3 ** head.S -- This file contains the initial boot code for the
6 ** Copyright 1993 by Hamish Macdonald
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
15 ** VME Support by Richard Hirst
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
26 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
38 * At this point, the boot loader has:
41 * Put us in supervisor state.
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
49 * . Enable cache memories
50 * . Jump to kernel startup
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
79 * Also, there will be a description of engaging the MMU and
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
89 * ######################################################################
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
100 * mmu_map (logical, physical, length, cache_type)
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
127 * ######################################################################
130 * ######################################################################
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * postion and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
142 * ######################################################################
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
150 * ######################################################################
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
181 * ######################################################################
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
190 * ######################################################################
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in include/linux/autoconf.h.
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
258 #include <linux/config.h>
259 #include <linux/linkage.h>
260 #include <linux/init.h>
261 #include <asm/bootinfo.h>
262 #include <asm/setup.h>
263 #include <asm/entry.h>
264 #include <asm/pgtable.h>
265 #include <asm/page.h>
266 #include <asm/offsets.h>
270 #include <asm/machw.h>
273 * Macintosh console support
277 #define CONSOLE_PENGUIN
280 * Macintosh serial debug support; outputs boot info to the printer
281 * and/or modem serial ports
283 #undef MAC_SERIAL_DEBUG
286 * Macintosh serial debug port selection; define one or both;
287 * requires MAC_SERIAL_DEBUG to be defined
289 #define MAC_USE_SCC_A /* Macintosh modem serial port */
290 #define MAC_USE_SCC_B /* Macintosh printer serial port */
292 #endif /* CONFIG_MAC */
295 #undef MMU_NOCACHE_KERNEL
300 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
301 * The 8x8 font is harder to read but fits more on the screen.
303 #define FONT_8x8 /* default */
304 /* #define FONT_8x16 */ /* 2nd choice */
305 /* #define FONT_6x11 */ /* 3rd choice */
309 .globl m68k_pgtable_cachemode
310 .globl m68k_supervisor_cachemode
311 #ifdef CONFIG_MVME16x
318 CPUTYPE_040 = 1 /* indicates an 040 */
319 CPUTYPE_060 = 2 /* indicates an 060 */
320 CPUTYPE_0460 = 3 /* if either above are set, this is set */
321 CPUTYPE_020 = 4 /* indicates an 020 */
323 /* Translation control register */
328 /* Transparent translation registers */
329 TTR_ENABLE = 0x8000 /* enable transparent translation */
330 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
331 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
332 TTR_USERMODE = 0x0000 /* only user mode access */
333 TTR_CI = 0x0400 /* inhibit cache */
334 TTR_RW = 0x0200 /* read/write mode */
335 TTR_RWM = 0x0100 /* read/write mask */
336 TTR_FCB2 = 0x0040 /* function code base bit 2 */
337 TTR_FCB1 = 0x0020 /* function code base bit 1 */
338 TTR_FCB0 = 0x0010 /* function code base bit 0 */
339 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
340 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
341 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
343 /* Cache Control registers */
344 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
345 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
346 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
347 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
348 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
349 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
350 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
351 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
352 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
353 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
354 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
355 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
356 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
357 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
358 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
359 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
360 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
361 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
362 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
363 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
364 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
365 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
367 /* Miscellaneous definitions */
371 ROOT_TABLE_SIZE = 128
374 ROOT_INDEX_SHIFT = 25
376 PAGE_INDEX_SHIFT = 12
379 /* When debugging use readable names for labels */
381 #define L(name) .head.S.##name
383 #define L(name) .head.S./**/name
387 #define L(name) .L##name
389 #define L(name) .L/**/name
393 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
395 #define __INITDATA .data
396 #define __FINIT .previous
399 /* Several macros to make the writing of subroutines easier:
400 * - func_start marks the beginning of the routine which setups the frame
401 * register and saves the registers, it also defines another macro
402 * to automatically restore the registers again.
403 * - func_return marks the end of the routine and simply calls the prepared
404 * macro to restore registers and jump back to the caller.
405 * - func_define generates another macro to automatically put arguments
406 * onto the stack call the subroutine and cleanup the stack again.
409 /* Within subroutines these macros can be used to access the arguments
410 * on the stack. With STACK some allocated memory on the stack can be
411 * accessed and ARG0 points to the return address (used by mmu_engage).
413 #define STACK %a6@(stackstart)
416 #define ARG2 %a6@(12)
417 #define ARG3 %a6@(16)
418 #define ARG4 %a6@(20)
420 .macro func_start name,saveregs,stack=0
423 moveml \saveregs,%sp@-
424 .set stackstart,-\stack
426 .macro func_return_\name
427 moveml %sp@+,\saveregs
433 .macro func_return name
437 .macro func_call name
441 .macro move_stack nr,arg1,arg2,arg3,arg4
443 move_stack "(\nr-1)",\arg2,\arg3,\arg4
448 .macro func_define name,nr=0
449 .macro \name arg1,arg2,arg3,arg4
450 move_stack \nr,\arg1,\arg2,\arg3,\arg4
458 func_define mmu_map,4
459 func_define mmu_map_tt,4
460 func_define mmu_fixup_page_mmu_cache,1
461 func_define mmu_temp_map,2
462 func_define mmu_engage
463 func_define mmu_get_root_table_entry,1
464 func_define mmu_get_ptr_table_entry,2
465 func_define mmu_get_page_table_entry,2
466 func_define mmu_print
467 func_define get_new_page
468 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
472 .macro mmu_map_eq arg1,arg2,arg3
473 mmu_map \arg1,\arg1,\arg2,\arg3
476 .macro get_bi_record record
478 func_call get_bi_record
482 func_define serial_putc,1
483 func_define console_putc,1
485 func_define console_init
486 func_define console_put_stats
487 func_define console_put_penguin
488 func_define console_plot_pixel,3
489 func_define console_scroll
492 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
496 func_call console_putc
499 func_call serial_putc
501 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
521 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
538 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
539 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
540 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
541 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
542 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
543 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
544 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
545 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
546 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
547 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
548 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
549 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
550 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
552 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
554 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
558 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
559 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
560 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
561 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
562 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
563 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
564 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
566 /* On the HP300 we use the on-board LEDs for debug output before
567 the console is running. Writing a 1 bit turns the corresponding LED
568 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
570 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
582 * Version numbers of the bootinfo interface
583 * The area from _stext to _start will later be used as kernel pointer table
585 bras 1f /* Jump over bootinfo version numbers */
587 .long BOOTINFOV_MAGIC
588 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
589 .long MACH_ATARI, ATARI_BOOTI_VERSION
590 .long MACH_MVME147, MVME147_BOOTI_VERSION
591 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
592 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
593 .long MACH_MAC, MAC_BOOTI_VERSION
594 .long MACH_Q40, Q40_BOOTI_VERSION
595 .long MACH_HP300, HP300_BOOTI_VERSION
599 .equ kernel_pg_dir,_stext
601 .equ .,_stext+PAGESIZE
608 * Setup initial stack pointer
613 * Record the CPU and machine type.
615 get_bi_record BI_MACHTYPE
616 lea %pc@(m68k_machtype),%a1
619 get_bi_record BI_FPUTYPE
620 lea %pc@(m68k_fputype),%a1
623 get_bi_record BI_MMUTYPE
624 lea %pc@(m68k_mmutype),%a1
627 get_bi_record BI_CPUTYPE
628 lea %pc@(m68k_cputype),%a1
635 * For Macintosh, we need to determine the display parameters early (at least
636 * while debugging it).
639 is_not_mac(L(test_notmac))
641 get_bi_record BI_MAC_VADDR
642 lea %pc@(L(mac_videobase)),%a1
645 get_bi_record BI_MAC_VDEPTH
646 lea %pc@(L(mac_videodepth)),%a1
649 get_bi_record BI_MAC_VDIM
650 lea %pc@(L(mac_dimensions)),%a1
653 get_bi_record BI_MAC_VROW
654 lea %pc@(L(mac_rowbytes)),%a1
657 #ifdef MAC_SERIAL_DEBUG
658 get_bi_record BI_MAC_SCCBASE
659 lea %pc@(L(mac_sccbase)),%a1
661 #endif /* MAC_SERIAL_DEBUG */
667 lea %pc@(L(mac_videobase)),%a0
669 lea %pc@(L(mac_dimensions)),%a0
671 swap %d1 /* #rows is high bytes */
672 andl #0xFFFF,%d1 /* rows */
674 lea %pc@(L(mac_rowbytes)),%a0
685 #endif /* CONFIG_MAC */
689 * There are ultimately two pieces of information we want for all kinds of
690 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
691 * and is converted here from a booter type definition to a separate bit
692 * number which allows for the standard is_0x0 macro tests.
