
;
2614 int disks
= sh
->disks
, i
;
2615 struct bio
*return_bi
= NULL
;
2616 struct stripe_head_state s
;
2618 unsigned long pending
= 0;
2620 memset(&s
, 0, sizeof(s
));
2621 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2622 "ops=%lx:%lx:%lx\n", (unsigned long long)sh
->sector
, sh
->state
,
2623 atomic_read(&sh
->count
), sh
->pd_idx
,
2624 sh
->ops
.pending
, sh
->ops
.ack
, sh
->ops
.complete
);
2626 spin_lock(&sh
->lock
);
2627 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2628 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2630 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2631 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2632 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2633 /* Now to look around and see what can be done */
2636 for (i
=disks
; i
--; ) {
2638 struct r5dev
*dev
= &sh
->dev
[i
];
2639 clear_bit(R5_Insync
, &dev
->flags
);
2641 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2642 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2643 dev
->towrite
, dev
->written
);
2645 /* maybe we can request a biofill operation
2647 * new wantfill requests are only permitted while
2648 * STRIPE_OP_BIOFILL is clear
2650 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2651 !test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2652 set_bit(R5_Wantfill
, &dev
->flags
);
2654 /* now count some things */
2655 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2656 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2657 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2659 if (test_bit(R5_Wantfill
, &dev
->flags
))
2661 else if (dev
->toread
)
2665 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2670 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2671 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2672 /* The ReadError flag will just be confusing now */
2673 clear_bit(R5_ReadError
, &dev
->flags
);
2674 clear_bit(R5_ReWrite
, &dev
->flags
);
2676 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2677 || test_bit(R5_ReadError
, &dev
->flags
)) {
2681 set_bit(R5_Insync
, &dev
->flags
);
2685 if (s
.to_fill
&& !test_and_set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2688 pr_debug("locked=%d uptodate=%d to_read=%d"
2689 " to_write=%d failed=%d failed_num=%d\n",
2690 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2691 s
.failed
, s
.failed_num
);
2692 /* check if the array has lost two devices and, if so, some requests might
2695 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2696 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2698 if (s
.failed
> 1 && s
.syncing
) {
2699 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2700 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2704 /* might be able to return some write requests if the parity block
2705 * is safe, or on a failed drive
2707 dev
= &sh
->dev
[sh
->pd_idx
];
2709 ((test_bit(R5_Insync
, &dev
->flags
) &&
2710 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2711 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2712 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2713 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2715 /* Now we might consider reading some blocks, either to check/generate
2716 * parity, or to satisfy requests
2717 * or to load a block that is being partially written.
2719 if (s
.to_read
|| s
.non_overwrite
||
2720 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
||
2721 test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2722 handle_issuing_new_read_requests5(sh
, &s
, disks
);
2724 /* Now we check to see if any write operations have recently
2728 /* leave prexor set until postxor is done, allows us to distinguish
2729 * a rmw from a rcw during biodrain
2731 if (test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
) &&
2732 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2734 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
2735 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.ack
);
2736 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
2738 for (i
= disks
; i
--; )
2739 clear_bit(R5_Wantprexor
, &sh
->dev
[i
].flags
);
2742 /* if only POSTXOR is set then this is an 'expand' postxor */
2743 if (test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
) &&
2744 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2746 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
2747 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.ack
);
2748 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
2750 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2751 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2752 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2754 /* All the 'written' buffers and the parity block are ready to
2755 * be written back to disk
2757 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2758 for (i
= disks
; i
--; ) {
2760 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2761 (i
== sh
->pd_idx
|| dev
->written
)) {
2762 pr_debug("Writing block %d\n", i
);
2763 set_bit(R5_Wantwrite
, &dev
->flags
);
2764 if (!test_and_set_bit(
2765 STRIPE_OP_IO
, &sh
->ops
.pending
))
2767 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2768 (i
== sh
->pd_idx
&& s
.failed
== 0))
2769 set_bit(STRIPE_INSYNC
, &sh
->state
);
2772 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2773 atomic_dec(&conf
->preread_active_stripes
);
2774 if (atomic_read(&conf
->preread_active_stripes
) <
2776 md_wakeup_thread(conf
->mddev
->thread
);
2780 /* Now to consider new write requests and what else, if anything
2781 * should be read. We do not handle new writes when:
2782 * 1/ A 'write' operation (copy+xor) is already in flight.
2783 * 2/ A 'check' operation is in flight, as it may clobber the parity
2786 if (s
.to_write
&& !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
) &&
2787 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2788 handle_issuing_new_write_requests5(conf
, sh
, &s
, disks
);
2790 /* maybe we need to check and possibly fix the parity for this stripe
2791 * Any reads will already have been scheduled, so we just see if enough
2792 * data is available. The parity check is held off while parity
2793 * dependent operations are in flight.
