Complete the renaming to TuxOnIce with function names, vars etc.
[linux-2.6/suspend2-head.git] / drivers / net / 8139cp.c
blob807e6992e6142ef9399466f53ab038b89807d2cc
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout
31 Low priority TODO:
32 * Complete reset on PciErr
33 * Consider Rx interrupt mitigation using TimerIntr
34 * Investigate using skb->priority with h/w VLAN priority
35 * Investigate using High Priority Tx Queue with skb->priority
36 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
37 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
38 * Implement Tx software interrupt mitigation via
39 Tx descriptor bit
40 * The real minimum of CP_MIN_MTU is 4 bytes. However,
41 for this to be supported, one must(?) turn on packet padding.
42 * Support external MII transceivers (patch available)
44 NOTES:
45 * TX checksumming is considered experimental. It is off by
46 default, use ethtool to turn it on.
50 #define DRV_NAME "8139cp"
51 #define DRV_VERSION "1.3"
52 #define DRV_RELDATE "Mar 22, 2004"
55 #include <linux/module.h>
56 #include <linux/moduleparam.h>
57 #include <linux/kernel.h>
58 #include <linux/compiler.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/delay.h>
65 #include <linux/ethtool.h>
66 #include <linux/mii.h>
67 #include <linux/if_vlan.h>
68 #include <linux/crc32.h>
69 #include <linux/in.h>
70 #include <linux/ip.h>
71 #include <linux/tcp.h>
72 #include <linux/udp.h>
73 #include <linux/cache.h>
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h>
78 /* VLAN tagging feature enable/disable */
79 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
80 #define CP_VLAN_TAG_USED 1
81 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
82 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
83 #else
84 #define CP_VLAN_TAG_USED 0
85 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
86 do { (tx_desc)->opts2 = 0; } while (0)
87 #endif
89 /* These identify the driver base version and may not be removed. */
90 static char version[] =
91 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
93 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
94 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
95 MODULE_VERSION(DRV_VERSION);
96 MODULE_LICENSE("GPL");
98 static int debug = -1;
99 module_param(debug, int, 0);
100 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
102 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
103 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
104 static int multicast_filter_limit = 32;
105 module_param(multicast_filter_limit, int, 0);
106 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
108 #define PFX DRV_NAME ": "
110 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
111 NETIF_MSG_PROBE | \
112 NETIF_MSG_LINK)
113 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
114 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
115 #define CP_REGS_SIZE (0xff + 1)
116 #define CP_REGS_VER 1 /* version 1 */
117 #define CP_RX_RING_SIZE 64
118 #define CP_TX_RING_SIZE 64
119 #define CP_RING_BYTES \
120 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
121 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
122 CP_STATS_SIZE)
123 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
124 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
125 #define TX_BUFFS_AVAIL(CP) \
126 (((CP)->tx_tail <= (CP)->tx_head) ? \
127 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
128 (CP)->tx_tail - (CP)->tx_head - 1)
130 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
131 #define RX_OFFSET 2
132 #define CP_INTERNAL_PHY 32
134 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
135 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
136 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
137 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
138 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
140 /* Time in jiffies before concluding the transmitter is hung. */
141 #define TX_TIMEOUT (6*HZ)
143 /* hardware minimum and maximum for a single frame's data payload */
144 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
145 #define CP_MAX_MTU 4096
147 enum {
148 /* NIC register offsets */
149 MAC0 = 0x00, /* Ethernet hardware address. */
150 MAR0 = 0x08, /* Multicast filter. */
151 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
152 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
153 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
154 Cmd = 0x37, /* Command register */
155 IntrMask = 0x3C, /* Interrupt mask */
156 IntrStatus = 0x3E, /* Interrupt status */
157 TxConfig = 0x40, /* Tx configuration */
158 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
159 RxConfig = 0x44, /* Rx configuration */
160 RxMissed = 0x4C, /* 24 bits valid, write clears */
161 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
162 Config1 = 0x52, /* Config1 */
163 Config3 = 0x59, /* Config3 */
164 Config4 = 0x5A, /* Config4 */
165 MultiIntr = 0x5C, /* Multiple interrupt select */
166 BasicModeCtrl = 0x62, /* MII BMCR */
167 BasicModeStatus = 0x64, /* MII BMSR */
168 NWayAdvert = 0x66, /* MII ADVERTISE */
169 NWayLPAR = 0x68, /* MII LPA */
170 NWayExpansion = 0x6A, /* MII Expansion */
171 Config5 = 0xD8, /* Config5 */
172 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
173 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
174 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
175 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
176 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
177 TxThresh = 0xEC, /* Early Tx threshold */
178 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
179 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
181 /* Tx and Rx status descriptors */
182 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
183 RingEnd = (1 << 30), /* End of descriptor ring */
184 FirstFrag = (1 << 29), /* First segment of a packet */
185 LastFrag = (1 << 28), /* Final segment of a packet */
186 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
187 MSSShift = 16, /* MSS value position */
188 MSSMask = 0xfff, /* MSS value: 11 bits */
189 TxError = (1 << 23), /* Tx error summary */
190 RxError = (1 << 20), /* Rx error summary */
191 IPCS = (1 << 18), /* Calculate IP checksum */
192 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
193 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
194 TxVlanTag = (1 << 17), /* Add VLAN tag */
195 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
196 IPFail = (1 << 15), /* IP checksum failed */
197 UDPFail = (1 << 14), /* UDP/IP checksum failed */
198 TCPFail = (1 << 13), /* TCP/IP checksum failed */
199 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
200 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
201 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
202 RxProtoTCP = 1,
203 RxProtoUDP = 2,
204 RxProtoIP = 3,
205 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
206 TxOWC = (1 << 22), /* Tx Out-of-window collision */
207 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
208 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
209 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
210 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
211 RxErrFrame = (1 << 27), /* Rx frame alignment error */
212 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
213 RxErrCRC = (1 << 18), /* Rx CRC error */
214 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
215 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
216 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
218 /* StatsAddr register */
219 DumpStats = (1 << 3), /* Begin stats dump */
221 /* RxConfig register */
222 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
223 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
224 AcceptErr = 0x20, /* Accept packets with CRC errors */
225 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
226 AcceptBroadcast = 0x08, /* Accept broadcast packets */
227 AcceptMulticast = 0x04, /* Accept multicast packets */
228 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
229 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
231 /* IntrMask / IntrStatus registers */
232 PciErr = (1 << 15), /* System error on the PCI bus */
233 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
234 LenChg = (1 << 13), /* Cable length change */
235 SWInt = (1 << 8), /* Software-requested interrupt */
236 TxEmpty = (1 << 7), /* No Tx descriptors available */
237 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