694 movel %pc@(m68k_cputype),%d0
701 * Test the BootInfo cputype for 060
705 bset #CPUTYPE_060,%d1
706 bset #CPUTYPE_0460,%d1
710 * Test the BootInfo cputype for 040
714 bset #CPUTYPE_040,%d1
715 bset #CPUTYPE_0460,%d1
719 * Test the BootInfo cputype for 020
723 bset #CPUTYPE_020,%d1
727 * Record the cpu type
729 lea %pc@(L(cputype)),%a0
735 * Now the macros are valid:
744 * Determine the cache mode for pages holding MMU tables
745 * and for supervisor mode, unused for '020 and '030
750 is_not_040_or_060(L(save_cachetype))
754 * d1 := cacheable write-through
755 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
756 * but we have been using write-through since at least 2.0.29 so I
759 #ifdef CONFIG_060_WRITETHROUGH
761 * If this is a 68060 board using drivers with cache coherency
762 * problems, then supervisor memory accesses need to be write-through
763 * also; otherwise, we want copyback.
767 movel #_PAGE_CACHE040W,%d0
768 jra L(save_cachetype)
769 #endif /* CONFIG_060_WRITETHROUGH */
771 movew #_PAGE_CACHE040,%d0
773 movel #_PAGE_CACHE040W,%d1
776 /* Save cache mode for supervisor mode and page tables
778 lea %pc@(m68k_supervisor_cachemode),%a0
780 lea %pc@(m68k_pgtable_cachemode),%a0
784 * raise interrupt level
789 If running on an Atari, determine the I/O base of the
790 serial port and test if we are running on a Medusa or Hades.
791 This test is necessary here, because on the Hades the serial
792 port is only accessible in the high I/O memory area.
794 The test whether it is a Medusa is done by writing to the byte at
795 phys. 0x0. This should result in a bus error on all other machines.
797 ...should, but doesn't. The Afterburner040 for the Falcon has the
798 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
799 another test to distinguish Medusa and AB040. This is a
800 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
801 (+AB040), but is in the range where the Medusa always asserts DTACK.
803 The test for the Hades is done by reading address 0xb0000000. This
804 should give a bus error on the Medusa.
808 is_not_atari(L(notypetest))
810 /* get special machine type (Medusa/Hades/AB40) */
811 moveq #0,%d3 /* default if tag doesn't exist */
812 get_bi_record BI_ATARI_MCH_TYPE
816 lea %pc@(atari_mch_type),%a0
819 /* On the Hades, the iobase must be set up before opening the
820 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
822 cmpl #ATARI_MACH_HADES,%d3
824 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
825 1: lea %pc@(L(iobase)),%a0
832 is_mvme147(L(getvmetype))
833 is_bvme6000(L(getvmetype))
834 is_not_mvme16x(L(gvtdone))
836 /* See if the loader has specified the BI_VME_TYPE tag. Recent
837 * versions of VMELILO and TFTPLILO do this. We have to do this
838 * early so we know how to handle console output. If the tag
839 * doesn't exist then we use the Bug for output on MVME16x.
842 get_bi_record BI_VME_TYPE
846 lea %pc@(vme_brdtype),%a0
849 #ifdef CONFIG_MVME16x
850 is_not_mvme16x(L(gvtdone))
852 /* Need to get the BRD_ID info to differentiate between 162, 167,
853 * etc. This is available as a BI_VME_BRDINFO tag with later
854 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
856 get_bi_record BI_VME_BRDINFO
860 /* Get pointer to board ID data from Bug */
863 .word 0x70 /* trap 0x70 - .BRD_ID */
866 lea %pc@(mvme_bdid),%a1
867 /* Structure is 32 bytes long */
883 is_not_hp300(L(nothp))
885 /* Get the address of the UART for serial debugging */
886 get_bi_record BI_HP300_UART_ADDR
890 lea %pc@(L(uartbase)),%a0
892 get_bi_record BI_HP300_UART_SCODE
896 lea %pc@(L(uart_scode)),%a0
903 * Initialize serial port
914 #ifdef CONSOLE_PENGUIN
916 #endif /* CONSOLE_PENGUIN */
920 #endif /* CONFIG_MAC */
926 dputn %pc@(L(cputype))
927 dputn %pc@(m68k_supervisor_cachemode)
928 dputn %pc@(m68k_pgtable_cachemode)
932 * Save physical start address of kernel
934 lea %pc@(L(phys_kernel_start)),%a0
937 addl #PAGE_OFFSET,%a1
947 * This block of code does what's necessary to map in the various kinds
948 * of machines for execution of Linux.
949 * First map the first 4 MB of kernel code & data
952 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
953 %pc@(m68k_supervisor_cachemode)
961 is_not_amiga(L(mmu_init_not_amiga))
968 is_not_040_or_060(1f)
971 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000
973 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
975 * Map the Zorro III I/O space with transparent translation
976 * for frame buffer memory etc.
978 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
980 jbra L(mmu_init_done)
984 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000
986 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
987 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
989 jbra L(mmu_init_done)
991 L(mmu_init_not_amiga):
998 is_not_atari(L(mmu_init_not_atari))
1002 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1003 the last 16 MB of virtual address space to the first 16 MB (i.e.
1004 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1005 needed. I/O ranges are marked non-cachable.
1007 For the Medusa it is better to map the I/O region transparently
1008 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1009 accessible only in the high area.
1011 On the Hades all I/O registers are only accessible in the high
1015 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017 movel %pc@(atari_mch_type),%d3
1018 cmpl #ATARI_MACH_MEDUSA,%d3
1020 cmpl #ATARI_MACH_HADES,%d3
1022 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1025 is_040_or_060(L(spata68040))
1027 /* Map everything non-cacheable, though not all parts really
1028 * need to disable caches (crucial only for 0xff8000..0xffffff
1029 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1030 * isn't really used, except for sometimes peeking into the
1031 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035 jbra L(mmu_init_done)
1039 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041 jbra L(mmu_init_done)
1043 L(mmu_init_not_atari):
1047 is_not_q40(L(notq40))
1049 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1050 * non-cached serialized etc..
1051 * this includes master chip, DAC, RTC and ISA ports
1052 * 0xfe000000-0xfeffffff is for screen and ROM
1057 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1058 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060 jbra L(mmu_init_done)
1066 is_not_hp300(L(nothp300))
1068 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1069 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1070 * The ROM mapping is needed because the LEDs are mapped there too.
1076 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000
1078 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080 jbra L(mmu_init_done)
1084 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000
1086 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088 jbra L(mmu_init_done)
1091 #endif /* CONFIG_HP300 */
1093 #ifdef CONFIG_MVME147
1095 is_not_mvme147(L(not147))
1098 * On MVME147 we have already created kernel page tables for
1099 * 4MB of RAM at address 0, so now need to do a transparent
1100 * mapping of the top of memory space. Make it 0.5GByte for now,
1101 * so we can access on-board i/o areas.
1104 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106 jbra L(mmu_init_done)
1109 #endif /* CONFIG_MVME147 */
1111 #ifdef CONFIG_MVME16x
1113 is_not_mvme16x(L(not16x))
1116 * On MVME16x we have already created kernel page tables for
1117 * 4MB of RAM at address 0, so now need to do a transparent
1118 * mapping of the top of memory space. Make it 0.5GByte for now.
1119 * Supervisor only access, so transparent mapping doesn't
1120 * clash with User code virtual address space.
1121 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1122 * mapping is needed to allow 167Bug to run.
1123 * IO is in the range 0xfff00000 to 0xfffeffff.
1124 * PROM is 0xff800000->0xffbfffff and SRAM is
1125 * 0xffe00000->0xffe1ffff.
1128 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130 jbra L(mmu_init_done)
1133 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1135 #ifdef CONFIG_BVME6000
1137 is_not_bvme6000(L(not6000))
1140 * On BVME6000 we have already created kernel page tables for
1141 * 4MB of RAM at address 0, so now need to do a transparent
1142 * mapping of the top of memory space. Make it 0.5GByte for now,
1143 * so we can access on-board i/o areas.
1144 * Supervisor only access, so transparent mapping doesn't
1145 * clash with User code virtual address space.
1148 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150 jbra L(mmu_init_done)
1153 #endif /* CONFIG_BVME6000 */
1158 * The Macintosh mappings are less clear.
1160 * Even as of this writing, it is unclear how the
1161 * Macintosh mappings will be done. However, as
1162 * the first author of this code I'm proposing the
1165 * Map the kernel (that's already done),
1166 * Map the I/O (on most machines that's the
1167 * 0x5000.0000 ... 0x5300.0000 range,
1168 * Map the video frame buffer using as few pages
1169 * as absolutely (this requirement mostly stems from
1170 * the fact that when the frame buffer is at
1171 * 0x0000.0000 then we know there is valid RAM just
1172 * above the screen that we don't want to waste!).