2795 if ((s
.syncing
&& s
.locked
== 0 &&
2796 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2797 !test_bit(STRIPE_INSYNC
, &sh
->state
)) ||
2798 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) ||
2799 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
))
2800 handle_parity_checks5(conf
, sh
, &s
, disks
);
2802 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2803 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2804 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2807 /* If the failed drive is just a ReadError, then we might need to progress
2808 * the repair/check process
2810 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2811 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2812 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2813 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2815 dev
= &sh
->dev
[s
.failed_num
];
2816 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2817 set_bit(R5_Wantwrite
, &dev
->flags
);
2818 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2820 set_bit(R5_ReWrite
, &dev
->flags
);
2821 set_bit(R5_LOCKED
, &dev
->flags
);
2824 /* let's read it back */
2825 set_bit(R5_Wantread
, &dev
->flags
);
2826 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2828 set_bit(R5_LOCKED
, &dev
->flags
);
2833 /* Finish postxor operations initiated by the expansion
2836 if (test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
) &&
2837 !test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
)) {
2839 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2841 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2842 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2843 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2845 for (i
= conf
->raid_disks
; i
--; ) {
2846 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2847 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2852 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2853 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2854 /* Need to write out all blocks after computing parity */
2855 sh
->disks
= conf
->raid_disks
;
2856 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2858 s
.locked
+= handle_write_operations5(sh
, 0, 1);
2859 } else if (s
.expanded
&&
2860 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2861 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2862 atomic_dec(&conf
->reshape_stripes
);
2863 wake_up(&conf
->wait_for_overlap
);
2864 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2867 if (s
.expanding
&& s
.locked
== 0)
2868 handle_stripe_expansion(conf
, sh
, NULL
);
2871 pending
= get_stripe_work(sh
);
2873 spin_unlock(&sh
->lock
);
2876 raid5_run_ops(sh
, pending
);
2878 return_io(return_bi
);
2882 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2884 raid6_conf_t
*conf
= sh
->raid_conf
;
2885 int disks
= sh
->disks
;
2886 struct bio
*return_bi
= NULL
;
2887 int i
, pd_idx
= sh
->pd_idx
;
2888 struct stripe_head_state s
;
2889 struct r6_state r6s
;
2890 struct r5dev
*dev
, *pdev
, *qdev
;
2892 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2893 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2894 "pd_idx=%d, qd_idx=%d\n",
2895 (unsigned long long)sh
->sector
, sh
->state
,
2896 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2897 memset(&s
, 0, sizeof(s
));
2899 spin_lock(&sh
->lock
);
2900 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2901 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2903 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2904 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2905 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2906 /* Now to look around and see what can be done */
2909 for (i
=disks
; i
--; ) {
2912 clear_bit(R5_Insync
, &dev
->flags
);
2914 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2915 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2916 /* maybe we can reply to a read */
2917 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2918 struct bio
*rbi
, *rbi2
;
2919 pr_debug("Return read for disc %d\n", i
);
2920 spin_lock_irq(&conf
->device_lock
);
2923 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2924 wake_up(&conf
->wait_for_overlap
);
2925 spin_unlock_irq(&conf
->device_lock
);
2926 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2927 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2928 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2929 spin_lock_irq(&conf
->device_lock
);
2930 if (--rbi
->bi_phys_segments
== 0) {
2931 rbi
->bi_next
= return_bi
;
2934 spin_unlock_irq(&conf
->device_lock
);
2939 /* now count some things */
2940 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2941 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2948 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2953 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2954 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2955 /* The ReadError flag will just be confusing now */
2956 clear_bit(R5_ReadError
, &dev
->flags
);
2957 clear_bit(R5_ReWrite
, &dev
->flags
);
2959 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2960 || test_bit(R5_ReadError
, &dev
->flags
)) {
2962 r6s
.failed_num
[s
.failed
] = i
;
2965 set_bit(R5_Insync
, &dev
->flags
);
2968 pr_debug("locked=%d uptodate=%d to_read=%d"
2969 " to_write=%d failed=%d failed_num=%d,%d\n",
2970 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
2971 r6s
.failed_num
[0], r6s
.failed_num
[1]);
2972 /* check if the array has lost >2 devices and, if so, some requests
2973 * might need to be failed
2975 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
2976 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2978 if (s
.failed
> 2 && s
.syncing
) {
2979 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2980 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2985 * might be able to return some write requests if the parity blocks
2986 * are safe, or on a failed drive
2988 pdev
= &sh
->dev
[pd_idx
];
2989 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
2990 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
2991 qdev
= &sh
->dev
[r6s
.qd_idx
];
2992 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
2993 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
2996 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2997 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2998 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
2999 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3000 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3001 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3002 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
3004 /* Now we might consider reading some blocks, either to check/generate
3005 * parity, or to satisfy requests
3006 * or to load a block that is being partially written.
3008 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3009 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3010 handle_issuing_new_read_requests6(sh
, &s
, &r6s
, disks
);
3012 /* now to consider writing and what else, if anything should be read */
3014 handle_issuing_new_write_requests6(conf
, sh
, &s
, &r6s
, disks
);
3016 /* maybe we need to check and possibly fix the parity for this stripe
3017 * Any reads will already have been scheduled, so we just see if enough
3020 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3021 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3023 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3024 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3025 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3028 /* If the failed drives are just a ReadError, then we might need
3029 * to progress the repair/check process
3031 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3032 for (i
= 0; i
< s
.failed
; i
++) {
3033 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3034 if (test_bit(R5_ReadError
, &dev
->flags
)
3035 && !test_bit(R5_LOCKED
, &dev
->flags
)
3036 && test_bit(R5_UPTODATE
, &dev
->flags
)
3038 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3039 set_bit(R5_Wantwrite
, &dev
->flags
);
3040 set_bit(R5_ReWrite
, &dev
->flags
);
3041 set_bit(R5_LOCKED
, &dev
->flags
);
3043 /* let's read it back */
3044 set_bit(R5_Wantread
, &dev
->flags
);
3045 set_bit(R5_LOCKED
, &dev
->flags
);
3050 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3051 /* Need to write out all blocks after computing P&Q */
3052 sh
->disks
= conf
->raid_disks
;
3053 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
3055 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3056 for (i
= conf
->raid_disks
; i
-- ; ) {
3057 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3059 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3061 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3062 } else if (s
.expanded
) {
3063 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3064 atomic_dec(&conf
->reshape_stripes
);
3065 wake_up(&conf
->wait_for_overlap
);
3066 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3069 if (s
.expanding
&& s
.locked
== 0)
3070 handle_stripe_expansion(conf
, sh
, &r6s
);
3072 spin_unlock(&sh
->lock
);
3074 return_io(return_bi
);
3076 for (i
=disks
; i
-- ;) {
3080 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
3082 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
3087 bi
= &sh
->dev
[i
].req
;
3091 bi
->bi_end_io
= raid5_end_write_request
;
3093 bi
->bi_end_io
= raid5_end_read_request
;
3096 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3097 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3100 atomic_inc(&rdev
->nr_pending
);
3104 if (s
.syncing
|| s
.expanding
|| s
.expanded
)
3105 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
3107 bi
->bi_bdev
= rdev
->bdev
;
3108 pr_debug("for %llu schedule op %ld on disc %d\n",
3109 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
3110 atomic_inc(&sh
->count
);
3111 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
3112 bi
->bi_flags
= 1 << BIO_UPTODATE
;
3114 bi
->bi_max_vecs
= 1;
3116 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
3117 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
