2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk
;
38 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
39 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 * xhci_handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
49 * Returns negative errno, or zero on success
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
55 int xhci_handshake(struct xhci_hcd
*xhci
, void __iomem
*ptr
,
56 u32 mask
, u32 done
, int usec
)
61 result
= xhci_readl(xhci
, ptr
);
62 if (result
== ~(u32
)0) /* card removed */
74 * Disable interrupts and begin the xHCI halting process.
76 void xhci_quiesce(struct xhci_hcd
*xhci
)
83 halted
= xhci_readl(xhci
, &xhci
->op_regs
->status
) & STS_HALT
;
87 cmd
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
89 xhci_writel(xhci
, cmd
, &xhci
->op_regs
->command
);
93 * Force HC into halt state.
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
100 int xhci_halt(struct xhci_hcd
*xhci
)
103 xhci_dbg(xhci
, "// Halt the HC\n");
106 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
107 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
109 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
110 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
112 xhci_warn(xhci
, "Host not halted after %u microseconds.\n",
118 * Set the run bit and wait for the host to be running.
120 static int xhci_start(struct xhci_hcd
*xhci
)
125 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
127 xhci_dbg(xhci
, "// Turn on HC, cmd = 0x%x.\n",
129 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
136 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
137 if (ret
== -ETIMEDOUT
)
138 xhci_err(xhci
, "Host took too long to start, "
139 "waited %u microseconds.\n",
142 xhci
->xhc_state
&= ~XHCI_STATE_HALTED
;
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
153 int xhci_reset(struct xhci_hcd
*xhci
)
159 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
160 if ((state
& STS_HALT
) == 0) {
161 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
165 xhci_dbg(xhci
, "// Reset the HC\n");
166 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
167 command
|= CMD_RESET
;
168 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
170 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->command
,
171 CMD_RESET
, 0, 10 * 1000 * 1000);
175 xhci_dbg(xhci
, "Wait for controller to be ready for doorbell rings\n");
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
180 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
181 STS_CNR
, 0, 10 * 1000 * 1000);
183 for (i
= 0; i
< 2; ++i
) {
184 xhci
->bus_state
[i
].port_c_suspend
= 0;
185 xhci
->bus_state
[i
].suspended_ports
= 0;
186 xhci
->bus_state
[i
].resuming_ports
= 0;
193 static int xhci_free_msi(struct xhci_hcd
*xhci
)
197 if (!xhci
->msix_entries
)
200 for (i
= 0; i
< xhci
->msix_count
; i
++)
201 if (xhci
->msix_entries
[i
].vector
)
202 free_irq(xhci
->msix_entries
[i
].vector
,
210 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
213 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
215 ret
= pci_enable_msi(pdev
);
217 xhci_dbg(xhci
, "failed to allocate MSI entry\n");
221 ret
= request_irq(pdev
->irq
, (irq_handler_t
)xhci_msi_irq
,
222 0, "xhci_hcd", xhci_to_hcd(xhci
));
224 xhci_dbg(xhci
, "disable MSI interrupt\n");
225 pci_disable_msi(pdev
);
233 * free all IRQs request
235 static void xhci_free_irq(struct xhci_hcd
*xhci
)
237 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci
)->irq
> 0)
244 ret
= xhci_free_msi(xhci
);
248 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
256 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
259 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
260 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
269 xhci
->msix_count
= min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci
->hcs_params1
));
273 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
275 if (!xhci
->msix_entries
) {
276 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
280 for (i
= 0; i
< xhci
->msix_count
; i
++) {
281 xhci
->msix_entries
[i
].entry
= i
;
282 xhci
->msix_entries
[i
].vector
= 0;
285 ret
= pci_enable_msix(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
287 xhci_dbg(xhci
, "Failed to enable MSI-X\n");
291 for (i
= 0; i
< xhci
->msix_count
; i
++) {
292 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
293 (irq_handler_t
)xhci_msi_irq
,
294 0, "xhci_hcd", xhci_to_hcd(xhci
));
299 hcd
->msix_enabled
= 1;
303 xhci_dbg(xhci
, "disable MSI-X interrupt\n");
305 pci_disable_msix(pdev
);
307 kfree(xhci
->msix_entries
);
308 xhci
->msix_entries
= NULL
;
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
315 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
316 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
320 if (xhci
->msix_entries
) {
321 pci_disable_msix(pdev
);
322 kfree(xhci
->msix_entries
);
323 xhci
->msix_entries
= NULL
;
325 pci_disable_msi(pdev
);
328 hcd
->msix_enabled
= 0;
332 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
336 if (xhci
->msix_entries
) {
337 for (i
= 0; i
< xhci
->msix_count
; i
++)
338 synchronize_irq(xhci
->msix_entries
[i
].vector
);
342 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
344 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
345 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
352 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
355 /* unregister the legacy interrupt */
357 free_irq(hcd
->irq
, hcd
);
360 ret
= xhci_setup_msix(xhci
);
362 /* fall back to msi*/
363 ret
= xhci_setup_msi(xhci
);
366 /* hcd->irq is 0, we have MSI */
370 xhci_err(xhci
, "No msi-x/msi found and no IRQ in BIOS\n");
375 /* fall back to legacy interrupt*/
376 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
377 hcd
->irq_descr
, hcd
);
379 xhci_err(xhci
, "request interrupt %d failed\n",
383 hcd
->irq
= pdev
->irq
;
389 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
394 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
398 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
404 static void compliance_mode_recovery(unsigned long arg
)
406 struct xhci_hcd
*xhci
;
411 xhci
= (struct xhci_hcd
*)arg
;
413 for (i
= 0; i
< xhci
->num_usb3_ports
; i
++) {
414 temp
= xhci_readl(xhci
, xhci
->usb3_ports
[i
]);
415 if ((temp
& PORT_PLS_MASK
) == USB_SS_PORT_LS_COMP_MOD
) {
417 * Compliance Mode Detected. Letting USB Core
418 * handle the Warm Reset
420 xhci_dbg(xhci
, "Compliance mode detected->port %d\n",
422 xhci_dbg(xhci
, "Attempting compliance mode recovery\n");
423 hcd
= xhci
->shared_hcd
;
425 if (hcd
->state
== HC_STATE_SUSPENDED
)
426 usb_hcd_resume_root_hub(hcd
);
428 usb_hcd_poll_rh_status(hcd
);
432 if (xhci
->port_status_u0
!= ((1 << xhci
->num_usb3_ports
)-1))
433 mod_timer(&xhci
->comp_mode_recovery_timer
,
434 jiffies
+ msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439 * that causes ports behind that hardware to enter compliance mode sometimes.
440 * The quirk creates a timer that polls every 2 seconds the link state of
441 * each host controller's port and recovers it by issuing a Warm reset
442 * if Compliance mode is detected, otherwise the port will become "dead" (no
443 * device connections or disconnections will be detected anymore). Becasue no
444 * status event is generated when entering compliance mode (per xhci spec),
445 * this quirk is needed on systems that have the failing hardware installed.
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd
*xhci
)
449 xhci
->port_status_u0
= 0;
450 init_timer(&xhci
->comp_mode_recovery_timer
);
452 xhci
->comp_mode_recovery_timer
.data
= (unsigned long) xhci
;
453 xhci
->comp_mode_recovery_timer
.function
= compliance_mode_recovery
;
454 xhci
->comp_mode_recovery_timer
.expires
= jiffies
+
455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
);
457 set_timer_slack(&xhci
->comp_mode_recovery_timer
,
458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
459 add_timer(&xhci
->comp_mode_recovery_timer
);
460 xhci_dbg(xhci
, "Compliance mode recovery timer initialized\n");
464 * This function identifies the systems that have installed the SN65LVPE502CP
465 * USB3.0 re-driver and that need the Compliance Mode Quirk.
467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 const char *dmi_product_name
, *dmi_sys_vendor
;
473 dmi_product_name
= dmi_get_system_info(DMI_PRODUCT_NAME
);
474 dmi_sys_vendor
= dmi_get_system_info(DMI_SYS_VENDOR
);
475 if (!dmi_product_name
|| !dmi_sys_vendor
)
478 if (!(strstr(dmi_sys_vendor
, "Hewlett-Packard")))
481 if (strstr(dmi_product_name
, "Z420") ||
482 strstr(dmi_product_name
, "Z620") ||
483 strstr(dmi_product_name
, "Z820") ||
484 strstr(dmi_product_name
, "Z1 Workstation"))
490 static int xhci_all_ports_seen_u0(struct xhci_hcd
*xhci
)
492 return (xhci
->port_status_u0
== ((1 << xhci
->num_usb3_ports
)-1));
497 * Initialize memory for HCD and xHC (one-time init).
499 * Program the PAGESIZE register, initialize the device context array, create
500 * device contexts (?), set up a command ring segment (or two?), create event
501 * ring (one for now).
503 int xhci_init(struct usb_hcd
*hcd
)
505 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
508 xhci_dbg(xhci
, "xhci_init\n");
509 spin_lock_init(&xhci
->lock
);
510 if (xhci
->hci_version
== 0x95 && link_quirk
) {
511 xhci_dbg(xhci
, "QUIRK: Not clearing Link TRB chain bits.\n");
512 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
514 xhci_dbg(xhci
, "xHCI doesn't need link TRB QUIRK\n");
516 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
517 xhci_dbg(xhci
, "Finished xhci_init\n");
519 /* Initializing Compliance Mode Recovery Data If Needed */
520 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521 xhci
->quirks
|= XHCI_COMP_MODE_QUIRK
;
522 compliance_mode_recovery_timer_init(xhci
);
528 /*-------------------------------------------------------------------------*/
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg
)
537 struct xhci_hcd
*xhci
= (struct xhci_hcd
*) arg
;
540 xhci_dbg(xhci
, "Poll event ring: %lu\n", jiffies
);
542 spin_lock_irqsave(&xhci
->lock
, flags
);
543 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
544 xhci_dbg(xhci
, "op reg status = 0x%x\n", temp
);
545 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
546 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
547 xhci_dbg(xhci
, "HW died, polling stopped.\n");
548 spin_unlock_irqrestore(&xhci
->lock
, flags
);
552 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
553 xhci_dbg(xhci
, "ir_set 0 pending = 0x%x\n", temp
);
554 xhci_dbg(xhci
, "HC error bitmask = 0x%x\n", xhci
->error_bitmask
);
555 xhci
->error_bitmask
= 0;
556 xhci_dbg(xhci
, "Event ring:\n");
557 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
558 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
559 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
560 temp_64
&= ~ERST_PTR_MASK
;
561 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
562 xhci_dbg(xhci
, "Command ring:\n");
563 xhci_debug_segment(xhci
, xhci
->cmd_ring
->deq_seg
);
564 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
565 xhci_dbg_cmd_ptrs(xhci
);
566 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
) {
569 for (j
= 0; j
< 31; ++j
) {
570 xhci_dbg_ep_rings(xhci
, i
, j
, &xhci
->devs
[i
]->eps
[j
]);
573 spin_unlock_irqrestore(&xhci
->lock
, flags
);
576 mod_timer(&xhci
->event_ring_timer
, jiffies
+ POLL_TIMEOUT
* HZ
);
578 xhci_dbg(xhci
, "Quit polling the event ring.\n");
582 static int xhci_run_finished(struct xhci_hcd
*xhci
)
584 if (xhci_start(xhci
)) {
588 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
589 xhci
->cmd_ring_state
= CMD_RING_STATE_RUNNING
;
591 if (xhci
->quirks
& XHCI_NEC_HOST
)
592 xhci_ring_cmd_db(xhci
);
594 xhci_dbg(xhci
, "Finished xhci_run for USB3 roothub\n");
599 * Start the HC after it was halted.
601 * This function is called by the USB core when the HC driver is added.
602 * Its opposite is xhci_stop().
604 * xhci_init() must be called once before this function can be called.
605 * Reset the HC, enable device slot contexts, program DCBAAP, and
606 * set command ring pointer and event ring pointer.
608 * Setup MSI-X vectors and enable interrupts.
610 int xhci_run(struct usb_hcd
*hcd
)
615 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
617 /* Start the xHCI host controller running only after the USB 2.0 roothub
621 hcd
->uses_new_polling
= 1;
622 if (!usb_hcd_is_primary_hcd(hcd
))
623 return xhci_run_finished(xhci
);
625 xhci_dbg(xhci
, "xhci_run\n");
627 ret
= xhci_try_enable_msi(hcd
);
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632 init_timer(&xhci
->event_ring_timer
);
633 xhci
->event_ring_timer
.data
= (unsigned long) xhci
;
634 xhci
->event_ring_timer
.function
= xhci_event_ring_work
;
635 /* Poll the event ring */
636 xhci
->event_ring_timer
.expires
= jiffies
+ POLL_TIMEOUT
* HZ
;
638 xhci_dbg(xhci
, "Setting event ring polling timer\n");
639 add_timer(&xhci
->event_ring_timer
);
642 xhci_dbg(xhci
, "Command ring memory map follows:\n");
643 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
644 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
645 xhci_dbg_cmd_ptrs(xhci
);
647 xhci_dbg(xhci
, "ERST memory map follows:\n");
648 xhci_dbg_erst(xhci
, &xhci
->erst
);
649 xhci_dbg(xhci
, "Event ring:\n");
650 xhci_debug_ring(xhci
, xhci
->event_ring
);
651 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
652 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
653 temp_64
&= ~ERST_PTR_MASK
;
654 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
656 xhci_dbg(xhci
, "// Set the interrupt modulation register\n");
657 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
658 temp
&= ~ER_IRQ_INTERVAL_MASK
;
660 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_control
);
662 /* Set the HCD state before we enable the irqs */
663 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
665 xhci_dbg(xhci
, "// Enable interrupts, cmd = 0x%x.\n",
667 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
669 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
670 xhci_dbg(xhci
, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
672 xhci_writel(xhci
, ER_IRQ_ENABLE(temp
),
673 &xhci
->ir_set
->irq_pending
);
674 xhci_print_ir_set(xhci
, 0);
676 if (xhci
->quirks
& XHCI_NEC_HOST
)
677 xhci_queue_vendor_command(xhci
, 0, 0, 0,
678 TRB_TYPE(TRB_NEC_GET_FW
));
680 xhci_dbg(xhci
, "Finished xhci_run for USB2 roothub\n");
684 static void xhci_only_stop_hcd(struct usb_hcd
*hcd
)
686 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
688 spin_lock_irq(&xhci
->lock
);
691 /* The shared_hcd is going to be deallocated shortly (the USB core only
692 * calls this function when allocation fails in usb_add_hcd(), or
693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
695 xhci
->shared_hcd
= NULL
;
696 spin_unlock_irq(&xhci
->lock
);
702 * This function is called by the USB core when the HC driver is removed.
703 * Its opposite is xhci_run().
705 * Disable device contexts, disable IRQs, and quiesce the HC.
706 * Reset the HC, finish any completed transactions, and cleanup memory.
708 void xhci_stop(struct usb_hcd
*hcd
)
711 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
713 if (!usb_hcd_is_primary_hcd(hcd
)) {
714 xhci_only_stop_hcd(xhci
->shared_hcd
);
718 spin_lock_irq(&xhci
->lock
);
719 /* Make sure the xHC is halted for a USB3 roothub
720 * (xhci_stop() could be called as part of failed init).