1174 * By the way, if the frame buffer is at 0x0000.0000
1175 * then the Macintosh is known as an RBV based Mac.
1177 * By the way 2, the code currently maps in a bunch of
1178 * regions. But I'd like to cut that out. (And move most
1179 * of the mappings up into the kernel proper ... or only
1180 * map what's necessary.)
1187 is_not_mac(L(mmu_init_not_mac))
1191 is_not_040_or_060(1f)
1193 moveq #_PAGE_NOCACHE_S,%d3
1196 moveq #_PAGE_NOCACHE030,%d3
1199 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1200 * we simply map the 4MB that contains the videomem
1203 movel #VIDEOMEMMASK,%d0
1204 andl %pc@(L(mac_videobase)),%d0
1206 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1207 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1208 mmu_map_eq #0x40000000,#0x02000000,%d3
1209 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1210 mmu_map_eq #0x50000000,#0x03000000,%d3
1211 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1212 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1214 jbra L(mmu_init_done)
1216 L(mmu_init_not_mac):
1220 is_not_sun3x(L(notsun3x))
1222 /* oh, the pain.. We're gonna want the prom code after
1223 * starting the MMU, so we copy the mappings, translating
1224 * from 8k -> 4k pages as we go.
1227 /* copy maps from 0xfee00000 to 0xff000000 */
1228 movel #0xfee00000, %d0
1229 moveq #ROOT_INDEX_SHIFT, %d1
1231 mmu_get_root_table_entry %d0
1233 movel #0xfee00000, %d0
1234 moveq #PTR_INDEX_SHIFT, %d1
1236 andl #PTR_TABLE_SIZE-1, %d0
1237 mmu_get_ptr_table_entry %a0,%d0
1239 movel #0xfee00000, %d0
1240 moveq #PAGE_INDEX_SHIFT, %d1
1242 andl #PAGE_TABLE_SIZE-1, %d0
1243 mmu_get_page_table_entry %a0,%d0
1245 /* this is where the prom page table lives */
1246 movel 0xfefe00d4, %a1
1249 movel #((0x200000 >> 13)-1), %d1
1259 /* setup tt1 for I/O */
1260 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1261 jbra L(mmu_init_done)
1266 #ifdef CONFIG_APOLLO
1267 is_not_apollo(L(notapollo))
1270 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1273 jbra L(mmu_init_done)
1284 * On the 040 class machines, all pages that are used for the
1285 * mmu have to be fixed up. According to Motorola, pages holding mmu
1286 * tables should be non-cacheable on a '040 and write-through on a
1287 * '060. But analysis of the reasons for this, and practical
1288 * experience, showed that write-through also works on a '040.
1290 * Allocated memory so far goes from kernel_end to memory_start that
1291 * is used for all kind of tables, for that the cache attributes
1296 is_not_040_or_060(L(mmu_fixup_done))
1298 #ifdef MMU_NOCACHE_KERNEL
1299 jbra L(mmu_fixup_done)
1302 /* first fix the page at the start of the kernel, that
1303 * contains also kernel_pg_dir.
1305 movel %pc@(L(phys_kernel_start)),%d0
1306 subl #PAGE_OFFSET,%d0
1307 lea %pc@(_stext),%a0
1309 mmu_fixup_page_mmu_cache %a0
1311 movel %pc@(L(kernel_end)),%a0
1313 movel %pc@(L(memory_start)),%a1
1317 mmu_fixup_page_mmu_cache %a0
1332 * This chunk of code performs the gruesome task of engaging the MMU.
1333 * The reason its gruesome is because when the MMU becomes engaged it
1334 * maps logical addresses to physical addresses. The Program Counter
1335 * register is then passed through the MMU before the next instruction
1336 * is fetched (the instruction following the engage MMU instruction).
1337 * This may mean one of two things:
1338 * 1. The Program Counter falls within the logical address space of
1339 * the kernel of which there are two sub-possibilities:
1340 * A. The PC maps to the correct instruction (logical PC == physical
1341 * code location), or
1342 * B. The PC does not map through and the processor will read some
1343 * data (or instruction) which is not the logically next instr.
1344 * As you can imagine, A is good and B is bad.
1346 * 2. The Program Counter does not map through the MMU. The processor
1347 * will take a Bus Error.
1348 * Clearly, 2 is bad.
1349 * It doesn't take a wiz kid to figure you want 1.A.
1350 * This code creates that possibility.
1351 * There are two possible 1.A. states (we now ignore the other above states):
1352 * A. The kernel is located at physical memory addressed the same as
1353 * the logical memory for the kernel, i.e., 0x01000.
1354 * B. The kernel is located some where else. e.g., 0x0400.0000
1356 * Under some conditions the Macintosh can look like A or B.
1357 * [A friend and I once noted that Apple hardware engineers should be
1358 * wacked twice each day: once when they show up at work (as in, Whack!,
1359 * "This is for the screwy hardware we know you're going to design today."),
1360 * and also at the end of the day (as in, Whack! "I don't know what
1361 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 * This code works on the following premise:
1364 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1365 * then create a mapping for the kernel at logical 0x8000.0000 to
1366 * the physical location of the pc. And, create a transparent
1367 * translation register for the first 16 Meg. Then, after the MMU
1368 * is engaged, the PC can be moved up into the 0x8000.0000 range
1369 * and then the transparent translation can be turned off and then
1370 * the PC can jump to the correct logical location and it will be
1371 * home (finally). This is essentially the code that the Amiga used
1372 * to use. Now, it's generalized for all processors. Which means
1373 * that a fresh (but temporary) mapping has to be created. The mapping
1374 * is made in page 0 (an as of yet unused location -- except for the
1375 * stack!). This temporary mapping will only require 1 pointer table
1376 * and a single page table (it can map 256K).
1378 * OK, alternatively, imagine that the Program Counter is not within
1379 * the first 16 Meg. Then, just use Transparent Translation registers
1380 * to do the right thing.
1382 * Last, if _start is already at 0x01000, then there's nothing special
1383 * to do (in other words, in a degenerate case of the first case above,
1396 * After this point no new memory is allocated and
1397 * the start of available memory is stored in availmem.
1398 * (The bootmem allocator requires now the physicall address.)
1401 movel L(memory_start),availmem
1405 /* fixup the Amiga custom register location before printing */
1412 /* fixup the Atari iobase register location before printing */
1413 movel #0xff000000,L(iobase)
1419 movel #~VIDEOMEMMASK,%d0
1420 andl L(mac_videobase),%d0
1421 addl #VIDEOMEMBASE,%d0
1422 movel %d0,L(mac_videobase)
1423 #if defined(CONSOLE)
1424 movel %pc@(L(phys_kernel_start)),%d0
1425 subl #PAGE_OFFSET,%d0
1426 subl %d0,L(console_font)
1427 subl %d0,L(console_font_data)
1429 #ifdef MAC_SERIAL_DEBUG
1430 orl #0x50000000,L(mac_sccbase)
1438 * Fix up the iobase register to point to the new location of the LEDs.
1440 movel #0xf0000000,L(iobase)
1443 * Energise the FPU and caches.
1446 movel #0x60,0xf05f400c
1450 * 040: slightly different, apparently.
1452 1: movew #0,0xf05f400e
1453 movew #0x64,0xf05f400e
1461 oriw #0x4000,0x61000000
1465 #ifdef CONFIG_APOLLO
1469 * Fix up the iobase before printing
1471 movel #0x80000000,L(iobase)
1482 is_not_040_or_060(L(cache_not_680460))
1490 is_060(L(cache68060))
1492 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1493 /* MMU stuff works in copyback mode now, so enable the cache */
1498 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1499 /* MMU stuff works in copyback mode now, so enable the cache */
1501 /* enable superscalar dispatch in PCR */
1507 L(cache_not_680460):
1510 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1520 * Setup initial stack pointer
1522 lea init_task,%curptr
1523 lea init_thread_union+THREAD_SIZE,%sp
1527 subl %a6,%a6 /* clear a6 for gdb */
1530 * The new 64bit printf support requires an early exception initialization.
1534 /* jump to the kernel start */
1542 * Find a tag record in the bootinfo structure
1543 * The bootinfo structure is located right after the kernel bss
1544 * Returns: d0: size (-1 if not found)
1545 * a0: data pointer (end-of-records if not found)
1547 func_start get_bi_record,%d1
1551 1: tstw %a0@(BIR_TAG)
1553 cmpw %a0@(BIR_TAG),%d0
1555 addw %a0@(BIR_SIZE),%a0
1558 movew %a0@(BIR_SIZE),%d0
1559 lea %a0@(BIR_DATA),%a0
1562 lea %a0@(BIR_SIZE),%a0
1564 func_return get_bi_record
1568 * MMU Initialization Begins Here
1570 * The structure of the MMU tables on the 68k machines
1573 * Logical addresses are translated through
1574 * a hierarchical translation mechanism where the high-order
1575 * seven bits of the logical address (LA) are used as an
1576 * index into the "root table." Each entry in the root
1577 * table has a bit which specifies if it's a valid pointer to a
1578 * pointer table. Each entry defines a 32KMeg range of memory.