3118 bi
->bi_io_vec
[0].bv_offset
= 0;
3119 bi
->bi_size
= STRIPE_SIZE
;
3122 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
3123 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
3124 generic_make_request(bi
);
3127 set_bit(STRIPE_DEGRADED
, &sh
->state
);
3128 pr_debug("skip op %ld on disc %d for sector %llu\n",
3129 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
3130 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3131 set_bit(STRIPE_HANDLE
, &sh
->state
);
3136 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3138 if (sh
->raid_conf
->level
== 6)
3139 handle_stripe6(sh
, tmp_page
);
3146 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3148 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3149 while (!list_empty(&conf
->delayed_list
)) {
3150 struct list_head
*l
= conf
->delayed_list
.next
;
3151 struct stripe_head
*sh
;
3152 sh
= list_entry(l
, struct stripe_head
, lru
);
3154 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3155 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3156 atomic_inc(&conf
->preread_active_stripes
);
3157 list_add_tail(&sh
->lru
, &conf
->handle_list
);
3162 static void activate_bit_delay(raid5_conf_t
*conf
)
3164 /* device_lock is held */
3165 struct list_head head
;
3166 list_add(&head
, &conf
->bitmap_list
);
3167 list_del_init(&conf
->bitmap_list
);
3168 while (!list_empty(&head
)) {
3169 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3170 list_del_init(&sh
->lru
);
3171 atomic_inc(&sh
->count
);
3172 __release_stripe(conf
, sh
);
3176 static void unplug_slaves(mddev_t
*mddev
)
3178 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3182 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3183 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3184 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3185 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
3187 atomic_inc(&rdev
->nr_pending
);
3190 if (r_queue
->unplug_fn
)
3191 r_queue
->unplug_fn(r_queue
);
3193 rdev_dec_pending(rdev
, mddev
);
3200 static void raid5_unplug_device(request_queue_t
*q
)
3202 mddev_t
*mddev
= q
->queuedata
;
3203 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3204 unsigned long flags
;
3206 spin_lock_irqsave(&conf
->device_lock
, flags
);
3208 if (blk_remove_plug(q
)) {
3210 raid5_activate_delayed(conf
);
3212 md_wakeup_thread(mddev
->thread
);
3214 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3216 unplug_slaves(mddev
);
3219 static int raid5_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
3220 sector_t
*error_sector
)
3222 mddev_t
*mddev
= q
->queuedata
;
3223 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3227 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
3228 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3229 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
3230 struct block_device
*bdev
= rdev
->bdev
;
3231 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
3233 if (!r_queue
->issue_flush_fn
)
3236 atomic_inc(&rdev
->nr_pending
);
3238 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
3240 rdev_dec_pending(rdev
, mddev
);
3249 static int raid5_congested(void *data
, int bits
)
3251 mddev_t
*mddev
= data
;
3252 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3254 /* No difference between reads and writes. Just check
3255 * how busy the stripe_cache is
3257 if (conf
->inactive_blocked
)
3261 if (list_empty_careful(&conf
->inactive_list
))
3267 /* We want read requests to align with chunks where possible,
3268 * but write requests don't need to.
3270 static int raid5_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
3272 mddev_t
*mddev
= q
->queuedata
;
3273 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3275 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3276 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3278 if (bio_data_dir(bio
) == WRITE
)
3279 return biovec
->bv_len
; /* always allow writes to be mergeable */
3281 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3282 if (max
< 0) max
= 0;
3283 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3284 return biovec
->bv_len
;
3290 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3292 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3293 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3294 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3296 return chunk_sectors
>=
3297 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3301 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3302 * later sampled by raid5d.
3304 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3306 unsigned long flags
;
3308 spin_lock_irqsave(&conf
->device_lock
, flags
);
3310 bi
->bi_next
= conf
->retry_read_aligned_list
;
3311 conf
->retry_read_aligned_list
= bi
;
3313 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3314 md_wakeup_thread(conf
->mddev
->thread
);
3318 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3322 bi
= conf
->retry_read_aligned
;
3324 conf
->retry_read_aligned
= NULL
;
3327 bi
= conf
->retry_read_aligned_list
;
3329 conf
->retry_read_aligned_list
= bi
->bi_next
;
3331 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3332 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3340 * The "raid5_align_endio" should check if the read succeeded and if it
3341 * did, call bio_endio on the original bio (having bio_put the new bio
3343 * If the read failed..
3345 static int raid5_align_endio(struct bio
*bi
, unsigned int bytes
, int error
)
3347 struct bio
* raid_bi
= bi
->bi_private
;
3350 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3357 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3358 conf
= mddev_to_conf(mddev
);
3359 rdev
= (void*)raid_bi
->bi_next
;
3360 raid_bi
->bi_next
= NULL
;
3362 rdev_dec_pending(rdev
, conf
->mddev
);
3364 if (!error
&& uptodate
) {
3365 bio_endio(raid_bi
, bytes
, 0);
3366 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3367 wake_up(&conf
->wait_for_stripe
);
3372 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3374 add_bio_to_retry(raid_bi
, conf
);
3378 static int bio_fits_rdev(struct bio
*bi
)
3380 request_queue_t
*q
= bdev_get_queue(bi
->bi_bdev
);
3382 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3384 blk_recount_segments(q
, bi
);
3385 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3386 bi
->bi_hw_segments
> q
->max_hw_segments
)
3389 if (q
->merge_bvec_fn
)
3390 /* it's too hard to apply the merge_bvec_fn at this stage,
3399 static int chunk_aligned_read(request_queue_t
*q
, struct bio
* raid_bio
)
3401 mddev_t
*mddev
= q
->queuedata
;
3402 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3403 const unsigned int raid_disks
= conf
->raid_disks
;
3404 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3405 unsigned int dd_idx
, pd_idx
;
3406 struct bio
* align_bi
;
3409 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3410 pr_debug("chunk_aligned_read : non aligned\n");
3414 * use bio_clone to make a copy of the bio
3416 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3420 * set bi_end_io to a new function, and set bi_private to the
3423 align_bi
->bi_end_io
= raid5_align_endio
;
3424 align_bi
->bi_private
= raid_bio
;
3428 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3436 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3437 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3438 atomic_inc(&rdev
->nr_pending
);
3440 raid_bio
->bi_next
= (void*)rdev
;
3441 align_bi
->bi_bdev
= rdev
->bdev
;
3442 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3443 align_bi
->bi_sector
+= rdev
->data_offset
;
3445 if (!bio_fits_rdev(align_bi
)) {
3446 /* too big in some way */
3448 rdev_dec_pending(rdev
, mddev
);
3452 spin_lock_irq(&conf
->device_lock
);
3453 wait_event_lock_irq(conf
->wait_for_stripe
,
3455 conf
->device_lock
, /* nothing */);
3456 atomic_inc(&conf
->active_aligned_reads
);
3457 spin_unlock_irq(&conf
->device_lock
);
3459 generic_make_request(align_bi
);
3469 static int make_request(request_queue_t
*q
, struct bio
* bi
)
3471 mddev_t
*mddev
= q
->queuedata
;
3472 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3473 unsigned int dd_idx
, pd_idx
;
3474 sector_t new_sector
;
3475 sector_t logical_sector
, last_sector
;
3476 struct stripe_head
*sh
;
3477 const int rw
= bio_data_dir(bi
);
3480 if (unlikely(bio_barrier(bi
))) {
3481 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
3485 md_write_start(mddev
, bi
);
3487 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3488 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3491 mddev
->reshape_position
== MaxSector
&&
3492 chunk_aligned_read(q
,bi
))
3495 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3496 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3498 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3500 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3502 int disks
, data_disks
;
3505 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3506 if (likely(conf
->expand_progress
== MaxSector
))
3507 disks
= conf
->raid_disks
;
3509 /* spinlock is needed as expand_progress may be
3510 * 64bit on a 32bit platform, and so it might be
3511 * possible to see a half-updated value
3512 * Ofcourse expand_progress could change after
3513 * the lock is dropped, so once we get a reference
3514 * to the stripe that we think it is, we will have
3517 spin_lock_irq(&conf
->device_lock
);
3518 disks
= conf
->raid_disks
;
3519 if (logical_sector
>= conf
->expand_progress
)
3520 disks
= conf
->previous_raid_disks
;
3522 if (logical_sector
>= conf
->expand_lo
) {
3523 spin_unlock_irq(&conf
->device_lock
);
3528 spin_unlock_irq(&conf
->device_lock
);
3530 data_disks
= disks
- conf
->max_degraded
;
3532 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3533 &dd_idx
, &pd_idx
, conf
);
3534 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3535 (unsigned long long)new_sector
,
3536 (unsigned long long)logical_sector
);
3538 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3540 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3541 /* expansion might have moved on while waiting for a
3542 * stripe, so we must do the range check again.
