2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/version.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl
[] = {
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
147 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
157 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
162 #define ace_sync_irq(irq) synchronize_irq(irq)
164 #ifndef offset_in_page
165 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
168 #define ACE_MAX_MOD_PARMS 8
169 #define BOARD_IDX_STATIC 0
170 #define BOARD_IDX_OVERFLOW -1
172 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
173 defined(NETIF_F_HW_VLAN_RX)
174 #define ACENIC_DO_VLAN 1
175 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
177 #define ACENIC_DO_VLAN 0
178 #define ACE_RCB_VLAN_FLAG 0
184 * These must be defined before the firmware is included.
186 #define MAX_TEXT_LEN 96*1024
187 #define MAX_RODATA_LEN 8*1024
188 #define MAX_DATA_LEN 2*1024
190 #include "acenic_firmware.h"
192 #ifndef tigon2FwReleaseLocal
193 #define tigon2FwReleaseLocal 0
197 * This driver currently supports Tigon I and Tigon II based cards
198 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
199 * GA620. The driver should also work on the SGI, DEC and Farallon
200 * versions of the card, however I have not been able to test that
203 * This card is really neat, it supports receive hardware checksumming
204 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
205 * firmware. Also the programming interface is quite neat, except for
206 * the parts dealing with the i2c eeprom on the card ;-)
208 * Using jumbo frames:
210 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
211 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
212 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
213 * interface number and <MTU> being the MTU value.
217 * When compiled as a loadable module, the driver allows for a number
218 * of module parameters to be specified. The driver supports the
219 * following module parameters:
221 * trace=<val> - Firmware trace level. This requires special traced
222 * firmware to replace the firmware supplied with
223 * the driver - for debugging purposes only.
225 * link=<val> - Link state. Normally you want to use the default link
226 * parameters set by the driver. This can be used to
227 * override these in case your switch doesn't negotiate
228 * the link properly. Valid values are:
229 * 0x0001 - Force half duplex link.
230 * 0x0002 - Do not negotiate line speed with the other end.
231 * 0x0010 - 10Mbit/sec link.
232 * 0x0020 - 100Mbit/sec link.
233 * 0x0040 - 1000Mbit/sec link.
234 * 0x0100 - Do not negotiate flow control.
235 * 0x0200 - Enable RX flow control Y
236 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
237 * Default value is 0x0270, ie. enable link+flow
238 * control negotiation. Negotiating the highest
239 * possible link speed with RX flow control enabled.
241 * When disabling link speed negotiation, only one link
242 * speed is allowed to be specified!
244 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
245 * to wait for more packets to arive before
246 * interrupting the host, from the time the first
249 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
250 * to wait for more packets to arive in the transmit ring,
251 * before interrupting the host, after transmitting the
252 * first packet in the ring.
254 * max_tx_desc=<val> - maximum number of transmit descriptors
255 * (packets) transmitted before interrupting the host.
257 * max_rx_desc=<val> - maximum number of receive descriptors
258 * (packets) received before interrupting the host.
260 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
261 * increments of the NIC's on board memory to be used for
262 * transmit and receive buffers. For the 1MB NIC app. 800KB
263 * is available, on the 1/2MB NIC app. 300KB is available.
264 * 68KB will always be available as a minimum for both
265 * directions. The default value is a 50/50 split.
266 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
267 * operations, default (1) is to always disable this as
268 * that is what Alteon does on NT. I have not been able
269 * to measure any real performance differences with
270 * this on my systems. Set <val>=0 if you want to
271 * enable these operations.
273 * If you use more than one NIC, specify the parameters for the
274 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
275 * run tracing on NIC #2 but not on NIC #1 and #3.
279 * - Proper multicast support.
280 * - NIC dump support.
281 * - More tuning parameters.
283 * The mini ring is not used under Linux and I am not sure it makes sense
284 * to actually use it.
286 * New interrupt handler strategy:
288 * The old interrupt handler worked using the traditional method of
289 * replacing an skbuff with a new one when a packet arrives. However
290 * the rx rings do not need to contain a static number of buffer
291 * descriptors, thus it makes sense to move the memory allocation out
292 * of the main interrupt handler and do it in a bottom half handler
293 * and only allocate new buffers when the number of buffers in the
294 * ring is below a certain threshold. In order to avoid starving the
295 * NIC under heavy load it is however necessary to force allocation
296 * when hitting a minimum threshold. The strategy for alloction is as
299 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
300 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
301 * the buffers in the interrupt handler
302 * RX_RING_THRES - maximum number of buffers in the rx ring
303 * RX_MINI_THRES - maximum number of buffers in the mini ring
304 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
306 * One advantagous side effect of this allocation approach is that the
307 * entire rx processing can be done without holding any spin lock
308 * since the rx rings and registers are totally independent of the tx
309 * ring and its registers. This of course includes the kmalloc's of
310 * new skb's. Thus start_xmit can run in parallel with rx processing
311 * and the memory allocation on SMP systems.
313 * Note that running the skb reallocation in a bottom half opens up
314 * another can of races which needs to be handled properly. In
315 * particular it can happen that the interrupt handler tries to run
316 * the reallocation while the bottom half is either running on another
317 * CPU or was interrupted on the same CPU. To get around this the
318 * driver uses bitops to prevent the reallocation routines from being
321 * TX handling can also be done without holding any spin lock, wheee
322 * this is fun! since tx_ret_csm is only written to by the interrupt
323 * handler. The case to be aware of is when shutting down the device
324 * and cleaning up where it is necessary to make sure that
325 * start_xmit() is not running while this is happening. Well DaveM
326 * informs me that this case is already protected against ... bye bye
327 * Mr. Spin Lock, it was nice to know you.
329 * TX interrupts are now partly disabled so the NIC will only generate
330 * TX interrupts for the number of coal ticks, not for the number of
331 * TX packets in the queue. This should reduce the number of TX only,
332 * ie. when no RX processing is done, interrupts seen.
336 * Threshold values for RX buffer allocation - the low water marks for
337 * when to start refilling the rings are set to 75% of the ring
338 * sizes. It seems to make sense to refill the rings entirely from the
339 * intrrupt handler once it gets below the panic threshold, that way
340 * we don't risk that the refilling is moved to another CPU when the
341 * one running the interrupt handler just got the slab code hot in its
344 #define RX_RING_SIZE 72
345 #define RX_MINI_SIZE 64
346 #define RX_JUMBO_SIZE 48
348 #define RX_PANIC_STD_THRES 16
349 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
350 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
351 #define RX_PANIC_MINI_THRES 12
352 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
353 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
354 #define RX_PANIC_JUMBO_THRES 6
355 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
356 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
360 * Size of the mini ring entries, basically these just should be big
361 * enough to take TCP ACKs
363 #define ACE_MINI_SIZE 100
365 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
366 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
367 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
370 * There seems to be a magic difference in the effect between 995 and 996
371 * but little difference between 900 and 995 ... no idea why.
373 * There is now a default set of tuning parameters which is set, depending
374 * on whether or not the user enables Jumbo frames. It's assumed that if
375 * Jumbo frames are enabled, the user wants optimal tuning for that case.
377 #define DEF_TX_COAL 400 /* 996 */
378 #define DEF_TX_MAX_DESC 60 /* was 40 */
379 #define DEF_RX_COAL 120 /* 1000 */
380 #define DEF_RX_MAX_DESC 25
381 #define DEF_TX_RATIO 21 /* 24 */
383 #define DEF_JUMBO_TX_COAL 20
384 #define DEF_JUMBO_TX_MAX_DESC 60
385 #define DEF_JUMBO_RX_COAL 30
386 #define DEF_JUMBO_RX_MAX_DESC 6
387 #define DEF_JUMBO_TX_RATIO 21
389 #if tigon2FwReleaseLocal < 20001118
391 * Standard firmware and early modifications duplicate
392 * IRQ load without this flag (coal timer is never reset).
393 * Note that with this flag tx_coal should be less than
394 * time to xmit full tx ring.
395 * 400usec is not so bad for tx ring size of 128.
397 #define TX_COAL_INTS_ONLY 1 /* worth it */
400 * With modified firmware, this is not necessary, but still useful.