1579 * If an entry is invalid then that logical range of 32M is
1580 * invalid and references to that range of memory (when the MMU
1581 * is enabled) will fault. If the entry is valid, then it does
1582 * one of two things. On 040/060 class machines, it points to
1583 * a pointer table which then describes more finely the memory
1584 * within that 32M range. On 020/030 class machines, a technique
1585 * called "early terminating descriptors" are used. This technique
1586 * allows an entire 32Meg to be described by a single entry in the
1587 * root table. Thus, this entry in the root table, contains the
1588 * physical address of the memory or I/O at the logical address
1589 * which the entry represents and it also contains the necessary
1590 * cache bits for this region.
1593 * Per the Root Table, there will be one or more
1594 * pointer tables. Each pointer table defines a 32M range.
1595 * Not all of the 32M range need be defined. Again, the next
1596 * seven bits of the logical address are used an index into
1597 * the pointer table to point to page tables (if the pointer
1598 * is valid). There will undoubtedly be more than one
1599 * pointer table for the kernel because each pointer table
1600 * defines a range of only 32M. Valid pointer table entries
1601 * point to page tables, or are early terminating entries
1605 * Per the Pointer Tables, each page table entry points
1606 * to the physical page in memory that supports the logical
1607 * address that translates to the particular index.
1609 * In short, the Logical Address gets translated as follows:
1610 * bits 31..26 - index into the Root Table
1611 * bits 25..18 - index into the Pointer Table
1612 * bits 17..12 - index into the Page Table
1613 * bits 11..0 - offset into a particular 4K page
1615 * The algorithms which follows do one thing: they abstract
1616 * the MMU hardware. For example, there are three kinds of
1617 * cache settings that are relevant. Either, memory is
1618 * being mapped in which case it is either Kernel Code (or
1619 * the RamDisk) or it is MMU data. On the 030, the MMU data
1620 * option also describes the kernel. Or, I/O is being mapped
1621 * in which case it has its own kind of cache bits. There
1622 * are constants which abstract these notions from the code that
1623 * actually makes the call to map some range of memory.
1633 * This algorithm will print out the current MMU mappings.
1636 * %a5 points to the root table. Everything else is calculated
1640 #define mmu_next_valid 0
1641 #define mmu_start_logical 4
1642 #define mmu_next_logical 8
1643 #define mmu_start_physical 12
1644 #define mmu_next_physical 16
1646 #define MMU_PRINT_INVALID -1
1647 #define MMU_PRINT_VALID 1
1648 #define MMU_PRINT_UNINITED 0
1650 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652 func_start mmu_print,%a0-%a6/%d0-%d7
1654 movel %pc@(L(kernel_pgdir_ptr)),%a5
1655 lea %pc@(L(mmu_print_data)),%a0
1656 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658 is_not_040_or_060(mmu_030_print)
1667 * The following #if/#endif block is a tight algorithm for dumping the 040
1668 * MMU Map in gory detail. It really isn't that practical unless the
1669 * MMU Map algorithm appears to go awry and you need to debug it at the
1670 * entry per entry level.
1672 movel #ROOT_TABLE_SIZE,%d5
1674 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1675 subql #1,%d5 | they (might) work
1685 andil #0xFFFFFE00,%d7
1687 movel #PTR_TABLE_SIZE,%d4
1697 andil #0xFFFFFF00,%d7
1699 movel #PAGE_TABLE_SIZE,%d3
1713 movel #8+1+8+1+1,%d2
1728 #endif /* MMU 040 Dumping code that's gory and detailed */
1730 lea %pc@(kernel_pg_dir),%a5
1731 movel %a5,%a0 /* a0 has the address of the root table ptr */
1732 movel #0x00000000,%a4 /* logical address */
1735 /* Increment the logical address and preserve in d5 */
1737 addil #PAGESIZE<<13,%d5
1741 jbsr mmu_print_tuple_invalidate
1745 andil #0xfffffe00,%d6
1749 addil #PAGESIZE<<6,%d5
1753 jbsr mmu_print_tuple_invalidate
1757 andil #0xffffff00,%d6
1765 jbsr mmu_print_tuple_invalidate
1768 moveml %d0-%d1,%sp@-
1771 andil #0xfffff4e0,%d1
1772 lea %pc@(mmu_040_print_flags),%a6
1773 jbsr mmu_print_tuple
1774 moveml %sp@+,%d0-%d1
1786 movel %d5,%a4 /* move to the next logical address */
1794 andiw #0x8000,%d1 /* is it valid ? */
1795 jbeq 1f /* No, bail out */
1798 andil #0xff000000,%d1 /* Get the address */
1804 jbsr mmu_040_print_flags_tt
1808 andiw #0x8000,%d1 /* is it valid ? */
1809 jbeq 1f /* No, bail out */
1812 andil #0xff000000,%d1 /* Get the address */
1818 jbsr mmu_040_print_flags_tt
1824 mmu_040_print_flags:
1826 putZc(' ','G') /* global bit */
1828 putZc(' ','S') /* supervisor bit */
1829 mmu_040_print_flags_tt:
1834 putZc('w','c') /* write through or copy-back */
1839 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1843 mmu_030_print_flags:
1845 putZc('C','I') /* write through or copy-back */
1854 andil #0xfffffff0,%d0
1856 movel #0x00000000,%a4 /* logical address */
1860 addil #PAGESIZE<<13,%d5
1862 btst #1,%d6 /* is it a table ptr? */
1864 btst #0,%d6 /* is it early terminating? */
1866 jbsr mmu_030_print_helper
1869 jbsr mmu_print_tuple_invalidate
1873 andil #0xfffffff0,%d6
1877 addil #PAGESIZE<<6,%d5
1879 btst #1,%d6 /* is it a table ptr? */
1881 btst #0,%d6 /* is it a page descriptor? */
1883 jbsr mmu_030_print_helper
1886 jbsr mmu_print_tuple_invalidate
1890 andil #0xfffffff0,%d6
1898 jbsr mmu_print_tuple_invalidate
1901 jbsr mmu_030_print_helper
1913 movel %d5,%a4 /* move to the next logical address */
1921 func_return mmu_print
1924 mmu_030_print_helper:
1925 moveml %d0-%d1,%sp@-
1928 lea %pc@(mmu_030_print_flags),%a6
1929 jbsr mmu_print_tuple
1930 moveml %sp@+,%d0-%d1
1933 mmu_print_tuple_invalidate:
1934 moveml %a0/%d7,%sp@-
1936 lea %pc@(L(mmu_print_data)),%a0
1937 tstl %a0@(mmu_next_valid)
1938 jbmi mmu_print_tuple_invalidate_exit
1940 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1946 mmu_print_tuple_invalidate_exit:
1947 moveml %sp@+,%a0/%d7
1952 moveml %d0-%d7/%a0,%sp@-
1954 lea %pc@(L(mmu_print_data)),%a0
1956 tstl %a0@(mmu_next_valid)
1957 jble mmu_print_tuple_print
1959 cmpl %a0@(mmu_next_physical),%d1
1960 jbeq mmu_print_tuple_increment
1962 mmu_print_tuple_print:
1970 mmu_print_tuple_record:
1971 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973 movel %d1,%a0@(mmu_next_physical)
1975 mmu_print_tuple_increment:
1978 addl %d7,%a0@(mmu_next_physical)
1980 mmu_print_tuple_exit:
1981 moveml %sp@+,%d0-%d7/%a0
1984 mmu_print_machine_cpu_types:
2006 is_not_040_or_060(2f)
2014 #endif /* MMU_PRINT */
2019 * This is a specific function which works on all 680x0 machines.
2020 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * On 020 it will call the standard mmu_map which will use early
2023 * terminating descriptors.
2025 func_start mmu_map_tt,%d0/%d1/%a0,4
2036 /* Extract the highest bit set
2038 bfffo ARG3{#0,#32},%d1
2054 /* Generate the upper 16bit of the tt register
2060 is_040_or_060(L(mmu_map_tt_040))
2062 /* set 030 specific bits (read/write access for supervisor mode
2063 * (highest function code set, lower two bits masked))
2065 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2081 jra L(mmu_map_tt_done)
2083 /* set 040 specific bits
2086 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2100 jra L(mmu_map_tt_done)
2103 mmu_map_eq ARG2,ARG3,ARG4
2107 func_return mmu_map_tt
2112 * This routine will map a range of memory using a pointer
2113 * table and allocating the pages on the fly from the kernel.