3543 * Expansion could still move past after this
3544 * test, but as we are holding a reference to
3545 * 'sh', we know that if that happens,
3546 * STRIPE_EXPANDING will get set and the expansion
3547 * won't proceed until we finish with the stripe.
3550 spin_lock_irq(&conf
->device_lock
);
3551 if (logical_sector
< conf
->expand_progress
&&
3552 disks
== conf
->previous_raid_disks
)
3553 /* mismatch, need to try again */
3555 spin_unlock_irq(&conf
->device_lock
);
3561 /* FIXME what if we get a false positive because these
3562 * are being updated.
3564 if (logical_sector
>= mddev
->suspend_lo
&&
3565 logical_sector
< mddev
->suspend_hi
) {
3571 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3572 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3573 /* Stripe is busy expanding or
3574 * add failed due to overlap. Flush everything
3577 raid5_unplug_device(mddev
->queue
);
3582 finish_wait(&conf
->wait_for_overlap
, &w
);
3583 handle_stripe(sh
, NULL
);
3586 /* cannot get stripe for read-ahead, just give-up */
3587 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3588 finish_wait(&conf
->wait_for_overlap
, &w
);
3593 spin_lock_irq(&conf
->device_lock
);
3594 remaining
= --bi
->bi_phys_segments
;
3595 spin_unlock_irq(&conf
->device_lock
);
3596 if (remaining
== 0) {
3597 int bytes
= bi
->bi_size
;
3600 md_write_end(mddev
);
3602 bi
->bi_end_io(bi
, bytes
,
3603 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
3609 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3611 /* reshaping is quite different to recovery/resync so it is
3612 * handled quite separately ... here.
3614 * On each call to sync_request, we gather one chunk worth of
3615 * destination stripes and flag them as expanding.
3616 * Then we find all the source stripes and request reads.
3617 * As the reads complete, handle_stripe will copy the data
3618 * into the destination stripe and release that stripe.
3620 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3621 struct stripe_head
*sh
;
3623 sector_t first_sector
, last_sector
;
3624 int raid_disks
= conf
->previous_raid_disks
;
3625 int data_disks
= raid_disks
- conf
->max_degraded
;
3626 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3629 sector_t writepos
, safepos
, gap
;
3631 if (sector_nr
== 0 &&
3632 conf
->expand_progress
!= 0) {
3633 /* restarting in the middle, skip the initial sectors */
3634 sector_nr
= conf
->expand_progress
;
3635 sector_div(sector_nr
, new_data_disks
);
3640 /* we update the metadata when there is more than 3Meg
3641 * in the block range (that is rather arbitrary, should
3642 * probably be time based) or when the data about to be
3643 * copied would over-write the source of the data at
3644 * the front of the range.
3645 * i.e. one new_stripe forward from expand_progress new_maps
3646 * to after where expand_lo old_maps to
3648 writepos
= conf
->expand_progress
+
3649 conf
->chunk_size
/512*(new_data_disks
);
3650 sector_div(writepos
, new_data_disks
);
3651 safepos
= conf
->expand_lo
;
3652 sector_div(safepos
, data_disks
);
3653 gap
= conf
->expand_progress
- conf
->expand_lo
;
3655 if (writepos
>= safepos
||
3656 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3657 /* Cannot proceed until we've updated the superblock... */
3658 wait_event(conf
->wait_for_overlap
,
3659 atomic_read(&conf
->reshape_stripes
)==0);
3660 mddev
->reshape_position
= conf
->expand_progress
;
3661 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3662 md_wakeup_thread(mddev
->thread
);
3663 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3664 kthread_should_stop());
3665 spin_lock_irq(&conf
->device_lock
);
3666 conf
->expand_lo
= mddev
->reshape_position
;
3667 spin_unlock_irq(&conf
->device_lock
);
3668 wake_up(&conf
->wait_for_overlap
);
3671 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3674 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3675 sh
= get_active_stripe(conf
, sector_nr
+i
,
3676 conf
->raid_disks
, pd_idx
, 0);
3677 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3678 atomic_inc(&conf
->reshape_stripes
);
3679 /* If any of this stripe is beyond the end of the old
3680 * array, then we need to zero those blocks
3682 for (j
=sh
->disks
; j
--;) {
3684 if (j
== sh
->pd_idx
)
3686 if (conf
->level
== 6 &&
3687 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3689 s
= compute_blocknr(sh
, j
);
3690 if (s
< (mddev
->array_size
<<1)) {
3694 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3695 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3696 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3699 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3700 set_bit(STRIPE_HANDLE
, &sh
->state
);
3704 spin_lock_irq(&conf
->device_lock
);
3705 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3706 spin_unlock_irq(&conf
->device_lock
);
3707 /* Ok, those stripe are ready. We can start scheduling
3708 * reads on the source stripes.
3709 * The source stripes are determined by mapping the first and last
3710 * block on the destination stripes.