402 #define TX_COAL_INTS_ONLY 1
406 #define DEF_STAT (2 * TICKS_PER_SEC)
409 static int link
[ACE_MAX_MOD_PARMS
];
410 static int trace
[ACE_MAX_MOD_PARMS
];
411 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
412 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
413 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
414 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
415 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
416 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
418 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
419 MODULE_LICENSE("GPL");
420 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
422 module_param_array(link
, int, NULL
, 0);
423 module_param_array(trace
, int, NULL
, 0);
424 module_param_array(tx_coal_tick
, int, NULL
, 0);
425 module_param_array(max_tx_desc
, int, NULL
, 0);
426 module_param_array(rx_coal_tick
, int, NULL
, 0);
427 module_param_array(max_rx_desc
, int, NULL
, 0);
428 module_param_array(tx_ratio
, int, NULL
, 0);
429 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
430 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
431 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
432 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
433 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
434 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
435 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
438 static char version
[] __devinitdata
=
439 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
440 " http://home.cern.ch/~jes/gige/acenic.html\n";
442 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
443 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
444 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
446 static const struct ethtool_ops ace_ethtool_ops
= {
447 .get_settings
= ace_get_settings
,
448 .set_settings
= ace_set_settings
,
449 .get_drvinfo
= ace_get_drvinfo
,
452 static void ace_watchdog(struct net_device
*dev
);
454 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
455 const struct pci_device_id
*id
)
457 struct net_device
*dev
;
458 struct ace_private
*ap
;
459 static int boards_found
;
461 dev
= alloc_etherdev(sizeof(struct ace_private
));
463 printk(KERN_ERR
"acenic: Unable to allocate "
464 "net_device structure!\n");
468 SET_MODULE_OWNER(dev
);
469 SET_NETDEV_DEV(dev
, &pdev
->dev
);
473 ap
->name
= pci_name(pdev
);
475 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
477 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
478 dev
->vlan_rx_register
= ace_vlan_rx_register
;
481 dev
->tx_timeout
= &ace_watchdog
;
482 dev
->watchdog_timeo
= 5*HZ
;
484 dev
->open
= &ace_open
;
485 dev
->stop
= &ace_close
;
486 dev
->hard_start_xmit
= &ace_start_xmit
;
487 dev
->get_stats
= &ace_get_stats
;
488 dev
->set_multicast_list
= &ace_set_multicast_list
;
489 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
490 dev
->set_mac_address
= &ace_set_mac_addr
;
491 dev
->change_mtu
= &ace_change_mtu
;
493 /* we only display this string ONCE */
497 if (pci_enable_device(pdev
))
498 goto fail_free_netdev
;
501 * Enable master mode before we start playing with the
502 * pci_command word since pci_set_master() will modify
505 pci_set_master(pdev
);
507 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
509 /* OpenFirmware on Mac's does not set this - DOH.. */
510 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
511 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
512 "access - was not enabled by BIOS/Firmware\n",
514 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
515 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
520 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
521 if (ap
->pci_latency
<= 0x40) {
522 ap
->pci_latency
= 0x40;
523 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
527 * Remap the regs into kernel space - this is abuse of
528 * dev->base_addr since it was means for I/O port
529 * addresses but who gives a damn.
531 dev
->base_addr
= pci_resource_start(pdev
, 0);
532 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
534 printk(KERN_ERR
"%s: Unable to map I/O register, "
535 "AceNIC %i will be disabled.\n",
536 ap
->name
, boards_found
);
537 goto fail_free_netdev
;
540 switch(pdev
->vendor
) {
541 case PCI_VENDOR_ID_ALTEON
:
542 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
543 printk(KERN_INFO
"%s: Farallon PN9100-T ",
546 printk(KERN_INFO
"%s: Alteon AceNIC ",
550 case PCI_VENDOR_ID_3COM
:
551 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
553 case PCI_VENDOR_ID_NETGEAR
:
554 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
556 case PCI_VENDOR_ID_DEC
:
557 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
558 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
562 case PCI_VENDOR_ID_SGI
:
563 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
566 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
570 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
571 printk("irq %d\n", pdev
->irq
);
573 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
574 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
575 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
576 " support - NIC disabled\n", dev
->name
);
581 if (ace_allocate_descriptors(dev
))
582 goto fail_free_netdev
;
585 if (boards_found
>= ACE_MAX_MOD_PARMS
)
586 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
588 ap
->board_idx
= boards_found
;
590 ap
->board_idx
= BOARD_IDX_STATIC
;
594 goto fail_free_netdev
;
596 if (register_netdev(dev
)) {
597 printk(KERN_ERR
"acenic: device registration failed\n");
600 ap
->name
= dev
->name
;
602 if (ap
->pci_using_dac
)
603 dev
->features
|= NETIF_F_HIGHDMA
;
605 pci_set_drvdata(pdev
, dev
);
611 ace_init_cleanup(dev
);
617 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
619 struct net_device
*dev
= pci_get_drvdata(pdev
);
620 struct ace_private
*ap
= netdev_priv(dev
);
621 struct ace_regs __iomem
*regs
= ap
->regs
;
624 unregister_netdev(dev
);
626 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
627 if (ap
->version
>= 2)
628 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
631 * This clears any pending interrupts
633 writel(1, ®s
->Mb0Lo
);
634 readl(®s
->CpuCtrl
); /* flush */
637 * Make sure no other CPUs are processing interrupts
638 * on the card before the buffers are being released.
639 * Otherwise one might experience some `interesting'
642 * Then release the RX buffers - jumbo buffers were
643 * already released in ace_close().
645 ace_sync_irq(dev
->irq
);
647 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
648 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
651 struct ring_info
*ringp
;
654 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
655 mapping
= pci_unmap_addr(ringp
, mapping
);
656 pci_unmap_page(ap
->pdev
, mapping
,
660 ap
->rx_std_ring
[i
].size
= 0;
661 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
666 if (ap
->version
>= 2) {
667 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
668 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
671 struct ring_info
*ringp
;
674 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
675 mapping
= pci_unmap_addr(ringp
,mapping
);
676 pci_unmap_page(ap
->pdev
, mapping
,
680 ap
->rx_mini_ring
[i
].size
= 0;
681 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
687 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
688 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
690 struct ring_info
*ringp
;
693 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
694 mapping
= pci_unmap_addr(ringp
, mapping
);
695 pci_unmap_page(ap
->pdev
, mapping
,
699 ap
->rx_jumbo_ring
[i
].size
= 0;
700 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
705 ace_init_cleanup(dev
);
709 static struct pci_driver acenic_pci_driver
= {
711 .id_table
= acenic_pci_tbl
,
712 .probe
= acenic_probe_one
,
713 .remove
= __devexit_p(acenic_remove_one
),
716 static int __init
acenic_init(void)
718 return pci_register_driver(&acenic_pci_driver
);
721 static void __exit
acenic_exit(void)
723 pci_unregister_driver(&acenic_pci_driver
);
726 module_init(acenic_init
);
727 module_exit(acenic_exit
);
729 static void ace_free_descriptors(struct net_device
*dev
)
731 struct ace_private
*ap
= netdev_priv(dev
);
734 if (ap
->rx_std_ring
!= NULL
) {
735 size
= (sizeof(struct rx_desc
) *
736 (RX_STD_RING_ENTRIES
+
737 RX_JUMBO_RING_ENTRIES
+
738 RX_MINI_RING_ENTRIES
+
739 RX_RETURN_RING_ENTRIES
));
740 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
741 ap
->rx_ring_base_dma
);
742 ap
->rx_std_ring
= NULL
;
743 ap
->rx_jumbo_ring
= NULL
;
744 ap
->rx_mini_ring
= NULL
;
745 ap
->rx_return_ring
= NULL
;
747 if (ap
->evt_ring
!= NULL
) {
748 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
749 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
753 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
754 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
755 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
760 if (ap
->evt_prd
!= NULL
) {
761 pci_free_consistent(ap
->pdev
, sizeof(u32
),
762 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
765 if (ap
->rx_ret_prd
!= NULL
) {
766 pci_free_consistent(ap
->pdev
, sizeof(u32
),
767 (void *)ap
->rx_ret_prd
,
769 ap
->rx_ret_prd
= NULL
;
771 if (ap
->tx_csm
!= NULL
) {
772 pci_free_consistent(ap
->pdev
, sizeof(u32
),
773 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
779 static int ace_allocate_descriptors(struct net_device
*dev
)
781 struct ace_private
*ap
= netdev_priv(dev
);
784 size
= (sizeof(struct rx_desc
) *
785 (RX_STD_RING_ENTRIES
+
786 RX_JUMBO_RING_ENTRIES
+
787 RX_MINI_RING_ENTRIES
+
788 RX_RETURN_RING_ENTRIES
));
790 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
791 &ap
->rx_ring_base_dma
);
792 if (ap
->rx_std_ring
== NULL
)
795 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
796 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
797 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
799 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
801 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
803 if (ap
->evt_ring
== NULL
)
807 * Only allocate a host TX ring for the Tigon II, the Tigon I
808 * has to use PCI registers for this ;-(
810 if (!ACE_IS_TIGON_I(ap
)) {
811 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
813 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
816 if (ap
->tx_ring
== NULL
)
820 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
822 if (ap
->evt_prd
== NULL
)
825 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
826 &ap
->rx_ret_prd_dma
);
827 if (ap
->rx_ret_prd
== NULL
)
830 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
832 if (ap
->tx_csm
== NULL
)
839 ace_init_cleanup(dev
);
845 * Generic cleanup handling data allocated during init. Used when the
846 * module is unloaded or if an error occurs during initialization
848 static void ace_init_cleanup(struct net_device
*dev
)
850 struct ace_private
*ap
;
852 ap
= netdev_priv(dev
);
854 ace_free_descriptors(dev
);
857 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
858 ap
->info
, ap
->info_dma
);
860 kfree(ap
->trace_buf
);
863 free_irq(dev
->irq
, dev
);
870 * Commands are considered to be slow.