2114 * The pointer table does not have to be already linked into
2115 * the root table, this routine will do that if necessary.
2118 * This routine will assert failure and use the serial_putc
2119 * routines in the case of a run-time error. For example,
2120 * if the address is already mapped.
2123 * This routine will use early terminating descriptors
2124 * where possible for the 68020+68851 and 68030 type
2127 func_start mmu_map,%d0-%d4/%a0-%a4
2136 /* Get logical address and round it down to 256KB
2139 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2142 /* Get the end address
2148 /* Get physical address and round it down to 256KB
2151 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2154 /* Add page attributes to the physical address
2157 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2164 is_not_040_or_060(L(mmu_map_030))
2166 addw #_PAGE_GLOBAL040,%a2
2168 * MMU 040 & 060 Support
2170 * The MMU usage for the 040 and 060 is different enough from
2171 * the 030 and 68851 that there is separate code. This comment
2172 * block describes the data structures and algorithms built by
2175 * The 040 does not support early terminating descriptors, as
2176 * the 030 does. Therefore, a third level of table is needed
2177 * for the 040, and that would be the page table. In Linux,
2178 * page tables are allocated directly from the memory above the
2184 /* Calculate the offset into the root table
2187 moveq #ROOT_INDEX_SHIFT,%d1
2189 mmu_get_root_table_entry %d0
2191 /* Calculate the offset into the pointer table
2194 moveq #PTR_INDEX_SHIFT,%d1
2196 andl #PTR_TABLE_SIZE-1,%d0
2197 mmu_get_ptr_table_entry %a0,%d0
2199 /* Calculate the offset into the page table
2202 moveq #PAGE_INDEX_SHIFT,%d1
2204 andl #PAGE_TABLE_SIZE-1,%d0
2205 mmu_get_page_table_entry %a0,%d0
2207 /* The page table entry must not no be busy
2210 jne L(mmu_map_error)
2212 /* Do the mapping and advance the pointers
2219 /* Ready with mapping?
2227 /* Calculate the offset into the root table
2230 moveq #ROOT_INDEX_SHIFT,%d1
2232 mmu_get_root_table_entry %d0
2234 /* Check if logical address 32MB aligned,
2235 * so we can try to map it once
2238 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2241 /* Is there enough to map for 32MB at once
2243 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2249 /* The root table entry must not no be busy
2252 jne L(mmu_map_error)
2254 /* Do the mapping and advance the pointers
2264 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2265 jra L(mmu_mapnext_030)
2267 /* Calculate the offset into the pointer table
2270 moveq #PTR_INDEX_SHIFT,%d1
2272 andl #PTR_TABLE_SIZE-1,%d0
2273 mmu_get_ptr_table_entry %a0,%d0
2275 /* The pointer table entry must not no be busy
2278 jne L(mmu_map_error)
2280 /* Do the mapping and advance the pointers
2288 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2289 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2292 /* Ready with mapping?
2301 dputs "mmu_map error:"
2313 * On the 040 class machines, all pages that are used for the
2314 * mmu have to be fixed up.
2317 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2319 dputs "mmu_fixup_page_mmu_cache"
2322 /* Calculate the offset into the root table
2325 moveq #ROOT_INDEX_SHIFT,%d1
2327 mmu_get_root_table_entry %d0
2329 /* Calculate the offset into the pointer table
2332 moveq #PTR_INDEX_SHIFT,%d1
2334 andl #PTR_TABLE_SIZE-1,%d0
2335 mmu_get_ptr_table_entry %a0,%d0
2337 /* Calculate the offset into the page table
2340 moveq #PAGE_INDEX_SHIFT,%d1
2342 andl #PAGE_TABLE_SIZE-1,%d0
2343 mmu_get_page_table_entry %a0,%d0
2346 andil #_CACHEMASK040,%d0
2347 orl %pc@(m68k_pgtable_cachemode),%d0
2352 func_return mmu_fixup_page_mmu_cache
2357 * create a temporary mapping to enable the mmu,
2358 * this we don't need any transparation translation tricks.
2361 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2363 dputs "mmu_temp_map"
2368 lea %pc@(L(temp_mmap_mem)),%a1
2370 /* Calculate the offset in the root table
2373 moveq #ROOT_INDEX_SHIFT,%d1
2375 mmu_get_root_table_entry %d0
2377 /* Check if the table is temporary allocated, so we have to reuse it
2380 cmpl %pc@(L(memory_start)),%d0
2383 /* Temporary allocate a ptr table and insert it into the root table
2386 addl #PTR_TABLE_SIZE*4,%a1@
2387 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2392 /* Mask the root table entry for the ptr table
2394 andw #-ROOT_TABLE_SIZE,%d0
2397 /* Calculate the offset into the pointer table
2400 moveq #PTR_INDEX_SHIFT,%d1
2402 andl #PTR_TABLE_SIZE-1,%d0
2406 /* Check if a temporary page table is already allocated
2411 /* Temporary allocate a page table and insert it into the ptr table
2414 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2415 alignment restriction for pointer tables on the '0[46]0. */
2417 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2422 /* Mask the ptr table entry for the page table
2424 andw #-PTR_TABLE_SIZE,%d0
2427 /* Calculate the offset into the page table
2430 moveq #PAGE_INDEX_SHIFT,%d1
2432 andl #PAGE_TABLE_SIZE-1,%d0
2436 /* Insert the address into the page table
2440 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2446 func_return mmu_temp_map
2448 func_start mmu_engage,%d0-%d2/%a0-%a3
2450 moveq #ROOT_TABLE_SIZE-1,%d0
2451 /* Temporarily use a different root table. */
2452 lea %pc@(L(kernel_pgdir_ptr)),%a0
2454 movel %pc@(L(memory_start)),%a1
2461 lea %pc@(L(temp_mmap_mem)),%a0
2464 movew #PAGESIZE-1,%d0
2471 /* Skip temp mappings if phys == virt */
2475 mmu_temp_map %a0,%a0
2476 mmu_temp_map %a0,%a1
2480 mmu_temp_map %a0,%a0
2481 mmu_temp_map %a0,%a1
2483 movel %pc@(L(memory_start)),%a3
2484 movel %pc@(L(phys_kernel_start)),%d2
2486 is_not_040_or_060(L(mmu_engage_030))
2496 movel #TC_ENABLE+TC_PAGE4K,%d0
2497 movec %d0,%tc /* enable the MMU */
2506 jra L(mmu_engage_cleanup)
2508 L(mmu_engage_030_temp):
2512 lea %pc@(L(mmu_engage_030_temp)),%a0
2513 movel #0x80000002,%a0@
2520 * enable,super root enable,4096 byte pages,7 bit root index,
2521 * 7 bit pointer index, 6 bit page table index.
2523 movel #0x82c07760,%a0@(8)
2524 pmove %a0@(8),%tc /* enable the MMU */
2526 1: movel %a2,%a0@(4)
2533 L(mmu_engage_cleanup):
2534 subl #PAGE_OFFSET,%d2
2536 movel %a2,L(kernel_pgdir_ptr)
2541 func_return mmu_engage
2543 func_start mmu_get_root_table_entry,%d0/%a1
2546 dputs "mmu_get_root_table_entry:"
2551 movel %pc@(L(kernel_pgdir_ptr)),%a0
2557 /* Find the start of free memory, get_bi_record does this for us,
2558 * as the bootinfo structure is located directly behind the kernel
2559 * and and we simply search for the last entry.
2561 get_bi_record BI_LAST
2562 addw #PAGESIZE-1,%a0
2568 lea %pc@(L(memory_start)),%a0
2570 lea %pc@(L(kernel_end)),%a0
2573 /* we have to return the first page at _stext since the init code
2574 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2575 * page is used for further ptr tables in get_ptr_table.
2577 lea %pc@(_stext),%a0
2578 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2580 addl #ROOT_TABLE_SIZE*4,%a1@
2582 lea %pc@(L(mmu_num_pointer_tables)),%a1
2588 movew #PAGESIZE/4-1,%d0
2593 lea %pc@(L(kernel_pgdir_ptr)),%a1
2607 func_return mmu_get_root_table_entry
2611 func_start mmu_get_ptr_table_entry,%d0/%a1
2614 dputs "mmu_get_ptr_table_entry:"
2624 /* Keep track of the number of pointer tables we use
2626 dputs "\nmmu_get_new_ptr_table:"
2627 lea %pc@(L(mmu_num_pointer_tables)),%a0
2631 /* See if there is a free pointer table in our cache of pointer tables
2633 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2637 /* Get a new pointer table page from above the kernel memory
2642 /* There is an unused pointer table in our cache... use it
2645 addl #PTR_TABLE_SIZE*4,%a1@
2650 /* Insert the new pointer table into the root table
2653 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2656 /* Extract the pointer table entry
2658 andw #-PTR_TABLE_SIZE,%d0
2668 func_return mmu_get_ptr_table_entry
2671 func_start mmu_get_page_table_entry,%d0/%a1
2674 dputs "mmu_get_page_table_entry:"
2684 /* If the page table entry doesn't exist, we allocate a complete new
2685 * page and use it as one continues big page table which can cover
2686 * 4MB of memory, nearly almost all mappings have that alignment.
