4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
29 #include <linux/sched.h>
31 #include "oprofile_stats.h"
32 #include "event_buffer.h"
33 #include "cpu_buffer.h"
34 #include "buffer_sync.h"
36 static LIST_HEAD(dying_tasks
);
37 static LIST_HEAD(dead_tasks
);
38 static cpumask_t marked_cpus
= CPU_MASK_NONE
;
39 static DEFINE_SPINLOCK(task_mortuary
);
40 static void process_task_mortuary(void);
43 /* Take ownership of the task struct and place it on the
44 * list for processing. Only after two full buffer syncs
45 * does the task eventually get freed, because by then
46 * we are sure we will not reference it again.
47 * Can be invoked from softirq via RCU callback due to
48 * call_rcu() of the task struct, hence the _irqsave.
50 static int task_free_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
53 struct task_struct
* task
= data
;
54 spin_lock_irqsave(&task_mortuary
, flags
);
55 list_add(&task
->tasks
, &dying_tasks
);
56 spin_unlock_irqrestore(&task_mortuary
, flags
);
61 /* The task is on its way out. A sync of the buffer means we can catch
62 * any remaining samples for this task.
64 static int task_exit_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
66 /* To avoid latency problems, we only process the current CPU,
67 * hoping that most samples for the task are on this CPU
69 sync_buffer(raw_smp_processor_id());
74 /* The task is about to try a do_munmap(). We peek at what it's going to
75 * do, and if it's an executable region, process the samples first, so
76 * we don't lose any. This does not have to be exact, it's a QoI issue
79 static int munmap_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
81 unsigned long addr
= (unsigned long)data
;
82 struct mm_struct
* mm
= current
->mm
;
83 struct vm_area_struct
* mpnt
;
85 down_read(&mm
->mmap_sem
);
87 mpnt
= find_vma(mm
, addr
);
88 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
89 up_read(&mm
->mmap_sem
);
90 /* To avoid latency problems, we only process the current CPU,
91 * hoping that most samples for the task are on this CPU
93 sync_buffer(raw_smp_processor_id());
97 up_read(&mm
->mmap_sem
);
102 /* We need to be told about new modules so we don't attribute to a previously
103 * loaded module, or drop the samples on the floor.
105 static int module_load_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
107 #ifdef CONFIG_MODULES
108 if (val
!= MODULE_STATE_COMING
)
111 /* FIXME: should we process all CPU buffers ? */
112 mutex_lock(&buffer_mutex
);
113 add_event_entry(ESCAPE_CODE
);
114 add_event_entry(MODULE_LOADED_CODE
);
115 mutex_unlock(&buffer_mutex
);
121 static struct notifier_block task_free_nb
= {
122 .notifier_call
= task_free_notify
,
125 static struct notifier_block task_exit_nb
= {
126 .notifier_call
= task_exit_notify
,
129 static struct notifier_block munmap_nb
= {
130 .notifier_call
= munmap_notify
,
133 static struct notifier_block module_load_nb
= {
134 .notifier_call
= module_load_notify
,
138 static void end_sync(void)
141 /* make sure we don't leak task structs */
142 process_task_mortuary();
143 process_task_mortuary();
153 err
= task_handoff_register(&task_free_nb
);
156 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
159 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
162 err
= register_module_notifier(&module_load_nb
);
169 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
171 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
173 task_handoff_unregister(&task_free_nb
);
182 unregister_module_notifier(&module_load_nb
);
183 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
184 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
185 task_handoff_unregister(&task_free_nb
);
190 /* Optimisation. We can manage without taking the dcookie sem
191 * because we cannot reach this code without at least one
192 * dcookie user still being registered (namely, the reader
193 * of the event buffer). */
194 static inline unsigned long fast_get_dcookie(struct dentry
* dentry
,
195 struct vfsmount
* vfsmnt
)
197 unsigned long cookie
;
199 if (dentry
->d_cookie
)
200 return (unsigned long)dentry
;
201 get_dcookie(dentry
, vfsmnt
, &cookie
);
206 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
207 * which corresponds loosely to "application name". This is
208 * not strictly necessary but allows oprofile to associate
209 * shared-library samples with particular applications
211 static unsigned long get_exec_dcookie(struct mm_struct
* mm
)
213 unsigned long cookie
= NO_COOKIE
;
214 struct vm_area_struct
* vma
;
219 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
222 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
224 cookie
= fast_get_dcookie(vma
->vm_file
->f_path
.dentry
,
225 vma
->vm_file
->f_path
.mnt
);
234 /* Convert the EIP value of a sample into a persistent dentry/offset
235 * pair that can then be added to the global event buffer. We make
236 * sure to do this lookup before a mm->mmap modification happens so
237 * we don't lose track.