872 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
876 idx
= readl(®s
->CmdPrd
);
878 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
879 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
881 writel(idx
, ®s
->CmdPrd
);
885 static int __devinit
ace_init(struct net_device
*dev
)
887 struct ace_private
*ap
;
888 struct ace_regs __iomem
*regs
;
889 struct ace_info
*info
= NULL
;
890 struct pci_dev
*pdev
;
893 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
894 int board_idx
, ecode
= 0;
896 unsigned char cache_size
;
898 ap
= netdev_priv(dev
);
901 board_idx
= ap
->board_idx
;
904 * aman@sgi.com - its useful to do a NIC reset here to
905 * address the `Firmware not running' problem subsequent
906 * to any crashes involving the NIC
908 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
909 readl(®s
->HostCtrl
); /* PCI write posting */
913 * Don't access any other registers before this point!
917 * This will most likely need BYTE_SWAP once we switch
918 * to using __raw_writel()
920 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
923 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
926 readl(®s
->HostCtrl
); /* PCI write posting */
929 * Stop the NIC CPU and clear pending interrupts
931 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
932 readl(®s
->CpuCtrl
); /* PCI write posting */
933 writel(0, ®s
->Mb0Lo
);
935 tig_ver
= readl(®s
->HostCtrl
) >> 28;
938 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
941 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
942 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
944 writel(0, ®s
->LocalCtrl
);
946 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
950 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
951 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
953 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
954 readl(®s
->CpuBCtrl
); /* PCI write posting */
956 * The SRAM bank size does _not_ indicate the amount
957 * of memory on the card, it controls the _bank_ size!
958 * Ie. a 1MB AceNIC will have two banks of 512KB.
960 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
961 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
963 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
966 printk(KERN_WARNING
" Unsupported Tigon version detected "
973 * ModeStat _must_ be set after the SRAM settings as this change
974 * seems to corrupt the ModeStat and possible other registers.
975 * The SRAM settings survive resets and setting it to the same
976 * value a second time works as well. This is what caused the
977 * `Firmware not running' problem on the Tigon II.
980 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
981 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
983 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
984 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
986 readl(®s
->ModeStat
); /* PCI write posting */
989 for(i
= 0; i
< 4; i
++) {
993 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
998 mac1
|= (tmp
& 0xff);
1001 for(i
= 4; i
< 8; i
++) {
1005 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1010 mac2
|= (tmp
& 0xff);
1013 writel(mac1
, ®s
->MacAddrHi
);
1014 writel(mac2
, ®s
->MacAddrLo
);
1016 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1017 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1018 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1020 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1021 dev
->dev_addr
[1] = mac1
& 0xff;
1022 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1023 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1024 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1025 dev
->dev_addr
[5] = mac2
& 0xff;
1028 * Looks like this is necessary to deal with on all architectures,
1029 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1030 * Ie. having two NICs in the machine, one will have the cache
1031 * line set at boot time, the other will not.
1034 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1036 if (cache_size
!= SMP_CACHE_BYTES
) {
1037 printk(KERN_INFO
" PCI cache line size set incorrectly "
1038 "(%i bytes) by BIOS/FW, ", cache_size
);
1039 if (cache_size
> SMP_CACHE_BYTES
)
1040 printk("expecting %i\n", SMP_CACHE_BYTES
);
1042 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1043 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1044 SMP_CACHE_BYTES
>> 2);
1048 pci_state
= readl(®s
->PciState
);
1049 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1050 "latency: %i clks\n",
1051 (pci_state
& PCI_32BIT
) ? 32 : 64,
1052 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1056 * Set the max DMA transfer size. Seems that for most systems
1057 * the performance is better when no MAX parameter is
1058 * set. However for systems enabling PCI write and invalidate,
1059 * DMA writes must be set to the L1 cache line size to get
1060 * optimal performance.
1062 * The default is now to turn the PCI write and invalidate off
1063 * - that is what Alteon does for NT.
1065 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1066 if (ap
->version
>= 2) {
1067 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1069 * Tuning parameters only supported for 8 cards
1071 if (board_idx
== BOARD_IDX_OVERFLOW
||
1072 dis_pci_mem_inval
[board_idx
]) {
1073 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1074 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1075 pci_write_config_word(pdev
, PCI_COMMAND
,
1077 printk(KERN_INFO
" Disabling PCI memory "
1078 "write and invalidate\n");
1080 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1081 printk(KERN_INFO
" PCI memory write & invalidate "
1082 "enabled by BIOS, enabling counter measures\n");
1084 switch(SMP_CACHE_BYTES
) {
1086 tmp
|= DMA_WRITE_MAX_16
;
1089 tmp
|= DMA_WRITE_MAX_32
;
1092 tmp
|= DMA_WRITE_MAX_64
;
1095 tmp
|= DMA_WRITE_MAX_128
;
1098 printk(KERN_INFO
" Cache line size %i not "
1099 "supported, PCI write and invalidate "
1100 "disabled\n", SMP_CACHE_BYTES
);
1101 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1102 pci_write_config_word(pdev
, PCI_COMMAND
,
1110 * On this platform, we know what the best dma settings
1111 * are. We use 64-byte maximum bursts, because if we
1112 * burst larger than the cache line size (or even cross
1113 * a 64byte boundary in a single burst) the UltraSparc
1114 * PCI controller will disconnect at 64-byte multiples.
1116 * Read-multiple will be properly enabled above, and when
1117 * set will give the PCI controller proper hints about
1120 tmp
&= ~DMA_READ_WRITE_MASK
;
1121 tmp
|= DMA_READ_MAX_64
;
1122 tmp
|= DMA_WRITE_MAX_64
;
1125 tmp
&= ~DMA_READ_WRITE_MASK
;
1126 tmp
|= DMA_READ_MAX_128
;
1128 * All the docs say MUST NOT. Well, I did.
1129 * Nothing terrible happens, if we load wrong size.
1130 * Bit w&i still works better!
1132 tmp
|= DMA_WRITE_MAX_128
;
1134 writel(tmp
, ®s
->PciState
);
1138 * The Host PCI bus controller driver has to set FBB.
1139 * If all devices on that PCI bus support FBB, then the controller
1140 * can enable FBB support in the Host PCI Bus controller (or on
1141 * the PCI-PCI bridge if that applies).
1145 * I have received reports from people having problems when this
1148 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1149 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1150 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1151 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1156 * Configure DMA attributes.
1158 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1159 ap
->pci_using_dac
= 1;
1160 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
1161 ap
->pci_using_dac
= 0;
1168 * Initialize the generic info block and the command+event rings
1169 * and the control blocks for the transmit and receive rings
1170 * as they need to be setup once and for all.
1172 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1180 * Get the memory for the skb rings.