2689 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691 /* align pointer table entry for a page of page tables
2694 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2697 /* Insert the page tables into the pointer entries
2699 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2702 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2705 /* Now we can get the initialized pointer table entry
2710 /* Extract the page table entry
2712 andw #-PAGE_TABLE_SIZE,%d0
2722 func_return mmu_get_page_table_entry
2727 * Return a new page from the memory start and clear it.
2729 func_start get_new_page,%d0/%a1
2731 dputs "\nget_new_page:"
2733 /* allocate the page and adjust memory_start
2735 lea %pc@(L(memory_start)),%a0
2739 /* clear the new page
2742 movew #PAGESIZE/4-1,%d0
2750 func_return get_new_page
2755 * Debug output support
2756 * Atarians have a choice between the parallel port, the serial port
2757 * from the MFP or a serial port of the SCC
2762 L(scc_initable_mac):
2763 .byte 9,12 /* Reset */
2764 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2765 .byte 3,0xc0 /* receiver: 8 bpc */
2766 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2767 .byte 9,0 /* no interrupts */
2768 .byte 10,0 /* NRZ */
2769 .byte 11,0x50 /* use baud rate generator */
2770 .byte 12,10,13,0 /* 9600 baud */
2771 .byte 14,1 /* Baud rate generator enable */
2772 .byte 3,0xc1 /* enable receiver */
2773 .byte 5,0xea /* enable transmitter */
2779 /* #define USE_PRINTER */
2780 /* #define USE_SCC_B */
2781 /* #define USE_SCC_A */
2784 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2786 /* Initialisation table for SCC */
2788 .byte 9,12 /* Reset */
2789 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2790 .byte 3,0xc0 /* receiver: 8 bpc */
2791 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2792 .byte 9,0 /* no interrupts */
2793 .byte 10,0 /* NRZ */
2794 .byte 11,0x50 /* use baud rate generator */
2795 .byte 12,24,13,0 /* 9600 baud */
2796 .byte 14,2,14,3 /* use master clock for BRG, enable */
2797 .byte 3,0xc1 /* enable receiver */
2798 .byte 5,0xea /* enable transmitter */
2805 LPSG_SELECT = 0xff8800
2806 LPSG_READ = 0xff8800
2807 LPSG_WRITE = 0xff8802
2811 LSTMFP_GPIP = 0xfffa01
2812 LSTMFP_DDR = 0xfffa05
2813 LSTMFP_IERB = 0xfffa09
2815 #elif defined(USE_SCC_B)
2817 LSCC_CTRL = 0xff8c85
2818 LSCC_DATA = 0xff8c87
2820 #elif defined(USE_SCC_A)
2822 LSCC_CTRL = 0xff8c81
2823 LSCC_DATA = 0xff8c83
2825 #elif defined(USE_MFP)
2828 LMFP_TDCDR = 0xfffa1d
2829 LMFP_TDDR = 0xfffa25
2834 #endif /* CONFIG_ATARI */
2837 * Serial port output support.
2841 * Initialize serial port hardware for 9600/8/1
2843 func_start serial_init,%d0/%d1/%a0/%a1
2845 * Some of the register usage that follows
2847 * a0 = pointer to boot info record
2848 * d0 = boot info offset
2850 * a0 = address of SCC
2851 * a1 = Liobase address/address of scc_initable
2852 * d0 = init data for serial port
2854 * a0 = address of SCC
2855 * a1 = address of scc_initable_mac
2856 * d0 = init data for serial port
2860 #define SERIAL_DTR 7
2861 #define SERIAL_CNTRL CIABBASE+C_PRA
2864 lea %pc@(L(custom)),%a0
2865 movel #-ZTWOBASE,%a0@
2866 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2867 get_bi_record BI_AMIGA_SERPER
2868 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2869 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2874 movel %pc@(L(iobase)),%a1
2875 #if defined(USE_PRINTER)
2876 bclr #0,%a1@(LSTMFP_IERB)
2877 bclr #0,%a1@(LSTMFP_DDR)
2878 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2879 moveb #0xff,%a1@(LPSG_WRITE)
2880 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2881 clrb %a1@(LPSG_WRITE)
2882 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2883 moveb %a1@(LPSG_READ),%d0
2885 moveb %d0,%a1@(LPSG_WRITE)
2886 #elif defined(USE_SCC)
2887 lea %a1@(LSCC_CTRL),%a0
2888 lea %pc@(L(scc_initable)),%a1
2895 #elif defined(USE_MFP)
2896 bclr #1,%a1@(LMFP_TSR)
2897 moveb #0x88,%a1@(LMFP_UCR)
2898 andb #0x70,%a1@(LMFP_TDCDR)
2899 moveb #2,%a1@(LMFP_TDDR)
2900 orb #1,%a1@(LMFP_TDCDR)
2901 bset #1,%a1@(LMFP_TSR)
2903 jra L(serial_init_done)
2907 is_not_mac(L(serial_init_not_mac))
2908 #ifdef MAC_SERIAL_DEBUG
2909 #if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2910 #define MAC_USE_SCC_B
2912 #define mac_scc_cha_b_ctrl_offset 0x0
2913 #define mac_scc_cha_a_ctrl_offset 0x2
2914 #define mac_scc_cha_b_data_offset 0x4
2915 #define mac_scc_cha_a_data_offset 0x6
2917 #ifdef MAC_USE_SCC_A
2918 /* Initialize channel A */
2919 movel %pc@(L(mac_sccbase)),%a0
2920 lea %pc@(L(scc_initable_mac)),%a1
2923 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2924 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2927 #endif /* MAC_USE_SCC_A */
2929 #ifdef MAC_USE_SCC_B
2930 /* Initialize channel B */
2931 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2932 movel %pc@(L(mac_sccbase)),%a0
2933 #endif /* MAC_USE_SCC_A */
2934 lea %pc@(L(scc_initable_mac)),%a1
2937 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2938 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2941 #endif /* MAC_USE_SCC_B */
2942 #endif /* MAC_SERIAL_DEBUG */
2944 jra L(serial_init_done)
2945 L(serial_init_not_mac):
2946 #endif /* CONFIG_MAC */
2950 /* debug output goes into SRAM, so we don't do it unless requested
2951 - check for '%LX$' signature in SRAM */
2952 lea %pc@(q40_mem_cptr),%a1
2953 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2954 move.l #0xff020000,%a1
2967 lea %pc@(L(q40_do_debug)),%a1
2969 /*nodbg: q40_do_debug is 0 by default*/
2973 #ifdef CONFIG_APOLLO
2974 /* We count on the PROM initializing SIO1 */
2978 /* We count on the boot loader initialising the UART */
2981 L(serial_init_done):
2982 func_return serial_init
2985 * Output character on serial port.
2987 func_start serial_putc,%d0/%d1/%a0/%a1
2993 /* A little safe recursion is good for the soul */
3001 movel %pc@(L(custom)),%a0
3002 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3003 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3006 jra L(serial_putc_done)
3013 #ifdef MAC_SERIAL_DEBUG
3015 #ifdef MAC_USE_SCC_A
3016 movel %pc@(L(mac_sccbase)),%a1
3017 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3019 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3020 #endif /* MAC_USE_SCC_A */
3022 #ifdef MAC_USE_SCC_B
3023 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3024 movel %pc@(L(mac_sccbase)),%a1
3025 #endif /* MAC_USE_SCC_A */
3026 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3028 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3029 #endif /* MAC_USE_SCC_B */
3031 #endif /* MAC_SERIAL_DEBUG */
3033 jra L(serial_putc_done)
3035 #endif /* CONFIG_MAC */
3039 movel %pc@(L(iobase)),%a1
3040 #if defined(USE_PRINTER)
3041 3: btst #0,%a1@(LSTMFP_GPIP)
3043 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3044 moveb %d0,%a1@(LPSG_WRITE)
3045 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3046 moveb %a1@(LPSG_READ),%d0
3048 moveb %d0,%a1@(LPSG_WRITE)
3052 moveb %d0,%a1@(LPSG_WRITE)
3053 #elif defined(USE_SCC)
3054 3: btst #2,%a1@(LSCC_CTRL)
3056 moveb %d0,%a1@(LSCC_DATA)
3057 #elif defined(USE_MFP)
3058 3: btst #7,%a1@(LMFP_TSR)
3060 moveb %d0,%a1@(LMFP_UDR)
3062 jra L(serial_putc_done)
3064 #endif /* CONFIG_ATARI */
3066 #ifdef CONFIG_MVME147
3068 1: btst #2,M147_SCC_CTRL_A
3070 moveb %d0,M147_SCC_DATA_A
3071 jbra L(serial_putc_done)
3075 #ifdef CONFIG_MVME16x
3078 * If the loader gave us a board type then we can use that to
3079 * select an appropriate output routine; otherwise we just use
3080 * the Bug code. If we haev to use the Bug that means the Bug
3081 * workspace has to be valid, which means the Bug has to use
3082 * the SRAM, which is non-standard.