239 static unsigned long lookup_dcookie(struct mm_struct
* mm
, unsigned long addr
, off_t
* offset
)
241 unsigned long cookie
= NO_COOKIE
;
242 struct vm_area_struct
* vma
;
244 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
246 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
250 cookie
= fast_get_dcookie(vma
->vm_file
->f_path
.dentry
,
251 vma
->vm_file
->f_path
.mnt
);
252 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
255 /* must be an anonymous map */
263 cookie
= INVALID_COOKIE
;
269 static unsigned long last_cookie
= INVALID_COOKIE
;
271 static void add_cpu_switch(int i
)
273 add_event_entry(ESCAPE_CODE
);
274 add_event_entry(CPU_SWITCH_CODE
);
276 last_cookie
= INVALID_COOKIE
;
279 static void add_kernel_ctx_switch(unsigned int in_kernel
)
281 add_event_entry(ESCAPE_CODE
);
283 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
285 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
289 add_user_ctx_switch(struct task_struct
const * task
, unsigned long cookie
)
291 add_event_entry(ESCAPE_CODE
);
292 add_event_entry(CTX_SWITCH_CODE
);
293 add_event_entry(task
->pid
);
294 add_event_entry(cookie
);
295 /* Another code for daemon back-compat */
296 add_event_entry(ESCAPE_CODE
);
297 add_event_entry(CTX_TGID_CODE
);
298 add_event_entry(task
->tgid
);
302 static void add_cookie_switch(unsigned long cookie
)
304 add_event_entry(ESCAPE_CODE
);
305 add_event_entry(COOKIE_SWITCH_CODE
);
306 add_event_entry(cookie
);
310 static void add_trace_begin(void)
312 add_event_entry(ESCAPE_CODE
);
313 add_event_entry(TRACE_BEGIN_CODE
);
317 static void add_sample_entry(unsigned long offset
, unsigned long event
)
319 add_event_entry(offset
);
320 add_event_entry(event
);
324 static int add_us_sample(struct mm_struct
* mm
, struct op_sample
* s
)
326 unsigned long cookie
;
329 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
331 if (cookie
== INVALID_COOKIE
) {
332 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
336 if (cookie
!= last_cookie
) {
337 add_cookie_switch(cookie
);
338 last_cookie
= cookie
;
341 add_sample_entry(offset
, s
->event
);
347 /* Add a sample to the global event buffer. If possible the
348 * sample is converted into a persistent dentry/offset pair
349 * for later lookup from userspace.
352 add_sample(struct mm_struct
* mm
, struct op_sample
* s
, int in_kernel
)
355 add_sample_entry(s
->eip
, s
->event
);
358 return add_us_sample(mm
, s
);
360 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
366 static void release_mm(struct mm_struct
* mm
)
370 up_read(&mm
->mmap_sem
);
375 static struct mm_struct
* take_tasks_mm(struct task_struct
* task
)
377 struct mm_struct
* mm
= get_task_mm(task
);
379 down_read(&mm
->mmap_sem
);
384 static inline int is_code(unsigned long val
)
386 return val
== ESCAPE_CODE
;
390 /* "acquire" as many cpu buffer slots as we can */
391 static unsigned long get_slots(struct oprofile_cpu_buffer
* b
)
393 unsigned long head
= b
->head_pos
;
394 unsigned long tail
= b
->tail_pos
;
397 * Subtle. This resets the persistent last_task
398 * and in_kernel values used for switching notes.