1182 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1187 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1190 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1191 DRV_NAME
, pdev
->irq
);
1194 dev
->irq
= pdev
->irq
;
1197 spin_lock_init(&ap
->debug_lock
);
1198 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1199 ap
->last_std_rx
= 0;
1200 ap
->last_mini_rx
= 0;
1203 memset(ap
->info
, 0, sizeof(struct ace_info
));
1204 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1206 ace_load_firmware(dev
);
1209 tmp_ptr
= ap
->info_dma
;
1210 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1211 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1213 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1215 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1216 info
->evt_ctrl
.flags
= 0;
1220 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1221 writel(0, ®s
->EvtCsm
);
1223 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1224 info
->cmd_ctrl
.flags
= 0;
1225 info
->cmd_ctrl
.max_len
= 0;
1227 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1228 writel(0, ®s
->CmdRng
[i
]);
1230 writel(0, ®s
->CmdPrd
);
1231 writel(0, ®s
->CmdCsm
);
1233 tmp_ptr
= ap
->info_dma
;
1234 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1235 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1237 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1238 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1239 info
->rx_std_ctrl
.flags
=
1240 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1242 memset(ap
->rx_std_ring
, 0,
1243 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1245 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1246 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1248 ap
->rx_std_skbprd
= 0;
1249 atomic_set(&ap
->cur_rx_bufs
, 0);
1251 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1252 (ap
->rx_ring_base_dma
+
1253 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1254 info
->rx_jumbo_ctrl
.max_len
= 0;
1255 info
->rx_jumbo_ctrl
.flags
=
1256 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1258 memset(ap
->rx_jumbo_ring
, 0,
1259 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1261 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1262 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1264 ap
->rx_jumbo_skbprd
= 0;
1265 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1267 memset(ap
->rx_mini_ring
, 0,
1268 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1270 if (ap
->version
>= 2) {
1271 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1272 (ap
->rx_ring_base_dma
+
1273 (sizeof(struct rx_desc
) *
1274 (RX_STD_RING_ENTRIES
+
1275 RX_JUMBO_RING_ENTRIES
))));
1276 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1277 info
->rx_mini_ctrl
.flags
=
1278 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1280 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1281 ap
->rx_mini_ring
[i
].flags
=
1282 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1284 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1285 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1286 info
->rx_mini_ctrl
.max_len
= 0;
1289 ap
->rx_mini_skbprd
= 0;
1290 atomic_set(&ap
->cur_mini_bufs
, 0);
1292 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1293 (ap
->rx_ring_base_dma
+
1294 (sizeof(struct rx_desc
) *
1295 (RX_STD_RING_ENTRIES
+
1296 RX_JUMBO_RING_ENTRIES
+
1297 RX_MINI_RING_ENTRIES
))));
1298 info
->rx_return_ctrl
.flags
= 0;
1299 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1301 memset(ap
->rx_return_ring
, 0,
1302 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1304 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1305 *(ap
->rx_ret_prd
) = 0;
1307 writel(TX_RING_BASE
, ®s
->WinBase
);
1309 if (ACE_IS_TIGON_I(ap
)) {
1310 ap
->tx_ring
= (struct tx_desc
*) regs
->Window
;
1311 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1312 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1313 writel(0, (void __iomem
*)ap
->tx_ring
+ i
* 4);
1315 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1317 memset(ap
->tx_ring
, 0,
1318 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1320 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1323 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1324 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1327 * The Tigon I does not like having the TX ring in host memory ;-(
1329 if (!ACE_IS_TIGON_I(ap
))
1330 tmp
|= RCB_FLG_TX_HOST_RING
;
1331 #if TX_COAL_INTS_ONLY
1332 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1334 info
->tx_ctrl
.flags
= tmp
;
1336 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1339 * Potential item for tuning parameter
1342 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1343 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1345 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1346 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1349 writel(0, ®s
->MaskInt
);
1350 writel(1, ®s
->IfIdx
);
1353 * McKinley boxes do not like us fiddling with AssistState
1356 writel(1, ®s
->AssistState
);
1359 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1360 writel(DEF_TRACE
, ®s
->TuneTrace
);
1362 ace_set_rxtx_parms(dev
, 0);
1364 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1365 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1366 "ignoring module parameters!\n",
1367 ap
->name
, ACE_MAX_MOD_PARMS
);
1368 } else if (board_idx
>= 0) {
1369 if (tx_coal_tick
[board_idx
])
1370 writel(tx_coal_tick
[board_idx
],
1371 ®s
->TuneTxCoalTicks
);
1372 if (max_tx_desc
[board_idx
])
1373 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1375 if (rx_coal_tick
[board_idx
])
1376 writel(rx_coal_tick
[board_idx
],
1377 ®s
->TuneRxCoalTicks
);
1378 if (max_rx_desc
[board_idx
])
1379 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1381 if (trace
[board_idx
])
1382 writel(trace
[board_idx
], ®s
->TuneTrace
);
1384 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1385 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1389 * Default link parameters
1391 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1392 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1393 if(ap
->version
>= 2)
1394 tmp
|= LNK_TX_FLOW_CTL_Y
;
1397 * Override link default parameters
1399 if ((board_idx
>= 0) && link
[board_idx
]) {
1400 int option
= link
[board_idx
];
1404 if (option
& 0x01) {
1405 printk(KERN_INFO
"%s: Setting half duplex link\n",
1407 tmp
&= ~LNK_FULL_DUPLEX
;
1410 tmp
&= ~LNK_NEGOTIATE
;
1417 if ((option
& 0x70) == 0) {
1418 printk(KERN_WARNING
"%s: No media speed specified, "
1419 "forcing auto negotiation\n", ap
->name
);
1420 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1421 LNK_100MB
| LNK_10MB
;
1423 if ((option
& 0x100) == 0)
1424 tmp
|= LNK_NEG_FCTL
;
1426 printk(KERN_INFO
"%s: Disabling flow control "
1427 "negotiation\n", ap
->name
);
1429 tmp
|= LNK_RX_FLOW_CTL_Y
;
1430 if ((option
& 0x400) && (ap
->version
>= 2)) {
1431 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1433 tmp
|= LNK_TX_FLOW_CTL_Y
;
1438 writel(tmp
, ®s
->TuneLink
);
1439 if (ap
->version
>= 2)
1440 writel(tmp
, ®s
->TuneFastLink
);
1442 if (ACE_IS_TIGON_I(ap
))
1443 writel(tigonFwStartAddr
, ®s
->Pc
);
1444 if (ap
->version
== 2)
1445 writel(tigon2FwStartAddr
, ®s
->Pc
);
1447 writel(0, ®s
->Mb0Lo
);
1450 * Set tx_csm before we start receiving interrupts, otherwise
1451 * the interrupt handler might think it is supposed to process
1452 * tx ints before we are up and running, which may cause a null
1453 * pointer access in the int handler.
1456 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1459 ace_set_txprd(regs
, ap
, 0);
1460 writel(0, ®s
->RxRetCsm
);
1463 * Zero the stats before starting the interface
1465 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1468 * Enable DMA engine now.
1469 * If we do this sooner, Mckinley box pukes.
1470 * I assume it's because Tigon II DMA engine wants to check
1471 * *something* even before the CPU is started.
1473 writel(1, ®s
->AssistState
); /* enable DMA */
1478 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1479 readl(®s
->CpuCtrl
);
1482 * Wait for the firmware to spin up - max 3 seconds.
1484 myjif
= jiffies
+ 3 * HZ
;
1485 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1488 if (!ap
->fw_running
) {
1489 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1492 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1493 readl(®s
->CpuCtrl
);
1495 /* aman@sgi.com - account for badly behaving firmware/NIC:
1496 * - have observed that the NIC may continue to generate
1497 * interrupts for some reason; attempt to stop it - halt
1498 * second CPU for Tigon II cards, and also clear Mb0
1499 * - if we're a module, we'll fail to load if this was
1500 * the only GbE card in the system => if the kernel does
1501 * see an interrupt from the NIC, code to handle it is
1502 * gone and OOps! - so free_irq also
1504 if (ap
->version
>= 2)
1505 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1507 writel(0, ®s
->Mb0Lo
);
1508 readl(®s
->Mb0Lo
);
1515 * We load the ring here as there seem to be no way to tell the
1516 * firmware to wipe the ring without re-initializing it.
1518 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1519 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1521 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1523 if (ap
->version
>= 2) {
1524 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1525 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1527 printk(KERN_ERR
"%s: Someone is busy refilling "
1528 "the RX mini ring\n", ap
->name
);
1533 ace_init_cleanup(dev
);
1538 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1540 struct ace_private
*ap
= netdev_priv(dev
);
1541 struct ace_regs __iomem
*regs
= ap
->regs
;
1542 int board_idx
= ap
->board_idx
;
1544 if (board_idx
>= 0) {
1546 if (!tx_coal_tick
[board_idx
])
1547 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1548 if (!max_tx_desc
[board_idx
])
1549 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1550 if (!rx_coal_tick
[board_idx
])
1551 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1552 if (!max_rx_desc
[board_idx
])
1553 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1554 if (!tx_ratio
[board_idx
])
1555 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1557 if (!tx_coal_tick
[board_idx
])
1558 writel(DEF_JUMBO_TX_COAL
,
1559 ®s
->TuneTxCoalTicks
);
1560 if (!max_tx_desc
[board_idx
])
1561 writel(DEF_JUMBO_TX_MAX_DESC
,
1562 ®s
->TuneMaxTxDesc
);
1563 if (!rx_coal_tick
[board_idx
])
1564 writel(DEF_JUMBO_RX_COAL
,
1565 ®s
->TuneRxCoalTicks
);
1566 if (!max_rx_desc
[board_idx
])
1567 writel(DEF_JUMBO_RX_MAX_DESC
,
1568 ®s
->TuneMaxRxDesc
);
1569 if (!tx_ratio
[board_idx
])
1570 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1576 static void ace_watchdog(struct net_device
*data
)
1578 struct net_device
*dev
= data
;
1579 struct ace_private
*ap
= netdev_priv(dev
);
1580 struct ace_regs __iomem
*regs
= ap
->regs
;
1583 * We haven't received a stats update event for more than 2.5
1584 * seconds and there is data in the transmit queue, thus we
1585 * asume the card is stuck.
1587 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1588 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1589 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1590 /* This can happen due to ieee flow control. */
1592 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1595 netif_wake_queue(dev
);
1601 static void ace_tasklet(unsigned long dev
)
1603 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1606 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1607 if ((cur_size
< RX_LOW_STD_THRES
) &&
1608 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1610 printk("refilling buffers (current %i)\n", cur_size
);
1612 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1615 if (ap
->version
>= 2) {
1616 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1617 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1618 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1620 printk("refilling mini buffers (current %i)\n",
1623 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1627 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1628 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1629 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1631 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1633 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1635 ap
->tasklet_pending
= 0;
1640 * Copy the contents of the NIC's trace buffer to kernel memory.
1642 static void ace_dump_trace(struct ace_private
*ap
)
1646 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1653 * Load the standard rx ring.