724 spin_unlock_irq(&xhci
->lock
);
726 xhci_cleanup_msix(xhci
);
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729 /* Tell the event ring poll function not to reschedule */
731 del_timer_sync(&xhci
->event_ring_timer
);
734 /* Deleting Compliance Mode Recovery Timer */
735 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
736 (!(xhci_all_ports_seen_u0(xhci
)))) {
737 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
738 xhci_dbg(xhci
, "%s: compliance mode recovery timer deleted\n",
742 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
745 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
746 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
747 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
748 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
749 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
750 &xhci
->ir_set
->irq_pending
);
751 xhci_print_ir_set(xhci
, 0);
753 xhci_dbg(xhci
, "cleaning up memory\n");
754 xhci_mem_cleanup(xhci
);
755 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
756 xhci_readl(xhci
, &xhci
->op_regs
->status
));
760 * Shutdown HC (not bus-specific)
762 * This is called when the machine is rebooting or halting. We assume that the
763 * machine will be powered off, and the HC's internal state will be reset.
764 * Don't bother to free memory.
766 * This will only ever be called with the main usb_hcd (the USB3 roothub).
768 void xhci_shutdown(struct usb_hcd
*hcd
)
770 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
772 if (xhci
->quirks
& XHCI_SPURIOUS_REBOOT
)
773 usb_disable_xhci_ports(to_pci_dev(hcd
->self
.controller
));
775 spin_lock_irq(&xhci
->lock
);
777 spin_unlock_irq(&xhci
->lock
);
779 xhci_cleanup_msix(xhci
);
781 xhci_dbg(xhci
, "xhci_shutdown completed - status = %x\n",
782 xhci_readl(xhci
, &xhci
->op_regs
->status
));
786 static void xhci_save_registers(struct xhci_hcd
*xhci
)
788 xhci
->s3
.command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
789 xhci
->s3
.dev_nt
= xhci_readl(xhci
, &xhci
->op_regs
->dev_notification
);
790 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
791 xhci
->s3
.config_reg
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
792 xhci
->s3
.erst_size
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
793 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
794 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
795 xhci
->s3
.irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
796 xhci
->s3
.irq_control
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
799 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
801 xhci_writel(xhci
, xhci
->s3
.command
, &xhci
->op_regs
->command
);
802 xhci_writel(xhci
, xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
803 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
804 xhci_writel(xhci
, xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
805 xhci_writel(xhci
, xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
806 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
807 xhci_write_64(xhci
, xhci
->s3
.erst_dequeue
, &xhci
->ir_set
->erst_dequeue
);
808 xhci_writel(xhci
, xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
809 xhci_writel(xhci
, xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
816 /* step 2: initialize command ring buffer */
817 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
818 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
819 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
820 xhci
->cmd_ring
->dequeue
) &
821 (u64
) ~CMD_RING_RSVD_BITS
) |
822 xhci
->cmd_ring
->cycle_state
;
823 xhci_dbg(xhci
, "// Setting command ring address to 0x%llx\n",
824 (long unsigned long) val_64
);
825 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
829 * The whole command ring must be cleared to zero when we suspend the host.
831 * The host doesn't save the command ring pointer in the suspend well, so we
832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
833 * aligned, because of the reserved bits in the command ring dequeue pointer
834 * register. Therefore, we can't just set the dequeue pointer back in the
835 * middle of the ring (TRBs are 16-byte aligned).
837 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
839 struct xhci_ring
*ring
;
840 struct xhci_segment
*seg
;
842 ring
= xhci
->cmd_ring
;
846 sizeof(union xhci_trb
) * (TRBS_PER_SEGMENT
- 1));
847 seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
&=
848 cpu_to_le32(~TRB_CYCLE
);
850 } while (seg
!= ring
->deq_seg
);
852 /* Reset the software enqueue and dequeue pointers */
853 ring
->deq_seg
= ring
->first_seg
;
854 ring
->dequeue
= ring
->first_seg
->trbs
;
855 ring
->enq_seg
= ring
->deq_seg
;
856 ring
->enqueue
= ring
->dequeue
;
858 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
860 * Ring is now zeroed, so the HW should look for change of ownership
861 * when the cycle bit is set to 1.
863 ring
->cycle_state
= 1;
866 * Reset the hardware dequeue pointer.
867 * Yes, this will need to be re-written after resume, but we're paranoid
868 * and want to make sure the hardware doesn't access bogus memory
869 * because, say, the BIOS or an SMI started the host without changing
870 * the command ring pointers.
872 xhci_set_cmd_ring_deq(xhci
);
876 * Stop HC (not bus-specific)
878 * This is called when the machine transition into S3/S4 mode.
881 int xhci_suspend(struct xhci_hcd
*xhci
)
884 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
887 if (hcd
->state
!= HC_STATE_SUSPENDED
||
888 xhci
->shared_hcd
->state
!= HC_STATE_SUSPENDED
)
891 /* Don't poll the roothubs on bus suspend. */
892 xhci_dbg(xhci
, "%s: stopping port polling.\n", __func__
);
893 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
894 del_timer_sync(&hcd
->rh_timer
);
896 spin_lock_irq(&xhci
->lock
);
897 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
898 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
899 /* step 1: stop endpoint */
900 /* skipped assuming that port suspend has done */
902 /* step 2: clear Run/Stop bit */
903 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
905 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
906 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
907 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
)) {
908 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
909 spin_unlock_irq(&xhci
->lock
);
912 xhci_clear_command_ring(xhci
);
914 /* step 3: save registers */
915 xhci_save_registers(xhci
);
917 /* step 4: set CSS flag */
918 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
920 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
921 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
922 STS_SAVE
, 0, 10 * 1000)) {
923 xhci_warn(xhci
, "WARN: xHC save state timeout\n");
924 spin_unlock_irq(&xhci
->lock
);
927 spin_unlock_irq(&xhci
->lock
);
930 * Deleting Compliance Mode Recovery Timer because the xHCI Host
931 * is about to be suspended.
933 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
934 (!(xhci_all_ports_seen_u0(xhci
)))) {
935 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
936 xhci_dbg(xhci
, "%s: compliance mode recovery timer deleted\n",
940 /* step 5: remove core well power */
941 /* synchronize irq when using MSI-X */
942 xhci_msix_sync_irqs(xhci
);
948 * start xHC (not bus-specific)
950 * This is called when the machine transition from S3/S4 mode.
953 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
955 u32 command
, temp
= 0;
956 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
957 struct usb_hcd
*secondary_hcd
;
959 bool comp_timer_running
= false;
961 /* Wait a bit if either of the roothubs need to settle from the
962 * transition into bus suspend.
964 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
966 xhci
->bus_state
[1].next_statechange
))
969 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
970 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
972 spin_lock_irq(&xhci
->lock
);
973 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
977 /* step 1: restore register */
978 xhci_restore_registers(xhci
);
979 /* step 2: initialize command ring buffer */
980 xhci_set_cmd_ring_deq(xhci
);
981 /* step 3: restore state and start state*/
982 /* step 3: set CRS flag */
983 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
985 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
986 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
987 STS_RESTORE
, 0, 10 * 1000)) {
988 xhci_warn(xhci
, "WARN: xHC restore state timeout\n");
989 spin_unlock_irq(&xhci
->lock
);
992 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
995 /* If restore operation fails, re-initialize the HC during resume */
996 if ((temp
& STS_SRE
) || hibernated
) {
998 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
999 !(xhci_all_ports_seen_u0(xhci
))) {
1000 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
1001 xhci_dbg(xhci
, "Compliance Mode Recovery Timer deleted!\n");
1004 /* Let the USB core know _both_ roothubs lost power. */
1005 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
1006 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
1008 xhci_dbg(xhci
, "Stop HCD\n");
1011 spin_unlock_irq(&xhci
->lock
);
1012 xhci_cleanup_msix(xhci
);
1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1015 /* Tell the event ring poll function not to reschedule */
1017 del_timer_sync(&xhci
->event_ring_timer
);
1020 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
1021 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1022 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
1023 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
1024 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
1025 &xhci
->ir_set
->irq_pending
);
1026 xhci_print_ir_set(xhci
, 0);
1028 xhci_dbg(xhci
, "cleaning up memory\n");
1029 xhci_mem_cleanup(xhci
);
1030 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
1031 xhci_readl(xhci
, &xhci
->op_regs
->status
));
1033 /* USB core calls the PCI reinit and start functions twice:
1034 * first with the primary HCD, and then with the secondary HCD.
1035 * If we don't do the same, the host will never be started.
1037 if (!usb_hcd_is_primary_hcd(hcd
))
1038 secondary_hcd
= hcd
;
1040 secondary_hcd
= xhci
->shared_hcd
;
1042 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
1043 retval
= xhci_init(hcd
->primary_hcd
);
1046 comp_timer_running
= true;
1048 xhci_dbg(xhci
, "Start the primary HCD\n");
1049 retval
= xhci_run(hcd
->primary_hcd
);
1051 xhci_dbg(xhci
, "Start the secondary HCD\n");
1052 retval
= xhci_run(secondary_hcd
);
1054 hcd
->state
= HC_STATE_SUSPENDED
;
1055 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
1059 /* step 4: set Run/Stop bit */
1060 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
1062 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
1063 xhci_handshake(xhci
, &xhci
->op_regs
->status
, STS_HALT
,
1066 /* step 5: walk topology and initialize portsc,
1067 * portpmsc and portli
1069 /* this is done in bus_resume */
1071 /* step 6: restart each of the previously
1072 * Running endpoints by ringing their doorbells
1075 spin_unlock_irq(&xhci
->lock
);
1079 usb_hcd_resume_root_hub(hcd
);
1080 usb_hcd_resume_root_hub(xhci
->shared_hcd
);
1084 * If system is subject to the Quirk, Compliance Mode Timer needs to
1085 * be re-initialized Always after a system resume. Ports are subject
1086 * to suffer the Compliance Mode issue again. It doesn't matter if
1087 * ports have entered previously to U0 before system's suspension.
1089 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) && !comp_timer_running
)
1090 compliance_mode_recovery_timer_init(xhci
);
1092 /* Re-enable port polling. */
1093 xhci_dbg(xhci
, "%s: starting port polling.\n", __func__
);
1094 set_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
1095 usb_hcd_poll_rh_status(hcd
);
1099 #endif /* CONFIG_PM */
1101 /*-------------------------------------------------------------------------*/
1104 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1105 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1106 * value to right shift 1 for the bitmask.
1108 * Index = (epnum * 2) + direction - 1,
1109 * where direction = 0 for OUT, 1 for IN.
1110 * For control endpoints, the IN index is used (OUT index is unused), so
1111 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
1116 if (usb_endpoint_xfer_control(desc
))
1117 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
1119 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
1120 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
1124 /* Find the flag for this endpoint (for use in the control context). Use the
1125 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1128 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
1130 return 1 << (xhci_get_endpoint_index(desc
) + 1);
1133 /* Find the flag for this endpoint (for use in the control context). Use the
1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1137 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
1139 return 1 << (ep_index
+ 1);
1142 /* Compute the last valid endpoint context index. Basically, this is the
1143 * endpoint index plus one. For slot contexts with more than valid endpoint,
1144 * we find the most significant bit set in the added contexts flags.
1145 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1146 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1148 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
1150 return fls(added_ctxs
) - 1;
1153 /* Returns 1 if the arguments are OK;
1154 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1156 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1157 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
1159 struct xhci_hcd
*xhci
;
1160 struct xhci_virt_device
*virt_dev
;
1162 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
1163 printk(KERN_DEBUG
"xHCI %s called with invalid args\n",
1167 if (!udev
->parent
) {
1168 printk(KERN_DEBUG
"xHCI %s called for root hub\n",
1173 xhci
= hcd_to_xhci(hcd
);
1174 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
1177 if (check_virt_dev
) {
1178 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
1179 printk(KERN_DEBUG
"xHCI %s called with unaddressed "
1184 virt_dev
= xhci
->devs
[udev
->slot_id
];
1185 if (virt_dev
->udev
!= udev
) {
1186 printk(KERN_DEBUG
"xHCI %s called with udev and "
1187 "virt_dev does not match\n", func
);
1195 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1196 struct usb_device
*udev
, struct xhci_command
*command
,
1197 bool ctx_change
, bool must_succeed
);
1200 * Full speed devices may have a max packet size greater than 8 bytes, but the
1201 * USB core doesn't know that until it reads the first 8 bytes of the
1202 * descriptor. If the usb_device's max packet size changes after that point,
1203 * we need to issue an evaluate context command and wait on it.
1205 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1206 unsigned int ep_index
, struct urb
*urb
)
1208 struct xhci_container_ctx
*in_ctx
;
1209 struct xhci_container_ctx
*out_ctx
;
1210 struct xhci_input_control_ctx
*ctrl_ctx
;
1211 struct xhci_ep_ctx
*ep_ctx
;
1212 int max_packet_size
;
1213 int hw_max_packet_size
;
1216 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1217 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1218 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1219 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1220 if (hw_max_packet_size
!= max_packet_size
) {
1221 xhci_dbg(xhci
, "Max Packet Size for ep 0 changed.\n");
1222 xhci_dbg(xhci
, "Max packet size in usb_device = %d\n",
1224 xhci_dbg(xhci
, "Max packet size in xHCI HW = %d\n",
1225 hw_max_packet_size
);
1226 xhci_dbg(xhci
, "Issuing evaluate context command.\n");
1228 /* Set up the modified control endpoint 0 */
1229 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1230 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1231 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1232 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1233 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1234 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1236 /* Set up the input context flags for the command */
1237 /* FIXME: This won't work if a non-default control endpoint
1238 * changes max packet sizes.
1240 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1241 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1242 ctrl_ctx
->drop_flags
= 0;
1244 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1245 xhci_dbg_ctx(xhci
, in_ctx
, ep_index
);
1246 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1247 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1249 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, NULL
,
1252 /* Clean up the input context for later use by bandwidth
1255 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1261 * non-error returns are a promise to giveback() the urb later
1262 * we drop ownership so next owner (or urb unlink) can get it
1264 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1266 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1267 struct xhci_td
*buffer
;
1268 unsigned long flags
;
1270 unsigned int slot_id
, ep_index
;
1271 struct urb_priv
*urb_priv
;
1274 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1275 true, true, __func__
) <= 0)
1278 slot_id
= urb
->dev
->slot_id
;
1279 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1281 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1282 if (!in_interrupt())
1283 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1288 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1289 size
= urb
->number_of_packets
;
1293 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1294 size
* sizeof(struct xhci_td
*), mem_flags
);
1298 buffer
= kzalloc(size
* sizeof(struct xhci_td
), mem_flags
);
1304 for (i
= 0; i
< size
; i
++) {
1305 urb_priv
->td
[i
] = buffer
;
1309 urb_priv
->length
= size
;
1310 urb_priv
->td_cnt
= 0;
1311 urb
->hcpriv
= urb_priv
;
1313 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1314 /* Check to see if the max packet size for the default control
1315 * endpoint changed during FS device enumeration
1317 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1318 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1321 xhci_urb_free_priv(xhci
, urb_priv
);
1327 /* We have a spinlock and interrupts disabled, so we must pass
1328 * atomic context to this function, which may allocate memory.
1330 spin_lock_irqsave(&xhci
->lock
, flags
);
1331 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1333 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1337 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1338 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
1339 spin_lock_irqsave(&xhci
->lock
, flags
);
1340 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1342 if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1343 EP_GETTING_STREAMS
) {
1344 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1345 "is transitioning to using streams.\n");
1347 } else if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1348 EP_GETTING_NO_STREAMS
) {
1349 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1350 "is transitioning to "
1351 "not having streams.\n");
1354 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1359 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1360 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
1361 spin_lock_irqsave(&xhci
->lock
, flags
);
1362 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1364 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1368 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1370 spin_lock_irqsave(&xhci
->lock
, flags
);
1371 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1373 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1377 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1382 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
1383 "non-responsive xHCI host.\n",
1384 urb
->ep
->desc
.bEndpointAddress
, urb
);
1387 xhci_urb_free_priv(xhci
, urb_priv
);
1389 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1393 /* Get the right ring for the given URB.