3084 moveml %d0-%d7/%a2-%a6,%sp@-
3085 movel vme_brdtype,%d1
3086 jeq 1f | No tag - use the Bug
3087 cmpi #VME_TYPE_MVME162,%d1
3089 cmpi #VME_TYPE_MVME172,%d1
3091 /* 162/172; it's an SCC */
3092 6: btst #2,M162_SCC_CTRL_A
3097 moveb #8,M162_SCC_CTRL_A
3101 moveb %d0,M162_SCC_CTRL_A
3104 /* 166/167/177; it's a CD2401 */
3106 moveb M167_CYIER,%d2
3107 moveb #0x02,M167_CYIER
3109 btst #5,M167_PCSCCTICR
3111 moveb M167_PCTPIACKR,%d1
3112 moveb M167_CYLICR,%d1
3114 moveb #0x08,M167_CYTEOIR
3117 moveb %d0,M167_CYTDR
3118 moveb #0,M167_CYTEOIR
3119 moveb %d2,M167_CYIER
3124 .word 0x0020 /* TRAP 0x020 */
3126 moveml %sp@+,%d0-%d7/%a2-%a6
3127 jbra L(serial_putc_done)
3129 #endif /* CONFIG_MVME16x */
3131 #ifdef CONFIG_BVME6000
3134 * The BVME6000 machine has a serial port ...
3136 1: btst #2,BVME_SCC_CTRL_A
3138 moveb %d0,BVME_SCC_DATA_A
3139 jbra L(serial_putc_done)
3146 movel 0xFEFE0018,%a1
3149 jbra L(serial_putc_done)
3155 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3157 lea %pc@(q40_mem_cptr),%a1
3162 jbra L(serial_putc_done)
3166 #ifdef CONFIG_APOLLO
3168 movl %pc@(L(iobase)),%a1
3169 moveb %d0,%a1@(LTHRB0)
3170 1: moveb %a1@(LSRB0),%d0
3173 jbra L(serial_putc_done)
3179 movl %pc@(L(iobase)),%a1
3180 addl %pc@(L(uartbase)),%a1
3181 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3182 jmi 3f /* Unset? Exit */
3183 cmpi #256,%d1 /* APCI scode? */
3185 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3188 moveb %d0,%a1@(DCADATA)
3189 jbra L(serial_putc_done)
3190 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3193 moveb %d0,%a1@(APCIDATA)
3194 jbra L(serial_putc_done)
3198 L(serial_putc_done):
3199 func_return serial_putc
3204 func_start puts,%d0/%a0
3221 * Output number in hex notation.
3224 func_start putn,%d0-%d2
3236 addb #'A'-('9'+1),%d2
3252 * This routine takes its parameters on the stack. It then
3253 * turns around and calls the internal routine. This routine
3254 * is used until the Linux console driver initializes itself.
3256 * The calling parameters are:
3257 * void mac_serial_print(const char *str);
3259 * This routine does NOT understand variable arguments only
3262 ENTRY(mac_serial_print)
3263 moveml %d0/%a0,%sp@-
3268 movel %sp@(10),%a0 /* fetch parameter */
3276 moveml %sp@+,%d0/%a0
3278 #endif /* CONFIG_MAC */
3280 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3281 func_start set_leds,%d0/%a0
3285 movel %pc@(L(iobase)),%a0
3286 moveb %d0,%a0@(0x1ffff)
3290 #ifdef CONFIG_APOLLO
3291 movel %pc@(L(iobase)),%a0
3294 moveb %d0,%a0@(LCPUCTRL)
3297 func_return set_leds
3302 * For continuity, see the data alignment
3303 * to which this structure is tied.
3305 #define Lconsole_struct_cur_column 0
3306 #define Lconsole_struct_cur_row 4
3307 #define Lconsole_struct_num_columns 8
3308 #define Lconsole_struct_num_rows 12
3309 #define Lconsole_struct_left_edge 16
3310 #define Lconsole_struct_penguin_putc 20
3312 func_start console_init,%a0-%a4/%d0-%d7
3314 * Some of the register usage that follows
3315 * a0 = pointer to boot_info
3316 * a1 = pointer to screen
3317 * a2 = pointer to Lconsole_globals
3318 * d3 = pixel width of screen
3319 * d4 = pixel height of screen
3320 * (d3,d4) ~= (x,y) of a point just below
3321 * and to the right of the screen
3322 * NOT on the screen!
3323 * d5 = number of bytes per scan line
3324 * d6 = number of bytes on the entire screen
3327 lea %pc@(L(console_globals)),%a2
3328 movel %pc@(L(mac_videobase)),%a1
3329 movel %pc@(L(mac_rowbytes)),%d5
3330 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3332 swap %d4 /* -> high byte */
3333 andl #0xffff,%d3 /* d3 = screen width in pixels */
3334 andl #0xffff,%d4 /* d4 = screen height in pixels */
3338 mulul %d4,%d6 /* scan line bytes x num scan lines */
3339 divul #8,%d6 /* we'll clear 8 bytes at a time */
3340 moveq #-1,%d0 /* Mac_black */
3343 L(console_clear_loop):
3346 dbra %d6,L(console_clear_loop)
3348 /* Calculate font size */
3350 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3351 lea %pc@(font_vga_8x8),%a0
3352 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3353 lea %pc@(font_vga_8x16),%a0
3354 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3355 lea %pc@(font_vga_6x11),%a0
3356 #elif defined(CONFIG_FONT_8x8) /* default */
3357 lea %pc@(font_vga_8x8),%a0
3358 #else /* no compiled-in font */
3363 * At this point we make a shift in register usage
3364 * a1 = address of console_font pointer
3366 lea %pc@(L(console_font)),%a1
3367 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3370 lea %pc@(L(console_font_data)),%a4
3371 movel %a0@(FONT_DESC_DATA),%d0
3372 subl #L(console_font),%a1
3377 * Calculate global maxs
3378 * Note - we can use either an
3379 * 8 x 16 or 8 x 8 character font
3380 * 6 x 11 also supported
3382 /* ASSERT: a0 = contents of Lconsole_font */
3383 movel %d3,%d0 /* screen width in pixels */
3384 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3386 movel %d4,%d1 /* screen height in pixels */
3387 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3389 movel %d0,%a2@(Lconsole_struct_num_columns)
3390 movel %d1,%a2@(Lconsole_struct_num_rows)
3393 * Clear the current row and column
3395 clrl %a2@(Lconsole_struct_cur_column)
3396 clrl %a2@(Lconsole_struct_cur_row)
3397 clrl %a2@(Lconsole_struct_left_edge)
3400 * Initialization is complete
3403 func_return console_init
3405 func_start console_put_stats,%a0/%d7
3407 * Some of the register usage that follows
3408 * a0 = pointer to boot_info
3409 * d7 = value of boot_info fields
3411 puts "\nMacLinux\n\n"
3415 putn %pc@(L(mac_videobase)) /* video addr. */
3418 lea %pc@(_stext),%a0
3426 putn %pc@(L(cputype))
3429 #ifdef MAC_SERIAL_DEBUG
3430 putn %pc@(L(mac_sccbase))
3433 # if defined(MMU_PRINT)
3434 jbsr mmu_print_machine_cpu_types
3435 # endif /* MMU_PRINT */
3436 #endif /* SERIAL_DEBUG */
3438 func_return console_put_stats
3440 #ifdef CONSOLE_PENGUIN
3441 func_start console_put_penguin,%a0-%a1/%d0-%d7
3443 * Get 'that_penguin' onto the screen in the upper right corner
3444 * penguin is 64 x 74 pixels, align against right edge of screen
3446 lea %pc@(L(mac_dimensions)),%a0
3449 subil #64,%d0 /* snug up against the right edge */
3450 clrl %d1 /* start at the top */
3452 lea %pc@(L(that_penguin)),%a1
3453 L(console_penguin_row):
3455 L(console_penguin_pixel_pair):
3458 console_plot_pixel %d0,%d1,%d2
3461 console_plot_pixel %d0,%d1,%d2
3463 dbra %d6,L(console_penguin_pixel_pair)
3467 dbra %d7,L(console_penguin_row)
3469 func_return console_put_penguin
3471 /* include penguin bitmap */
3473 #include "../mac/mac_penguin.S"
3477 * Calculate source and destination addresses
3482 func_start console_scroll,%a0-%a4/%d0-%d7
3483 lea %pc@(L(mac_videobase)),%a0
3486 lea %pc@(L(mac_rowbytes)),%a0
3488 movel %pc@(L(console_font)),%a0
3491 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3497 lea %pc@(L(mac_dimensions)),%a0
3501 andl #0xffff,%d3 /* d3 = screen width in pixels */
3502 andl #0xffff,%d4 /* d4 = screen height in pixels */
3505 * Calculate number of bytes to move
3507 lea %pc@(L(mac_rowbytes)),%a0
3509 movel %pc@(L(console_font)),%a0
3510 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3511 mulul %d4,%d6 /* scan line bytes x num scan lines */
3512 divul #32,%d6 /* we'll move 8 longs at a time */
3515 L(console_scroll_loop):
3524 dbra %d6,L(console_scroll_loop)
3526 lea %pc@(L(mac_rowbytes)),%a0
3528 movel %pc@(L(console_font)),%a0
3529 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3530 divul #32,%d6 /* we'll move 8 words at a time */
3534 L(console_scroll_clear_loop):
3543 dbra %d6,L(console_scroll_clear_loop)
3546 func_return console_scroll
3549 func_start console_putc,%a0/%a1/%d0-%d7
3551 is_not_mac(L(console_exit))
3552 tstl %pc@(L(console_font))
3555 /* Output character in d7 on console.