1655 * Loading rings is safe without holding the spin lock since this is
1656 * done only before the device is enabled, thus no interrupts are
1657 * generated and by the interrupt handler/tasklet handler.
1659 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1661 struct ace_regs __iomem
*regs
= ap
->regs
;
1665 prefetchw(&ap
->cur_rx_bufs
);
1667 idx
= ap
->rx_std_skbprd
;
1669 for (i
= 0; i
< nr_bufs
; i
++) {
1670 struct sk_buff
*skb
;
1674 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1678 skb_reserve(skb
, NET_IP_ALIGN
);
1679 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1680 offset_in_page(skb
->data
),
1682 PCI_DMA_FROMDEVICE
);
1683 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1684 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1687 rd
= &ap
->rx_std_ring
[idx
];
1688 set_aceaddr(&rd
->addr
, mapping
);
1689 rd
->size
= ACE_STD_BUFSIZE
;
1691 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1697 atomic_add(i
, &ap
->cur_rx_bufs
);
1698 ap
->rx_std_skbprd
= idx
;
1700 if (ACE_IS_TIGON_I(ap
)) {
1702 cmd
.evt
= C_SET_RX_PRD_IDX
;
1704 cmd
.idx
= ap
->rx_std_skbprd
;
1705 ace_issue_cmd(regs
, &cmd
);
1707 writel(idx
, ®s
->RxStdPrd
);
1712 clear_bit(0, &ap
->std_refill_busy
);
1716 printk(KERN_INFO
"Out of memory when allocating "
1717 "standard receive buffers\n");
1722 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1724 struct ace_regs __iomem
*regs
= ap
->regs
;
1727 prefetchw(&ap
->cur_mini_bufs
);
1729 idx
= ap
->rx_mini_skbprd
;
1730 for (i
= 0; i
< nr_bufs
; i
++) {
1731 struct sk_buff
*skb
;
1735 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1739 skb_reserve(skb
, NET_IP_ALIGN
);
1740 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1741 offset_in_page(skb
->data
),
1743 PCI_DMA_FROMDEVICE
);
1744 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1745 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1748 rd
= &ap
->rx_mini_ring
[idx
];
1749 set_aceaddr(&rd
->addr
, mapping
);
1750 rd
->size
= ACE_MINI_BUFSIZE
;
1752 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1758 atomic_add(i
, &ap
->cur_mini_bufs
);
1760 ap
->rx_mini_skbprd
= idx
;
1762 writel(idx
, ®s
->RxMiniPrd
);
1766 clear_bit(0, &ap
->mini_refill_busy
);
1769 printk(KERN_INFO
"Out of memory when allocating "
1770 "mini receive buffers\n");
1776 * Load the jumbo rx ring, this may happen at any time if the MTU
1777 * is changed to a value > 1500.
1779 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1781 struct ace_regs __iomem
*regs
= ap
->regs
;
1784 idx
= ap
->rx_jumbo_skbprd
;
1786 for (i
= 0; i
< nr_bufs
; i
++) {
1787 struct sk_buff
*skb
;
1791 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1795 skb_reserve(skb
, NET_IP_ALIGN
);
1796 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1797 offset_in_page(skb
->data
),
1799 PCI_DMA_FROMDEVICE
);
1800 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1801 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1804 rd
= &ap
->rx_jumbo_ring
[idx
];
1805 set_aceaddr(&rd
->addr
, mapping
);
1806 rd
->size
= ACE_JUMBO_BUFSIZE
;
1808 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1814 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1815 ap
->rx_jumbo_skbprd
= idx
;
1817 if (ACE_IS_TIGON_I(ap
)) {
1819 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1821 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1822 ace_issue_cmd(regs
, &cmd
);
1824 writel(idx
, ®s
->RxJumboPrd
);
1829 clear_bit(0, &ap
->jumbo_refill_busy
);
1832 if (net_ratelimit())
1833 printk(KERN_INFO
"Out of memory when allocating "
1834 "jumbo receive buffers\n");
1840 * All events are considered to be slow (RX/TX ints do not generate
1841 * events) and are handled here, outside the main interrupt handler,
1842 * to reduce the size of the handler.
1844 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1846 struct ace_private
*ap
;
1848 ap
= netdev_priv(dev
);
1850 while (evtcsm
!= evtprd
) {
1851 switch (ap
->evt_ring
[evtcsm
].evt
) {
1853 printk(KERN_INFO
"%s: Firmware up and running\n",
1858 case E_STATS_UPDATED
:
1862 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1866 u32 state
= readl(&ap
->regs
->GigLnkState
);
1867 printk(KERN_WARNING
"%s: Optical link UP "
1868 "(%s Duplex, Flow Control: %s%s)\n",
1870 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1871 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1872 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1876 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1879 case E_C_LINK_10_100
:
1880 printk(KERN_WARNING
"%s: 10/100BaseT link "
1884 printk(KERN_ERR
"%s: Unknown optical link "
1885 "state %02x\n", ap
->name
, code
);
1890 switch(ap
->evt_ring
[evtcsm
].code
) {
1891 case E_C_ERR_INVAL_CMD
:
1892 printk(KERN_ERR
"%s: invalid command error\n",
1895 case E_C_ERR_UNIMP_CMD
:
1896 printk(KERN_ERR
"%s: unimplemented command "
1897 "error\n", ap
->name
);
1899 case E_C_ERR_BAD_CFG
:
1900 printk(KERN_ERR
"%s: bad config error\n",
1904 printk(KERN_ERR
"%s: unknown error %02x\n",
1905 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1908 case E_RESET_JUMBO_RNG
:
1911 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1912 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1913 ap
->rx_jumbo_ring
[i
].size
= 0;
1914 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1915 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1916 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1920 if (ACE_IS_TIGON_I(ap
)) {
1922 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1925 ace_issue_cmd(ap
->regs
, &cmd
);
1927 writel(0, &((ap
->regs
)->RxJumboPrd
));
1932 ap
->rx_jumbo_skbprd
= 0;
1933 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1935 clear_bit(0, &ap
->jumbo_refill_busy
);
1939 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1940 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1942 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1949 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1951 struct ace_private
*ap
= netdev_priv(dev
);
1953 int mini_count
= 0, std_count
= 0;
1957 prefetchw(&ap
->cur_rx_bufs
);
1958 prefetchw(&ap
->cur_mini_bufs
);
1960 while (idx
!= rxretprd
) {
1961 struct ring_info
*rip
;
1962 struct sk_buff
*skb
;
1963 struct rx_desc
*rxdesc
, *retdesc
;
1965 int bd_flags
, desc_type
, mapsize
;
1969 /* make sure the rx descriptor isn't read before rxretprd */
1970 if (idx
== rxretcsm
)
1973 retdesc
= &ap
->rx_return_ring
[idx
];
1974 skbidx
= retdesc
->idx
;
1975 bd_flags
= retdesc
->flags
;
1976 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1980 * Normal frames do not have any flags set
1982 * Mini and normal frames arrive frequently,
1983 * so use a local counter to avoid doing
1984 * atomic operations for each packet arriving.
1987 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1988 mapsize
= ACE_STD_BUFSIZE
;
1989 rxdesc
= &ap
->rx_std_ring
[skbidx
];
1993 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
1994 mapsize
= ACE_JUMBO_BUFSIZE
;
1995 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
1996 atomic_dec(&ap
->cur_jumbo_bufs
);
1999 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2000 mapsize
= ACE_MINI_BUFSIZE
;
2001 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2005 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2006 "returned by NIC\n", dev
->name
,
2013 pci_unmap_page(ap
->pdev
,
2014 pci_unmap_addr(rip
, mapping
),
2016 PCI_DMA_FROMDEVICE
);
2017 skb_put(skb
, retdesc
->size
);
2022 csum
= retdesc
->tcp_udp_csum
;
2024 skb
->protocol
= eth_type_trans(skb
, dev
);
2027 * Instead of forcing the poor tigon mips cpu to calculate
2028 * pseudo hdr checksum, we do this ourselves.
2030 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2031 skb
->csum
= htons(csum
);
2032 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2034 skb
->ip_summed
= CHECKSUM_NONE
;
2039 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2040 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2045 dev
->last_rx
= jiffies
;
2046 ap
->stats
.rx_packets
++;
2047 ap
->stats
.rx_bytes
+= retdesc
->size
;
2049 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2052 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2053 if (!ACE_IS_TIGON_I(ap
))
2054 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2058 * According to the documentation RxRetCsm is obsolete with
2059 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2061 if (ACE_IS_TIGON_I(ap
)) {
2062 writel(idx
, &ap
->regs
->RxRetCsm
);
2073 static inline void ace_tx_int(struct net_device
*dev
,
2076 struct ace_private
*ap
= netdev_priv(dev
);
2079 struct sk_buff
*skb
;
2081 struct tx_ring_info
*info
;
2083 info
= ap
->skb
->tx_skbuff
+ idx
;
2085 mapping
= pci_unmap_addr(info
, mapping
);
2088 pci_unmap_page(ap
->pdev
, mapping
,
2089 pci_unmap_len(info
, maplen
),
2091 pci_unmap_addr_set(info
, mapping
, 0);
2095 ap
->stats
.tx_packets
++;
2096 ap
->stats
.tx_bytes
+= skb
->len
;
2097 dev_kfree_skb_irq(skb
);
2101 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2102 } while (idx
!= txcsm
);
2104 if (netif_queue_stopped(dev
))
2105 netif_wake_queue(dev
);
2108 ap
->tx_ret_csm
= txcsm
;
2110 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2112 * We could try to make it before. In this case we would get
2113 * the following race condition: hard_start_xmit on other cpu
2114 * enters after we advanced tx_ret_csm and fills space,
2115 * which we have just freed, so that we make illegal device wakeup.
