Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / arch / mips / sgi-ip27 / ip27-nmi.c
blobb0a25e1ee8b70281b16a9f27767060e1277f5ec9
1 #include <linux/kallsyms.h>
2 #include <linux/kernel.h>
3 #include <linux/mmzone.h>
4 #include <linux/nodemask.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <asm/atomic.h>
8 #include <asm/sn/types.h>
9 #include <asm/sn/addrs.h>
10 #include <asm/sn/nmi.h>
11 #include <asm/sn/arch.h>
12 #include <asm/sn/sn0/hub.h>
14 #if 0
15 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n)
16 #else
17 #define NODE_NUM_CPUS(n) CPUS_PER_NODE
18 #endif
20 #define CNODEID_NONE (cnodeid_t)-1
21 #define enter_panic_mode() spin_lock(&nmi_lock)
23 typedef unsigned long machreg_t;
25 DEFINE_SPINLOCK(nmi_lock);
28 * Lets see what else we need to do here. Set up sp, gp?
30 void nmi_dump(void)
32 void cont_nmi_dump(void);
34 cont_nmi_dump();
37 void install_cpu_nmi_handler(int slice)
39 nmi_t *nmi_addr;
41 nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
42 if (nmi_addr->call_addr)
43 return;
44 nmi_addr->magic = NMI_MAGIC;
45 nmi_addr->call_addr = (void *)nmi_dump;
46 nmi_addr->call_addr_c =
47 (void *)(~((unsigned long)(nmi_addr->call_addr)));
48 nmi_addr->call_parm = 0;
52 * Copy the cpu registers which have been saved in the IP27prom format
53 * into the eframe format for the node under consideration.
56 void nmi_cpu_eframe_save(nasid_t nasid, int slice)
58 struct reg_struct *nr;
59 int i;
61 /* Get the pointer to the current cpu's register set. */
62 nr = (struct reg_struct *)
63 (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
64 slice * IP27_NMI_KREGS_CPU_SIZE);
66 printk("NMI nasid %d: slice %d\n", nasid, slice);
69 * Saved main processor registers
71 for (i = 0; i < 32; ) {
72 if ((i % 4) == 0)
73 printk("$%2d :", i);
74 printk(" %016lx", nr->gpr[i]);
76 i++;
77 if ((i % 4) == 0)
78 printk("\n");
81 printk("Hi : (value lost)\n");
82 printk("Lo : (value lost)\n");
85 * Saved cp0 registers
87 printk("epc : %016lx ", nr->epc);
88 print_symbol("%s ", nr->epc);
89 printk("%s\n", print_tainted());
90 printk("ErrEPC: %016lx ", nr->error_epc);
91 print_symbol("%s\n", nr->error_epc);
92 printk("ra : %016lx ", nr->gpr[31]);
93 print_symbol("%s\n", nr->gpr[31]);
94 printk("Status: %08lx ", nr->sr);
96 if (nr->sr & ST0_KX)
97 printk("KX ");
98 if (nr->sr & ST0_SX)
99 printk("SX ");
100 if (nr->sr & ST0_UX)
101 printk("UX ");
103 switch (nr->sr & ST0_KSU) {
104 case KSU_USER:
105 printk("USER ");
106 break;
107 case KSU_SUPERVISOR:
108 printk("SUPERVISOR ");
109 break;
110 case KSU_KERNEL:
111 printk("KERNEL ");
112 break;
113 default:
114 printk("BAD_MODE ");
115 break;
118 if (nr->sr & ST0_ERL)
119 printk("ERL ");
120 if (nr->sr & ST0_EXL)
121 printk("EXL ");
122 if (nr->sr & ST0_IE)
123 printk("IE ");
124 printk("\n");
126 printk("Cause : %08lx\n", nr->cause);
127 printk("PrId : %08x\n", read_c0_prid());
128 printk("BadVA : %016lx\n", nr->badva);
129 printk("CErr : %016lx\n", nr->cache_err);
130 printk("NMI_SR: %016lx\n", nr->nmi_sr);
132 printk("\n");
135 void nmi_dump_hub_irq(nasid_t nasid, int slice)
137 hubreg_t mask0, mask1, pend0, pend1;
139 if (slice == 0) { /* Slice A */
140 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
141 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
142 } else { /* Slice B */
143 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
144 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
147 pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
148 pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
150 printk("PI_INT_MASK0: %16lx PI_INT_MASK1: %16lx\n", mask0, mask1);
151 printk("PI_INT_PEND0: %16lx PI_INT_PEND1: %16lx\n", pend0, pend1);
152 printk("\n\n");
156 * Copy the cpu registers which have been saved in the IP27prom format
157 * into the eframe format for the node under consideration.
159 void nmi_node_eframe_save(cnodeid_t cnode)
161 nasid_t nasid;
162 int slice;
164 /* Make sure that we have a valid node */
165 if (cnode == CNODEID_NONE)
166 return;
168 nasid = COMPACT_TO_NASID_NODEID(cnode);
169 if (nasid == INVALID_NASID)
170 return;
172 /* Save the registers into eframe for each cpu */
173 for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
174 nmi_cpu_eframe_save(nasid, slice);
175 nmi_dump_hub_irq(nasid, slice);
180 * Save the nmi cpu registers for all cpus in the system.
182 void
183 nmi_eframes_save(void)
185 cnodeid_t cnode;
187 for_each_online_node(cnode)
188 nmi_node_eframe_save(cnode);
191 void
192 cont_nmi_dump(void)
194 #ifndef REAL_NMI_SIGNAL
195 static atomic_t nmied_cpus = ATOMIC_INIT(0);
197 atomic_inc(&nmied_cpus);
198 #endif
200 * Use enter_panic_mode to allow only 1 cpu to proceed
202 enter_panic_mode();
204 #ifdef REAL_NMI_SIGNAL
206 * Wait up to 15 seconds for the other cpus to respond to the NMI.
207 * If a cpu has not responded after 10 sec, send it 1 additional NMI.
208 * This is for 2 reasons:
209 * - sometimes a MMSC fail to NMI all cpus.
210 * - on 512p SN0 system, the MMSC will only send NMIs to
211 * half the cpus. Unfortunately, we don't know which cpus may be
212 * NMIed - it depends on how the site chooses to configure.
214 * Note: it has been measure that it takes the MMSC up to 2.3 secs to
215 * send NMIs to all cpus on a 256p system.
217 for (i=0; i < 1500; i++) {
218 for_each_online_node(node)
219 if (NODEPDA(node)->dump_count == 0)
220 break;
221 if (node == MAX_NUMNODES)
222 break;
223 if (i == 1000) {
224 for_each_online_node(node)
225 if (NODEPDA(node)->dump_count == 0) {
226 cpu = node_to_first_cpu(node);
227 for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
228 CPUMASK_SETB(nmied_cpus, cpu);
230 * cputonasid, cputoslice
231 * needs kernel cpuid
233 SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
238 udelay(10000);
240 #else
241 while (atomic_read(&nmied_cpus) != num_online_cpus());
242 #endif
245 * Save the nmi cpu registers for all cpu in the eframe format.
247 nmi_eframes_save();
248 LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);