1394 * If the endpoint supports streams, boundary check the URB's stream ID.
1395 * If the endpoint doesn't support streams, return the singular endpoint ring.
1397 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
1400 unsigned int slot_id
;
1401 unsigned int ep_index
;
1402 unsigned int stream_id
;
1403 struct xhci_virt_ep
*ep
;
1405 slot_id
= urb
->dev
->slot_id
;
1406 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1407 stream_id
= urb
->stream_id
;
1408 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1409 /* Common case: no streams */
1410 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
1413 if (stream_id
== 0) {
1415 "WARN: Slot ID %u, ep index %u has streams, "
1416 "but URB has no stream ID.\n",
1421 if (stream_id
< ep
->stream_info
->num_streams
)
1422 return ep
->stream_info
->stream_rings
[stream_id
];
1425 "WARN: Slot ID %u, ep index %u has "
1426 "stream IDs 1 to %u allocated, "
1427 "but stream ID %u is requested.\n",
1429 ep
->stream_info
->num_streams
- 1,
1435 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1436 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1437 * should pick up where it left off in the TD, unless a Set Transfer Ring
1438 * Dequeue Pointer is issued.
1440 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1441 * the ring. Since the ring is a contiguous structure, they can't be physically
1442 * removed. Instead, there are two options:
1444 * 1) If the HC is in the middle of processing the URB to be canceled, we
1445 * simply move the ring's dequeue pointer past those TRBs using the Set
1446 * Transfer Ring Dequeue Pointer command. This will be the common case,
1447 * when drivers timeout on the last submitted URB and attempt to cancel.
1449 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1450 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1451 * HC will need to invalidate the any TRBs it has cached after the stop
1452 * endpoint command, as noted in the xHCI 0.95 errata.
1454 * 3) The TD may have completed by the time the Stop Endpoint Command
1455 * completes, so software needs to handle that case too.
1457 * This function should protect against the TD enqueueing code ringing the
1458 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1459 * It also needs to account for multiple cancellations on happening at the same
1460 * time for the same endpoint.
1462 * Note that this function can be called in any context, or so says
1463 * usb_hcd_unlink_urb()
1465 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1467 unsigned long flags
;
1470 struct xhci_hcd
*xhci
;
1471 struct urb_priv
*urb_priv
;
1473 unsigned int ep_index
;
1474 struct xhci_ring
*ep_ring
;
1475 struct xhci_virt_ep
*ep
;
1477 xhci
= hcd_to_xhci(hcd
);
1478 spin_lock_irqsave(&xhci
->lock
, flags
);
1479 /* Make sure the URB hasn't completed or been unlinked already */
1480 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1481 if (ret
|| !urb
->hcpriv
)
1483 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1484 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1485 xhci_dbg(xhci
, "HW died, freeing TD.\n");
1486 urb_priv
= urb
->hcpriv
;
1487 for (i
= urb_priv
->td_cnt
; i
< urb_priv
->length
; i
++) {
1488 td
= urb_priv
->td
[i
];
1489 if (!list_empty(&td
->td_list
))
1490 list_del_init(&td
->td_list
);
1491 if (!list_empty(&td
->cancelled_td_list
))
1492 list_del_init(&td
->cancelled_td_list
);
1495 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1496 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1497 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1498 xhci_urb_free_priv(xhci
, urb_priv
);
1501 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
1502 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1503 xhci_dbg(xhci
, "Ep 0x%x: URB %p to be canceled on "
1504 "non-responsive xHCI host.\n",
1505 urb
->ep
->desc
.bEndpointAddress
, urb
);
1506 /* Let the stop endpoint command watchdog timer (which set this
1507 * state) finish cleaning up the endpoint TD lists. We must
1508 * have caught it in the middle of dropping a lock and giving
1514 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1515 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
1516 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1522 urb_priv
= urb
->hcpriv
;
1523 i
= urb_priv
->td_cnt
;
1524 if (i
< urb_priv
->length
)
1525 xhci_dbg(xhci
, "Cancel URB %p, dev %s, ep 0x%x, "
1526 "starting at offset 0x%llx\n",
1527 urb
, urb
->dev
->devpath
,
1528 urb
->ep
->desc
.bEndpointAddress
,
1529 (unsigned long long) xhci_trb_virt_to_dma(
1530 urb_priv
->td
[i
]->start_seg
,
1531 urb_priv
->td
[i
]->first_trb
));
1533 for (; i
< urb_priv
->length
; i
++) {
1534 td
= urb_priv
->td
[i
];
1535 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1538 /* Queue a stop endpoint command, but only if this is
1539 * the first cancellation to be handled.
1541 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
1542 ep
->ep_state
|= EP_HALT_PENDING
;
1543 ep
->stop_cmds_pending
++;
1544 ep
->stop_cmd_timer
.expires
= jiffies
+
1545 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1546 add_timer(&ep
->stop_cmd_timer
);
1547 xhci_queue_stop_endpoint(xhci
, urb
->dev
->slot_id
, ep_index
, 0);
1548 xhci_ring_cmd_db(xhci
);
1551 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1555 /* Drop an endpoint from a new bandwidth configuration for this device.
1556 * Only one call to this function is allowed per endpoint before
1557 * check_bandwidth() or reset_bandwidth() must be called.
1558 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1559 * add the endpoint to the schedule with possibly new parameters denoted by a
1560 * different endpoint descriptor in usb_host_endpoint.
1561 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1564 * The USB core will not allow URBs to be queued to an endpoint that is being
1565 * disabled, so there's no need for mutual exclusion to protect
1566 * the xhci->devs[slot_id] structure.
1568 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1569 struct usb_host_endpoint
*ep
)
1571 struct xhci_hcd
*xhci
;
1572 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1573 struct xhci_input_control_ctx
*ctrl_ctx
;
1574 struct xhci_slot_ctx
*slot_ctx
;
1575 unsigned int last_ctx
;
1576 unsigned int ep_index
;
1577 struct xhci_ep_ctx
*ep_ctx
;
1579 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1582 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1585 xhci
= hcd_to_xhci(hcd
);
1586 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1589 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1590 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1591 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1592 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1593 __func__
, drop_flag
);
1597 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1598 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1599 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1600 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1601 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1602 /* If the HC already knows the endpoint is disabled,
1603 * or the HCD has noted it is disabled, ignore this request
1605 if (((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1606 cpu_to_le32(EP_STATE_DISABLED
)) ||
1607 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1608 xhci_get_endpoint_flag(&ep
->desc
)) {
1609 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1614 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1615 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1617 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1618 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1620 last_ctx
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
));
1621 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1622 /* Update the last valid endpoint context, if we deleted the last one */
1623 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) >
1624 LAST_CTX(last_ctx
)) {
1625 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1626 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1628 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1630 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1632 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1633 (unsigned int) ep
->desc
.bEndpointAddress
,
1635 (unsigned int) new_drop_flags
,
1636 (unsigned int) new_add_flags
,
1637 (unsigned int) new_slot_info
);
1641 /* Add an endpoint to a new possible bandwidth configuration for this device.
1642 * Only one call to this function is allowed per endpoint before
1643 * check_bandwidth() or reset_bandwidth() must be called.
1644 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645 * add the endpoint to the schedule with possibly new parameters denoted by a
1646 * different endpoint descriptor in usb_host_endpoint.
1647 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1650 * The USB core will not allow URBs to be queued to an endpoint until the
1651 * configuration or alt setting is installed in the device, so there's no need
1652 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1655 struct usb_host_endpoint
*ep
)
1657 struct xhci_hcd
*xhci
;
1658 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1659 unsigned int ep_index
;
1660 struct xhci_slot_ctx
*slot_ctx
;
1661 struct xhci_input_control_ctx
*ctrl_ctx
;
1663 unsigned int last_ctx
;
1664 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1665 struct xhci_virt_device
*virt_dev
;
1668 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1670 /* So we won't queue a reset ep command for a root hub */
1674 xhci
= hcd_to_xhci(hcd
);
1675 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1678 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1679 last_ctx
= xhci_last_valid_endpoint(added_ctxs
);
1680 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1681 /* FIXME when we have to issue an evaluate endpoint command to
1682 * deal with ep0 max packet size changing once we get the
1685 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1686 __func__
, added_ctxs
);
1690 virt_dev
= xhci
->devs
[udev
->slot_id
];
1691 in_ctx
= virt_dev
->in_ctx
;
1692 out_ctx
= virt_dev
->out_ctx
;
1693 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1694 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1696 /* If this endpoint is already in use, and the upper layers are trying
1697 * to add it again without dropping it, reject the addition.
1699 if (virt_dev
->eps
[ep_index
].ring
&&
1700 !(le32_to_cpu(ctrl_ctx
->drop_flags
) &
1701 xhci_get_endpoint_flag(&ep
->desc
))) {
1702 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1703 "without dropping it.\n",
1704 (unsigned int) ep
->desc
.bEndpointAddress
);
1708 /* If the HCD has already noted the endpoint is enabled,
1709 * ignore this request.
1711 if (le32_to_cpu(ctrl_ctx
->add_flags
) &
1712 xhci_get_endpoint_flag(&ep
->desc
)) {
1713 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1719 * Configuration and alternate setting changes must be done in
1720 * process context, not interrupt context (or so documenation
1721 * for usb_set_interface() and usb_set_configuration() claim).
1723 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1724 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1725 __func__
, ep
->desc
.bEndpointAddress
);
1729 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1730 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1732 /* If xhci_endpoint_disable() was called for this endpoint, but the
1733 * xHC hasn't been notified yet through the check_bandwidth() call,
1734 * this re-adds a new state for the endpoint from the new endpoint
1735 * descriptors. We must drop and re-add this endpoint, so we leave the
1738 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1740 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1741 /* Update the last valid endpoint context, if we just added one past */
1742 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) <
1743 LAST_CTX(last_ctx
)) {
1744 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1745 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1747 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1749 /* Store the usb_device pointer for later use */
1752 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1753 (unsigned int) ep
->desc
.bEndpointAddress
,
1755 (unsigned int) new_drop_flags
,
1756 (unsigned int) new_add_flags
,
1757 (unsigned int) new_slot_info
);
1761 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1763 struct xhci_input_control_ctx
*ctrl_ctx
;
1764 struct xhci_ep_ctx
*ep_ctx
;
1765 struct xhci_slot_ctx
*slot_ctx
;
1768 /* When a device's add flag and drop flag are zero, any subsequent
1769 * configure endpoint command will leave that endpoint's state
1770 * untouched. Make sure we don't leave any old state in the input
1771 * endpoint contexts.
1773 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1774 ctrl_ctx
->drop_flags
= 0;
1775 ctrl_ctx
->add_flags
= 0;
1776 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1777 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1778 /* Endpoint 0 is always valid */
1779 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1780 for (i
= 1; i
< 31; ++i
) {
1781 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1782 ep_ctx
->ep_info
= 0;
1783 ep_ctx
->ep_info2
= 0;
1785 ep_ctx
->tx_info
= 0;
1789 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1790 struct usb_device
*udev
, u32
*cmd_status
)
1794 switch (*cmd_status
) {
1796 dev_warn(&udev
->dev
, "Not enough host controller resources "
1797 "for new device state.\n");
1799 /* FIXME: can we allocate more resources for the HC? */
1802 case COMP_2ND_BW_ERR
:
1803 dev_warn(&udev
->dev
, "Not enough bandwidth "
1804 "for new device state.\n");
1806 /* FIXME: can we go back to the old state? */
1809 /* the HCD set up something wrong */
1810 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1812 "and endpoint is not disabled.\n");
1816 dev_warn(&udev
->dev
, "ERROR: Incompatible device for endpoint "
1817 "configure command.\n");
1821 dev_dbg(&udev
->dev
, "Successful Endpoint Configure command\n");
1825 xhci_err(xhci
, "ERROR: unexpected command completion "
1826 "code 0x%x.\n", *cmd_status
);
1833 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1834 struct usb_device
*udev
, u32
*cmd_status
)
1837 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1839 switch (*cmd_status
) {
1841 dev_warn(&udev
->dev
, "WARN: xHCI driver setup invalid evaluate "
1842 "context command.\n");
1846 dev_warn(&udev
->dev
, "WARN: slot not enabled for"
1847 "evaluate context command.\n");
1850 case COMP_CTX_STATE
:
1851 dev_warn(&udev
->dev
, "WARN: invalid context state for "
1852 "evaluate context command.\n");
1853 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1857 dev_warn(&udev
->dev
, "ERROR: Incompatible device for evaluate "
1858 "context command.\n");
1862 /* Max Exit Latency too large error */
1863 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1867 dev_dbg(&udev
->dev
, "Successful evaluate context command\n");
1871 xhci_err(xhci
, "ERROR: unexpected command completion "
1872 "code 0x%x.\n", *cmd_status
);
1879 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1880 struct xhci_container_ctx
*in_ctx
)
1882 struct xhci_input_control_ctx
*ctrl_ctx
;
1883 u32 valid_add_flags
;
1884 u32 valid_drop_flags
;
1886 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1887 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1888 * (bit 1). The default control endpoint is added during the Address
1889 * Device command and is never removed until the slot is disabled.
1891 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1892 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1894 /* Use hweight32 to count the number of ones in the add flags, or
1895 * number of endpoints added. Don't count endpoints that are changed
1896 * (both added and dropped).
1898 return hweight32(valid_add_flags
) -
1899 hweight32(valid_add_flags
& valid_drop_flags
);
1902 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1903 struct xhci_container_ctx
*in_ctx
)
1905 struct xhci_input_control_ctx
*ctrl_ctx
;
1906 u32 valid_add_flags
;
1907 u32 valid_drop_flags
;
1909 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1910 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1911 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1913 return hweight32(valid_drop_flags
) -
1914 hweight32(valid_add_flags
& valid_drop_flags
);
1918 * We need to reserve the new number of endpoints before the configure endpoint
1919 * command completes. We can't subtract the dropped endpoints from the number
1920 * of active endpoints until the command completes because we can oversubscribe
1921 * the host in this case:
1923 * - the first configure endpoint command drops more endpoints than it adds
1924 * - a second configure endpoint command that adds more endpoints is queued
1925 * - the first configure endpoint command fails, so the config is unchanged
1926 * - the second command may succeed, even though there isn't enough resources
1928 * Must be called with xhci->lock held.
1930 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
1931 struct xhci_container_ctx
*in_ctx
)
1935 added_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1936 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
1937 xhci_dbg(xhci
, "Not enough ep ctxs: "
1938 "%u active, need to add %u, limit is %u.\n",
1939 xhci
->num_active_eps
, added_eps
,
1940 xhci
->limit_active_eps
);
1943 xhci
->num_active_eps
+= added_eps
;
1944 xhci_dbg(xhci
, "Adding %u ep ctxs, %u now active.\n", added_eps
,
1945 xhci
->num_active_eps
);
1950 * The configure endpoint was failed by the xHC for some other reason, so we
1951 * need to revert the resources that failed configuration would have used.
1953 * Must be called with xhci->lock held.
1955 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
1956 struct xhci_container_ctx
*in_ctx
)
1960 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1961 xhci
->num_active_eps
-= num_failed_eps
;
1962 xhci_dbg(xhci
, "Removing %u failed ep ctxs, %u now active.\n",
1964 xhci
->num_active_eps
);
1968 * Now that the command has completed, clean up the active endpoint count by
1969 * subtracting out the endpoints that were dropped (but not changed).
1971 * Must be called with xhci->lock held.