238 LinkChg = (1 << 5), /* Packet underrun, or link change */
239 RxEmpty = (1 << 4), /* No Rx descriptors available */
240 TxErr = (1 << 3), /* Tx error */
241 TxOK = (1 << 2), /* Tx packet sent */
242 RxErr = (1 << 1), /* Rx error */
243 RxOK = (1 << 0), /* Rx packet received */
244 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
245 but hardware likes to raise it */
247 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
248 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
249 RxErr | RxOK | IntrResvd,
251 /* C mode command register */
252 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
253 RxOn = (1 << 3), /* Rx mode enable */
254 TxOn = (1 << 2), /* Tx mode enable */
256 /* C+ mode command register */
257 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
258 RxChkSum = (1 << 5), /* Rx checksum offload enable */
259 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
260 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
261 CpRxOn = (1 << 1), /* Rx mode enable */
262 CpTxOn = (1 << 0), /* Tx mode enable */
264 /* Cfg9436 EEPROM control register */
265 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
266 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
268 /* TxConfig register */
269 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
270 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
272 /* Early Tx Threshold register */
273 TxThreshMask = 0x3f, /* Mask bits 5-0 */
274 TxThreshMax = 2048, /* Max early Tx threshold */
276 /* Config1 register */
277 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
278 LWACT = (1 << 4), /* LWAKE active mode */
279 PMEnable = (1 << 0), /* Enable various PM features of chip */
281 /* Config3 register */
282 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
283 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
284 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
286 /* Config4 register */
287 LWPTN = (1 << 1), /* LWAKE Pattern */
288 LWPME = (1 << 4), /* LANWAKE vs PMEB */
290 /* Config5 register */
291 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
292 MWF = (1 << 5), /* Accept Multicast wakeup frame */
293 UWF = (1 << 4), /* Accept Unicast wakeup frame */
294 LANWake = (1 << 1), /* Enable LANWake signal */
295 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
297 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
298 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
299 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
302 static const unsigned int cp_rx_config =
303 (RX_FIFO_THRESH << RxCfgFIFOShift) |
304 (RX_DMA_BURST << RxCfgDMAShift);
306 struct cp_desc {
307 u32 opts1;
308 u32 opts2;
309 u64 addr;
312 struct cp_dma_stats {
313 u64 tx_ok;
314 u64 rx_ok;
315 u64 tx_err;
316 u32 rx_err;
317 u16 rx_fifo;
318 u16 frame_align;
319 u32 tx_ok_1col;
320 u32 tx_ok_mcol;
321 u64 rx_ok_phys;
322 u64 rx_ok_bcast;
323 u32 rx_ok_mcast;
324 u16 tx_abort;
325 u16 tx_underrun;
326 } __attribute__((packed));
328 struct cp_extra_stats {
329 unsigned long rx_frags;
332 struct cp_private {
333 void __iomem *regs;
334 struct net_device *dev;
335 spinlock_t lock;
336 u32 msg_enable;
338 struct pci_dev *pdev;
339 u32 rx_config;
340 u16 cpcmd;
342 struct net_device_stats net_stats;
343 struct cp_extra_stats cp_stats;
345 unsigned rx_head ____cacheline_aligned;
346 unsigned rx_tail;
347 struct cp_desc *rx_ring;
348 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
350 unsigned tx_head ____cacheline_aligned;
351 unsigned tx_tail;
352 struct cp_desc *tx_ring;
353 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
355 unsigned rx_buf_sz;
356 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
358 #if CP_VLAN_TAG_USED
359 struct vlan_group *vlgrp;
360 #endif
361 dma_addr_t ring_dma;
363 struct mii_if_info mii_if;
366 #define cpr8(reg) readb(cp->regs + (reg))
367 #define cpr16(reg) readw(cp->regs + (reg))
368 #define cpr32(reg) readl(cp->regs + (reg))
369 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
370 #define cpw16(reg,val) writew((val), cp->regs + (reg))
371 #define cpw32(reg,val) writel((val), cp->regs + (reg))
372 #define cpw8_f(reg,val) do { \
373 writeb((val), cp->regs + (reg)); \
374 readb(cp->regs + (reg)); \
375 } while (0)
376 #define cpw16_f(reg,val) do { \
377 writew((val), cp->regs + (reg)); \
378 readw(cp->regs + (reg)); \
379 } while (0)
380 #define cpw32_f(reg,val) do { \
381 writel((val), cp->regs + (reg)); \
382 readl(cp->regs + (reg)); \
383 } while (0)
386 static void __cp_set_rx_mode (struct net_device *dev);
387 static void cp_tx (struct cp_private *cp);
388 static void cp_clean_rings (struct cp_private *cp);
389 #ifdef CONFIG_NET_POLL_CONTROLLER
390 static void cp_poll_controller(struct net_device *dev);
391 #endif
392 static int cp_get_eeprom_len(struct net_device *dev);
393 static int cp_get_eeprom(struct net_device *dev,
394 struct ethtool_eeprom *eeprom, u8 *data);
395 static int cp_set_eeprom(struct net_device *dev,
396 struct ethtool_eeprom *eeprom, u8 *data);
398 static struct pci_device_id cp_pci_tbl[] = {
399 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
400 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
401 { },
403 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
405 static struct {
406 const char str[ETH_GSTRING_LEN];
407 } ethtool_stats_keys[] = {
408 { "tx_ok" },
409 { "rx_ok" },
410 { "tx_err" },
411 { "rx_err" },
412 { "rx_fifo" },
413 { "frame_align" },
414 { "tx_ok_1col" },
415 { "tx_ok_mcol" },
416 { "rx_ok_phys" },
417 { "rx_ok_bcast" },
418 { "rx_ok_mcast" },
419 { "tx_abort" },
420 { "tx_underrun" },
421 { "rx_frags" },
425 #if CP_VLAN_TAG_USED
426 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
428 struct cp_private *cp = netdev_priv(dev);
429 unsigned long flags;
431 spin_lock_irqsave(&cp->lock, flags);
432 cp->vlgrp = grp;
433 if (grp)
434 cp->cpcmd |= RxVlanOn;
435 else
436 cp->cpcmd &= ~RxVlanOn;
438 cpw16(CpCmd, cp->cpcmd);
439 spin_unlock_irqrestore(&cp->lock, flags);
441 #endif /* CP_VLAN_TAG_USED */
443 static inline void cp_set_rxbufsize (struct cp_private *cp)
445 unsigned int mtu = cp->dev->mtu;
447 if (mtu > ETH_DATA_LEN)
448 /* MTU + ethernet header + FCS + optional VLAN tag */
449 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
450 else
451 cp->rx_buf_sz = PKT_BUF_SZ;
454 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
455 struct cp_desc *desc)
457 skb->protocol = eth_type_trans (skb, cp->dev);
459 cp->net_stats.rx_packets++;
460 cp->net_stats.rx_bytes += skb->len;
461 cp->dev->last_rx = jiffies;
463 #if CP_VLAN_TAG_USED
464 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
465 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
466 be16_to_cpu(desc->opts2 & 0xffff));
467 } else
468 #endif
469 netif_receive_skb(skb);
472 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
473 u32 status, u32 len)
475 if (netif_msg_rx_err (cp))
476 printk (KERN_DEBUG
477 "%s: rx err, slot %d status 0x%x len %d\n",
478 cp->dev->name, rx_tail, status, len);
479 cp->net_stats.rx_errors++;
480 if (status & RxErrFrame)
481 cp->net_stats.rx_frame_errors++;
482 if (status & RxErrCRC)
483 cp->net_stats.rx_crc_errors++;
484 if ((status & RxErrRunt) || (status & RxErrLong))
485 cp->net_stats.rx_length_errors++;
486 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
487 cp->net_stats.rx_length_errors++;
488 if (status & RxErrFIFO)
489 cp->net_stats.rx_fifo_errors++;
492 static inline unsigned int cp_rx_csum_ok (u32 status)
494 unsigned int protocol = (status >> 16) & 0x3;
496 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
497 return 1;
498 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
499 return 1;
500 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
501 return 1;
502 return 0;
505 static int cp_rx_poll (struct net_device *dev, int *budget)
507 struct cp_private *cp = netdev_priv(dev);
508 unsigned rx_tail = cp->rx_tail;
509 unsigned rx_work = dev->quota;
510 unsigned rx;
512 rx_status_loop:
513 rx = 0;
514 cpw16(IntrStatus, cp_rx_intr_mask);
516 while (1) {
517 u32 status, len;
518 dma_addr_t mapping;
519 struct sk_buff *skb, *new_skb;
520 struct cp_desc *desc;
521 unsigned buflen;
523 skb = cp->rx_skb[rx_tail];
524 BUG_ON(!skb);
526 desc = &cp->rx_ring[rx_tail];
527 status = le32_to_cpu(desc->opts1);
528 if (status & DescOwn)
529 break;
531 len = (status & 0x1fff) - 4;
532 mapping = le64_to_cpu(desc->addr);
534 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
535 /* we don't support incoming fragmented frames.