3713 raid5_compute_sector(sector_nr
*(new_data_disks
),
3714 raid_disks
, data_disks
,
3715 &dd_idx
, &pd_idx
, conf
);
3717 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3718 *(new_data_disks
) -1,
3719 raid_disks
, data_disks
,
3720 &dd_idx
, &pd_idx
, conf
);
3721 if (last_sector
>= (mddev
->size
<<1))
3722 last_sector
= (mddev
->size
<<1)-1;
3723 while (first_sector
<= last_sector
) {
3724 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3725 conf
->previous_raid_disks
);
3726 sh
= get_active_stripe(conf
, first_sector
,
3727 conf
->previous_raid_disks
, pd_idx
, 0);
3728 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3729 set_bit(STRIPE_HANDLE
, &sh
->state
);
3731 first_sector
+= STRIPE_SECTORS
;
3733 return conf
->chunk_size
>>9;
3736 /* FIXME go_faster isn't used */
3737 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3739 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3740 struct stripe_head
*sh
;
3742 int raid_disks
= conf
->raid_disks
;
3743 sector_t max_sector
= mddev
->size
<< 1;
3745 int still_degraded
= 0;
3748 if (sector_nr
>= max_sector
) {
3749 /* just being told to finish up .. nothing much to do */
3750 unplug_slaves(mddev
);
3751 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3756 if (mddev
->curr_resync
< max_sector
) /* aborted */
3757 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3759 else /* completed sync */
3761 bitmap_close_sync(mddev
->bitmap
);
3766 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3767 return reshape_request(mddev
, sector_nr
, skipped
);
3769 /* if there is too many failed drives and we are trying
3770 * to resync, then assert that we are finished, because there is
3771 * nothing we can do.
3773 if (mddev
->degraded
>= conf
->max_degraded
&&
3774 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3775 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3779 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3780 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3781 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3782 /* we can skip this block, and probably more */
3783 sync_blocks
/= STRIPE_SECTORS
;
3785 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3788 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3789 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3791 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3792 /* make sure we don't swamp the stripe cache if someone else
3793 * is trying to get access
3795 schedule_timeout_uninterruptible(1);
3797 /* Need to check if array will still be degraded after recovery/resync
3798 * We don't need to check the 'failed' flag as when that gets set,
3801 for (i
=0; i
<mddev
->raid_disks
; i
++)
3802 if (conf
->disks
[i
].rdev
== NULL
)
3805 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3807 spin_lock(&sh
->lock
);
3808 set_bit(STRIPE_SYNCING
, &sh
->state
);
3809 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3810 spin_unlock(&sh
->lock
);
3812 handle_stripe(sh
, NULL
);
3815 return STRIPE_SECTORS
;
3818 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3820 /* We may not be able to submit a whole bio at once as there
3821 * may not be enough stripe_heads available.
3822 * We cannot pre-allocate enough stripe_heads as we may need
3823 * more than exist in the cache (if we allow ever large chunks).
3824 * So we do one stripe head at a time and record in
3825 * ->bi_hw_segments how many have been done.
3827 * We *know* that this entire raid_bio is in one chunk, so
3828 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3830 struct stripe_head
*sh
;
3832 sector_t sector
, logical_sector
, last_sector
;
3837 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3838 sector
= raid5_compute_sector( logical_sector
,
3840 conf
->raid_disks
- conf
->max_degraded
,
3844 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3846 for (; logical_sector
< last_sector
;
3847 logical_sector
+= STRIPE_SECTORS
,
3848 sector
+= STRIPE_SECTORS
,
3851 if (scnt
< raid_bio
->bi_hw_segments
)
3852 /* already done this stripe */
3855 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3858 /* failed to get a stripe - must wait */
3859 raid_bio
->bi_hw_segments
= scnt
;
3860 conf
->retry_read_aligned
= raid_bio
;
3864 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3865 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3867 raid_bio
->bi_hw_segments
= scnt
;
3868 conf
->retry_read_aligned
= raid_bio
;
3872 handle_stripe(sh
, NULL
);
3876 spin_lock_irq(&conf
->device_lock
);
3877 remaining
= --raid_bio
->bi_phys_segments
;
3878 spin_unlock_irq(&conf
->device_lock
);
3879 if (remaining
== 0) {
3880 int bytes
= raid_bio
->bi_size
;
3882 raid_bio
->bi_size
= 0;
3883 raid_bio
->bi_end_io(raid_bio
, bytes
,
3884 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
3887 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3888 wake_up(&conf
->wait_for_stripe
);
3895 * This is our raid5 kernel thread.
3897 * We scan the hash table for stripes which can be handled now.
3898 * During the scan, completed stripes are saved for us by the interrupt
3899 * handler, so that they will not have to wait for our next wakeup.