399 * BUT, there is a small window between reading
400 * head_pos, and this call, that means samples
401 * can appear at the new head position, but not
402 * be prefixed with the notes for switching
403 * kernel mode or a task switch. This small hole
404 * can lead to mis-attribution or samples where
405 * we don't know if it's in the kernel or not,
406 * at the start of an event buffer.
413 return head
+ (b
->buffer_size
- tail
);
417 static void increment_tail(struct oprofile_cpu_buffer
* b
)
419 unsigned long new_tail
= b
->tail_pos
+ 1;
423 if (new_tail
< b
->buffer_size
)
424 b
->tail_pos
= new_tail
;
430 /* Move tasks along towards death. Any tasks on dead_tasks
431 * will definitely have no remaining references in any
432 * CPU buffers at this point, because we use two lists,
433 * and to have reached the list, it must have gone through
434 * one full sync already.
436 static void process_task_mortuary(void)
439 LIST_HEAD(local_dead_tasks
);
440 struct task_struct
* task
;
441 struct task_struct
* ttask
;
443 spin_lock_irqsave(&task_mortuary
, flags
);
445 list_splice_init(&dead_tasks
, &local_dead_tasks
);
446 list_splice_init(&dying_tasks
, &dead_tasks
);
448 spin_unlock_irqrestore(&task_mortuary
, flags
);
450 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
451 list_del(&task
->tasks
);
457 static void mark_done(int cpu
)
461 cpu_set(cpu
, marked_cpus
);
463 for_each_online_cpu(i
) {
464 if (!cpu_isset(i
, marked_cpus
))
468 /* All CPUs have been processed at least once,
469 * we can process the mortuary once
471 process_task_mortuary();
473 cpus_clear(marked_cpus
);
477 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
478 * traversal, the code switch to sb_sample_start at first kernel enter/exit
479 * switch so we need a fifth state and some special handling in sync_buffer()
488 /* Sync one of the CPU's buffers into the global event buffer.
489 * Here we need to go through each batch of samples punctuated
490 * by context switch notes, taking the task's mmap_sem and doing
491 * lookup in task->mm->mmap to convert EIP into dcookie/offset
494 void sync_buffer(int cpu
)
496 struct oprofile_cpu_buffer
* cpu_buf
= &cpu_buffer
[cpu
];
497 struct mm_struct
*mm
= NULL
;
498 struct task_struct
* new;
499 unsigned long cookie
= 0;
502 sync_buffer_state state
= sb_buffer_start
;
503 unsigned long available
;
505 mutex_lock(&buffer_mutex
);
509 /* Remember, only we can modify tail_pos */
511 available
= get_slots(cpu_buf
);
513 for (i
= 0; i
< available
; ++i
) {
514 struct op_sample
* s
= &cpu_buf
->buffer
[cpu_buf
->tail_pos
];
516 if (is_code(s
->eip
)) {
517 if (s
->event
<= CPU_IS_KERNEL
) {
518 /* kernel/userspace switch */
519 in_kernel
= s
->event
;
520 if (state
== sb_buffer_start
)
521 state
= sb_sample_start
;
522 add_kernel_ctx_switch(s
->event
);
523 } else if (s
->event
== CPU_TRACE_BEGIN
) {
527 struct mm_struct
* oldmm
= mm
;
529 /* userspace context switch */
530 new = (struct task_struct
*)s
->event
;
533 mm
= take_tasks_mm(new);
535 cookie
= get_exec_dcookie(mm
);
536 add_user_ctx_switch(new, cookie
);
539 if (state
>= sb_bt_start
&&
540 !add_sample(mm
, s
, in_kernel
)) {
541 if (state
== sb_bt_start
) {
542 state
= sb_bt_ignore
;
543 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
548 increment_tail(cpu_buf
);
554 mutex_unlock(&buffer_mutex
);