536 * instead, we attempt to ensure that the
537 * pre-allocated RX skbs are properly sized such
538 * that RX fragments are never encountered
540 cp_rx_err_acct(cp, rx_tail, status, len);
541 cp->net_stats.rx_dropped++;
542 cp->cp_stats.rx_frags++;
543 goto rx_next;
546 if (status & (RxError | RxErrFIFO)) {
547 cp_rx_err_acct(cp, rx_tail, status, len);
548 goto rx_next;
551 if (netif_msg_rx_status(cp))
552 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
553 dev->name, rx_tail, status, len);
555 buflen = cp->rx_buf_sz + RX_OFFSET;
556 new_skb = dev_alloc_skb (buflen);
557 if (!new_skb) {
558 cp->net_stats.rx_dropped++;
559 goto rx_next;
562 skb_reserve(new_skb, RX_OFFSET);
564 pci_unmap_single(cp->pdev, mapping,
565 buflen, PCI_DMA_FROMDEVICE);
567 /* Handle checksum offloading for incoming packets. */
568 if (cp_rx_csum_ok(status))
569 skb->ip_summed = CHECKSUM_UNNECESSARY;
570 else
571 skb->ip_summed = CHECKSUM_NONE;
573 skb_put(skb, len);
575 mapping = pci_map_single(cp->pdev, new_skb->data, buflen,
576 PCI_DMA_FROMDEVICE);
577 cp->rx_skb[rx_tail] = new_skb;
579 cp_rx_skb(cp, skb, desc);
580 rx++;
582 rx_next:
583 cp->rx_ring[rx_tail].opts2 = 0;
584 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
585 if (rx_tail == (CP_RX_RING_SIZE - 1))
586 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
587 cp->rx_buf_sz);
588 else
589 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
590 rx_tail = NEXT_RX(rx_tail);
592 if (!rx_work--)
593 break;
596 cp->rx_tail = rx_tail;
598 dev->quota -= rx;
599 *budget -= rx;
601 /* if we did not reach work limit, then we're done with
602 * this round of polling
604 if (rx_work) {
605 unsigned long flags;
607 if (cpr16(IntrStatus) & cp_rx_intr_mask)
608 goto rx_status_loop;
610 local_irq_save(flags);
611 cpw16_f(IntrMask, cp_intr_mask);
612 __netif_rx_complete(dev);
613 local_irq_restore(flags);
615 return 0; /* done */
618 return 1; /* not done */
621 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
623 struct net_device *dev = dev_instance;
624 struct cp_private *cp;
625 u16 status;
627 if (unlikely(dev == NULL))
628 return IRQ_NONE;
629 cp = netdev_priv(dev);
631 status = cpr16(IntrStatus);
632 if (!status || (status == 0xFFFF))
633 return IRQ_NONE;
635 if (netif_msg_intr(cp))
636 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
637 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
639 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
641 spin_lock(&cp->lock);
643 /* close possible race's with dev_close */
644 if (unlikely(!netif_running(dev))) {
645 cpw16(IntrMask, 0);
646 spin_unlock(&cp->lock);
647 return IRQ_HANDLED;
650 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
651 if (netif_rx_schedule_prep(dev)) {
652 cpw16_f(IntrMask, cp_norx_intr_mask);
653 __netif_rx_schedule(dev);
656 if (status & (TxOK | TxErr | TxEmpty | SWInt))
657 cp_tx(cp);
658 if (status & LinkChg)
659 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
661 spin_unlock(&cp->lock);
663 if (status & PciErr) {
664 u16 pci_status;
666 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
667 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
668 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
669 dev->name, status, pci_status);
671 /* TODO: reset hardware */
674 return IRQ_HANDLED;
677 #ifdef CONFIG_NET_POLL_CONTROLLER
679 * Polling receive - used by netconsole and other diagnostic tools
680 * to allow network i/o with interrupts disabled.
682 static void cp_poll_controller(struct net_device *dev)
684 disable_irq(dev->irq);
685 cp_interrupt(dev->irq, dev);
686 enable_irq(dev->irq);
688 #endif
690 static void cp_tx (struct cp_private *cp)
692 unsigned tx_head = cp->tx_head;
693 unsigned tx_tail = cp->tx_tail;
695 while (tx_tail != tx_head) {
696 struct cp_desc *txd = cp->tx_ring + tx_tail;
697 struct sk_buff *skb;
698 u32 status;
700 rmb();
701 status = le32_to_cpu(txd->opts1);
702 if (status & DescOwn)
703 break;
705 skb = cp->tx_skb[tx_tail];
706 BUG_ON(!skb);
708 pci_unmap_single(cp->pdev, le64_to_cpu(txd->addr),
709 le32_to_cpu(txd->opts1) & 0xffff,
710 PCI_DMA_TODEVICE);
712 if (status & LastFrag) {
713 if (status & (TxError | TxFIFOUnder)) {
714 if (netif_msg_tx_err(cp))
715 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
716 cp->dev->name, status);
717 cp->net_stats.tx_errors++;
718 if (status & TxOWC)
719 cp->net_stats.tx_window_errors++;
720 if (status & TxMaxCol)
721 cp->net_stats.tx_aborted_errors++;
722 if (status & TxLinkFail)
723 cp->net_stats.tx_carrier_errors++;
724 if (status & TxFIFOUnder)
725 cp->net_stats.tx_fifo_errors++;
726 } else {
727 cp->net_stats.collisions +=
728 ((status >> TxColCntShift) & TxColCntMask);
729 cp->net_stats.tx_packets++;
730 cp->net_stats.tx_bytes += skb->len;
731 if (netif_msg_tx_done(cp))
732 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
734 dev_kfree_skb_irq(skb);
737 cp->tx_skb[tx_tail] = NULL;
739 tx_tail = NEXT_TX(tx_tail);
742 cp->tx_tail = tx_tail;
744 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
745 netif_wake_queue(cp->dev);
748 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
750 struct cp_private *cp = netdev_priv(dev);
751 unsigned entry;
752 u32 eor, flags;
753 unsigned long intr_flags;
754 #if CP_VLAN_TAG_USED
755 u32 vlan_tag = 0;
756 #endif
757 int mss = 0;
759 spin_lock_irqsave(&cp->lock, intr_flags);
761 /* This is a hard error, log it. */
762 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
763 netif_stop_queue(dev);
764 spin_unlock_irqrestore(&cp->lock, intr_flags);
765 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
766 dev->name);
767 return 1;
770 #if CP_VLAN_TAG_USED
771 if (cp->vlgrp && vlan_tx_tag_present(skb))
772 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
773 #endif
775 entry = cp->tx_head;
776 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
777 if (dev->features & NETIF_F_TSO)
778 mss = skb_shinfo(skb)->gso_size;
780 if (skb_shinfo(skb)->nr_frags == 0) {
781 struct cp_desc *txd = &cp->tx_ring[entry];
782 u32 len;
783 dma_addr_t mapping;
785 len = skb->len;
786 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
787 CP_VLAN_TX_TAG(txd, vlan_tag);
788 txd->addr = cpu_to_le64(mapping);
789 wmb();
791 flags = eor | len | DescOwn | FirstFrag | LastFrag;
793 if (mss)
794 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
795 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
796 const struct iphdr *ip = ip_hdr(skb);
797 if (ip->protocol == IPPROTO_TCP)
798 flags |= IPCS | TCPCS;
799 else if (ip->protocol == IPPROTO_UDP)
800 flags |= IPCS | UDPCS;
801 else
802 WARN_ON(1); /* we need a WARN() */
805 txd->opts1 = cpu_to_le32(flags);
806 wmb();
808 cp->tx_skb[entry] = skb;
809 entry = NEXT_TX(entry);
810 } else {
811 struct cp_desc *txd;
812 u32 first_len, first_eor;
813 dma_addr_t first_mapping;
814 int frag, first_entry = entry;
815 const struct iphdr *ip = ip_hdr(skb);
817 /* We must give this initial chunk to the device last.