3901 static void raid5d (mddev_t
*mddev
)
3903 struct stripe_head
*sh
;
3904 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3907 pr_debug("+++ raid5d active\n");
3909 md_check_recovery(mddev
);
3912 spin_lock_irq(&conf
->device_lock
);
3914 struct list_head
*first
;
3917 if (conf
->seq_flush
!= conf
->seq_write
) {
3918 int seq
= conf
->seq_flush
;
3919 spin_unlock_irq(&conf
->device_lock
);
3920 bitmap_unplug(mddev
->bitmap
);
3921 spin_lock_irq(&conf
->device_lock
);
3922 conf
->seq_write
= seq
;
3923 activate_bit_delay(conf
);
3926 if (list_empty(&conf
->handle_list
) &&
3927 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
3928 !blk_queue_plugged(mddev
->queue
) &&
3929 !list_empty(&conf
->delayed_list
))
3930 raid5_activate_delayed(conf
);
3932 while ((bio
= remove_bio_from_retry(conf
))) {
3934 spin_unlock_irq(&conf
->device_lock
);
3935 ok
= retry_aligned_read(conf
, bio
);
3936 spin_lock_irq(&conf
->device_lock
);
3942 if (list_empty(&conf
->handle_list
)) {
3943 async_tx_issue_pending_all();
3947 first
= conf
->handle_list
.next
;
3948 sh
= list_entry(first
, struct stripe_head
, lru
);
3950 list_del_init(first
);
3951 atomic_inc(&sh
->count
);
3952 BUG_ON(atomic_read(&sh
->count
)!= 1);
3953 spin_unlock_irq(&conf
->device_lock
);
3956 handle_stripe(sh
, conf
->spare_page
);
3959 spin_lock_irq(&conf
->device_lock
);
3961 pr_debug("%d stripes handled\n", handled
);
3963 spin_unlock_irq(&conf
->device_lock
);
3965 unplug_slaves(mddev
);
3967 pr_debug("--- raid5d inactive\n");
3971 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3973 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3975 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3981 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3983 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3986 if (len
>= PAGE_SIZE
)
3991 new = simple_strtoul(page
, &end
, 10);
3992 if (!*page
|| (*end
&& *end
!= '\n') )
3994 if (new <= 16 || new > 32768)
3996 while (new < conf
->max_nr_stripes
) {
3997 if (drop_one_stripe(conf
))
3998 conf
->max_nr_stripes
--;
4002 md_allow_write(mddev
);
4003 while (new > conf
->max_nr_stripes
) {
4004 if (grow_one_stripe(conf
))
4005 conf
->max_nr_stripes
++;
4011 static struct md_sysfs_entry
4012 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4013 raid5_show_stripe_cache_size
,
4014 raid5_store_stripe_cache_size
);
4017 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4019 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4021 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4026 static struct md_sysfs_entry
4027 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4029 static struct attribute
*raid5_attrs
[] = {
4030 &raid5_stripecache_size
.attr
,
4031 &raid5_stripecache_active
.attr
,
4034 static struct attribute_group raid5_attrs_group
= {
4036 .attrs
= raid5_attrs
,
4039 static int run(mddev_t
*mddev
)
4042 int raid_disk
, memory
;
4044 struct disk_info
*disk
;
4045 struct list_head
*tmp
;
4046 int working_disks
= 0;
4048 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4049 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4050 mdname(mddev
), mddev
->level
);
4054 if (mddev
->reshape_position
!= MaxSector
) {
4055 /* Check that we can continue the reshape.
4056 * Currently only disks can change, it must
4057 * increase, and we must be past the point where
4058 * a stripe over-writes itself
4060 sector_t here_new
, here_old
;
4062 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4064 if (mddev
->new_level
!= mddev
->level
||
4065 mddev
->new_layout
!= mddev
->layout
||
4066 mddev
->new_chunk
!= mddev
->chunk_size
) {
4067 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4068 "required - aborting.\n",
4072 if (mddev
->delta_disks
<= 0) {
4073 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4074 "(reduce disks) required - aborting.\n",
4078 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4079 /* reshape_position must be on a new-stripe boundary, and one
4080 * further up in new geometry must map after here in old
4083 here_new
= mddev
->reshape_position
;
4084 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4085 (mddev
->raid_disks
- max_degraded
))) {
4086 printk(KERN_ERR
"raid5: reshape_position not "
4087 "on a stripe boundary\n");
4090 /* here_new is the stripe we will write to */
4091 here_old
= mddev
->reshape_position
;
4092 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4093 (old_disks
-max_degraded
));
4094 /* here_old is the first stripe that we might need to read
4096 if (here_new
>= here_old
) {
4097 /* Reading from the same stripe as writing to - bad */
4098 printk(KERN_ERR
"raid5: reshape_position too early for "
4099 "auto-recovery - aborting.\n");
4102 printk(KERN_INFO
"raid5: reshape will continue\n");
4103 /* OK, we should be able to continue; */
4107 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4108 if ((conf
= mddev
->private) == NULL
)
4110 if (mddev
->reshape_position
== MaxSector
) {
4111 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4113 conf
->raid_disks
= mddev
->raid_disks
;
4114 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4117 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4122 conf
->mddev
= mddev
;
4124 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4127 if (mddev
->level
== 6) {
4128 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4129 if (!conf
->spare_page
)
4132 spin_lock_init(&conf
->device_lock
);
4133 init_waitqueue_head(&conf
->wait_for_stripe
);
4134 init_waitqueue_head(&conf
->wait_for_overlap
);
4135 INIT_LIST_HEAD(&conf
->handle_list
);
4136 INIT_LIST_HEAD(&conf
->delayed_list
);
4137 INIT_LIST_HEAD(&conf
->bitmap_list
);
4138 INIT_LIST_HEAD(&conf
->inactive_list
);
4139 atomic_set(&conf
->active_stripes
, 0);
4140 atomic_set(&conf
->preread_active_stripes
, 0);
4141 atomic_set(&conf
->active_aligned_reads
, 0);
4143 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4145 ITERATE_RDEV(mddev
,rdev
,tmp
) {
4146 raid_disk
= rdev
->raid_disk
;
4147 if (raid_disk
>= conf
->raid_disks
4150 disk
= conf
->disks
+ raid_disk
;
4154 if (test_bit(In_sync
, &rdev
->flags
)) {
4155 char b
[BDEVNAME_SIZE
];
4156 printk(KERN_INFO
"raid5: device %s operational as raid"
4157 " disk %d\n", bdevname(rdev
->bdev
,b
),
4164 * 0 for a fully functional array, 1 or 2 for a degraded array.