1973 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
1974 struct xhci_container_ctx
*in_ctx
)
1976 u32 num_dropped_eps
;
1978 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, in_ctx
);
1979 xhci
->num_active_eps
-= num_dropped_eps
;
1980 if (num_dropped_eps
)
1981 xhci_dbg(xhci
, "Removing %u dropped ep ctxs, %u now active.\n",
1983 xhci
->num_active_eps
);
1986 static unsigned int xhci_get_block_size(struct usb_device
*udev
)
1988 switch (udev
->speed
) {
1990 case USB_SPEED_FULL
:
1992 case USB_SPEED_HIGH
:
1994 case USB_SPEED_SUPER
:
1996 case USB_SPEED_UNKNOWN
:
1997 case USB_SPEED_WIRELESS
:
1999 /* Should never happen */
2005 xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
2007 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
2009 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
2014 /* If we are changing a LS/FS device under a HS hub,
2015 * make sure (if we are activating a new TT) that the HS bus has enough
2016 * bandwidth for this new TT.
2018 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
2019 struct xhci_virt_device
*virt_dev
,
2022 struct xhci_interval_bw_table
*bw_table
;
2023 struct xhci_tt_bw_info
*tt_info
;
2025 /* Find the bandwidth table for the root port this TT is attached to. */
2026 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
2027 tt_info
= virt_dev
->tt_info
;
2028 /* If this TT already had active endpoints, the bandwidth for this TT
2029 * has already been added. Removing all periodic endpoints (and thus
2030 * making the TT enactive) will only decrease the bandwidth used.
2034 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
2035 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
2039 /* Not sure why we would have no new active endpoints...
2041 * Maybe because of an Evaluate Context change for a hub update or a
2042 * control endpoint 0 max packet size change?
2043 * FIXME: skip the bandwidth calculation in that case.
2048 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
2049 struct xhci_virt_device
*virt_dev
)
2051 unsigned int bw_reserved
;
2053 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
2054 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
2057 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
2058 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
2065 * This algorithm is a very conservative estimate of the worst-case scheduling
2066 * scenario for any one interval. The hardware dynamically schedules the
2067 * packets, so we can't tell which microframe could be the limiting factor in
2068 * the bandwidth scheduling. This only takes into account periodic endpoints.
2070 * Obviously, we can't solve an NP complete problem to find the minimum worst
2071 * case scenario. Instead, we come up with an estimate that is no less than
2072 * the worst case bandwidth used for any one microframe, but may be an
2075 * We walk the requirements for each endpoint by interval, starting with the
2076 * smallest interval, and place packets in the schedule where there is only one
2077 * possible way to schedule packets for that interval. In order to simplify
2078 * this algorithm, we record the largest max packet size for each interval, and
2079 * assume all packets will be that size.
2081 * For interval 0, we obviously must schedule all packets for each interval.
2082 * The bandwidth for interval 0 is just the amount of data to be transmitted
2083 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2084 * the number of packets).
2086 * For interval 1, we have two possible microframes to schedule those packets
2087 * in. For this algorithm, if we can schedule the same number of packets for
2088 * each possible scheduling opportunity (each microframe), we will do so. The
2089 * remaining number of packets will be saved to be transmitted in the gaps in
2090 * the next interval's scheduling sequence.
2092 * As we move those remaining packets to be scheduled with interval 2 packets,
2093 * we have to double the number of remaining packets to transmit. This is
2094 * because the intervals are actually powers of 2, and we would be transmitting
2095 * the previous interval's packets twice in this interval. We also have to be
2096 * sure that when we look at the largest max packet size for this interval, we
2097 * also look at the largest max packet size for the remaining packets and take
2098 * the greater of the two.
2100 * The algorithm continues to evenly distribute packets in each scheduling
2101 * opportunity, and push the remaining packets out, until we get to the last
2102 * interval. Then those packets and their associated overhead are just added
2103 * to the bandwidth used.
2105 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
2106 struct xhci_virt_device
*virt_dev
,
2109 unsigned int bw_reserved
;
2110 unsigned int max_bandwidth
;
2111 unsigned int bw_used
;
2112 unsigned int block_size
;
2113 struct xhci_interval_bw_table
*bw_table
;
2114 unsigned int packet_size
= 0;
2115 unsigned int overhead
= 0;
2116 unsigned int packets_transmitted
= 0;
2117 unsigned int packets_remaining
= 0;
2120 if (virt_dev
->udev
->speed
== USB_SPEED_SUPER
)
2121 return xhci_check_ss_bw(xhci
, virt_dev
);
2123 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2124 max_bandwidth
= HS_BW_LIMIT
;
2125 /* Convert percent of bus BW reserved to blocks reserved */
2126 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
2128 max_bandwidth
= FS_BW_LIMIT
;
2129 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
2132 bw_table
= virt_dev
->bw_table
;
2133 /* We need to translate the max packet size and max ESIT payloads into
2134 * the units the hardware uses.
2136 block_size
= xhci_get_block_size(virt_dev
->udev
);
2138 /* If we are manipulating a LS/FS device under a HS hub, double check
2139 * that the HS bus has enough bandwidth if we are activing a new TT.
2141 if (virt_dev
->tt_info
) {
2142 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
2143 virt_dev
->real_port
);
2144 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2145 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
2146 "newly activated TT.\n");
2149 xhci_dbg(xhci
, "Recalculating BW for TT slot %u port %u\n",
2150 virt_dev
->tt_info
->slot_id
,
2151 virt_dev
->tt_info
->ttport
);
2153 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
2154 virt_dev
->real_port
);
2157 /* Add in how much bandwidth will be used for interval zero, or the
2158 * rounded max ESIT payload + number of packets * largest overhead.
2160 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
2161 bw_table
->interval_bw
[0].num_packets
*
2162 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
2164 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
2165 unsigned int bw_added
;
2166 unsigned int largest_mps
;
2167 unsigned int interval_overhead
;
2170 * How many packets could we transmit in this interval?
2171 * If packets didn't fit in the previous interval, we will need
2172 * to transmit that many packets twice within this interval.
2174 packets_remaining
= 2 * packets_remaining
+
2175 bw_table
->interval_bw
[i
].num_packets
;
2177 /* Find the largest max packet size of this or the previous
2180 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
2183 struct xhci_virt_ep
*virt_ep
;
2184 struct list_head
*ep_entry
;
2186 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2187 virt_ep
= list_entry(ep_entry
,
2188 struct xhci_virt_ep
, bw_endpoint_list
);
2189 /* Convert to blocks, rounding up */
2190 largest_mps
= DIV_ROUND_UP(
2191 virt_ep
->bw_info
.max_packet_size
,
2194 if (largest_mps
> packet_size
)
2195 packet_size
= largest_mps
;
2197 /* Use the larger overhead of this or the previous interval. */
2198 interval_overhead
= xhci_get_largest_overhead(
2199 &bw_table
->interval_bw
[i
]);
2200 if (interval_overhead
> overhead
)
2201 overhead
= interval_overhead
;
2203 /* How many packets can we evenly distribute across
2204 * (1 << (i + 1)) possible scheduling opportunities?
2206 packets_transmitted
= packets_remaining
>> (i
+ 1);
2208 /* Add in the bandwidth used for those scheduled packets */
2209 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2211 /* How many packets do we have remaining to transmit? */
2212 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2214 /* What largest max packet size should those packets have? */
2215 /* If we've transmitted all packets, don't carry over the
2216 * largest packet size.
2218 if (packets_remaining
== 0) {
2221 } else if (packets_transmitted
> 0) {
2222 /* Otherwise if we do have remaining packets, and we've
2223 * scheduled some packets in this interval, take the
2224 * largest max packet size from endpoints with this
2227 packet_size
= largest_mps
;
2228 overhead
= interval_overhead
;
2230 /* Otherwise carry over packet_size and overhead from the last
2231 * time we had a remainder.
2233 bw_used
+= bw_added
;
2234 if (bw_used
> max_bandwidth
) {
2235 xhci_warn(xhci
, "Not enough bandwidth. "
2236 "Proposed: %u, Max: %u\n",
2237 bw_used
, max_bandwidth
);
2242 * Ok, we know we have some packets left over after even-handedly
2243 * scheduling interval 15. We don't know which microframes they will
2244 * fit into, so we over-schedule and say they will be scheduled every
2247 if (packets_remaining
> 0)
2248 bw_used
+= overhead
+ packet_size
;
2250 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2251 unsigned int port_index
= virt_dev
->real_port
- 1;
2253 /* OK, we're manipulating a HS device attached to a
2254 * root port bandwidth domain. Include the number of active TTs
2255 * in the bandwidth used.
2257 bw_used
+= TT_HS_OVERHEAD
*
2258 xhci
->rh_bw
[port_index
].num_active_tts
;
2261 xhci_dbg(xhci
, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2262 "Available: %u " "percent\n",
2263 bw_used
, max_bandwidth
, bw_reserved
,
2264 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2267 bw_used
+= bw_reserved
;
2268 if (bw_used
> max_bandwidth
) {
2269 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2270 bw_used
, max_bandwidth
);
2274 bw_table
->bw_used
= bw_used
;
2278 static bool xhci_is_async_ep(unsigned int ep_type
)
2280 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2281 ep_type
!= ISOC_IN_EP
&&
2282 ep_type
!= INT_IN_EP
);
2285 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2287 return (ep_type
== ISOC_IN_EP
|| ep_type
== INT_IN_EP
);
2290 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2292 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2294 if (ep_bw
->ep_interval
== 0)
2295 return SS_OVERHEAD_BURST
+
2296 (ep_bw
->mult
* ep_bw
->num_packets
*
2297 (SS_OVERHEAD
+ mps
));
2298 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2299 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2300 1 << ep_bw
->ep_interval
);
2304 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2305 struct xhci_bw_info
*ep_bw
,
2306 struct xhci_interval_bw_table
*bw_table
,
2307 struct usb_device
*udev
,
2308 struct xhci_virt_ep
*virt_ep
,
2309 struct xhci_tt_bw_info
*tt_info
)
2311 struct xhci_interval_bw
*interval_bw
;
2312 int normalized_interval
;
2314 if (xhci_is_async_ep(ep_bw
->type
))
2317 if (udev
->speed
== USB_SPEED_SUPER
) {
2318 if (xhci_is_sync_in_ep(ep_bw
->type
))
2319 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2320 xhci_get_ss_bw_consumed(ep_bw
);
2322 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2323 xhci_get_ss_bw_consumed(ep_bw
);
2327 /* SuperSpeed endpoints never get added to intervals in the table, so
2328 * this check is only valid for HS/FS/LS devices.
2330 if (list_empty(&virt_ep
->bw_endpoint_list
))
2332 /* For LS/FS devices, we need to translate the interval expressed in
2333 * microframes to frames.
2335 if (udev
->speed
== USB_SPEED_HIGH
)
2336 normalized_interval
= ep_bw
->ep_interval
;
2338 normalized_interval
= ep_bw
->ep_interval
- 3;
2340 if (normalized_interval
== 0)
2341 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2342 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2343 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2344 switch (udev
->speed
) {
2346 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2348 case USB_SPEED_FULL
:
2349 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2351 case USB_SPEED_HIGH
:
2352 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2354 case USB_SPEED_SUPER
:
2355 case USB_SPEED_UNKNOWN
:
2356 case USB_SPEED_WIRELESS
:
2357 /* Should never happen because only LS/FS/HS endpoints will get
2358 * added to the endpoint list.
2363 tt_info
->active_eps
-= 1;
2364 list_del_init(&virt_ep
->bw_endpoint_list
);
2367 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2368 struct xhci_bw_info
*ep_bw
,
2369 struct xhci_interval_bw_table
*bw_table
,
2370 struct usb_device
*udev
,
2371 struct xhci_virt_ep
*virt_ep
,
2372 struct xhci_tt_bw_info
*tt_info
)
2374 struct xhci_interval_bw
*interval_bw
;
2375 struct xhci_virt_ep
*smaller_ep
;
2376 int normalized_interval
;
2378 if (xhci_is_async_ep(ep_bw
->type
))
2381 if (udev
->speed
== USB_SPEED_SUPER
) {
2382 if (xhci_is_sync_in_ep(ep_bw
->type
))
2383 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2384 xhci_get_ss_bw_consumed(ep_bw
);
2386 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2387 xhci_get_ss_bw_consumed(ep_bw
);
2391 /* For LS/FS devices, we need to translate the interval expressed in
2392 * microframes to frames.
2394 if (udev
->speed
== USB_SPEED_HIGH
)
2395 normalized_interval
= ep_bw
->ep_interval
;
2397 normalized_interval
= ep_bw
->ep_interval
- 3;
2399 if (normalized_interval
== 0)
2400 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2401 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2402 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2403 switch (udev
->speed
) {
2405 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2407 case USB_SPEED_FULL
:
2408 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2410 case USB_SPEED_HIGH
:
2411 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2413 case USB_SPEED_SUPER
:
2414 case USB_SPEED_UNKNOWN
:
2415 case USB_SPEED_WIRELESS
:
2416 /* Should never happen because only LS/FS/HS endpoints will get
2417 * added to the endpoint list.
2423 tt_info
->active_eps
+= 1;
2424 /* Insert the endpoint into the list, largest max packet size first. */
2425 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2427 if (ep_bw
->max_packet_size
>=
2428 smaller_ep
->bw_info
.max_packet_size
) {
2429 /* Add the new ep before the smaller endpoint */
2430 list_add_tail(&virt_ep
->bw_endpoint_list
,
2431 &smaller_ep
->bw_endpoint_list
);
2435 /* Add the new endpoint at the end of the list. */
2436 list_add_tail(&virt_ep
->bw_endpoint_list
,
2437 &interval_bw
->endpoints
);
2440 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2441 struct xhci_virt_device
*virt_dev
,
2444 struct xhci_root_port_bw_info
*rh_bw_info
;
2445 if (!virt_dev
->tt_info
)
2448 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2449 if (old_active_eps
== 0 &&
2450 virt_dev
->tt_info
->active_eps
!= 0) {
2451 rh_bw_info
->num_active_tts
+= 1;
2452 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2453 } else if (old_active_eps
!= 0 &&
2454 virt_dev
->tt_info
->active_eps
== 0) {
2455 rh_bw_info
->num_active_tts
-= 1;
2456 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2460 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2461 struct xhci_virt_device
*virt_dev
,
2462 struct xhci_container_ctx
*in_ctx
)
2464 struct xhci_bw_info ep_bw_info
[31];
2466 struct xhci_input_control_ctx
*ctrl_ctx
;
2467 int old_active_eps
= 0;
2469 if (virt_dev
->tt_info
)
2470 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2472 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2474 for (i
= 0; i
< 31; i
++) {
2475 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2478 /* Make a copy of the BW info in case we need to revert this */
2479 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2480 sizeof(ep_bw_info
[i
]));
2481 /* Drop the endpoint from the interval table if the endpoint is
2482 * being dropped or changed.
2484 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2485 xhci_drop_ep_from_interval_table(xhci
,
2486 &virt_dev
->eps
[i
].bw_info
,
2492 /* Overwrite the information stored in the endpoints' bw_info */
2493 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2494 for (i
= 0; i
< 31; i
++) {
2495 /* Add any changed or added endpoints to the interval table */
2496 if (EP_IS_ADDED(ctrl_ctx
, i
))
2497 xhci_add_ep_to_interval_table(xhci
,
2498 &virt_dev
->eps
[i
].bw_info
,
2505 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2506 /* Ok, this fits in the bandwidth we have.
2507 * Update the number of active TTs.