818 * Otherwise we could race with the device.
820 first_eor = eor;
821 first_len = skb_headlen(skb);
822 first_mapping = pci_map_single(cp->pdev, skb->data,
823 first_len, PCI_DMA_TODEVICE);
824 cp->tx_skb[entry] = skb;
825 entry = NEXT_TX(entry);
827 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
828 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
829 u32 len;
830 u32 ctrl;
831 dma_addr_t mapping;
833 len = this_frag->size;
834 mapping = pci_map_single(cp->pdev,
835 ((void *) page_address(this_frag->page) +
836 this_frag->page_offset),
837 len, PCI_DMA_TODEVICE);
838 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
840 ctrl = eor | len | DescOwn;
842 if (mss)
843 ctrl |= LargeSend |
844 ((mss & MSSMask) << MSSShift);
845 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
846 if (ip->protocol == IPPROTO_TCP)
847 ctrl |= IPCS | TCPCS;
848 else if (ip->protocol == IPPROTO_UDP)
849 ctrl |= IPCS | UDPCS;
850 else
851 BUG();
854 if (frag == skb_shinfo(skb)->nr_frags - 1)
855 ctrl |= LastFrag;
857 txd = &cp->tx_ring[entry];
858 CP_VLAN_TX_TAG(txd, vlan_tag);
859 txd->addr = cpu_to_le64(mapping);
860 wmb();
862 txd->opts1 = cpu_to_le32(ctrl);
863 wmb();
865 cp->tx_skb[entry] = skb;
866 entry = NEXT_TX(entry);
869 txd = &cp->tx_ring[first_entry];
870 CP_VLAN_TX_TAG(txd, vlan_tag);
871 txd->addr = cpu_to_le64(first_mapping);
872 wmb();
874 if (skb->ip_summed == CHECKSUM_PARTIAL) {
875 if (ip->protocol == IPPROTO_TCP)
876 txd->opts1 = cpu_to_le32(first_eor | first_len |
877 FirstFrag | DescOwn |
878 IPCS | TCPCS);
879 else if (ip->protocol == IPPROTO_UDP)
880 txd->opts1 = cpu_to_le32(first_eor | first_len |
881 FirstFrag | DescOwn |
882 IPCS | UDPCS);
883 else
884 BUG();
885 } else
886 txd->opts1 = cpu_to_le32(first_eor | first_len |
887 FirstFrag | DescOwn);
888 wmb();
890 cp->tx_head = entry;
891 if (netif_msg_tx_queued(cp))
892 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
893 dev->name, entry, skb->len);
894 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
895 netif_stop_queue(dev);
897 spin_unlock_irqrestore(&cp->lock, intr_flags);
899 cpw8(TxPoll, NormalTxPoll);
900 dev->trans_start = jiffies;
902 return 0;
905 /* Set or clear the multicast filter for this adaptor.
906 This routine is not state sensitive and need not be SMP locked. */
908 static void __cp_set_rx_mode (struct net_device *dev)
910 struct cp_private *cp = netdev_priv(dev);
911 u32 mc_filter[2]; /* Multicast hash filter */
912 int i, rx_mode;
913 u32 tmp;
915 /* Note: do not reorder, GCC is clever about common statements. */
916 if (dev->flags & IFF_PROMISC) {
917 /* Unconditionally log net taps. */
918 rx_mode =
919 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
920 AcceptAllPhys;
921 mc_filter[1] = mc_filter[0] = 0xffffffff;
922 } else if ((dev->mc_count > multicast_filter_limit)
923 || (dev->flags & IFF_ALLMULTI)) {
924 /* Too many to filter perfectly -- accept all multicasts. */
925 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
926 mc_filter[1] = mc_filter[0] = 0xffffffff;
927 } else {
928 struct dev_mc_list *mclist;
929 rx_mode = AcceptBroadcast | AcceptMyPhys;
930 mc_filter[1] = mc_filter[0] = 0;
931 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
932 i++, mclist = mclist->next) {
933 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
935 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
936 rx_mode |= AcceptMulticast;
940 /* We can safely update without stopping the chip. */
941 tmp = cp_rx_config | rx_mode;
942 if (cp->rx_config != tmp) {
943 cpw32_f (RxConfig, tmp);
944 cp->rx_config = tmp;
946 cpw32_f (MAR0 + 0, mc_filter[0]);
947 cpw32_f (MAR0 + 4, mc_filter[1]);
950 static void cp_set_rx_mode (struct net_device *dev)
952 unsigned long flags;
953 struct cp_private *cp = netdev_priv(dev);
955 spin_lock_irqsave (&cp->lock, flags);
956 __cp_set_rx_mode(dev);
957 spin_unlock_irqrestore (&cp->lock, flags);
960 static void __cp_get_stats(struct cp_private *cp)
962 /* only lower 24 bits valid; write any value to clear */
963 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
964 cpw32 (RxMissed, 0);
967 static struct net_device_stats *cp_get_stats(struct net_device *dev)
969 struct cp_private *cp = netdev_priv(dev);
970 unsigned long flags;
972 /* The chip only need report frame silently dropped. */
973 spin_lock_irqsave(&cp->lock, flags);
974 if (netif_running(dev) && netif_device_present(dev))
975 __cp_get_stats(cp);
976 spin_unlock_irqrestore(&cp->lock, flags);
978 return &cp->net_stats;
981 static void cp_stop_hw (struct cp_private *cp)
983 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
984 cpw16_f(IntrMask, 0);
985 cpw8(Cmd, 0);
986 cpw16_f(CpCmd, 0);
987 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
989 cp->rx_tail = 0;
990 cp->tx_head = cp->tx_tail = 0;
993 static void cp_reset_hw (struct cp_private *cp)
995 unsigned work = 1000;
997 cpw8(Cmd, CmdReset);
999 while (work--) {
1000 if (!(cpr8(Cmd) & CmdReset))
1001 return;
1003 schedule_timeout_uninterruptible(10);
1006 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1009 static inline void cp_start_hw (struct cp_private *cp)
1011 cpw16(CpCmd, cp->cpcmd);
1012 cpw8(Cmd, RxOn | TxOn);
1015 static void cp_init_hw (struct cp_private *cp)
1017 struct net_device *dev = cp->dev;
1018 dma_addr_t ring_dma;
1020 cp_reset_hw(cp);
1022 cpw8_f (Cfg9346, Cfg9346_Unlock);
1024 /* Restore our idea of the MAC address. */
1025 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1026 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1028 cp_start_hw(cp);
1029 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1031 __cp_set_rx_mode(dev);