4166 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4167 conf
->mddev
= mddev
;
4168 conf
->chunk_size
= mddev
->chunk_size
;
4169 conf
->level
= mddev
->level
;
4170 if (conf
->level
== 6)
4171 conf
->max_degraded
= 2;
4173 conf
->max_degraded
= 1;
4174 conf
->algorithm
= mddev
->layout
;
4175 conf
->max_nr_stripes
= NR_STRIPES
;
4176 conf
->expand_progress
= mddev
->reshape_position
;
4178 /* device size must be a multiple of chunk size */
4179 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4180 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4182 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4183 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4184 mdname(mddev
), conf
->raid_disks
);
4187 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4188 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4189 conf
->chunk_size
, mdname(mddev
));
4192 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4194 "raid5: unsupported parity algorithm %d for %s\n",
4195 conf
->algorithm
, mdname(mddev
));
4198 if (mddev
->degraded
> conf
->max_degraded
) {
4199 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4200 " (%d/%d failed)\n",
4201 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4205 if (mddev
->degraded
> 0 &&
4206 mddev
->recovery_cp
!= MaxSector
) {
4207 if (mddev
->ok_start_degraded
)
4209 "raid5: starting dirty degraded array: %s"
4210 "- data corruption possible.\n",
4214 "raid5: cannot start dirty degraded array for %s\n",
4221 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4222 if (!mddev
->thread
) {
4224 "raid5: couldn't allocate thread for %s\n",
4229 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4230 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4231 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4233 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4234 shrink_stripes(conf
);
4235 md_unregister_thread(mddev
->thread
);
4238 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4239 memory
, mdname(mddev
));
4241 if (mddev
->degraded
== 0)
4242 printk("raid5: raid level %d set %s active with %d out of %d"
4243 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4244 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4247 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4248 " out of %d devices, algorithm %d\n", conf
->level
,
4249 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4250 mddev
->raid_disks
, conf
->algorithm
);
4252 print_raid5_conf(conf
);
4254 if (conf
->expand_progress
!= MaxSector
) {
4255 printk("...ok start reshape thread\n");
4256 conf
->expand_lo
= conf
->expand_progress
;
4257 atomic_set(&conf
->reshape_stripes
, 0);
4258 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4259 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4260 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4261 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4262 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4266 /* read-ahead size must cover two whole stripes, which is
4267 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4270 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4271 int stripe
= data_disks
*
4272 (mddev
->chunk_size
/ PAGE_SIZE
);
4273 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4274 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4277 /* Ok, everything is just fine now */
4278 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4280 "raid5: failed to create sysfs attributes for %s\n",
4283 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4284 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
4285 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4286 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4288 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
4289 conf
->max_degraded
);
4291 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4296 print_raid5_conf(conf
);
4297 safe_put_page(conf
->spare_page
);
4299 kfree(conf
->stripe_hashtbl
);
4302 mddev
->private = NULL
;
4303 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4309 static int stop(mddev_t
*mddev
)
4311 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4313 md_unregister_thread(mddev
->thread
);
4314 mddev
->thread
= NULL
;
4315 shrink_stripes(conf
);
4316 kfree(conf
->stripe_hashtbl
);
4317 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4318 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4319 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4322 mddev
->private = NULL
;
4327 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4331 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4332 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4333 seq_printf(seq
, "sh %llu, count %d.\n",
4334 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4335 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4336 for (i
= 0; i
< sh
->disks
; i
++) {
4337 seq_printf(seq
, "(cache%d: %p %ld) ",
4338 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4340 seq_printf(seq
, "\n");
4343 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4345 struct stripe_head
*sh
;
4346 struct hlist_node
*hn
;
4349 spin_lock_irq(&conf
->device_lock
);
4350 for (i
= 0; i
< NR_HASH
; i
++) {
4351 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4352 if (sh
->raid_conf
!= conf
)
4357 spin_unlock_irq(&conf
->device_lock
);
4361 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4363 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4366 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4367 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4368 for (i
= 0; i
< conf
->raid_disks
; i
++)
4369 seq_printf (seq
, "%s",
4370 conf
->disks
[i
].rdev
&&
4371 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4372 seq_printf (seq
, "]");
4374 seq_printf (seq
, "\n");
4375 printall(seq
, conf
);
4379 static void print_raid5_conf (raid5_conf_t
*conf
)
4382 struct disk_info
*tmp
;
4384 printk("RAID5 conf printout:\n");
4386 printk("(conf==NULL)\n");
4389 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4390 conf
->raid_disks
- conf
->mddev
->degraded
);
4392 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4393 char b
[BDEVNAME_SIZE
];
4394 tmp
= conf
->disks
+ i
;
4396 printk(" disk %d, o:%d, dev:%s\n",
4397 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4398 bdevname(tmp
->rdev
->bdev
,b
));
4402 static int raid5_spare_active(mddev_t
*mddev
)
4405 raid5_conf_t
*conf
= mddev
->private;
4406 struct disk_info
*tmp
;
4408 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4409 tmp
= conf
->disks
+ i
;
4411 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4412 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4413 unsigned long flags
;
4414 spin_lock_irqsave(&conf
->device_lock
, flags
);
4416 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4419 print_raid5_conf(conf
);
4423 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4425 raid5_conf_t
*conf
= mddev
->private;
4428 struct disk_info
*p
= conf
->disks
+ number
;
4430 print_raid5_conf(conf
);
4433 if (test_bit(In_sync
, &rdev
->flags
) ||
4434 atomic_read(&rdev
->nr_pending
)) {
4440 if (atomic_read(&rdev
->nr_pending
)) {
4441 /* lost the race, try later */
4448 print_raid5_conf(conf
);
4452 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4454 raid5_conf_t
*conf
= mddev
->private;
4457 struct disk_info
*p
;
4459 if (mddev
->degraded
> conf
->max_degraded
)
4460 /* no point adding a device */
4464 * find the disk ... but prefer rdev->saved_raid_disk
4467 if (rdev
->saved_raid_disk
>= 0 &&
4468 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4469 disk
= rdev
->saved_raid_disk
;
4472 for ( ; disk
< conf
->raid_disks
; disk
++)
4473 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4474 clear_bit(In_sync
, &rdev
->flags
);
4475 rdev
->raid_disk
= disk
;
4477 if (rdev
->saved_raid_disk
!= disk
)
4479 rcu_assign_pointer(p
->rdev
, rdev
);
4482 print_raid5_conf(conf
);
4486 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4488 /* no resync is happening, and there is enough space
4489 * on all devices, so we can resize.
4490 * We need to make sure resync covers any new space.
4491 * If the array is shrinking we should possibly wait until
4492 * any io in the removed space completes, but it hardly seems
4495 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4497 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4498 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
4499 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
4501 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4502 mddev
->recovery_cp
= mddev
->size
<< 1;
4503 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4505 mddev
->size
= sectors
/2;
4506 mddev
->resync_max_sectors
= sectors
;
4510 #ifdef CONFIG_MD_RAID5_RESHAPE
4511 static int raid5_check_reshape(mddev_t
*mddev
)
4513 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4516 if (mddev
->delta_disks
< 0 ||
4517 mddev
->new_level
!= mddev
->level
)
4518 return -EINVAL
; /* Cannot shrink array or change level yet */
4519 if (mddev
->delta_disks
== 0)
4520 return 0; /* nothing to do */
4522 /* Can only proceed if there are plenty of stripe_heads.
4523 * We need a minimum of one full stripe,, and for sensible progress
4524 * it is best to have about 4 times that.
4525 * If we require 4 times, then the default 256 4K stripe_heads will
4526 * allow for chunk sizes up to 256K, which is probably OK.
4527 * If the chunk size is greater, user-space should request more
4528 * stripe_heads first.