2509 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2513 /* We don't have enough bandwidth for this, revert the stored info. */
2514 for (i
= 0; i
< 31; i
++) {
2515 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2518 /* Drop the new copies of any added or changed endpoints from
2519 * the interval table.
2521 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2522 xhci_drop_ep_from_interval_table(xhci
,
2523 &virt_dev
->eps
[i
].bw_info
,
2529 /* Revert the endpoint back to its old information */
2530 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2531 sizeof(ep_bw_info
[i
]));
2532 /* Add any changed or dropped endpoints back into the table */
2533 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2534 xhci_add_ep_to_interval_table(xhci
,
2535 &virt_dev
->eps
[i
].bw_info
,
2545 /* Issue a configure endpoint command or evaluate context command
2546 * and wait for it to finish.
2548 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2549 struct usb_device
*udev
,
2550 struct xhci_command
*command
,
2551 bool ctx_change
, bool must_succeed
)
2555 unsigned long flags
;
2556 struct xhci_container_ctx
*in_ctx
;
2557 struct completion
*cmd_completion
;
2559 struct xhci_virt_device
*virt_dev
;
2560 union xhci_trb
*cmd_trb
;
2562 spin_lock_irqsave(&xhci
->lock
, flags
);
2563 virt_dev
= xhci
->devs
[udev
->slot_id
];
2566 in_ctx
= command
->in_ctx
;
2568 in_ctx
= virt_dev
->in_ctx
;
2570 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2571 xhci_reserve_host_resources(xhci
, in_ctx
)) {
2572 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2573 xhci_warn(xhci
, "Not enough host resources, "
2574 "active endpoint contexts = %u\n",
2575 xhci
->num_active_eps
);
2578 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2579 xhci_reserve_bandwidth(xhci
, virt_dev
, in_ctx
)) {
2580 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2581 xhci_free_host_resources(xhci
, in_ctx
);
2582 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2583 xhci_warn(xhci
, "Not enough bandwidth\n");
2588 cmd_completion
= command
->completion
;
2589 cmd_status
= &command
->status
;
2590 command
->command_trb
= xhci
->cmd_ring
->enqueue
;
2592 /* Enqueue pointer can be left pointing to the link TRB,
2593 * we must handle that
2595 if (TRB_TYPE_LINK_LE32(command
->command_trb
->link
.control
))
2596 command
->command_trb
=
2597 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
2599 list_add_tail(&command
->cmd_list
, &virt_dev
->cmd_list
);
2601 cmd_completion
= &virt_dev
->cmd_completion
;
2602 cmd_status
= &virt_dev
->cmd_status
;
2604 init_completion(cmd_completion
);
2606 cmd_trb
= xhci
->cmd_ring
->dequeue
;
2608 ret
= xhci_queue_configure_endpoint(xhci
, in_ctx
->dma
,
2609 udev
->slot_id
, must_succeed
);
2611 ret
= xhci_queue_evaluate_context(xhci
, in_ctx
->dma
,
2612 udev
->slot_id
, must_succeed
);
2615 list_del(&command
->cmd_list
);
2616 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2617 xhci_free_host_resources(xhci
, in_ctx
);
2618 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2619 xhci_dbg(xhci
, "FIXME allocate a new ring segment\n");
2622 xhci_ring_cmd_db(xhci
);
2623 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2625 /* Wait for the configure endpoint command to complete */
2626 timeleft
= wait_for_completion_interruptible_timeout(
2628 XHCI_CMD_DEFAULT_TIMEOUT
);
2629 if (timeleft
<= 0) {
2630 xhci_warn(xhci
, "%s while waiting for %s command\n",
2631 timeleft
== 0 ? "Timeout" : "Signal",
2633 "configure endpoint" :
2634 "evaluate context");
2635 /* cancel the configure endpoint command */
2636 ret
= xhci_cancel_cmd(xhci
, command
, cmd_trb
);
2643 ret
= xhci_configure_endpoint_result(xhci
, udev
, cmd_status
);
2645 ret
= xhci_evaluate_context_result(xhci
, udev
, cmd_status
);
2647 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2648 spin_lock_irqsave(&xhci
->lock
, flags
);
2649 /* If the command failed, remove the reserved resources.
2650 * Otherwise, clean up the estimate to include dropped eps.
2653 xhci_free_host_resources(xhci
, in_ctx
);
2655 xhci_finish_resource_reservation(xhci
, in_ctx
);
2656 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2661 /* Called after one or more calls to xhci_add_endpoint() or
2662 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2663 * to call xhci_reset_bandwidth().
2665 * Since we are in the middle of changing either configuration or
2666 * installing a new alt setting, the USB core won't allow URBs to be
2667 * enqueued for any endpoint on the old config or interface. Nothing
2668 * else should be touching the xhci->devs[slot_id] structure, so we
2669 * don't need to take the xhci->lock for manipulating that.
2671 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2675 struct xhci_hcd
*xhci
;
2676 struct xhci_virt_device
*virt_dev
;
2677 struct xhci_input_control_ctx
*ctrl_ctx
;
2678 struct xhci_slot_ctx
*slot_ctx
;
2680 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2683 xhci
= hcd_to_xhci(hcd
);
2684 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
2687 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2688 virt_dev
= xhci
->devs
[udev
->slot_id
];
2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
2692 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2693 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2694 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2696 /* Don't issue the command if there's no endpoints to update. */
2697 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2698 ctrl_ctx
->drop_flags
== 0)
2701 xhci_dbg(xhci
, "New Input Control Context:\n");
2702 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2703 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2704 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2706 ret
= xhci_configure_endpoint(xhci
, udev
, NULL
,
2709 /* Callee should call reset_bandwidth() */
2713 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2714 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2715 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2717 /* Free any rings that were dropped, but not changed. */
2718 for (i
= 1; i
< 31; ++i
) {
2719 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2720 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1))))
2721 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2723 xhci_zero_in_ctx(xhci
, virt_dev
);
2725 * Install any rings for completely new endpoints or changed endpoints,
2726 * and free or cache any old rings from changed endpoints.
2728 for (i
= 1; i
< 31; ++i
) {
2729 if (!virt_dev
->eps
[i
].new_ring
)
2731 /* Only cache or free the old ring if it exists.
2732 * It may not if this is the first add of an endpoint.
2734 if (virt_dev
->eps
[i
].ring
) {
2735 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2737 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2738 virt_dev
->eps
[i
].new_ring
= NULL
;
2744 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2746 struct xhci_hcd
*xhci
;
2747 struct xhci_virt_device
*virt_dev
;
2750 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2753 xhci
= hcd_to_xhci(hcd
);
2755 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2756 virt_dev
= xhci
->devs
[udev
->slot_id
];
2757 /* Free any rings allocated for added endpoints */
2758 for (i
= 0; i
< 31; ++i
) {
2759 if (virt_dev
->eps
[i
].new_ring
) {
2760 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2761 virt_dev
->eps
[i
].new_ring
= NULL
;
2764 xhci_zero_in_ctx(xhci
, virt_dev
);
2767 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2768 struct xhci_container_ctx
*in_ctx
,
2769 struct xhci_container_ctx
*out_ctx
,
2770 u32 add_flags
, u32 drop_flags
)
2772 struct xhci_input_control_ctx
*ctrl_ctx
;
2773 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2774 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2775 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2776 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2777 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2779 xhci_dbg(xhci
, "Input Context:\n");
2780 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2783 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2784 unsigned int slot_id
, unsigned int ep_index
,
2785 struct xhci_dequeue_state
*deq_state
)
2787 struct xhci_container_ctx
*in_ctx
;
2788 struct xhci_ep_ctx
*ep_ctx
;
2792 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2793 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2794 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2795 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2796 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2797 deq_state
->new_deq_ptr
);
2799 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2800 "reset ep command\n");
2801 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2802 deq_state
->new_deq_seg
,
2803 deq_state
->new_deq_ptr
);
2806 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2808 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2809 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2810 xhci
->devs
[slot_id
]->out_ctx
, added_ctxs
, added_ctxs
);
2813 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2814 struct usb_device
*udev
, unsigned int ep_index
)
2816 struct xhci_dequeue_state deq_state
;
2817 struct xhci_virt_ep
*ep
;
2819 xhci_dbg(xhci
, "Cleaning up stalled endpoint ring\n");
2820 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2821 /* We need to move the HW's dequeue pointer past this TD,
2822 * or it will attempt to resend it on the next doorbell ring.
2824 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2825 ep_index
, ep
->stopped_stream
, ep
->stopped_td
,
2828 /* HW with the reset endpoint quirk will use the saved dequeue state to
2829 * issue a configure endpoint command later.
2831 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2832 xhci_dbg(xhci
, "Queueing new dequeue state\n");
2833 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2834 ep_index
, ep
->stopped_stream
, &deq_state
);
2836 /* Better hope no one uses the input context between now and the
2837 * reset endpoint completion!
2838 * XXX: No idea how this hardware will react when stream rings
2841 xhci_dbg(xhci
, "Setting up input context for "
2842 "configure endpoint command\n");
2843 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2844 ep_index
, &deq_state
);
2848 /* Deal with stalled endpoints. The core should have sent the control message
2849 * to clear the halt condition. However, we need to make the xHCI hardware
2850 * reset its sequence number, since a device will expect a sequence number of
2851 * zero after the halt condition is cleared.
2852 * Context: in_interrupt
2854 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2855 struct usb_host_endpoint
*ep
)
2857 struct xhci_hcd
*xhci
;
2858 struct usb_device
*udev
;
2859 unsigned int ep_index
;
2860 unsigned long flags
;
2862 struct xhci_virt_ep
*virt_ep
;
2864 xhci
= hcd_to_xhci(hcd
);
2865 udev
= (struct usb_device
*) ep
->hcpriv
;
2866 /* Called with a root hub endpoint (or an endpoint that wasn't added
2867 * with xhci_add_endpoint()
2871 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2872 virt_ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2873 if (!virt_ep
->stopped_td
) {
2874 xhci_dbg(xhci
, "Endpoint 0x%x not halted, refusing to reset.\n",
2875 ep
->desc
.bEndpointAddress
);
2878 if (usb_endpoint_xfer_control(&ep
->desc
)) {
2879 xhci_dbg(xhci
, "Control endpoint stall already handled.\n");
2883 xhci_dbg(xhci
, "Queueing reset endpoint command\n");
2884 spin_lock_irqsave(&xhci
->lock
, flags
);
2885 ret
= xhci_queue_reset_ep(xhci
, udev
->slot_id
, ep_index
);
2887 * Can't change the ring dequeue pointer until it's transitioned to the
2888 * stopped state, which is only upon a successful reset endpoint
2889 * command. Better hope that last command worked!
2892 xhci_cleanup_stalled_ring(xhci
, udev
, ep_index
);
2893 kfree(virt_ep
->stopped_td
);
2894 xhci_ring_cmd_db(xhci
);
2896 virt_ep
->stopped_td
= NULL
;
2897 virt_ep
->stopped_trb
= NULL
;
2898 virt_ep
->stopped_stream
= 0;
2899 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2902 xhci_warn(xhci
, "FIXME allocate a new ring segment\n");
2905 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
2906 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
2907 unsigned int slot_id
)
2910 unsigned int ep_index
;
2911 unsigned int ep_state
;
2915 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
2918 if (ep
->ss_ep_comp
.bmAttributes
== 0) {
2919 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
2920 " descriptor for ep 0x%x does not support streams\n",
2921 ep
->desc
.bEndpointAddress
);
2925 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2926 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2927 if (ep_state
& EP_HAS_STREAMS
||
2928 ep_state
& EP_GETTING_STREAMS
) {
2929 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
2930 "already has streams set up.\n",
2931 ep
->desc
.bEndpointAddress
);
2932 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
2933 "dynamic stream context array reallocation.\n");
2936 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
2937 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
2938 "endpoint 0x%x; URBs are pending.\n",
2939 ep
->desc
.bEndpointAddress
);
2945 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
2946 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
2948 unsigned int max_streams
;
2950 /* The stream context array size must be a power of two */
2951 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
2953 * Find out how many primary stream array entries the host controller
2954 * supports. Later we may use secondary stream arrays (similar to 2nd
2955 * level page entries), but that's an optional feature for xHCI host
2956 * controllers. xHCs must support at least 4 stream IDs.
2958 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
2959 if (*num_stream_ctxs
> max_streams
) {
2960 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
2962 *num_stream_ctxs
= max_streams
;
2963 *num_streams
= max_streams
;
2967 /* Returns an error code if one of the endpoint already has streams.
2968 * This does not change any data structures, it only checks and gathers
2971 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
2972 struct usb_device
*udev
,
2973 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2974 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
2976 unsigned int max_streams
;
2977 unsigned int endpoint_flag
;
2981 for (i
= 0; i
< num_eps
; i
++) {
2982 ret
= xhci_check_streams_endpoint(xhci
, udev
,
2983 eps
[i
], udev
->slot_id
);
2987 max_streams
= usb_ss_max_streams(&eps
[i
]->ss_ep_comp
);
2988 if (max_streams
< (*num_streams
- 1)) {
2989 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
2990 eps
[i
]->desc
.bEndpointAddress
,
2992 *num_streams
= max_streams
+1;
2995 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
2996 if (*changed_ep_bitmask
& endpoint_flag
)
2998 *changed_ep_bitmask
|= endpoint_flag
;
3003 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
3004 struct usb_device
*udev
,
3005 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
3007 u32 changed_ep_bitmask
= 0;
3008 unsigned int slot_id
;
3009 unsigned int ep_index
;
3010 unsigned int ep_state
;
3013 slot_id
= udev
->slot_id
;
3014 if (!xhci
->devs
[slot_id
])
3017 for (i
= 0; i
< num_eps
; i
++) {
3018 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3019 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
3020 /* Are streams already being freed for the endpoint? */
3021 if (ep_state
& EP_GETTING_NO_STREAMS
) {
3022 xhci_warn(xhci
, "WARN Can't disable streams for "
3024 "streams are being disabled already.",
3025 eps
[i
]->desc
.bEndpointAddress
);
3028 /* Are there actually any streams to free? */
3029 if (!(ep_state
& EP_HAS_STREAMS
) &&
3030 !(ep_state
& EP_GETTING_STREAMS
)) {
3031 xhci_warn(xhci
, "WARN Can't disable streams for "
3033 "streams are already disabled!",
3034 eps
[i
]->desc
.bEndpointAddress
);
3035 xhci_warn(xhci
, "WARN xhci_free_streams() called "
3036 "with non-streams endpoint\n");
3039 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3041 return changed_ep_bitmask
;
3045 * The USB device drivers use this function (though the HCD interface in USB
3046 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3047 * coordinate mass storage command queueing across multiple endpoints (basically
3048 * a stream ID == a task ID).
3050 * Setting up streams involves allocating the same size stream context array
3051 * for each endpoint and issuing a configure endpoint command for all endpoints.
3053 * Don't allow the call to succeed if one endpoint only supports one stream
3054 * (which means it doesn't support streams at all).
3056 * Drivers may get less stream IDs than they asked for, if the host controller
3057 * hardware or endpoints claim they can't support the number of requested
3060 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3061 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3062 unsigned int num_streams
, gfp_t mem_flags
)
3065 struct xhci_hcd
*xhci
;
3066 struct xhci_virt_device
*vdev
;
3067 struct xhci_command
*config_cmd
;
3068 unsigned int ep_index
;
3069 unsigned int num_stream_ctxs
;
3070 unsigned long flags
;
3071 u32 changed_ep_bitmask
= 0;
3076 /* Add one to the number of streams requested to account for
3077 * stream 0 that is reserved for xHCI usage.