1032 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1034 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1035 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1036 cpw8(Config3, PARMEnable);
1037 cp->wol_enabled = 0;
1039 cpw8(Config5, cpr8(Config5) & PMEStatus);
1041 cpw32_f(HiTxRingAddr, 0);
1042 cpw32_f(HiTxRingAddr + 4, 0);
1044 ring_dma = cp->ring_dma;
1045 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1046 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1048 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1049 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1050 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1052 cpw16(MultiIntr, 0);
1054 cpw16_f(IntrMask, cp_intr_mask);
1056 cpw8_f(Cfg9346, Cfg9346_Lock);
1059 static int cp_refill_rx (struct cp_private *cp)
1061 unsigned i;
1063 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064 struct sk_buff *skb;
1065 dma_addr_t mapping;
1067 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1068 if (!skb)
1069 goto err_out;
1071 skb_reserve(skb, RX_OFFSET);
1073 mapping = pci_map_single(cp->pdev, skb->data, cp->rx_buf_sz,
1074 PCI_DMA_FROMDEVICE);
1075 cp->rx_skb[i] = skb;
1077 cp->rx_ring[i].opts2 = 0;
1078 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1079 if (i == (CP_RX_RING_SIZE - 1))
1080 cp->rx_ring[i].opts1 =
1081 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1082 else
1083 cp->rx_ring[i].opts1 =
1084 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087 return 0;
1089 err_out:
1090 cp_clean_rings(cp);
1091 return -ENOMEM;
1094 static void cp_init_rings_index (struct cp_private *cp)
1096 cp->rx_tail = 0;
1097 cp->tx_head = cp->tx_tail = 0;
1100 static int cp_init_rings (struct cp_private *cp)
1102 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1103 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1105 cp_init_rings_index(cp);
1107 return cp_refill_rx (cp);
1110 static int cp_alloc_rings (struct cp_private *cp)
1112 void *mem;
1114 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1115 if (!mem)
1116 return -ENOMEM;
1118 cp->rx_ring = mem;
1119 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1121 return cp_init_rings(cp);
1124 static void cp_clean_rings (struct cp_private *cp)
1126 struct cp_desc *desc;
1127 unsigned i;
1129 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1130 if (cp->rx_skb[i]) {
1131 desc = cp->rx_ring + i;
1132 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1133 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1134 dev_kfree_skb(cp->rx_skb[i]);
1138 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1139 if (cp->tx_skb[i]) {
1140 struct sk_buff *skb = cp->tx_skb[i];
1142 desc = cp->tx_ring + i;
1143 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1144 le32_to_cpu(desc->opts1) & 0xffff,
1145 PCI_DMA_TODEVICE);
1146 if (le32_to_cpu(desc->opts1) & LastFrag)
1147 dev_kfree_skb(skb);
1148 cp->net_stats.tx_dropped++;
1152 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1153 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1155 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1156 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1159 static void cp_free_rings (struct cp_private *cp)
1161 cp_clean_rings(cp);
1162 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1163 cp->rx_ring = NULL;
1164 cp->tx_ring = NULL;
1167 static int cp_open (struct net_device *dev)
1169 struct cp_private *cp = netdev_priv(dev);
1170 int rc;
1172 if (netif_msg_ifup(cp))
1173 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1175 rc = cp_alloc_rings(cp);
1176 if (rc)
1177 return rc;
1179 cp_init_hw(cp);
1181 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1182 if (rc)
1183 goto err_out_hw;
1185 netif_carrier_off(dev);
1186 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1187 netif_start_queue(dev);
1189 return 0;
1191 err_out_hw:
1192 cp_stop_hw(cp);
1193 cp_free_rings(cp);
1194 return rc;
1197 static int cp_close (struct net_device *dev)
1199 struct cp_private *cp = netdev_priv(dev);
1200 unsigned long flags;
1202 if (netif_msg_ifdown(cp))
1203 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1205 spin_lock_irqsave(&cp->lock, flags);
1207 netif_stop_queue(dev);
1208 netif_carrier_off(dev);
1210 cp_stop_hw(cp);
1212 spin_unlock_irqrestore(&cp->lock, flags);
1214 synchronize_irq(dev->irq);
1215 free_irq(dev->irq, dev);
1217 cp_free_rings(cp);
1218 return 0;
1221 #ifdef BROKEN
1222 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1224 struct cp_private *cp = netdev_priv(dev);
1225 int rc;
1226 unsigned long flags;
1228 /* check for invalid MTU, according to hardware limits */
1229 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1230 return -EINVAL;
1232 /* if network interface not up, no need for complexity */
1233 if (!netif_running(dev)) {
1234 dev->mtu = new_mtu;
1235 cp_set_rxbufsize(cp); /* set new rx buf size */
1236 return 0;
1239 spin_lock_irqsave(&cp->lock, flags);
1241 cp_stop_hw(cp); /* stop h/w and free rings */
1242 cp_clean_rings(cp);
1244 dev->mtu = new_mtu;
1245 cp_set_rxbufsize(cp); /* set new rx buf size */
1247 rc = cp_init_rings(cp); /* realloc and restart h/w */
1248 cp_start_hw(cp);
1250 spin_unlock_irqrestore(&cp->lock, flags);
1252 return rc;
1254 #endif /* BROKEN */
1256 static const char mii_2_8139_map[8] = {
1257 BasicModeCtrl,
1258 BasicModeStatus,
1261 NWayAdvert,
1262 NWayLPAR,
1263 NWayExpansion,
1267 static int mdio_read(struct net_device *dev, int phy_id, int location)
1269 struct cp_private *cp = netdev_priv(dev);
1271 return location < 8 && mii_2_8139_map[location] ?