2116 * There is no good way to workaround this (at entry
2117 * to ace_start_xmit detects this condition and prevents
2118 * ring corruption, but it is not a good workaround.)
2120 * When tx_ret_csm is advanced after, we wake up device _only_
2121 * if we really have some space in ring (though the core doing
2122 * hard_start_xmit can see full ring for some period and has to
2123 * synchronize.) Superb.
2124 * BUT! We get another subtle race condition. hard_start_xmit
2125 * may think that ring is full between wakeup and advancing
2126 * tx_ret_csm and will stop device instantly! It is not so bad.
2127 * We are guaranteed that there is something in ring, so that
2128 * the next irq will resume transmission. To speedup this we could
2129 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2130 * (see ace_start_xmit).
2132 * Well, this dilemma exists in all lock-free devices.
2133 * We, following scheme used in drivers by Donald Becker,
2134 * select the least dangerous.
2140 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
2142 struct net_device
*dev
= (struct net_device
*)dev_id
;
2143 struct ace_private
*ap
= netdev_priv(dev
);
2144 struct ace_regs __iomem
*regs
= ap
->regs
;
2146 u32 txcsm
, rxretcsm
, rxretprd
;
2150 * In case of PCI shared interrupts or spurious interrupts,
2151 * we want to make sure it is actually our interrupt before
2152 * spending any time in here.
2154 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2158 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2159 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2160 * writel(0, ®s->Mb0Lo).
2162 * "IRQ avoidance" recommended in docs applies to IRQs served
2163 * threads and it is wrong even for that case.
2165 writel(0, ®s
->Mb0Lo
);
2166 readl(®s
->Mb0Lo
);
2169 * There is no conflict between transmit handling in
2170 * start_xmit and receive processing, thus there is no reason
2171 * to take a spin lock for RX handling. Wait until we start
2172 * working on the other stuff - hey we don't need a spin lock
2175 rxretprd
= *ap
->rx_ret_prd
;
2176 rxretcsm
= ap
->cur_rx
;
2178 if (rxretprd
!= rxretcsm
)
2179 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2181 txcsm
= *ap
->tx_csm
;
2182 idx
= ap
->tx_ret_csm
;
2186 * If each skb takes only one descriptor this check degenerates
2187 * to identity, because new space has just been opened.
2188 * But if skbs are fragmented we must check that this index
2189 * update releases enough of space, otherwise we just
2190 * wait for device to make more work.
2192 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2193 ace_tx_int(dev
, txcsm
, idx
);
2196 evtcsm
= readl(®s
->EvtCsm
);
2197 evtprd
= *ap
->evt_prd
;
2199 if (evtcsm
!= evtprd
) {
2200 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2201 writel(evtcsm
, ®s
->EvtCsm
);
2205 * This has to go last in the interrupt handler and run with
2206 * the spin lock released ... what lock?
2208 if (netif_running(dev
)) {
2210 int run_tasklet
= 0;
2212 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2213 if (cur_size
< RX_LOW_STD_THRES
) {
2214 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2215 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2217 printk("low on std buffers %i\n", cur_size
);
2219 ace_load_std_rx_ring(ap
,
2220 RX_RING_SIZE
- cur_size
);
2225 if (!ACE_IS_TIGON_I(ap
)) {
2226 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2227 if (cur_size
< RX_LOW_MINI_THRES
) {
2228 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2229 !test_and_set_bit(0,
2230 &ap
->mini_refill_busy
)) {
2232 printk("low on mini buffers %i\n",
2235 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2242 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2243 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2244 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2245 !test_and_set_bit(0,
2246 &ap
->jumbo_refill_busy
)){
2248 printk("low on jumbo buffers %i\n",
2251 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2256 if (run_tasklet
&& !ap
->tasklet_pending
) {
2257 ap
->tasklet_pending
= 1;
2258 tasklet_schedule(&ap
->ace_tasklet
);
2267 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2269 struct ace_private
*ap
= netdev_priv(dev
);
2270 unsigned long flags
;
2272 local_irq_save(flags
);
2277 ace_unmask_irq(dev
);
2278 local_irq_restore(flags
);
2280 #endif /* ACENIC_DO_VLAN */
2283 static int ace_open(struct net_device
*dev
)
2285 struct ace_private
*ap
= netdev_priv(dev
);
2286 struct ace_regs __iomem
*regs
= ap
->regs
;
2289 if (!(ap
->fw_running
)) {
2290 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2294 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2296 cmd
.evt
= C_CLEAR_STATS
;
2299 ace_issue_cmd(regs
, &cmd
);
2301 cmd
.evt
= C_HOST_STATE
;
2302 cmd
.code
= C_C_STACK_UP
;
2304 ace_issue_cmd(regs
, &cmd
);
2307 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2308 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2310 if (dev
->flags
& IFF_PROMISC
) {
2311 cmd
.evt
= C_SET_PROMISC_MODE
;
2312 cmd
.code
= C_C_PROMISC_ENABLE
;
2314 ace_issue_cmd(regs
, &cmd
);
2322 cmd
.evt
= C_LNK_NEGOTIATION
;
2325 ace_issue_cmd(regs
, &cmd
);
2328 netif_start_queue(dev
);
2331 * Setup the bottom half rx ring refill handler
2333 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2338 static int ace_close(struct net_device
*dev
)
2340 struct ace_private
*ap
= netdev_priv(dev
);
2341 struct ace_regs __iomem
*regs
= ap
->regs
;
2343 unsigned long flags
;
2347 * Without (or before) releasing irq and stopping hardware, this
2348 * is an absolute non-sense, by the way. It will be reset instantly
2351 netif_stop_queue(dev
);
2355 cmd
.evt
= C_SET_PROMISC_MODE
;
2356 cmd
.code
= C_C_PROMISC_DISABLE
;
2358 ace_issue_cmd(regs
, &cmd
);
2362 cmd
.evt
= C_HOST_STATE
;
2363 cmd
.code
= C_C_STACK_DOWN
;
2365 ace_issue_cmd(regs
, &cmd
);
2367 tasklet_kill(&ap
->ace_tasklet
);
2370 * Make sure one CPU is not processing packets while
2371 * buffers are being released by another.
