2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/profile.h>
27 #include <asm/uaccess.h>
30 #include <asm/param.h>
34 #include <linux/timex.h>
36 u64 jiffies_64
= INITIAL_JIFFIES
;
38 EXPORT_SYMBOL(jiffies_64
);
40 /* xtime and wall_jiffies keep wall-clock time */
41 extern unsigned long wall_jiffies
;
43 static long clocktick
; /* timer cycles per tick */
47 extern void smp_do_timer(struct pt_regs
*regs
);
50 irqreturn_t
timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
55 int cpu
= smp_processor_id();
57 profile_tick(CPU_PROFILING
, regs
);
60 /* initialize next_tick to time at last clocktick */
61 next_tick
= cpu_data
[cpu
].it_value
;
63 /* since time passes between the interrupt and the mfctl()
64 * above, it is never true that last_tick + clocktick == now. If we
65 * never miss a clocktick, we could set next_tick = last_tick + clocktick
66 * but maybe we'll miss ticks, hence the loop.
68 * Variables are *signed*.
72 while((next_tick
- now
) < halftick
) {
73 next_tick
+= clocktick
;
77 cpu_data
[cpu
].it_value
= next_tick
;
83 update_process_times(user_mode(regs
));
86 write_seqlock(&xtime_lock
);
88 write_sequnlock(&xtime_lock
);
92 #ifdef CONFIG_CHASSIS_LCD_LED
93 /* Only schedule the led tasklet on cpu 0, and only if it
96 if (cpu
== 0 && !atomic_read(&led_tasklet
.count
))
97 tasklet_schedule(&led_tasklet
);
100 /* check soft power switch status */
101 if (cpu
== 0 && !atomic_read(&power_tasklet
.count
))
102 tasklet_schedule(&power_tasklet
);
107 /*** converted from ia64 ***/
109 * Return the number of micro-seconds that elapsed since the last
110 * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
111 * must be at least read-locked when calling this routine.
113 static inline unsigned long
118 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
119 * Once parisc-linux learns the cr16 difference between processors,
120 * this could be made to work.
125 /* it_value is the intended time of the next tick */
126 last_tick
= cpu_data
[smp_processor_id()].it_value
;
128 /* Subtract one tick and account for possible difference between
129 * when we expected the tick and when it actually arrived.
132 last_tick
-= clocktick
* (jiffies
- wall_jiffies
+ 1);
133 elapsed_cycles
= mfctl(16) - last_tick
;
135 /* the precision of this math could be improved */
136 return elapsed_cycles
/ (PAGE0
->mem_10msec
/ 10000);
143 do_gettimeofday (struct timeval
*tv
)
145 unsigned long flags
, seq
, usec
, sec
;
148 seq
= read_seqbegin_irqsave(&xtime_lock
, flags
);
149 usec
= gettimeoffset();
151 usec
+= (xtime
.tv_nsec
/ 1000);
152 } while (read_seqretry_irqrestore(&xtime_lock
, seq
, flags
));
154 while (usec
>= 1000000) {
163 EXPORT_SYMBOL(do_gettimeofday
);
166 do_settimeofday (struct timespec
*tv
)
168 time_t wtm_sec
, sec
= tv
->tv_sec
;
169 long wtm_nsec
, nsec
= tv
->tv_nsec
;
171 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
174 write_seqlock_irq(&xtime_lock
);
177 * This is revolting. We need to set "xtime"
178 * correctly. However, the value in this location is
179 * the value at the most recent update of wall time.
180 * Discover what correction gettimeofday would have
181 * done, and then undo it!
183 nsec
-= gettimeoffset() * 1000;
185 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
186 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
188 set_normalized_timespec(&xtime
, sec
, nsec
);
189 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
191 time_adjust
= 0; /* stop active adjtime() */
192 time_status
|= STA_UNSYNC
;
193 time_maxerror
= NTP_PHASE_LIMIT
;
194 time_esterror
= NTP_PHASE_LIMIT
;
196 write_sequnlock_irq(&xtime_lock
);
200 EXPORT_SYMBOL(do_settimeofday
);
203 * XXX: We can do better than this.
204 * Returns nanoseconds
207 unsigned long long sched_clock(void)
209 return (unsigned long long)jiffies
* (1000000000 / HZ
);
213 void __init
time_init(void)
215 unsigned long next_tick
;
216 static struct pdc_tod tod_data
;
218 clocktick
= (100 * PAGE0
->mem_10msec
) / HZ
;
219 halftick
= clocktick
/ 2;
221 /* Setup clock interrupt timing */
223 next_tick
= mfctl(16);
224 next_tick
+= clocktick
;
225 cpu_data
[smp_processor_id()].it_value
= next_tick
;
227 /* kick off Itimer (CR16) */
228 mtctl(next_tick
, 16);
230 if(pdc_tod_read(&tod_data
) == 0) {
231 write_seqlock_irq(&xtime_lock
);
232 xtime
.tv_sec
= tod_data
.tod_sec
;
233 xtime
.tv_nsec
= tod_data
.tod_usec
* 1000;
234 set_normalized_timespec(&wall_to_monotonic
,
235 -xtime
.tv_sec
, -xtime
.tv_nsec
);
236 write_sequnlock_irq(&xtime_lock
);
238 printk(KERN_ERR
"Error reading tod clock\n");