1272 readw(cp->regs + mii_2_8139_map[location]) : 0;
1276 static void mdio_write(struct net_device *dev, int phy_id, int location,
1277 int value)
1279 struct cp_private *cp = netdev_priv(dev);
1281 if (location == 0) {
1282 cpw8(Cfg9346, Cfg9346_Unlock);
1283 cpw16(BasicModeCtrl, value);
1284 cpw8(Cfg9346, Cfg9346_Lock);
1285 } else if (location < 8 && mii_2_8139_map[location])
1286 cpw16(mii_2_8139_map[location], value);
1289 /* Set the ethtool Wake-on-LAN settings */
1290 static int netdev_set_wol (struct cp_private *cp,
1291 const struct ethtool_wolinfo *wol)
1293 u8 options;
1295 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1296 /* If WOL is being disabled, no need for complexity */
1297 if (wol->wolopts) {
1298 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1299 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1302 cpw8 (Cfg9346, Cfg9346_Unlock);
1303 cpw8 (Config3, options);
1304 cpw8 (Cfg9346, Cfg9346_Lock);
1306 options = 0; /* Paranoia setting */
1307 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1308 /* If WOL is being disabled, no need for complexity */
1309 if (wol->wolopts) {
1310 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1311 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1312 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1315 cpw8 (Config5, options);
1317 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1319 return 0;
1322 /* Get the ethtool Wake-on-LAN settings */
1323 static void netdev_get_wol (struct cp_private *cp,
1324 struct ethtool_wolinfo *wol)
1326 u8 options;
1328 wol->wolopts = 0; /* Start from scratch */
1329 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1330 WAKE_MCAST | WAKE_UCAST;
1331 /* We don't need to go on if WOL is disabled */
1332 if (!cp->wol_enabled) return;
1334 options = cpr8 (Config3);
1335 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1336 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1338 options = 0; /* Paranoia setting */
1339 options = cpr8 (Config5);
1340 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1341 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1342 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1345 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1347 struct cp_private *cp = netdev_priv(dev);
1349 strcpy (info->driver, DRV_NAME);
1350 strcpy (info->version, DRV_VERSION);
1351 strcpy (info->bus_info, pci_name(cp->pdev));
1354 static int cp_get_regs_len(struct net_device *dev)
1356 return CP_REGS_SIZE;
1359 static int cp_get_stats_count (struct net_device *dev)
1361 return CP_NUM_STATS;
1364 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1366 struct cp_private *cp = netdev_priv(dev);
1367 int rc;
1368 unsigned long flags;
1370 spin_lock_irqsave(&cp->lock, flags);
1371 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1372 spin_unlock_irqrestore(&cp->lock, flags);
1374 return rc;
1377 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379 struct cp_private *cp = netdev_priv(dev);
1380 int rc;
1381 unsigned long flags;
1383 spin_lock_irqsave(&cp->lock, flags);
1384 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1385 spin_unlock_irqrestore(&cp->lock, flags);
1387 return rc;
1390 static int cp_nway_reset(struct net_device *dev)
1392 struct cp_private *cp = netdev_priv(dev);
1393 return mii_nway_restart(&cp->mii_if);
1396 static u32 cp_get_msglevel(struct net_device *dev)
1398 struct cp_private *cp = netdev_priv(dev);
1399 return cp->msg_enable;
1402 static void cp_set_msglevel(struct net_device *dev, u32 value)
1404 struct cp_private *cp = netdev_priv(dev);
1405 cp->msg_enable = value;
1408 static u32 cp_get_rx_csum(struct net_device *dev)
1410 struct cp_private *cp = netdev_priv(dev);
1411 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1414 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1416 struct cp_private *cp = netdev_priv(dev);
1417 u16 cmd = cp->cpcmd, newcmd;
1419 newcmd = cmd;
1421 if (data)
1422 newcmd |= RxChkSum;
1423 else
1424 newcmd &= ~RxChkSum;
1426 if (newcmd != cmd) {
1427 unsigned long flags;
1429 spin_lock_irqsave(&cp->lock, flags);
1430 cp->cpcmd = newcmd;
1431 cpw16_f(CpCmd, newcmd);
1432 spin_unlock_irqrestore(&cp->lock, flags);
1435 return 0;
1438 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1439 void *p)
1441 struct cp_private *cp = netdev_priv(dev);
1442 unsigned long flags;
1444 if (regs->len < CP_REGS_SIZE)
1445 return /* -EINVAL */;
1447 regs->version = CP_REGS_VER;
1449 spin_lock_irqsave(&cp->lock, flags);
1450 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1451 spin_unlock_irqrestore(&cp->lock, flags);
1454 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1456 struct cp_private *cp = netdev_priv(dev);
1457 unsigned long flags;
1459 spin_lock_irqsave (&cp->lock, flags);
1460 netdev_get_wol (cp, wol);
1461 spin_unlock_irqrestore (&cp->lock, flags);
1464 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1466 struct cp_private *cp = netdev_priv(dev);
1467 unsigned long flags;
1468 int rc;
1470 spin_lock_irqsave (&cp->lock, flags);
1471 rc = netdev_set_wol (cp, wol);
1472 spin_unlock_irqrestore (&cp->lock, flags);
1474 return rc;
1477 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1479 switch (stringset) {
1480 case ETH_SS_STATS:
1481 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1482 break;
1483 default:
1484 BUG();
1485 break;
1489 static void cp_get_ethtool_stats (struct net_device *dev,
1490 struct ethtool_stats *estats, u64 *tmp_stats)
1492 struct cp_private *cp = netdev_priv(dev);
1493 struct cp_dma_stats *nic_stats;
1494 dma_addr_t dma;
1495 int i;
1497 nic_stats = pci_alloc_consistent(cp->pdev, sizeof(*nic_stats), &dma);
1498 if (!nic_stats)
1499 return;
1501 /* begin NIC statistics dump */
1502 cpw32(StatsAddr + 4, (u64)dma >> 32);
1503 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1504 cpr32(StatsAddr);
1506 for (i = 0; i < 1000; i++) {
1507 if ((cpr32(StatsAddr) & DumpStats) == 0)
1508 break;
1509 udelay(10);
1511 cpw32(StatsAddr, 0);
1512 cpw32(StatsAddr + 4, 0);
1513 cpr32(StatsAddr);
1515 i = 0;
1516 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1517 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1518 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1519 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1520 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1521 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1522 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1523 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1524 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1525 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1526 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1527 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1528 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1529 tmp_stats[i++] = cp->cp_stats.rx_frags;
1530 BUG_ON(i != CP_NUM_STATS);
1532 pci_free_consistent(cp->pdev, sizeof(*nic_stats), nic_stats, dma);
1535 static const struct ethtool_ops cp_ethtool_ops = {
1536 .get_drvinfo = cp_get_drvinfo,
1537 .get_regs_len = cp_get_regs_len,
1538 .get_stats_count = cp_get_stats_count,
1539 .get_settings = cp_get_settings,
1540 .set_settings = cp_set_settings,
1541 .nway_reset = cp_nway_reset,
1542 .get_link = ethtool_op_get_link,
1543 .get_msglevel = cp_get_msglevel,
1544 .set_msglevel = cp_set_msglevel,
1545 .get_rx_csum = cp_get_rx_csum,
1546 .set_rx_csum = cp_set_rx_csum,
1547 .get_tx_csum = ethtool_op_get_tx_csum,
1548 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1549 .get_sg = ethtool_op_get_sg,
1550 .set_sg = ethtool_op_set_sg,
1551 .get_tso = ethtool_op_get_tso,
1552 .set_tso = ethtool_op_set_tso,
1553 .get_regs = cp_get_regs,
1554 .get_wol = cp_get_wol,
1555 .set_wol = cp_set_wol,
1556 .get_strings = cp_get_strings,
1557 .get_ethtool_stats = cp_get_ethtool_stats,
1558 .get_perm_addr = ethtool_op_get_perm_addr,
1559 .get_eeprom_len = cp_get_eeprom_len,
1560 .get_eeprom = cp_get_eeprom,
1561 .set_eeprom = cp_set_eeprom,
1564 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1566 struct cp_private *cp = netdev_priv(dev);
1567 int rc;
1568 unsigned long flags;
1570 if (!netif_running(dev))
1571 return -EINVAL;
1573 spin_lock_irqsave(&cp->lock, flags);
1574 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1575 spin_unlock_irqrestore(&cp->lock, flags);
1576 return rc;
1579 /* Serial EEPROM section. */
1581 /* EEPROM_Ctrl bits. */
1582 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1583 #define EE_CS 0x08 /* EEPROM chip select. */
1584 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1585 #define EE_WRITE_0 0x00
1586 #define EE_WRITE_1 0x02
1587 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1588 #define EE_ENB (0x80 | EE_CS)
1590 /* Delay between EEPROM clock transitions.