2374 local_irq_save(flags
);
2377 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2378 struct sk_buff
*skb
;
2380 struct tx_ring_info
*info
;
2382 info
= ap
->skb
->tx_skbuff
+ i
;
2384 mapping
= pci_unmap_addr(info
, mapping
);
2387 if (ACE_IS_TIGON_I(ap
)) {
2388 struct tx_desc __iomem
*tx
2389 = (struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2390 writel(0, &tx
->addr
.addrhi
);
2391 writel(0, &tx
->addr
.addrlo
);
2392 writel(0, &tx
->flagsize
);
2394 memset(ap
->tx_ring
+ i
, 0,
2395 sizeof(struct tx_desc
));
2396 pci_unmap_page(ap
->pdev
, mapping
,
2397 pci_unmap_len(info
, maplen
),
2399 pci_unmap_addr_set(info
, mapping
, 0);
2408 cmd
.evt
= C_RESET_JUMBO_RNG
;
2411 ace_issue_cmd(regs
, &cmd
);
2414 ace_unmask_irq(dev
);
2415 local_irq_restore(flags
);
2421 static inline dma_addr_t
2422 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2423 struct sk_buff
*tail
, u32 idx
)
2426 struct tx_ring_info
*info
;
2428 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2429 offset_in_page(skb
->data
),
2430 skb
->len
, PCI_DMA_TODEVICE
);
2432 info
= ap
->skb
->tx_skbuff
+ idx
;
2434 pci_unmap_addr_set(info
, mapping
, mapping
);
2435 pci_unmap_len_set(info
, maplen
, skb
->len
);
2441 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2442 u32 flagsize
, u32 vlan_tag
)
2444 #if !USE_TX_COAL_NOW
2445 flagsize
&= ~BD_FLG_COAL_NOW
;
2448 if (ACE_IS_TIGON_I(ap
)) {
2449 struct tx_desc __iomem
*io
= (struct tx_desc __iomem
*) desc
;
2450 writel(addr
>> 32, &io
->addr
.addrhi
);
2451 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2452 writel(flagsize
, &io
->flagsize
);
2454 writel(vlan_tag
, &io
->vlanres
);
2457 desc
->addr
.addrhi
= addr
>> 32;
2458 desc
->addr
.addrlo
= addr
;
2459 desc
->flagsize
= flagsize
;
2461 desc
->vlanres
= vlan_tag
;
2467 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2469 struct ace_private
*ap
= netdev_priv(dev
);
2470 struct ace_regs __iomem
*regs
= ap
->regs
;
2471 struct tx_desc
*desc
;
2473 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2478 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2481 if (!skb_shinfo(skb
)->nr_frags
) {
2485 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2486 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2487 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2488 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2490 if (vlan_tx_tag_present(skb
)) {
2491 flagsize
|= BD_FLG_VLAN_TAG
;
2492 vlan_tag
= vlan_tx_tag_get(skb
);
2495 desc
= ap
->tx_ring
+ idx
;
2496 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2498 /* Look at ace_tx_int for explanations. */
2499 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2500 flagsize
|= BD_FLG_COAL_NOW
;
2502 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2508 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2509 flagsize
= (skb_headlen(skb
) << 16);
2510 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2511 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2513 if (vlan_tx_tag_present(skb
)) {
2514 flagsize
|= BD_FLG_VLAN_TAG
;
2515 vlan_tag
= vlan_tx_tag_get(skb
);
2519 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2521 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2523 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2524 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2525 struct tx_ring_info
*info
;
2528 info
= ap
->skb
->tx_skbuff
+ idx
;
2529 desc
= ap
->tx_ring
+ idx
;
2531 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2532 frag
->page_offset
, frag
->size
,
2535 flagsize
= (frag
->size
<< 16);
2536 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2537 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2538 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2540 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2541 flagsize
|= BD_FLG_END
;
2542 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2543 flagsize
|= BD_FLG_COAL_NOW
;
2546 * Only the last fragment frees
2553 pci_unmap_addr_set(info
, mapping
, mapping
);
2554 pci_unmap_len_set(info
, maplen
, frag
->size
);
2555 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2561 ace_set_txprd(regs
, ap
, idx
);
2563 if (flagsize
& BD_FLG_COAL_NOW
) {
2564 netif_stop_queue(dev
);
2567 * A TX-descriptor producer (an IRQ) might have gotten
2568 * inbetween, making the ring free again. Since xmit is
2569 * serialized, this is the only situation we have to
2572 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2573 netif_wake_queue(dev
);
2576 dev
->trans_start
= jiffies
;
2577 return NETDEV_TX_OK
;
2581 * This race condition is unavoidable with lock-free drivers.
2582 * We wake up the queue _before_ tx_prd is advanced, so that we can
2583 * enter hard_start_xmit too early, while tx ring still looks closed.
2584 * This happens ~1-4 times per 100000 packets, so that we can allow
2585 * to loop syncing to other CPU. Probably, we need an additional
2586 * wmb() in ace_tx_intr as well.
2588 * Note that this race is relieved by reserving one more entry
2589 * in tx ring than it is necessary (see original non-SG driver).
2590 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2591 * is already overkill.
2593 * Alternative is to return with 1 not throttling queue. In this
2594 * case loop becomes longer, no more useful effects.
2596 if (time_before(jiffies
, maxjiff
)) {
2602 /* The ring is stuck full. */
2603 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2604 return NETDEV_TX_BUSY
;
2608 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2610 struct ace_private
*ap
= netdev_priv(dev
);
2611 struct ace_regs __iomem
*regs
= ap
->regs
;
2613 if (new_mtu
> ACE_JUMBO_MTU
)
2616 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2619 if (new_mtu
> ACE_STD_MTU
) {
2621 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2622 "support\n", dev
->name
);
2624 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2625 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2626 ace_set_rxtx_parms(dev
, 1);
2629 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2630 ace_sync_irq(dev
->irq
);
2631 ace_set_rxtx_parms(dev
, 0);
2635 cmd
.evt
= C_RESET_JUMBO_RNG
;
2638 ace_issue_cmd(regs
, &cmd
);
2645 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2647 struct ace_private
*ap
= netdev_priv(dev
);
2648 struct ace_regs __iomem
*regs
= ap
->regs
;
2651 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2653 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2654 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2655 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2656 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2658 ecmd
->port
= PORT_FIBRE
;
2659 ecmd
->transceiver
= XCVR_INTERNAL
;
2661 link
= readl(®s
->GigLnkState
);
2662 if (link
& LNK_1000MB
)
2663 ecmd
->speed
= SPEED_1000
;
2665 link
= readl(®s
->FastLnkState
);
2666 if (link
& LNK_100MB
)
2667 ecmd
->speed
= SPEED_100
;
2668 else if (link
& LNK_10MB
)
2669 ecmd
->speed
= SPEED_10
;
2673 if (link
& LNK_FULL_DUPLEX
)
2674 ecmd
->duplex
= DUPLEX_FULL
;
2676 ecmd
->duplex
= DUPLEX_HALF
;
2678 if (link
& LNK_NEGOTIATE
)
2679 ecmd
->autoneg
= AUTONEG_ENABLE
;
2681 ecmd
->autoneg
= AUTONEG_DISABLE
;
2685 * Current struct ethtool_cmd is insufficient
2687 ecmd
->trace
= readl(®s
->TuneTrace
);
2689 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2690 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2692 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2693 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2698 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2700 struct ace_private
*ap
= netdev_priv(dev
);
2701 struct ace_regs __iomem
*regs
= ap
->regs
;
2704 link
= readl(®s
->GigLnkState
);
2705 if (link
& LNK_1000MB
)
2708 link
= readl(®s
->FastLnkState
);
2709 if (link
& LNK_100MB
)
2711 else if (link
& LNK_10MB
)
2717 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2718 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2719 if (!ACE_IS_TIGON_I(ap
))
2720 link
|= LNK_TX_FLOW_CTL_Y
;
2721 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2722 link
|= LNK_NEGOTIATE
;
2723 if (ecmd
->speed
!= speed
) {
2724 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2738 if (ecmd
->duplex
== DUPLEX_FULL
)
2739 link
|= LNK_FULL_DUPLEX
;
2741 if (link
!= ap
->link
) {
2743 printk(KERN_INFO
"%s: Renegotiating link state\n",
2747 writel(link
, ®s
->TuneLink
);
2748 if (!ACE_IS_TIGON_I(ap
))
2749 writel(link
, ®s
->TuneFastLink
);
2752 cmd
.evt
= C_LNK_NEGOTIATION
;
2755 ace_issue_cmd(regs
, &cmd
);
2760 static void ace_get_drvinfo(struct net_device
*dev
,
2761 struct ethtool_drvinfo
*info
)
2763 struct ace_private
*ap
= netdev_priv(dev
);
2765 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2766 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2767 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2771 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2772 sizeof(info
->bus_info
));
2777 * Set the hardware MAC address.
2779 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2781 struct ace_private
*ap
= netdev_priv(dev
);
2782 struct ace_regs __iomem
*regs
= ap
->regs
;
2783 struct sockaddr
*addr
=p
;
2787 if(netif_running(dev
))
2790 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2792 da
= (u8
*)dev
->dev_addr
;
2794 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2795 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2798 cmd
.evt
= C_SET_MAC_ADDR
;
2801 ace_issue_cmd(regs
, &cmd
);
2807 static void ace_set_multicast_list(struct net_device
*dev
)
2809 struct ace_private
*ap
= netdev_priv(dev
);
2810 struct ace_regs __iomem
*regs
= ap
->regs
;
2813 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2814 cmd
.evt
= C_SET_MULTICAST_MODE
;
2815 cmd
.code
= C_C_MCAST_ENABLE
;
2817 ace_issue_cmd(regs
, &cmd
);
2819 } else if (ap
->mcast_all
) {
2820 cmd
.evt
= C_SET_MULTICAST_MODE
;
2821 cmd
.code
= C_C_MCAST_DISABLE
;
2823 ace_issue_cmd(regs
, &cmd
);
2827 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2828 cmd
.evt
= C_SET_PROMISC_MODE
;
2829 cmd
.code
= C_C_PROMISC_ENABLE
;
2831 ace_issue_cmd(regs
, &cmd
);
2833 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2834 cmd
.evt
= C_SET_PROMISC_MODE
;
2835 cmd
.code
= C_C_PROMISC_DISABLE
;
2837 ace_issue_cmd(regs
, &cmd
);
2842 * For the time being multicast relies on the upper layers
2843 * filtering it properly. The Firmware does not allow one to
2844 * set the entire multicast list at a time and keeping track of
2845 * it here is going to be messy.
