Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / arch / ppc64 / kernel / prom_init.c
blob35ec42de962e2f42d331e72f3a09cac678e6486a
1 /*
2 *
4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #undef DEBUG_PROM
20 #include <stdarg.h>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/proc_fs.h>
31 #include <linux/stringify.h>
32 #include <linux/delay.h>
33 #include <linux/initrd.h>
34 #include <linux/bitops.h>
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/abs_addr.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/bootinfo.h>
49 #include <asm/ppcdebug.h>
50 #include <asm/btext.h>
51 #include <asm/sections.h>
52 #include <asm/machdep.h>
54 #ifdef CONFIG_LOGO_LINUX_CLUT224
55 #include <linux/linux_logo.h>
56 extern const struct linux_logo logo_linux_clut224;
57 #endif
60 * Properties whose value is longer than this get excluded from our
61 * copy of the device tree. This value does need to be big enough to
62 * ensure that we don't lose things like the interrupt-map property
63 * on a PCI-PCI bridge.
65 #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
68 * Eventually bump that one up
70 #define DEVTREE_CHUNK_SIZE 0x100000
73 * This is the size of the local memory reserve map that gets copied
74 * into the boot params passed to the kernel. That size is totally
75 * flexible as the kernel just reads the list until it encounters an
76 * entry with size 0, so it can be changed without breaking binary
77 * compatibility
79 #define MEM_RESERVE_MAP_SIZE 8
82 * prom_init() is called very early on, before the kernel text
83 * and data have been mapped to KERNELBASE. At this point the code
84 * is running at whatever address it has been loaded at, so
85 * references to extern and static variables must be relocated
86 * explicitly. The procedure reloc_offset() returns the address
87 * we're currently running at minus the address we were linked at.
88 * (Note that strings count as static variables.)
90 * Because OF may have mapped I/O devices into the area starting at
91 * KERNELBASE, particularly on CHRP machines, we can't safely call
92 * OF once the kernel has been mapped to KERNELBASE. Therefore all
93 * OF calls should be done within prom_init(), and prom_init()
94 * and all routines called within it must be careful to relocate
95 * references as necessary.
97 * Note that the bss is cleared *after* prom_init runs, so we have
98 * to make sure that any static or extern variables it accesses
99 * are put in the data segment.
103 #define PROM_BUG() do { \
104 prom_printf("kernel BUG at %s line 0x%x!\n", \
105 RELOC(__FILE__), __LINE__); \
106 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
107 } while (0)
109 #ifdef DEBUG_PROM
110 #define prom_debug(x...) prom_printf(x)
111 #else
112 #define prom_debug(x...)
113 #endif
116 typedef u32 prom_arg_t;
118 struct prom_args {
119 u32 service;
120 u32 nargs;
121 u32 nret;
122 prom_arg_t args[10];
123 prom_arg_t *rets; /* Pointer to return values in args[16]. */
126 struct prom_t {
127 unsigned long entry;
128 ihandle root;
129 ihandle chosen;
130 int cpu;
131 ihandle stdout;
132 ihandle disp_node;
133 struct prom_args args;
134 unsigned long version;
135 unsigned long root_size_cells;
136 unsigned long root_addr_cells;
139 struct pci_reg_property {
140 struct pci_address addr;
141 u32 size_hi;
142 u32 size_lo;
145 struct mem_map_entry {
146 u64 base;
147 u64 size;
150 typedef u32 cell_t;
152 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
154 extern void enter_prom(struct prom_args *args, unsigned long entry);
155 extern void copy_and_flush(unsigned long dest, unsigned long src,
156 unsigned long size, unsigned long offset);
158 extern unsigned long klimit;
160 /* prom structure */