3080 xhci
= hcd_to_xhci(hcd
);
3081 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
3084 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3086 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3090 /* Check to make sure all endpoints are not already configured for
3091 * streams. While we're at it, find the maximum number of streams that
3092 * all the endpoints will support and check for duplicate endpoints.
3094 spin_lock_irqsave(&xhci
->lock
, flags
);
3095 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
3096 num_eps
, &num_streams
, &changed_ep_bitmask
);
3098 xhci_free_command(xhci
, config_cmd
);
3099 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3102 if (num_streams
<= 1) {
3103 xhci_warn(xhci
, "WARN: endpoints can't handle "
3104 "more than one stream.\n");
3105 xhci_free_command(xhci
, config_cmd
);
3106 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3109 vdev
= xhci
->devs
[udev
->slot_id
];
3110 /* Mark each endpoint as being in transition, so
3111 * xhci_urb_enqueue() will reject all URBs.
3113 for (i
= 0; i
< num_eps
; i
++) {
3114 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3115 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
3117 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3119 /* Setup internal data structures and allocate HW data structures for
3120 * streams (but don't install the HW structures in the input context
3121 * until we're sure all memory allocation succeeded).
3123 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
3124 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
3125 num_stream_ctxs
, num_streams
);
3127 for (i
= 0; i
< num_eps
; i
++) {
3128 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3129 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
3131 num_streams
, mem_flags
);
3132 if (!vdev
->eps
[ep_index
].stream_info
)
3134 /* Set maxPstreams in endpoint context and update deq ptr to
3135 * point to stream context array. FIXME
3139 /* Set up the input context for a configure endpoint command. */
3140 for (i
= 0; i
< num_eps
; i
++) {
3141 struct xhci_ep_ctx
*ep_ctx
;
3143 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3144 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
3146 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
3147 vdev
->out_ctx
, ep_index
);
3148 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
3149 vdev
->eps
[ep_index
].stream_info
);
3151 /* Tell the HW to drop its old copy of the endpoint context info
3152 * and add the updated copy from the input context.
3154 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
3155 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
3157 /* Issue and wait for the configure endpoint command */
3158 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
3161 /* xHC rejected the configure endpoint command for some reason, so we
3162 * leave the old ring intact and free our internal streams data
3168 spin_lock_irqsave(&xhci
->lock
, flags
);
3169 for (i
= 0; i
< num_eps
; i
++) {
3170 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3171 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3172 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
3173 udev
->slot_id
, ep_index
);
3174 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
3176 xhci_free_command(xhci
, config_cmd
);
3177 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3179 /* Subtract 1 for stream 0, which drivers can't use */
3180 return num_streams
- 1;
3183 /* If it didn't work, free the streams! */
3184 for (i
= 0; i
< num_eps
; i
++) {
3185 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3186 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3187 vdev
->eps
[ep_index
].stream_info
= NULL
;
3188 /* FIXME Unset maxPstreams in endpoint context and
3189 * update deq ptr to point to normal string ring.
3191 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3192 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3193 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3195 xhci_free_command(xhci
, config_cmd
);
3199 /* Transition the endpoint from using streams to being a "normal" endpoint
3202 * Modify the endpoint context state, submit a configure endpoint command,
3203 * and free all endpoint rings for streams if that completes successfully.
3205 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3206 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3210 struct xhci_hcd
*xhci
;
3211 struct xhci_virt_device
*vdev
;
3212 struct xhci_command
*command
;
3213 unsigned int ep_index
;
3214 unsigned long flags
;
3215 u32 changed_ep_bitmask
;
3217 xhci
= hcd_to_xhci(hcd
);
3218 vdev
= xhci
->devs
[udev
->slot_id
];
3220 /* Set up a configure endpoint command to remove the streams rings */
3221 spin_lock_irqsave(&xhci
->lock
, flags
);
3222 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3223 udev
, eps
, num_eps
);
3224 if (changed_ep_bitmask
== 0) {
3225 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3229 /* Use the xhci_command structure from the first endpoint. We may have
3230 * allocated too many, but the driver may call xhci_free_streams() for
3231 * each endpoint it grouped into one call to xhci_alloc_streams().
3233 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3234 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3235 for (i
= 0; i
< num_eps
; i
++) {
3236 struct xhci_ep_ctx
*ep_ctx
;
3238 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3239 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3240 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3241 EP_GETTING_NO_STREAMS
;
3243 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3244 vdev
->out_ctx
, ep_index
);
3245 xhci_setup_no_streams_ep_input_ctx(xhci
, ep_ctx
,
3246 &vdev
->eps
[ep_index
]);
3248 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3249 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
3250 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3252 /* Issue and wait for the configure endpoint command,
3253 * which must succeed.
3255 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3258 /* xHC rejected the configure endpoint command for some reason, so we
3259 * leave the streams rings intact.
3264 spin_lock_irqsave(&xhci
->lock
, flags
);
3265 for (i
= 0; i
< num_eps
; i
++) {
3266 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3267 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3268 vdev
->eps
[ep_index
].stream_info
= NULL
;
3269 /* FIXME Unset maxPstreams in endpoint context and
3270 * update deq ptr to point to normal string ring.
3272 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3273 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3275 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3281 * Deletes endpoint resources for endpoints that were active before a Reset
3282 * Device command, or a Disable Slot command. The Reset Device command leaves
3283 * the control endpoint intact, whereas the Disable Slot command deletes it.
3285 * Must be called with xhci->lock held.
3287 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3288 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3291 unsigned int num_dropped_eps
= 0;
3292 unsigned int drop_flags
= 0;
3294 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3295 if (virt_dev
->eps
[i
].ring
) {
3296 drop_flags
|= 1 << i
;
3300 xhci
->num_active_eps
-= num_dropped_eps
;
3301 if (num_dropped_eps
)
3302 xhci_dbg(xhci
, "Dropped %u ep ctxs, flags = 0x%x, "
3304 num_dropped_eps
, drop_flags
,
3305 xhci
->num_active_eps
);
3309 * This submits a Reset Device Command, which will set the device state to 0,
3310 * set the device address to 0, and disable all the endpoints except the default
3311 * control endpoint. The USB core should come back and call
3312 * xhci_address_device(), and then re-set up the configuration. If this is
3313 * called because of a usb_reset_and_verify_device(), then the old alternate
3314 * settings will be re-installed through the normal bandwidth allocation
3317 * Wait for the Reset Device command to finish. Remove all structures
3318 * associated with the endpoints that were disabled. Clear the input device
3319 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3321 * If the virt_dev to be reset does not exist or does not match the udev,
3322 * it means the device is lost, possibly due to the xHC restore error and
3323 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3324 * re-allocate the device.
3326 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3329 unsigned long flags
;
3330 struct xhci_hcd
*xhci
;
3331 unsigned int slot_id
;
3332 struct xhci_virt_device
*virt_dev
;
3333 struct xhci_command
*reset_device_cmd
;
3335 int last_freed_endpoint
;
3336 struct xhci_slot_ctx
*slot_ctx
;
3337 int old_active_eps
= 0;
3339 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3342 xhci
= hcd_to_xhci(hcd
);
3343 slot_id
= udev
->slot_id
;
3344 virt_dev
= xhci
->devs
[slot_id
];
3346 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3347 "not exist. Re-allocate the device\n", slot_id
);
3348 ret
= xhci_alloc_dev(hcd
, udev
);
3355 if (virt_dev
->udev
!= udev
) {
3356 /* If the virt_dev and the udev does not match, this virt_dev
3357 * may belong to another udev.
3358 * Re-allocate the device.
3360 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3361 "not match the udev. Re-allocate the device\n",
3363 ret
= xhci_alloc_dev(hcd
, udev
);
3370 /* If device is not setup, there is no point in resetting it */
3371 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3372 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3373 SLOT_STATE_DISABLED
)
3376 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3377 /* Allocate the command structure that holds the struct completion.
3378 * Assume we're in process context, since the normal device reset
3379 * process has to wait for the device anyway. Storage devices are
3380 * reset as part of error handling, so use GFP_NOIO instead of
3383 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3384 if (!reset_device_cmd
) {
3385 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3389 /* Attempt to submit the Reset Device command to the command ring */
3390 spin_lock_irqsave(&xhci
->lock
, flags
);
3391 reset_device_cmd
->command_trb
= xhci
->cmd_ring
->enqueue
;
3393 /* Enqueue pointer can be left pointing to the link TRB,
3394 * we must handle that
3396 if (TRB_TYPE_LINK_LE32(reset_device_cmd
->command_trb
->link
.control
))
3397 reset_device_cmd
->command_trb
=
3398 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
3400 list_add_tail(&reset_device_cmd
->cmd_list
, &virt_dev
->cmd_list
);
3401 ret
= xhci_queue_reset_device(xhci
, slot_id
);
3403 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3404 list_del(&reset_device_cmd
->cmd_list
);
3405 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3406 goto command_cleanup
;
3408 xhci_ring_cmd_db(xhci
);
3409 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3411 /* Wait for the Reset Device command to finish */
3412 timeleft
= wait_for_completion_interruptible_timeout(
3413 reset_device_cmd
->completion
,
3414 USB_CTRL_SET_TIMEOUT
);
3415 if (timeleft
<= 0) {
3416 xhci_warn(xhci
, "%s while waiting for reset device command\n",
3417 timeleft
== 0 ? "Timeout" : "Signal");
3418 spin_lock_irqsave(&xhci
->lock
, flags
);
3419 /* The timeout might have raced with the event ring handler, so
3420 * only delete from the list if the item isn't poisoned.
3422 if (reset_device_cmd
->cmd_list
.next
!= LIST_POISON1
)
3423 list_del(&reset_device_cmd
->cmd_list
);
3424 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3426 goto command_cleanup
;
3429 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430 * unless we tried to reset a slot ID that wasn't enabled,
3431 * or the device wasn't in the addressed or configured state.
3433 ret
= reset_device_cmd
->status
;
3435 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
3436 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
3437 xhci_info(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3439 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3440 xhci_info(xhci
, "Not freeing device rings.\n");
3441 /* Don't treat this as an error. May change my mind later. */
3443 goto command_cleanup
;
3445 xhci_dbg(xhci
, "Successful reset device command.\n");
3448 if (xhci_is_vendor_info_code(xhci
, ret
))
3450 xhci_warn(xhci
, "Unknown completion code %u for "
3451 "reset device command.\n", ret
);
3453 goto command_cleanup
;
3456 /* Free up host controller endpoint resources */
3457 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3458 spin_lock_irqsave(&xhci
->lock
, flags
);
3459 /* Don't delete the default control endpoint resources */
3460 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3461 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3464 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3465 last_freed_endpoint
= 1;
3466 for (i
= 1; i
< 31; ++i
) {
3467 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3469 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3470 xhci_free_stream_info(xhci
, ep
->stream_info
);
3471 ep
->stream_info
= NULL
;
3472 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3476 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3477 last_freed_endpoint
= i
;
3479 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3480 xhci_drop_ep_from_interval_table(xhci
,
3481 &virt_dev
->eps
[i
].bw_info
,
3486 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3488 /* If necessary, update the number of active TTs on this root port */
3489 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3491 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3492 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3496 xhci_free_command(xhci
, reset_device_cmd
);
3501 * At this point, the struct usb_device is about to go away, the device has
3502 * disconnected, and all traffic has been stopped and the endpoints have been
3503 * disabled. Free any HC data structures associated with that device.
3505 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3507 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3508 struct xhci_virt_device
*virt_dev
;
3509 unsigned long flags
;
3513 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3514 /* If the host is halted due to driver unload, we still need to free the
3517 if (ret
<= 0 && ret
!= -ENODEV
)
3520 virt_dev
= xhci
->devs
[udev
->slot_id
];
3522 /* Stop any wayward timer functions (which may grab the lock) */
3523 for (i
= 0; i
< 31; ++i
) {
3524 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
3525 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3528 if (udev
->usb2_hw_lpm_enabled
) {
3529 xhci_set_usb2_hardware_lpm(hcd
, udev
, 0);
3530 udev
->usb2_hw_lpm_enabled
= 0;
3533 spin_lock_irqsave(&xhci
->lock
, flags
);
3534 /* Don't disable the slot if the host controller is dead. */
3535 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
3536 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3537 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3538 xhci_free_virt_device(xhci
, udev
->slot_id
);
3539 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3543 if (xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
)) {
3544 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3545 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3548 xhci_ring_cmd_db(xhci
);
3549 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3551 * Event command completion handler will free any data structures
3552 * associated with the slot. XXX Can free sleep?
3557 * Checks if we have enough host controller resources for the default control
3560 * Must be called with xhci->lock held.
3562 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3564 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3565 xhci_dbg(xhci
, "Not enough ep ctxs: "
3566 "%u active, need to add 1, limit is %u.\n",
3567 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3570 xhci
->num_active_eps
+= 1;
3571 xhci_dbg(xhci
, "Adding 1 ep ctx, %u now active.\n",
3572 xhci
->num_active_eps
);
3578 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3579 * timed out, or allocating memory failed. Returns 1 on success.
3581 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3583 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3584 unsigned long flags
;
3587 union xhci_trb
*cmd_trb
;
3589 spin_lock_irqsave(&xhci
->lock
, flags
);
3590 cmd_trb
= xhci
->cmd_ring
->dequeue
;
3591 ret
= xhci_queue_slot_control(xhci
, TRB_ENABLE_SLOT
, 0);
3593 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3594 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3597 xhci_ring_cmd_db(xhci
);
3598 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3600 /* XXX: how much time for xHC slot assignment? */
3601 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3602 XHCI_CMD_DEFAULT_TIMEOUT
);
3603 if (timeleft
<= 0) {
3604 xhci_warn(xhci
, "%s while waiting for a slot\n",
3605 timeleft
== 0 ? "Timeout" : "Signal");
3606 /* cancel the enable slot request */
3607 return xhci_cancel_cmd(xhci
, NULL
, cmd_trb
);
3610 if (!xhci
->slot_id
) {
3611 xhci_err(xhci
, "Error while assigning device slot ID\n");
3615 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3616 spin_lock_irqsave(&xhci
->lock
, flags
);
3617 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3619 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3620 xhci_warn(xhci
, "Not enough host resources, "
3621 "active endpoint contexts = %u\n",
3622 xhci
->num_active_eps
);
3625 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3627 /* Use GFP_NOIO, since this function can be called from
3628 * xhci_discover_or_reset_device(), which may be called as part of
3629 * mass storage driver error handling.
3631 if (!xhci_alloc_virt_device(xhci
, xhci
->slot_id
, udev
, GFP_NOIO
)) {
3632 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3635 udev
->slot_id
= xhci
->slot_id
;
3636 /* Is this a LS or FS device under a HS hub? */
3637 /* Hub or peripherial? */
3641 /* Disable slot, if we can do it without mem alloc */
3642 spin_lock_irqsave(&xhci
->lock
, flags
);
3643 if (!xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
))
3644 xhci_ring_cmd_db(xhci
);
3645 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3650 * Issue an Address Device command (which will issue a SetAddress request to
3652 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3653 * we should only issue and wait on one address command at the same time.
3655 * We add one to the device address issued by the hardware because the USB core
3656 * uses address 1 for the root hubs (even though they're not really devices).
3658 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3660 unsigned long flags
;
3662 struct xhci_virt_device
*virt_dev
;
3664 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3665 struct xhci_slot_ctx
*slot_ctx
;
3666 struct xhci_input_control_ctx
*ctrl_ctx
;
3668 union xhci_trb
*cmd_trb
;
3670 if (!udev
->slot_id
) {
3671 xhci_dbg(xhci
, "Bad Slot ID %d\n", udev
->slot_id
);
3675 virt_dev
= xhci
->devs
[udev
->slot_id
];
3677 if (WARN_ON(!virt_dev
)) {
3679 * In plug/unplug torture test with an NEC controller,
3680 * a zero-dereference was observed once due to virt_dev = 0.