2847 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2848 cmd
.evt
= C_SET_MULTICAST_MODE
;
2849 cmd
.code
= C_C_MCAST_ENABLE
;
2851 ace_issue_cmd(regs
, &cmd
);
2852 }else if (!ap
->mcast_all
) {
2853 cmd
.evt
= C_SET_MULTICAST_MODE
;
2854 cmd
.code
= C_C_MCAST_DISABLE
;
2856 ace_issue_cmd(regs
, &cmd
);
2861 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2863 struct ace_private
*ap
= netdev_priv(dev
);
2864 struct ace_mac_stats __iomem
*mac_stats
=
2865 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2867 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2868 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2869 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2875 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2878 void __iomem
*tdest
;
2886 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2887 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2888 tdest
= (void __iomem
*) ®s
->Window
+
2889 (dest
& (ACE_WINDOW_SIZE
- 1));
2890 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2892 * This requires byte swapping on big endian, however
2893 * writel does that for us
2896 for (i
= 0; i
< (tsize
/ 4); i
++) {
2897 writel(wsrc
[i
], tdest
+ i
*4);
2908 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2910 void __iomem
*tdest
;
2917 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2918 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2919 tdest
= (void __iomem
*) ®s
->Window
+
2920 (dest
& (ACE_WINDOW_SIZE
- 1));
2921 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2923 for (i
= 0; i
< (tsize
/ 4); i
++) {
2924 writel(0, tdest
+ i
*4);
2936 * Download the firmware into the SRAM on the NIC
2938 * This operation requires the NIC to be halted and is performed with
2939 * interrupts disabled and with the spinlock hold.
2941 int __devinit
ace_load_firmware(struct net_device
*dev
)
2943 struct ace_private
*ap
= netdev_priv(dev
);
2944 struct ace_regs __iomem
*regs
= ap
->regs
;
2946 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2947 printk(KERN_ERR
"%s: trying to download firmware while the "
2948 "CPU is running!\n", ap
->name
);
2953 * Do not try to clear more than 512KB or we end up seeing
2954 * funny things on NICs with only 512KB SRAM
2956 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2957 if (ACE_IS_TIGON_I(ap
)) {
2958 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2959 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2960 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2962 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2963 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2964 }else if (ap
->version
== 2) {
2965 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2966 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2967 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
2968 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
2970 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
2978 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2980 * Accessing the EEPROM is `interesting' to say the least - don't read
2981 * this code right after dinner.
2983 * This is all about black magic and bit-banging the device .... I
2984 * wonder in what hospital they have put the guy who designed the i2c
2987 * Oh yes, this is only the beginning!
2989 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2990 * code i2c readout code by beta testing all my hacks.
2992 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
2996 readl(®s
->LocalCtrl
);
2997 udelay(ACE_SHORT_DELAY
);
2998 local
= readl(®s
->LocalCtrl
);
2999 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3000 writel(local
, ®s
->LocalCtrl
);
3001 readl(®s
->LocalCtrl
);
3003 udelay(ACE_SHORT_DELAY
);
3004 local
|= EEPROM_CLK_OUT
;
3005 writel(local
, ®s
->LocalCtrl
);
3006 readl(®s
->LocalCtrl
);
3008 udelay(ACE_SHORT_DELAY
);
3009 local
&= ~EEPROM_DATA_OUT
;
3010 writel(local
, ®s
->LocalCtrl
);
3011 readl(®s
->LocalCtrl
);
3013 udelay(ACE_SHORT_DELAY
);
3014 local
&= ~EEPROM_CLK_OUT
;
3015 writel(local
, ®s
->LocalCtrl
);
3016 readl(®s
->LocalCtrl
);
3021 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3026 udelay(ACE_SHORT_DELAY
);
3027 local
= readl(®s
->LocalCtrl
);
3028 local
&= ~EEPROM_DATA_OUT
;
3029 local
|= EEPROM_WRITE_ENABLE
;
3030 writel(local
, ®s
->LocalCtrl
);
3031 readl(®s
->LocalCtrl
);
3034 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3035 udelay(ACE_SHORT_DELAY
);
3037 local
|= EEPROM_DATA_OUT
;
3039 local
&= ~EEPROM_DATA_OUT
;
3040 writel(local
, ®s
->LocalCtrl
);
3041 readl(®s
->LocalCtrl
);
3044 udelay(ACE_SHORT_DELAY
);
3045 local
|= EEPROM_CLK_OUT
;
3046 writel(local
, ®s
->LocalCtrl
);
3047 readl(®s
->LocalCtrl
);
3049 udelay(ACE_SHORT_DELAY
);
3050 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3051 writel(local
, ®s
->LocalCtrl
);
3052 readl(®s
->LocalCtrl
);
3058 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3063 local
= readl(®s
->LocalCtrl
);
3064 local
&= ~EEPROM_WRITE_ENABLE
;
3065 writel(local
, ®s
->LocalCtrl
);
3066 readl(®s
->LocalCtrl
);
3068 udelay(ACE_LONG_DELAY
);
3069 local
|= EEPROM_CLK_OUT
;
3070 writel(local
, ®s
->LocalCtrl
);
3071 readl(®s
->LocalCtrl
);
3073 udelay(ACE_SHORT_DELAY
);
3074 /* sample data in middle of high clk */
3075 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3076 udelay(ACE_SHORT_DELAY
);
3078 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3079 readl(®s
->LocalCtrl
);
3086 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3090 udelay(ACE_SHORT_DELAY
);
3091 local
= readl(®s
->LocalCtrl
);
3092 local
|= EEPROM_WRITE_ENABLE
;
3093 writel(local
, ®s
->LocalCtrl
);
3094 readl(®s
->LocalCtrl
);
3096 udelay(ACE_SHORT_DELAY
);
3097 local
&= ~EEPROM_DATA_OUT
;
3098 writel(local
, ®s
->LocalCtrl
);
3099 readl(®s
->LocalCtrl
);
3101 udelay(ACE_SHORT_DELAY
);
3102 local
|= EEPROM_CLK_OUT
;
3103 writel(local
, ®s
->LocalCtrl
);
3104 readl(®s
->LocalCtrl
);
3106 udelay(ACE_SHORT_DELAY
);
3107 local
|= EEPROM_DATA_OUT
;
3108 writel(local
, ®s
->LocalCtrl
);
3109 readl(®s
->LocalCtrl
);
3111 udelay(ACE_LONG_DELAY
);
3112 local
&= ~EEPROM_CLK_OUT
;
3113 writel(local
, ®s
->LocalCtrl
);
3119 * Read a whole byte from the EEPROM.
3121 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3122 unsigned long offset
)
3124 struct ace_private
*ap
= netdev_priv(dev
);
3125 struct ace_regs __iomem
*regs
= ap
->regs
;
3126 unsigned long flags
;
3132 printk(KERN_ERR
"No device!\n");
3138 * Don't take interrupts on this CPU will bit banging
3139 * the %#%#@$ I2C device
3141 local_irq_save(flags
);
3145 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3146 if (eeprom_check_ack(regs
)) {
3147 local_irq_restore(flags
);
3148 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3150 goto eeprom_read_error
;
3153 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3154 if (eeprom_check_ack(regs
)) {
3155 local_irq_restore(flags
);
3156 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3159 goto eeprom_read_error
;
3162 eeprom_prep(regs
, offset
& 0xff);
3163 if (eeprom_check_ack(regs
)) {
3164 local_irq_restore(flags
);
3165 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3168 goto eeprom_read_error
;
3172 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3173 if (eeprom_check_ack(regs
)) {
3174 local_irq_restore(flags
);
3175 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3178 goto eeprom_read_error
;
3181 for (i
= 0; i
< 8; i
++) {
3182 local
= readl(®s
->LocalCtrl
);
3183 local
&= ~EEPROM_WRITE_ENABLE
;
3184 writel(local
, ®s
->LocalCtrl
);
3185 readl(®s
->LocalCtrl
);
3186 udelay(ACE_LONG_DELAY
);
3188 local
|= EEPROM_CLK_OUT
;
3189 writel(local
, ®s
->LocalCtrl
);
3190 readl(®s
->LocalCtrl
);
3192 udelay(ACE_SHORT_DELAY
);
3193 /* sample data mid high clk */
3194 result
= (result
<< 1) |
3195 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3196 udelay(ACE_SHORT_DELAY
);
3198 local
= readl(®s
->LocalCtrl
);
3199 local
&= ~EEPROM_CLK_OUT
;
3200 writel(local
, ®s
->LocalCtrl
);
3201 readl(®s
->LocalCtrl
);
3202 udelay(ACE_SHORT_DELAY
);
3205 local
|= EEPROM_WRITE_ENABLE
;
3206 writel(local
, ®s
->LocalCtrl
);
3207 readl(®s
->LocalCtrl
);
3209 udelay(ACE_SHORT_DELAY
);
3213 local
|= EEPROM_DATA_OUT
;
3214 writel(local
, ®s
->LocalCtrl
);
3215 readl(®s
->LocalCtrl
);
3217 udelay(ACE_SHORT_DELAY
);
3218 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3219 readl(®s
->LocalCtrl
);
3220 udelay(ACE_LONG_DELAY
);
3221 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3222 readl(®s
->LocalCtrl
);
3224 udelay(ACE_SHORT_DELAY
);
3227 local_irq_restore(flags
);
3232 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3240 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"