3561 /* A little safe recursion is good for the soul */
3564 lea %pc@(L(console_globals)),%a0
3567 jne L(console_not_lf)
3568 movel %a0@(Lconsole_struct_cur_row),%d0
3570 movel %d0,%a0@(Lconsole_struct_cur_row)
3571 movel %a0@(Lconsole_struct_num_rows),%d1
3575 movel %d0,%a0@(Lconsole_struct_cur_row)
3582 jne L(console_not_cr)
3583 clrl %a0@(Lconsole_struct_cur_column)
3588 jne L(console_not_home)
3589 clrl %a0@(Lconsole_struct_cur_row)
3590 clrl %a0@(Lconsole_struct_cur_column)
3594 * At this point we know that the %d7 character is going to be
3595 * rendered on the screen. Register usage is -
3596 * a0 = pointer to console globals
3598 * d0 = cursor column
3599 * d1 = cursor row to draw the character
3600 * d7 = character number
3602 L(console_not_home):
3603 movel %a0@(Lconsole_struct_cur_column),%d0
3604 addql #1,%a0@(Lconsole_struct_cur_column)
3605 movel %a0@(Lconsole_struct_num_columns),%d1
3608 console_putc #'\n' /* recursion is OK! */
3610 movel %a0@(Lconsole_struct_cur_row),%d1
3613 * At this point we make a shift in register usage
3614 * a0 = address of pointer to font data (fbcon_font_desc)
3616 movel %pc@(L(console_font)),%a0
3617 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3618 andl #0x000000ff,%d7
3619 /* ASSERT: a0 = contents of Lconsole_font */
3620 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3621 addl %d7,%a1 /* a1 = points to char image */
3624 * At this point we make a shift in register usage
3625 * d0 = pixel coordinate, x
3626 * d1 = pixel coordinate, y
3627 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3628 * d3 = font scan line data (8 pixels)
3629 * d6 = count down for the font's pixel width (8)
3630 * d7 = count down for the font's pixel count in height
3632 /* ASSERT: a0 = contents of Lconsole_font */
3633 mulul %a0@(FONT_DESC_WIDTH),%d0
3634 mulul %a0@(FONT_DESC_HEIGHT),%d1
3635 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3637 L(console_read_char_scanline):
3640 /* ASSERT: a0 = contents of Lconsole_font */
3641 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3644 L(console_do_font_scanline):
3646 scsb %d2 /* convert 1 bit into a byte */
3647 console_plot_pixel %d0,%d1,%d2
3649 dbra %d6,L(console_do_font_scanline)
3651 /* ASSERT: a0 = contents of Lconsole_font */
3652 subl %a0@(FONT_DESC_WIDTH),%d0
3654 dbra %d7,L(console_read_char_scanline)
3657 func_return console_putc
3663 * d2 = (bit 0) 1/0 for white/black (!)
3664 * All registers are preserved
3666 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3668 movel %pc@(L(mac_videobase)),%a1
3669 movel %pc@(L(mac_videodepth)),%d3
3672 mulul %pc@(L(mac_rowbytes)),%d1
3677 * d0 = x coord becomes byte offset into frame buffer
3679 * d2 = black or white (0/1)
3681 * d4 = temp of x (d0) for many bit depths
3686 movel %d0,%d4 /* we need the low order 3 bits! */
3691 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3695 jbra L(console_plot_pixel_exit)
3698 jbra L(console_plot_pixel_exit)
3703 movel %d0,%d4 /* we need the low order 2 bits! */
3708 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3715 jbra L(console_plot_pixel_exit)
3720 jbra L(console_plot_pixel_exit)
3725 movel %d0,%d4 /* we need the low order bit! */
3741 jbra L(console_plot_pixel_exit)
3750 jbra L(console_plot_pixel_exit)
3760 jbra L(console_plot_pixel_exit)
3763 jbra L(console_plot_pixel_exit)
3767 jbne L(console_plot_pixel_exit)
3774 jbra L(console_plot_pixel_exit)
3777 jbra L(console_plot_pixel_exit)
3779 L(console_plot_pixel_exit):
3780 func_return console_plot_pixel
3781 #endif /* CONSOLE */
3785 * This is some old code lying around. I don't believe
3786 * it's used or important anymore. My guess is it contributed
3787 * to getting to this point, but it's done for now.
3788 * It was still in the 2.1.77 head.S, so it's still here.
3789 * (And still not used!)
3792 moveml %a0/%d7,%sp@-
3796 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3805 lea %pc@(L(mmu)),%a0
3806 .long 0xf0106200 | pmove %psr,%a0@
3812 moveml %sp@+,%a0/%d7
3819 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3820 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3826 #if defined(CONSOLE)
3828 .long 0 /* cursor column */
3829 .long 0 /* cursor row */
3830 .long 0 /* max num columns */
3831 .long 0 /* max num rows */
3832 .long 0 /* left edge */
3833 .long 0 /* mac putc */
3835 .long 0 /* pointer to console font (struct font_desc) */
3836 L(console_font_data):
3837 .long 0 /* pointer to console font data */
3838 #endif /* CONSOLE */
3840 #if defined(MMU_PRINT)
3842 .long 0 /* valid flag */
3843 .long 0 /* start logical */
3844 .long 0 /* next logical */
3845 .long 0 /* start physical */
3846 .long 0 /* next physical */
3847 #endif /* MMU_PRINT */
3851 L(mmu_cached_pointer_tables):
3853 L(mmu_num_pointer_tables):
3855 L(phys_kernel_start):
3861 L(kernel_pgdir_ptr):
3866 #if defined (CONFIG_MVME147)
3867 M147_SCC_CTRL_A = 0xfffe3002
3868 M147_SCC_DATA_A = 0xfffe3003
3871 #if defined (CONFIG_MVME16x)
3872 M162_SCC_CTRL_A = 0xfff45005
3873 M167_CYCAR = 0xfff450ee
3874 M167_CYIER = 0xfff45011
3875 M167_CYLICR = 0xfff45026
3876 M167_CYTEOIR = 0xfff45085
3877 M167_CYTDR = 0xfff450f8
3878 M167_PCSCCTICR = 0xfff4201e
3879 M167_PCTPIACKR = 0xfff42025
3882 #if defined (CONFIG_BVME6000)
3883 BVME_SCC_CTRL_A = 0xffb0000b
3884 BVME_SCC_DATA_A = 0xffb0000f
3887 #if defined(CONFIG_MAC)
3898 #ifdef MAC_SERIAL_DEBUG
3901 #endif /* MAC_SERIAL_DEBUG */
3904 #if defined (CONFIG_APOLLO)
3910 #if defined(CONFIG_HP300)
3927 m68k_pgtable_cachemode:
3929 m68k_supervisor_cachemode:
3931 #if defined(CONFIG_MVME16x)
3933 .long 0,0,0,0,0,0,0,0
3935 #if defined(CONFIG_Q40)