3681 * Print useful debug rather than crash if it is observed again!
3683 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3688 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3690 * If this is the first Set Address since device plug-in or
3691 * virt_device realloaction after a resume with an xHCI power loss,
3692 * then set up the slot context.
3694 if (!slot_ctx
->dev_info
)
3695 xhci_setup_addressable_virt_dev(xhci
, udev
);
3696 /* Otherwise, update the control endpoint ring enqueue pointer. */
3698 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3699 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
3700 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
3701 ctrl_ctx
->drop_flags
= 0;
3703 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3704 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3706 spin_lock_irqsave(&xhci
->lock
, flags
);
3707 cmd_trb
= xhci
->cmd_ring
->dequeue
;
3708 ret
= xhci_queue_address_device(xhci
, virt_dev
->in_ctx
->dma
,
3711 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3712 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3715 xhci_ring_cmd_db(xhci
);
3716 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3718 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3719 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3720 XHCI_CMD_DEFAULT_TIMEOUT
);
3721 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3722 * the SetAddress() "recovery interval" required by USB and aborting the
3723 * command on a timeout.
3725 if (timeleft
<= 0) {
3726 xhci_warn(xhci
, "%s while waiting for address device command\n",
3727 timeleft
== 0 ? "Timeout" : "Signal");
3728 /* cancel the address device command */
3729 ret
= xhci_cancel_cmd(xhci
, NULL
, cmd_trb
);
3735 switch (virt_dev
->cmd_status
) {
3736 case COMP_CTX_STATE
:
3738 xhci_err(xhci
, "Setup ERROR: address device command for slot %d.\n",
3743 dev_warn(&udev
->dev
, "Device not responding to set address.\n");
3747 dev_warn(&udev
->dev
, "ERROR: Incompatible device for address "
3748 "device command.\n");
3752 xhci_dbg(xhci
, "Successful Address Device command\n");
3755 xhci_err(xhci
, "ERROR: unexpected command completion "
3756 "code 0x%x.\n", virt_dev
->cmd_status
);
3757 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3758 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3765 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3766 xhci_dbg(xhci
, "Op regs DCBAA ptr = %#016llx\n", temp_64
);
3767 xhci_dbg(xhci
, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3769 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3770 (unsigned long long)
3771 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3772 xhci_dbg(xhci
, "Output Context DMA address = %#08llx\n",
3773 (unsigned long long)virt_dev
->out_ctx
->dma
);
3774 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3775 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3776 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3777 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3779 * USB core uses address 1 for the roothubs, so we add one to the
3780 * address given back to us by the HC.
3782 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3783 /* Use kernel assigned address for devices; store xHC assigned
3784 * address locally. */
3785 virt_dev
->address
= (le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
)
3787 /* Zero the input context control for later use */
3788 ctrl_ctx
->add_flags
= 0;
3789 ctrl_ctx
->drop_flags
= 0;
3791 xhci_dbg(xhci
, "Internal device address = %d\n", virt_dev
->address
);
3797 * Transfer the port index into real index in the HW port status
3798 * registers. Caculate offset between the port's PORTSC register
3799 * and port status base. Divide the number of per port register
3800 * to get the real index. The raw port number bases 1.
3802 int xhci_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
3804 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3805 __le32 __iomem
*base_addr
= &xhci
->op_regs
->port_status_base
;
3806 __le32 __iomem
*addr
;
3809 if (hcd
->speed
!= HCD_USB3
)
3810 addr
= xhci
->usb2_ports
[port1
- 1];
3812 addr
= xhci
->usb3_ports
[port1
- 1];
3814 raw_port
= (addr
- base_addr
)/NUM_PORT_REGS
+ 1;
3818 #ifdef CONFIG_PM_RUNTIME
3820 /* BESL to HIRD Encoding array for USB2 LPM */
3821 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3822 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3824 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3825 static int xhci_calculate_hird_besl(struct xhci_hcd
*xhci
,
3826 struct usb_device
*udev
)
3828 int u2del
, besl
, besl_host
;
3829 int besl_device
= 0;
3832 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
3833 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
3835 if (field
& USB_BESL_SUPPORT
) {
3836 for (besl_host
= 0; besl_host
< 16; besl_host
++) {
3837 if (xhci_besl_encoding
[besl_host
] >= u2del
)
3840 /* Use baseline BESL value as default */
3841 if (field
& USB_BESL_BASELINE_VALID
)
3842 besl_device
= USB_GET_BESL_BASELINE(field
);
3843 else if (field
& USB_BESL_DEEP_VALID
)
3844 besl_device
= USB_GET_BESL_DEEP(field
);
3849 besl_host
= (u2del
- 51) / 75 + 1;
3852 besl
= besl_host
+ besl_device
;
3859 static int xhci_usb2_software_lpm_test(struct usb_hcd
*hcd
,
3860 struct usb_device
*udev
)
3862 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3863 struct dev_info
*dev_info
;
3864 __le32 __iomem
**port_array
;
3865 __le32 __iomem
*addr
, *pm_addr
;
3867 unsigned int port_num
;
3868 unsigned long flags
;
3872 if (hcd
->speed
== HCD_USB3
|| !xhci
->sw_lpm_support
||
3876 /* we only support lpm for non-hub device connected to root hub yet */
3877 if (!udev
->parent
|| udev
->parent
->parent
||
3878 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
3881 spin_lock_irqsave(&xhci
->lock
, flags
);
3883 /* Look for devices in lpm_failed_devs list */
3884 dev_id
= le16_to_cpu(udev
->descriptor
.idVendor
) << 16 |
3885 le16_to_cpu(udev
->descriptor
.idProduct
);
3886 list_for_each_entry(dev_info
, &xhci
->lpm_failed_devs
, list
) {
3887 if (dev_info
->dev_id
== dev_id
) {
3893 port_array
= xhci
->usb2_ports
;
3894 port_num
= udev
->portnum
- 1;
3896 if (port_num
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
3897 xhci_dbg(xhci
, "invalid port number %d\n", udev
->portnum
);
3903 * Test USB 2.0 software LPM.
3904 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3905 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3906 * in the June 2011 errata release.
3908 xhci_dbg(xhci
, "test port %d software LPM\n", port_num
);
3910 * Set L1 Device Slot and HIRD/BESL.
3911 * Check device's USB 2.0 extension descriptor to determine whether
3912 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3914 pm_addr
= port_array
[port_num
] + 1;
3915 hird
= xhci_calculate_hird_besl(xhci
, udev
);
3916 temp
= PORT_L1DS(udev
->slot_id
) | PORT_HIRD(hird
);
3917 xhci_writel(xhci
, temp
, pm_addr
);
3919 /* Set port link state to U2(L1) */
3920 addr
= port_array
[port_num
];
3921 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U2
);
3924 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3926 spin_lock_irqsave(&xhci
->lock
, flags
);
3928 /* Check L1 Status */
3929 ret
= xhci_handshake(xhci
, pm_addr
,
3930 PORT_L1S_MASK
, PORT_L1S_SUCCESS
, 125);
3931 if (ret
!= -ETIMEDOUT
) {
3932 /* enter L1 successfully */
3933 temp
= xhci_readl(xhci
, addr
);
3934 xhci_dbg(xhci
, "port %d entered L1 state, port status 0x%x\n",
3938 temp
= xhci_readl(xhci
, pm_addr
);
3939 xhci_dbg(xhci
, "port %d software lpm failed, L1 status %d\n",
3940 port_num
, temp
& PORT_L1S_MASK
);
3944 /* Resume the port */
3945 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U0
);
3947 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3949 spin_lock_irqsave(&xhci
->lock
, flags
);
3952 xhci_test_and_clear_bit(xhci
, port_array
, port_num
, PORT_PLC
);
3954 /* Check PORTSC to make sure the device is in the right state */
3956 temp
= xhci_readl(xhci
, addr
);
3957 xhci_dbg(xhci
, "resumed port %d status 0x%x\n", port_num
, temp
);
3958 if (!(temp
& PORT_CONNECT
) || !(temp
& PORT_PE
) ||
3959 (temp
& PORT_PLS_MASK
) != XDEV_U0
) {
3960 xhci_dbg(xhci
, "port L1 resume fail\n");
3966 /* Insert dev to lpm_failed_devs list */
3967 xhci_warn(xhci
, "device LPM test failed, may disconnect and "
3969 dev_info
= kzalloc(sizeof(struct dev_info
), GFP_ATOMIC
);
3974 dev_info
->dev_id
= dev_id
;
3975 INIT_LIST_HEAD(&dev_info
->list
);
3976 list_add(&dev_info
->list
, &xhci
->lpm_failed_devs
);
3978 xhci_ring_device(xhci
, udev
->slot_id
);
3982 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
3987 struct usb_device
*udev
, int enable
)
3989 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3990 __le32 __iomem
**port_array
;
3991 __le32 __iomem
*pm_addr
;
3993 unsigned int port_num
;
3994 unsigned long flags
;
3997 if (hcd
->speed
== HCD_USB3
|| !xhci
->hw_lpm_support
||
4001 if (!udev
->parent
|| udev
->parent
->parent
||
4002 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4005 if (udev
->usb2_hw_lpm_capable
!= 1)
4008 spin_lock_irqsave(&xhci
->lock
, flags
);
4010 port_array
= xhci
->usb2_ports
;
4011 port_num
= udev
->portnum
- 1;
4012 pm_addr
= port_array
[port_num
] + 1;
4013 temp
= xhci_readl(xhci
, pm_addr
);
4015 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
4016 enable
? "enable" : "disable", port_num
);
4018 hird
= xhci_calculate_hird_besl(xhci
, udev
);
4021 temp
&= ~PORT_HIRD_MASK
;
4022 temp
|= PORT_HIRD(hird
) | PORT_RWE
;
4023 xhci_writel(xhci
, temp
, pm_addr
);
4024 temp
= xhci_readl(xhci
, pm_addr
);
4026 xhci_writel(xhci
, temp
, pm_addr
);
4028 temp
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
);
4029 xhci_writel(xhci
, temp
, pm_addr
);
4032 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4036 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4038 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4041 ret
= xhci_usb2_software_lpm_test(hcd
, udev
);
4043 xhci_dbg(xhci
, "software LPM test succeed\n");
4044 if (xhci
->hw_lpm_support
== 1) {
4045 udev
->usb2_hw_lpm_capable
= 1;
4046 ret
= xhci_set_usb2_hardware_lpm(hcd
, udev
, 1);
4048 udev
->usb2_hw_lpm_enabled
= 1;
4057 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4058 struct usb_device
*udev
, int enable
)
4063 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4068 #endif /* CONFIG_PM_RUNTIME */
4070 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4073 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4074 static unsigned long long xhci_service_interval_to_ns(
4075 struct usb_endpoint_descriptor
*desc
)
4077 return (1ULL << (desc
->bInterval
- 1)) * 125 * 1000;
4080 static u16
xhci_get_timeout_no_hub_lpm(struct usb_device
*udev
,
4081 enum usb3_link_state state
)
4083 unsigned long long sel
;
4084 unsigned long long pel
;
4085 unsigned int max_sel_pel
;
4090 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4091 sel
= DIV_ROUND_UP(udev
->u1_params
.sel
, 1000);
4092 pel
= DIV_ROUND_UP(udev
->u1_params
.pel
, 1000);
4093 max_sel_pel
= USB3_LPM_MAX_U1_SEL_PEL
;
4097 sel
= DIV_ROUND_UP(udev
->u2_params
.sel
, 1000);
4098 pel
= DIV_ROUND_UP(udev
->u2_params
.pel
, 1000);
4099 max_sel_pel
= USB3_LPM_MAX_U2_SEL_PEL
;
4103 dev_warn(&udev
->dev
, "%s: Can't get timeout for non-U1 or U2 state.\n",
4105 return USB3_LPM_DISABLED
;
4108 if (sel
<= max_sel_pel
&& pel
<= max_sel_pel
)
4109 return USB3_LPM_DEVICE_INITIATED
;
4111 if (sel
> max_sel_pel
)
4112 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4113 "due to long SEL %llu ms\n",
4116 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4117 "due to long PEL %llu\n ms",
4119 return USB3_LPM_DISABLED
;
4122 /* Returns the hub-encoded U1 timeout value.
4123 * The U1 timeout should be the maximum of the following values:
4124 * - For control endpoints, U1 system exit latency (SEL) * 3
4125 * - For bulk endpoints, U1 SEL * 5
4126 * - For interrupt endpoints:
4127 * - Notification EPs, U1 SEL * 3
4128 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4129 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4131 static u16
xhci_calculate_intel_u1_timeout(struct usb_device
*udev
,
4132 struct usb_endpoint_descriptor
*desc
)
4134 unsigned long long timeout_ns
;
4138 ep_type
= usb_endpoint_type(desc
);
4140 case USB_ENDPOINT_XFER_CONTROL
:
4141 timeout_ns
= udev
->u1_params
.sel
* 3;
4143 case USB_ENDPOINT_XFER_BULK
:
4144 timeout_ns
= udev
->u1_params
.sel
* 5;
4146 case USB_ENDPOINT_XFER_INT
:
4147 intr_type
= usb_endpoint_interrupt_type(desc
);
4148 if (intr_type
== USB_ENDPOINT_INTR_NOTIFICATION
) {
4149 timeout_ns
= udev
->u1_params
.sel
* 3;
4152 /* Otherwise the calculation is the same as isoc eps */
4153 case USB_ENDPOINT_XFER_ISOC
:
4154 timeout_ns
= xhci_service_interval_to_ns(desc
);
4155 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
* 105, 100);
4156 if (timeout_ns
< udev
->u1_params
.sel
* 2)
4157 timeout_ns
= udev
->u1_params
.sel
* 2;
4163 /* The U1 timeout is encoded in 1us intervals. */
4164 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 1000);
4165 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4166 if (timeout_ns
== USB3_LPM_DISABLED
)
4169 /* If the necessary timeout value is bigger than what we can set in the
4170 * USB 3.0 hub, we have to disable hub-initiated U1.
4172 if (timeout_ns
<= USB3_LPM_U1_MAX_TIMEOUT
)
4174 dev_dbg(&udev
->dev
, "Hub-initiated U1 disabled "
4175 "due to long timeout %llu ms\n", timeout_ns
);
4176 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U1
);
4179 /* Returns the hub-encoded U2 timeout value.
4180 * The U2 timeout should be the maximum of:
4181 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4182 * - largest bInterval of any active periodic endpoint (to avoid going
4183 * into lower power link states between intervals).
4184 * - the U2 Exit Latency of the device
4186 static u16
xhci_calculate_intel_u2_timeout(struct usb_device
*udev
,
4187 struct usb_endpoint_descriptor
*desc
)
4189 unsigned long long timeout_ns
;
4190 unsigned long long u2_del_ns
;
4192 timeout_ns
= 10 * 1000 * 1000;
4194 if ((usb_endpoint_xfer_int(desc
) || usb_endpoint_xfer_isoc(desc
)) &&
4195 (xhci_service_interval_to_ns(desc
) > timeout_ns
))
4196 timeout_ns
= xhci_service_interval_to_ns(desc
);
4198 u2_del_ns
= le16_to_cpu(udev
->bos
->ss_cap
->bU2DevExitLat
) * 1000ULL;
4199 if (u2_del_ns
> timeout_ns
)
4200 timeout_ns
= u2_del_ns
;
4202 /* The U2 timeout is encoded in 256us intervals */
4203 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 256 * 1000);
4204 /* If the necessary timeout value is bigger than what we can set in the
4205 * USB 3.0 hub, we have to disable hub-initiated U2.