1591 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1594 #define eeprom_delay() readl(ee_addr)
1596 /* The EEPROM commands include the alway-set leading bit. */
1597 #define EE_EXTEND_CMD (4)
1598 #define EE_WRITE_CMD (5)
1599 #define EE_READ_CMD (6)
1600 #define EE_ERASE_CMD (7)
1602 #define EE_EWDS_ADDR (0)
1603 #define EE_WRAL_ADDR (1)
1604 #define EE_ERAL_ADDR (2)
1605 #define EE_EWEN_ADDR (3)
1607 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1609 static void eeprom_cmd_start(void __iomem *ee_addr)
1611 writeb (EE_ENB & ~EE_CS, ee_addr);
1612 writeb (EE_ENB, ee_addr);
1613 eeprom_delay ();
1616 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1618 int i;
1620 /* Shift the command bits out. */
1621 for (i = cmd_len - 1; i >= 0; i--) {
1622 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1623 writeb (EE_ENB | dataval, ee_addr);
1624 eeprom_delay ();
1625 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1626 eeprom_delay ();
1628 writeb (EE_ENB, ee_addr);
1629 eeprom_delay ();
1632 static void eeprom_cmd_end(void __iomem *ee_addr)
1634 writeb (~EE_CS, ee_addr);
1635 eeprom_delay ();
1638 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1639 int addr_len)
1641 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1643 eeprom_cmd_start(ee_addr);
1644 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1645 eeprom_cmd_end(ee_addr);
1648 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1650 int i;
1651 u16 retval = 0;
1652 void __iomem *ee_addr = ioaddr + Cfg9346;
1653 int read_cmd = location | (EE_READ_CMD << addr_len);
1655 eeprom_cmd_start(ee_addr);
1656 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1658 for (i = 16; i > 0; i--) {
1659 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1660 eeprom_delay ();
1661 retval =
1662 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1664 writeb (EE_ENB, ee_addr);
1665 eeprom_delay ();
1668 eeprom_cmd_end(ee_addr);
1670 return retval;
1673 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1674 int addr_len)
1676 int i;
1677 void __iomem *ee_addr = ioaddr + Cfg9346;
1678 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1680 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1682 eeprom_cmd_start(ee_addr);
1683 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1684 eeprom_cmd(ee_addr, val, 16);
1685 eeprom_cmd_end(ee_addr);
1687 eeprom_cmd_start(ee_addr);
1688 for (i = 0; i < 20000; i++)
1689 if (readb(ee_addr) & EE_DATA_READ)
1690 break;
1691 eeprom_cmd_end(ee_addr);
1693 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1696 static int cp_get_eeprom_len(struct net_device *dev)
1698 struct cp_private *cp = netdev_priv(dev);
1699 int size;
1701 spin_lock_irq(&cp->lock);
1702 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1703 spin_unlock_irq(&cp->lock);
1705 return size;
1708 static int cp_get_eeprom(struct net_device *dev,
1709 struct ethtool_eeprom *eeprom, u8 *data)
1711 struct cp_private *cp = netdev_priv(dev);
1712 unsigned int addr_len;
1713 u16 val;
1714 u32 offset = eeprom->offset >> 1;
1715 u32 len = eeprom->len;
1716 u32 i = 0;
1718 eeprom->magic = CP_EEPROM_MAGIC;
1720 spin_lock_irq(&cp->lock);
1722 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1724 if (eeprom->offset & 1) {
1725 val = read_eeprom(cp->regs, offset, addr_len);
1726 data[i++] = (u8)(val >> 8);
1727 offset++;
1730 while (i < len - 1) {
1731 val = read_eeprom(cp->regs, offset, addr_len);
1732 data[i++] = (u8)val;
1733 data[i++] = (u8)(val >> 8);
1734 offset++;
1737 if (i < len) {
1738 val = read_eeprom(cp->regs, offset, addr_len);
1739 data[i] = (u8)val;
1742 spin_unlock_irq(&cp->lock);
1743 return 0;
1746 static int cp_set_eeprom(struct net_device *dev,
1747 struct ethtool_eeprom *eeprom, u8 *data)
1749 struct cp_private *cp = netdev_priv(dev);
1750 unsigned int addr_len;
1751 u16 val;
1752 u32 offset = eeprom->offset >> 1;
1753 u32 len = eeprom->len;
1754 u32 i = 0;
1756 if (eeprom->magic != CP_EEPROM_MAGIC)
1757 return -EINVAL;
1759 spin_lock_irq(&cp->lock);
1761 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1763 if (eeprom->offset & 1) {
1764 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1765 val |= (u16)data[i++] << 8;
1766 write_eeprom(cp->regs, offset, val, addr_len);
1767 offset++;
1770 while (i < len - 1) {
1771 val = (u16)data[i++];
1772 val |= (u16)data[i++] << 8;
1773 write_eeprom(cp->regs, offset, val, addr_len);
1774 offset++;
1777 if (i < len) {
1778 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1779 val |= (u16)data[i];
1780 write_eeprom(cp->regs, offset, val, addr_len);
1783 spin_unlock_irq(&cp->lock);
1784 return 0;
1787 /* Put the board into D3cold state and wait for WakeUp signal */
1788 static void cp_set_d3_state (struct cp_private *cp)
1790 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1791 pci_set_power_state (cp->pdev, PCI_D3hot);
1794 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1796 struct net_device *dev;
1797 struct cp_private *cp;
1798 int rc;
1799 void __iomem *regs;
1800 resource_size_t pciaddr;
1801 unsigned int addr_len, i, pci_using_dac;
1803 #ifndef MODULE
1804 static int version_printed;
1805 if (version_printed++ == 0)
1806 printk("%s", version);
1807 #endif
1809 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1810 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1811 dev_err(&pdev->dev,
1812 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1813 pdev->vendor, pdev->device, pdev->revision);
1814 dev_err(&pdev->dev, "Try the \"8139too\" driver instead.\n");
1815 return -ENODEV;
1818 dev = alloc_etherdev(sizeof(struct cp_private));
1819 if (!dev)
1820 return -ENOMEM;
1821 SET_MODULE_OWNER(dev);
1822 SET_NETDEV_DEV(dev, &pdev->dev);
1824 cp = netdev_priv(dev);
1825 cp->pdev = pdev;
1826 cp->dev = dev;
1827 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1828 spin_lock_init (&cp->lock);
1829 cp->mii_if.dev = dev;
1830 cp->mii_if.mdio_read = mdio_read;
1831 cp->mii_if.mdio_write = mdio_write;
1832 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1833 cp->mii_if.phy_id_mask = 0x1f;