4530 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4531 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4532 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4533 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4537 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4541 if (mddev
->degraded
> conf
->max_degraded
)
4543 /* looks like we might be able to manage this */
4547 static int raid5_start_reshape(mddev_t
*mddev
)
4549 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4551 struct list_head
*rtmp
;
4553 int added_devices
= 0;
4554 unsigned long flags
;
4556 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4559 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4560 if (rdev
->raid_disk
< 0 &&
4561 !test_bit(Faulty
, &rdev
->flags
))
4564 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4565 /* Not enough devices even to make a degraded array
4570 atomic_set(&conf
->reshape_stripes
, 0);
4571 spin_lock_irq(&conf
->device_lock
);
4572 conf
->previous_raid_disks
= conf
->raid_disks
;
4573 conf
->raid_disks
+= mddev
->delta_disks
;
4574 conf
->expand_progress
= 0;
4575 conf
->expand_lo
= 0;
4576 spin_unlock_irq(&conf
->device_lock
);
4578 /* Add some new drives, as many as will fit.
4579 * We know there are enough to make the newly sized array work.
4581 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4582 if (rdev
->raid_disk
< 0 &&
4583 !test_bit(Faulty
, &rdev
->flags
)) {
4584 if (raid5_add_disk(mddev
, rdev
)) {
4586 set_bit(In_sync
, &rdev
->flags
);
4588 rdev
->recovery_offset
= 0;
4589 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4590 if (sysfs_create_link(&mddev
->kobj
,
4593 "raid5: failed to create "
4594 " link %s for %s\n",
4600 spin_lock_irqsave(&conf
->device_lock
, flags
);
4601 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4602 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4603 mddev
->raid_disks
= conf
->raid_disks
;
4604 mddev
->reshape_position
= 0;
4605 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4607 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4608 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4609 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4610 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4611 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4613 if (!mddev
->sync_thread
) {
4614 mddev
->recovery
= 0;
4615 spin_lock_irq(&conf
->device_lock
);
4616 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4617 conf
->expand_progress
= MaxSector
;
4618 spin_unlock_irq(&conf
->device_lock
);
4621 md_wakeup_thread(mddev
->sync_thread
);
4622 md_new_event(mddev
);
4627 static void end_reshape(raid5_conf_t
*conf
)
4629 struct block_device
*bdev
;
4631 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4632 conf
->mddev
->array_size
= conf
->mddev
->size
*
4633 (conf
->raid_disks
- conf
->max_degraded
);
4634 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
4635 conf
->mddev
->changed
= 1;
4637 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4639 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4640 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
4641 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4644 spin_lock_irq(&conf
->device_lock
);
4645 conf
->expand_progress
= MaxSector
;
4646 spin_unlock_irq(&conf
->device_lock
);
4647 conf
->mddev
->reshape_position
= MaxSector
;
4649 /* read-ahead size must cover two whole stripes, which is
4650 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4653 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4654 int stripe
= data_disks
*
4655 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4656 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4657 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4662 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4664 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4667 case 2: /* resume for a suspend */
4668 wake_up(&conf
->wait_for_overlap
);
4671 case 1: /* stop all writes */
4672 spin_lock_irq(&conf
->device_lock
);
4674 wait_event_lock_irq(conf
->wait_for_stripe
,
4675 atomic_read(&conf
->active_stripes
) == 0 &&
4676 atomic_read(&conf
->active_aligned_reads
) == 0,
4677 conf
->device_lock
, /* nothing */);
4678 spin_unlock_irq(&conf
->device_lock
);
4681 case 0: /* re-enable writes */
4682 spin_lock_irq(&conf
->device_lock
);
4684 wake_up(&conf
->wait_for_stripe
);
4685 wake_up(&conf
->wait_for_overlap
);
4686 spin_unlock_irq(&conf
->device_lock
);
4691 static struct mdk_personality raid6_personality
=
4695 .owner
= THIS_MODULE
,
4696 .make_request
= make_request
,
4700 .error_handler
= error
,
4701 .hot_add_disk
= raid5_add_disk
,
4702 .hot_remove_disk
= raid5_remove_disk
,
4703 .spare_active
= raid5_spare_active
,
4704 .sync_request
= sync_request
,
4705 .resize
= raid5_resize
,
4706 #ifdef CONFIG_MD_RAID5_RESHAPE
4707 .check_reshape
= raid5_check_reshape
,
4708 .start_reshape
= raid5_start_reshape
,
4710 .quiesce
= raid5_quiesce
,
4712 static struct mdk_personality raid5_personality
=
4716 .owner
= THIS_MODULE
,
4717 .make_request
= make_request
,
4721 .error_handler
= error
,
4722 .hot_add_disk
= raid5_add_disk
,
4723 .hot_remove_disk
= raid5_remove_disk
,
4724 .spare_active
= raid5_spare_active
,
4725 .sync_request
= sync_request
,
4726 .resize
= raid5_resize
,
4727 #ifdef CONFIG_MD_RAID5_RESHAPE
4728 .check_reshape
= raid5_check_reshape
,
4729 .start_reshape
= raid5_start_reshape
,
4731 .quiesce
= raid5_quiesce
,
4734 static struct mdk_personality raid4_personality
=
4738 .owner
= THIS_MODULE
,
4739 .make_request
= make_request
,
4743 .error_handler
= error
,
4744 .hot_add_disk
= raid5_add_disk
,
4745 .hot_remove_disk
= raid5_remove_disk
,
4746 .spare_active
= raid5_spare_active
,
4747 .sync_request
= sync_request
,
4748 .resize
= raid5_resize
,
4749 #ifdef CONFIG_MD_RAID5_RESHAPE
4750 .check_reshape
= raid5_check_reshape
,
4751 .start_reshape
= raid5_start_reshape
,
4753 .quiesce
= raid5_quiesce
,
4756 static int __init
raid5_init(void)
4760 e
= raid6_select_algo();
4763 register_md_personality(&raid6_personality
);
4764 register_md_personality(&raid5_personality
);
4765 register_md_personality(&raid4_personality
);
4769 static void raid5_exit(void)
4771 unregister_md_personality(&raid6_personality
);
4772 unregister_md_personality(&raid5_personality
);
4773 unregister_md_personality(&raid4_personality
);
4776 module_init(raid5_init
);
4777 module_exit(raid5_exit
);
4778 MODULE_LICENSE("GPL");
4779 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4780 MODULE_ALIAS("md-raid5");
4781 MODULE_ALIAS("md-raid4");
4782 MODULE_ALIAS("md-level-5");
4783 MODULE_ALIAS("md-level-4");
4784 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4785 MODULE_ALIAS("md-raid6");
4786 MODULE_ALIAS("md-level-6");
4788 /* This used to be two separate modules, they were: */
4789 MODULE_ALIAS("raid5");
4790 MODULE_ALIAS("raid6");