4207 if (timeout_ns
<= USB3_LPM_U2_MAX_TIMEOUT
)
4209 dev_dbg(&udev
->dev
, "Hub-initiated U2 disabled "
4210 "due to long timeout %llu ms\n", timeout_ns
);
4211 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U2
);
4214 static u16
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4215 struct usb_device
*udev
,
4216 struct usb_endpoint_descriptor
*desc
,
4217 enum usb3_link_state state
,
4220 if (state
== USB3_LPM_U1
) {
4221 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4222 return xhci_calculate_intel_u1_timeout(udev
, desc
);
4224 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4225 return xhci_calculate_intel_u2_timeout(udev
, desc
);
4228 return USB3_LPM_DISABLED
;
4231 static int xhci_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4232 struct usb_device
*udev
,
4233 struct usb_endpoint_descriptor
*desc
,
4234 enum usb3_link_state state
,
4239 alt_timeout
= xhci_call_host_update_timeout_for_endpoint(xhci
, udev
,
4240 desc
, state
, timeout
);
4242 /* If we found we can't enable hub-initiated LPM, or
4243 * the U1 or U2 exit latency was too high to allow
4244 * device-initiated LPM as well, just stop searching.
4246 if (alt_timeout
== USB3_LPM_DISABLED
||
4247 alt_timeout
== USB3_LPM_DEVICE_INITIATED
) {
4248 *timeout
= alt_timeout
;
4251 if (alt_timeout
> *timeout
)
4252 *timeout
= alt_timeout
;
4256 static int xhci_update_timeout_for_interface(struct xhci_hcd
*xhci
,
4257 struct usb_device
*udev
,
4258 struct usb_host_interface
*alt
,
4259 enum usb3_link_state state
,
4264 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
4265 if (xhci_update_timeout_for_endpoint(xhci
, udev
,
4266 &alt
->endpoint
[j
].desc
, state
, timeout
))
4273 static int xhci_check_intel_tier_policy(struct usb_device
*udev
,
4274 enum usb3_link_state state
)
4276 struct usb_device
*parent
;
4277 unsigned int num_hubs
;
4279 if (state
== USB3_LPM_U2
)
4282 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4283 for (parent
= udev
->parent
, num_hubs
= 0; parent
->parent
;
4284 parent
= parent
->parent
)
4290 dev_dbg(&udev
->dev
, "Disabling U1 link state for device"
4291 " below second-tier hub.\n");
4292 dev_dbg(&udev
->dev
, "Plug device into first-tier hub "
4293 "to decrease power consumption.\n");
4297 static int xhci_check_tier_policy(struct xhci_hcd
*xhci
,
4298 struct usb_device
*udev
,
4299 enum usb3_link_state state
)
4301 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4302 return xhci_check_intel_tier_policy(udev
, state
);
4306 /* Returns the U1 or U2 timeout that should be enabled.
4307 * If the tier check or timeout setting functions return with a non-zero exit
4308 * code, that means the timeout value has been finalized and we shouldn't look
4309 * at any more endpoints.
4311 static u16
xhci_calculate_lpm_timeout(struct usb_hcd
*hcd
,
4312 struct usb_device
*udev
, enum usb3_link_state state
)
4314 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4315 struct usb_host_config
*config
;
4318 u16 timeout
= USB3_LPM_DISABLED
;
4320 if (state
== USB3_LPM_U1
)
4322 else if (state
== USB3_LPM_U2
)
4325 dev_warn(&udev
->dev
, "Can't enable unknown link state %i\n",
4330 if (xhci_check_tier_policy(xhci
, udev
, state
) < 0)
4333 /* Gather some information about the currently installed configuration
4334 * and alternate interface settings.
4336 if (xhci_update_timeout_for_endpoint(xhci
, udev
, &udev
->ep0
.desc
,
4340 config
= udev
->actconfig
;
4344 for (i
= 0; i
< USB_MAXINTERFACES
; i
++) {
4345 struct usb_driver
*driver
;
4346 struct usb_interface
*intf
= config
->interface
[i
];
4351 /* Check if any currently bound drivers want hub-initiated LPM
4354 if (intf
->dev
.driver
) {
4355 driver
= to_usb_driver(intf
->dev
.driver
);
4356 if (driver
&& driver
->disable_hub_initiated_lpm
) {
4357 dev_dbg(&udev
->dev
, "Hub-initiated %s disabled "
4358 "at request of driver %s\n",
4359 state_name
, driver
->name
);
4360 return xhci_get_timeout_no_hub_lpm(udev
, state
);
4364 /* Not sure how this could happen... */
4365 if (!intf
->cur_altsetting
)
4368 if (xhci_update_timeout_for_interface(xhci
, udev
,
4369 intf
->cur_altsetting
,
4377 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4378 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4380 static int xhci_change_max_exit_latency(struct xhci_hcd
*xhci
,
4381 struct usb_device
*udev
, u16 max_exit_latency
)
4383 struct xhci_virt_device
*virt_dev
;
4384 struct xhci_command
*command
;
4385 struct xhci_input_control_ctx
*ctrl_ctx
;
4386 struct xhci_slot_ctx
*slot_ctx
;
4387 unsigned long flags
;
4390 spin_lock_irqsave(&xhci
->lock
, flags
);
4391 if (max_exit_latency
== xhci
->devs
[udev
->slot_id
]->current_mel
) {
4392 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4396 /* Attempt to issue an Evaluate Context command to change the MEL. */
4397 virt_dev
= xhci
->devs
[udev
->slot_id
];
4398 command
= xhci
->lpm_command
;
4399 xhci_slot_copy(xhci
, command
->in_ctx
, virt_dev
->out_ctx
);
4400 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4402 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, command
->in_ctx
);
4403 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4404 slot_ctx
= xhci_get_slot_ctx(xhci
, command
->in_ctx
);
4405 slot_ctx
->dev_info2
&= cpu_to_le32(~((u32
) MAX_EXIT
));
4406 slot_ctx
->dev_info2
|= cpu_to_le32(max_exit_latency
);
4408 xhci_dbg(xhci
, "Set up evaluate context for LPM MEL change.\n");
4409 xhci_dbg(xhci
, "Slot %u Input Context:\n", udev
->slot_id
);
4410 xhci_dbg_ctx(xhci
, command
->in_ctx
, 0);
4412 /* Issue and wait for the evaluate context command. */
4413 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
4415 xhci_dbg(xhci
, "Slot %u Output Context:\n", udev
->slot_id
);
4416 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 0);
4419 spin_lock_irqsave(&xhci
->lock
, flags
);
4420 virt_dev
->current_mel
= max_exit_latency
;
4421 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4426 static int calculate_max_exit_latency(struct usb_device
*udev
,
4427 enum usb3_link_state state_changed
,
4428 u16 hub_encoded_timeout
)
4430 unsigned long long u1_mel_us
= 0;
4431 unsigned long long u2_mel_us
= 0;
4432 unsigned long long mel_us
= 0;
4438 disabling_u1
= (state_changed
== USB3_LPM_U1
&&
4439 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4440 disabling_u2
= (state_changed
== USB3_LPM_U2
&&
4441 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4443 enabling_u1
= (state_changed
== USB3_LPM_U1
&&
4444 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4445 enabling_u2
= (state_changed
== USB3_LPM_U2
&&
4446 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4448 /* If U1 was already enabled and we're not disabling it,
4449 * or we're going to enable U1, account for the U1 max exit latency.
4451 if ((udev
->u1_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u1
) ||
4453 u1_mel_us
= DIV_ROUND_UP(udev
->u1_params
.mel
, 1000);
4454 if ((udev
->u2_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u2
) ||
4456 u2_mel_us
= DIV_ROUND_UP(udev
->u2_params
.mel
, 1000);
4458 if (u1_mel_us
> u2_mel_us
)
4462 /* xHCI host controller max exit latency field is only 16 bits wide. */
4463 if (mel_us
> MAX_EXIT
) {
4464 dev_warn(&udev
->dev
, "Link PM max exit latency of %lluus "
4465 "is too big.\n", mel_us
);
4471 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4472 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4473 struct usb_device
*udev
, enum usb3_link_state state
)
4475 struct xhci_hcd
*xhci
;
4476 u16 hub_encoded_timeout
;
4480 xhci
= hcd_to_xhci(hcd
);
4481 /* The LPM timeout values are pretty host-controller specific, so don't
4482 * enable hub-initiated timeouts unless the vendor has provided
4483 * information about their timeout algorithm.
4485 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4486 !xhci
->devs
[udev
->slot_id
])
4487 return USB3_LPM_DISABLED
;
4489 hub_encoded_timeout
= xhci_calculate_lpm_timeout(hcd
, udev
, state
);
4490 mel
= calculate_max_exit_latency(udev
, state
, hub_encoded_timeout
);
4492 /* Max Exit Latency is too big, disable LPM. */
4493 hub_encoded_timeout
= USB3_LPM_DISABLED
;
4497 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4500 return hub_encoded_timeout
;
4503 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4504 struct usb_device
*udev
, enum usb3_link_state state
)
4506 struct xhci_hcd
*xhci
;
4510 xhci
= hcd_to_xhci(hcd
);
4511 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4512 !xhci
->devs
[udev
->slot_id
])
4515 mel
= calculate_max_exit_latency(udev
, state
, USB3_LPM_DISABLED
);
4516 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4521 #else /* CONFIG_PM */
4523 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4524 struct usb_device
*udev
, enum usb3_link_state state
)
4526 return USB3_LPM_DISABLED
;
4529 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4530 struct usb_device
*udev
, enum usb3_link_state state
)
4534 #endif /* CONFIG_PM */
4536 /*-------------------------------------------------------------------------*/
4538 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4539 * internal data structures for the device.
4541 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
4542 struct usb_tt
*tt
, gfp_t mem_flags
)
4544 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4545 struct xhci_virt_device
*vdev
;
4546 struct xhci_command
*config_cmd
;
4547 struct xhci_input_control_ctx
*ctrl_ctx
;
4548 struct xhci_slot_ctx
*slot_ctx
;
4549 unsigned long flags
;
4550 unsigned think_time
;
4553 /* Ignore root hubs */
4557 vdev
= xhci
->devs
[hdev
->slot_id
];
4559 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
4562 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
4564 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
4568 spin_lock_irqsave(&xhci
->lock
, flags
);
4569 if (hdev
->speed
== USB_SPEED_HIGH
&&
4570 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
4571 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
4572 xhci_free_command(xhci
, config_cmd
);
4573 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4577 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
4578 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
4579 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4580 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
4581 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
4583 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
4584 if (xhci
->hci_version
> 0x95) {
4585 xhci_dbg(xhci
, "xHCI version %x needs hub "
4586 "TT think time and number of ports\n",
4587 (unsigned int) xhci
->hci_version
);
4588 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
4589 /* Set TT think time - convert from ns to FS bit times.
4590 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4591 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4593 * xHCI 1.0: this field shall be 0 if the device is not a
4596 think_time
= tt
->think_time
;
4597 if (think_time
!= 0)
4598 think_time
= (think_time
/ 666) - 1;
4599 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
4600 slot_ctx
->tt_info
|=
4601 cpu_to_le32(TT_THINK_TIME(think_time
));
4603 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
4604 "TT think time or number of ports\n",
4605 (unsigned int) xhci
->hci_version
);
4607 slot_ctx
->dev_state
= 0;
4608 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4610 xhci_dbg(xhci
, "Set up %s for hub device.\n",
4611 (xhci
->hci_version
> 0x95) ?
4612 "configure endpoint" : "evaluate context");
4613 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
4614 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
4616 /* Issue and wait for the configure endpoint or
4617 * evaluate context command.
4619 if (xhci
->hci_version
> 0x95)
4620 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4623 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4626 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
4627 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
4629 xhci_free_command(xhci
, config_cmd
);
4633 int xhci_get_frame(struct usb_hcd
*hcd
)
4635 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4636 /* EHCI mods by the periodic size. Why? */
4637 return xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
) >> 3;
4640 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
4642 struct xhci_hcd
*xhci
;
4643 struct device
*dev
= hcd
->self
.controller
;
4647 /* Accept arbitrarily long scatter-gather lists */
4648 hcd
->self
.sg_tablesize
= ~0;
4649 /* XHCI controllers don't stop the ep queue on short packets :| */
4650 hcd
->self
.no_stop_on_short
= 1;
4652 if (usb_hcd_is_primary_hcd(hcd
)) {
4653 xhci
= kzalloc(sizeof(struct xhci_hcd
), GFP_KERNEL
);
4656 *((struct xhci_hcd
**) hcd
->hcd_priv
) = xhci
;
4657 xhci
->main_hcd
= hcd
;
4658 /* Mark the first roothub as being USB 2.0.
4659 * The xHCI driver will register the USB 3.0 roothub.
4661 hcd
->speed
= HCD_USB2
;
4662 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
4664 * USB 2.0 roothub under xHCI has an integrated TT,
4665 * (rate matching hub) as opposed to having an OHCI/UHCI
4666 * companion controller.
4670 /* xHCI private pointer was set in xhci_pci_probe for the second
4671 * registered roothub.
4673 xhci
= hcd_to_xhci(hcd
);
4674 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4675 if (HCC_64BIT_ADDR(temp
)) {
4676 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4677 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
4679 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
4684 xhci
->cap_regs
= hcd
->regs
;
4685 xhci
->op_regs
= hcd
->regs
+
4686 HC_LENGTH(xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
));
4687 xhci
->run_regs
= hcd
->regs
+
4688 (xhci_readl(xhci
, &xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
4689 /* Cache read-only capability registers */
4690 xhci
->hcs_params1
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
);
4691 xhci
->hcs_params2
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params2
);
4692 xhci
->hcs_params3
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params3
);
4693 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
);
4694 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
4695 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4696 xhci_print_registers(xhci
);
4698 get_quirks(dev
, xhci
);
4700 /* Make sure the HC is halted. */
4701 retval
= xhci_halt(xhci
);
4705 xhci_dbg(xhci
, "Resetting HCD\n");
4706 /* Reset the internal HC memory state and registers. */
4707 retval
= xhci_reset(xhci
);
4710 xhci_dbg(xhci
, "Reset complete\n");
4712 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4713 if (HCC_64BIT_ADDR(temp
)) {
4714 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4715 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
4717 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
4720 xhci_dbg(xhci
, "Calling HCD init\n");
4721 /* Initialize HCD and host controller data structures. */
4722 retval
= xhci_init(hcd
);
4725 xhci_dbg(xhci
, "Called HCD init\n");
4732 MODULE_DESCRIPTION(DRIVER_DESC
);
4733 MODULE_AUTHOR(DRIVER_AUTHOR
);
4734 MODULE_LICENSE("GPL");
4736 static int __init
xhci_hcd_init(void)
4740 retval
= xhci_register_pci();
4742 printk(KERN_DEBUG
"Problem registering PCI driver.");
4745 retval
= xhci_register_plat();
4747 printk(KERN_DEBUG
"Problem registering platform driver.");
4751 * Check the compiler generated sizes of structures that must be laid
4752 * out in specific ways for hardware access.
4754 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4755 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
4756 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
4757 /* xhci_device_control has eight fields, and also
4758 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4760 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
4761 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
4762 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
4763 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 7*32/8);
4764 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
4765 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4766 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
4769 xhci_unregister_pci();
4772 module_init(xhci_hcd_init
);
4774 static void __exit
xhci_hcd_cleanup(void)
4776 xhci_unregister_pci();
4777 xhci_unregister_plat();
4779 module_exit(xhci_hcd_cleanup
);