1834 cp->mii_if.reg_num_mask = 0x1f;
1835 cp_set_rxbufsize(cp);
1837 rc = pci_enable_device(pdev);
1838 if (rc)
1839 goto err_out_free;
1841 rc = pci_set_mwi(pdev);
1842 if (rc)
1843 goto err_out_disable;
1845 rc = pci_request_regions(pdev, DRV_NAME);
1846 if (rc)
1847 goto err_out_mwi;
1849 pciaddr = pci_resource_start(pdev, 1);
1850 if (!pciaddr) {
1851 rc = -EIO;
1852 dev_err(&pdev->dev, "no MMIO resource\n");
1853 goto err_out_res;
1855 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1856 rc = -EIO;
1857 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1858 (unsigned long long)pci_resource_len(pdev, 1));
1859 goto err_out_res;
1862 /* Configure DMA attributes. */
1863 if ((sizeof(dma_addr_t) > 4) &&
1864 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1865 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1866 pci_using_dac = 1;
1867 } else {
1868 pci_using_dac = 0;
1870 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1871 if (rc) {
1872 dev_err(&pdev->dev,
1873 "No usable DMA configuration, aborting.\n");
1874 goto err_out_res;
1876 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1877 if (rc) {
1878 dev_err(&pdev->dev,
1879 "No usable consistent DMA configuration, "
1880 "aborting.\n");
1881 goto err_out_res;
1885 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1886 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1888 regs = ioremap(pciaddr, CP_REGS_SIZE);
1889 if (!regs) {
1890 rc = -EIO;
1891 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1892 (unsigned long long)pci_resource_len(pdev, 1),
1893 (unsigned long long)pciaddr);
1894 goto err_out_res;
1896 dev->base_addr = (unsigned long) regs;
1897 cp->regs = regs;
1899 cp_stop_hw(cp);
1901 /* read MAC address from EEPROM */
1902 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1903 for (i = 0; i < 3; i++)
1904 ((u16 *) (dev->dev_addr))[i] =
1905 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1906 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1908 dev->open = cp_open;
1909 dev->stop = cp_close;
1910 dev->set_multicast_list = cp_set_rx_mode;
1911 dev->hard_start_xmit = cp_start_xmit;
1912 dev->get_stats = cp_get_stats;
1913 dev->do_ioctl = cp_ioctl;
1914 dev->poll = cp_rx_poll;
1915 #ifdef CONFIG_NET_POLL_CONTROLLER
1916 dev->poll_controller = cp_poll_controller;
1917 #endif
1918 dev->weight = 16; /* arbitrary? from NAPI_HOWTO.txt. */
1919 #ifdef BROKEN
1920 dev->change_mtu = cp_change_mtu;
1921 #endif
1922 dev->ethtool_ops = &cp_ethtool_ops;
1923 #if 0
1924 dev->tx_timeout = cp_tx_timeout;
1925 dev->watchdog_timeo = TX_TIMEOUT;
1926 #endif
1928 #if CP_VLAN_TAG_USED
1929 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1930 dev->vlan_rx_register = cp_vlan_rx_register;
1931 #endif
1933 if (pci_using_dac)
1934 dev->features |= NETIF_F_HIGHDMA;
1936 #if 0 /* disabled by default until verified */
1937 dev->features |= NETIF_F_TSO;
1938 #endif
1940 dev->irq = pdev->irq;
1942 rc = register_netdev(dev);
1943 if (rc)
1944 goto err_out_iomap;
1946 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1947 "%02x:%02x:%02x:%02x:%02x:%02x, "
1948 "IRQ %d\n",
1949 dev->name,
1950 dev->base_addr,
1951 dev->dev_addr[0], dev->dev_addr[1],
1952 dev->dev_addr[2], dev->dev_addr[3],
1953 dev->dev_addr[4], dev->dev_addr[5],
1954 dev->irq);
1956 pci_set_drvdata(pdev, dev);
1958 /* enable busmastering and memory-write-invalidate */
1959 pci_set_master(pdev);
1961 if (cp->wol_enabled)
1962 cp_set_d3_state (cp);
1964 return 0;
1966 err_out_iomap:
1967 iounmap(regs);
1968 err_out_res:
1969 pci_release_regions(pdev);
1970 err_out_mwi:
1971 pci_clear_mwi(pdev);
1972 err_out_disable:
1973 pci_disable_device(pdev);
1974 err_out_free:
1975 free_netdev(dev);
1976 return rc;
1979 static void cp_remove_one (struct pci_dev *pdev)
1981 struct net_device *dev = pci_get_drvdata(pdev);
1982 struct cp_private *cp = netdev_priv(dev);
1984 unregister_netdev(dev);
1985 iounmap(cp->regs);
1986 if (cp->wol_enabled)
1987 pci_set_power_state (pdev, PCI_D0);
1988 pci_release_regions(pdev);
1989 pci_clear_mwi(pdev);
1990 pci_disable_device(pdev);
1991 pci_set_drvdata(pdev, NULL);
1992 free_netdev(dev);
1995 #ifdef CONFIG_PM
1996 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
1998 struct net_device *dev = pci_get_drvdata(pdev);
1999 struct cp_private *cp = netdev_priv(dev);
2000 unsigned long flags;
2002 if (!netif_running(dev))
2003 return 0;
2005 netif_device_detach (dev);
2006 netif_stop_queue (dev);
2008 spin_lock_irqsave (&cp->lock, flags);
2010 /* Disable Rx and Tx */
2011 cpw16 (IntrMask, 0);
2012 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2014 spin_unlock_irqrestore (&cp->lock, flags);
2016 pci_save_state(pdev);
2017 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2018 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2020 return 0;
2023 static int cp_resume (struct pci_dev *pdev)
2025 struct net_device *dev = pci_get_drvdata (pdev);
2026 struct cp_private *cp = netdev_priv(dev);
2027 unsigned long flags;
2029 if (!netif_running(dev))
2030 return 0;
2032 netif_device_attach (dev);
2034 pci_set_power_state(pdev, PCI_D0);
2035 pci_restore_state(pdev);
2036 pci_enable_wake(pdev, PCI_D0, 0);
2038 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2039 cp_init_rings_index (cp);
2040 cp_init_hw (cp);
2041 netif_start_queue (dev);
2043 spin_lock_irqsave (&cp->lock, flags);
2045 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2047 spin_unlock_irqrestore (&cp->lock, flags);
2049 return 0;
2051 #endif /* CONFIG_PM */
2053 static struct pci_driver cp_driver = {
2054 .name = DRV_NAME,
2055 .id_table = cp_pci_tbl,
2056 .probe = cp_init_one,
2057 .remove = cp_remove_one,
2058 #ifdef CONFIG_PM
2059 .resume = cp_resume,
2060 .suspend = cp_suspend,
2061 #endif
2064 static int __init cp_init (void)
2066 #ifdef MODULE
2067 printk("%s", version);
2068 #endif
2069 return pci_register_driver(&cp_driver);
2072 static void __exit cp_exit (void)
2074 pci_unregister_driver (&cp_driver);
2077 module_init(cp_init);
2078 module_exit(cp_exit);