161 static struct prom_t __initdata prom;
163 #define PROM_SCRATCH_SIZE 256
165 static char __initdata of_stdout_device[256];
166 static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
168 static unsigned long __initdata dt_header_start;
169 static unsigned long __initdata dt_struct_start, dt_struct_end;
170 static unsigned long __initdata dt_string_start, dt_string_end;
172 static unsigned long __initdata prom_initrd_start, prom_initrd_end;
174 static int __initdata iommu_force_on;
175 static int __initdata ppc64_iommu_off;
176 static int __initdata of_platform;
178 static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
180 static unsigned long __initdata prom_memory_limit;
181 static unsigned long __initdata prom_tce_alloc_start;
182 static unsigned long __initdata prom_tce_alloc_end;
184 static unsigned long __initdata alloc_top;
185 static unsigned long __initdata alloc_top_high;
186 static unsigned long __initdata alloc_bottom;
187 static unsigned long __initdata rmo_top;
188 static unsigned long __initdata ram_top;
190 static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
191 static int __initdata mem_reserve_cnt;
193 static cell_t __initdata regbuf[1024];
196 #define MAX_CPU_THREADS 2
198 /* TO GO */
199 #ifdef CONFIG_HMT
200 struct {
201 unsigned int pir;
202 unsigned int threadid;
203 } hmt_thread_data[NR_CPUS];
204 #endif /* CONFIG_HMT */
207 * This are used in calls to call_prom. The 4th and following
208 * arguments to call_prom should be 32-bit values. 64 bit values
209 * are truncated to 32 bits (and fortunately don't get interpreted
210 * as two arguments).
212 #define ADDR(x) (u32) ((unsigned long)(x) - offset)
214 /* This is the one and *ONLY* place where we actually call open
215 * firmware from, since we need to make sure we're running in 32b
216 * mode when we do. We switch back to 64b mode upon return.
219 #define PROM_ERROR (-1)
221 static int __init call_prom(const char *service, int nargs, int nret, ...)
223 int i;
224 unsigned long offset = reloc_offset();
225 struct prom_t *_prom = PTRRELOC(&prom);
226 va_list list;
228 _prom->args.service = ADDR(service);
229 _prom->args.nargs = nargs;
230 _prom->args.nret = nret;
231 _prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
233 va_start(list, nret);
234 for (i=0; i < nargs; i++)
235 _prom->args.args[i] = va_arg(list, prom_arg_t);
236 va_end(list);
238 for (i=0; i < nret ;i++)
239 _prom->args.rets[i] = 0;
241 enter_prom(&_prom->args, _prom->entry);
243 return (nret > 0) ? _prom->args.rets[0] : 0;
247 static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
248 unsigned long align)
250 return (unsigned int)call_prom("claim", 3, 1,
251 (prom_arg_t)virt, (prom_arg_t)size,
252 (prom_arg_t)align);
255 static void __init prom_print(const char *msg)
257 const char *p, *q;
258 unsigned long offset = reloc_offset();
259 struct prom_t *_prom = PTRRELOC(&prom);
261 if (_prom->stdout == 0)
262 return;
264 for (p = msg; *p != 0; p = q) {
265 for (q = p; *q != 0 && *q != '\n'; ++q)
267 if (q > p)
268 call_prom("write", 3, 1, _prom->stdout, p, q - p);
269 if (*q == 0)
270 break;
271 ++q;
272 call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
277 static void __init prom_print_hex(unsigned long val)
279 unsigned long offset = reloc_offset();
280 int i, nibbles = sizeof(val)*2;
281 char buf[sizeof(val)*2+1];
282 struct prom_t *_prom = PTRRELOC(&prom);
284 for (i = nibbles-1; i >= 0; i--) {
285 buf[i] = (val & 0xf) + '0';
286 if (buf[i] > '9')
287 buf[i] += ('a'-'0'-10);
288 val >>= 4;
290 buf[nibbles] = '\0';
291 call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
295 static void __init prom_printf(const char *format, ...)
297 unsigned long offset = reloc_offset();
298 const char *p, *q, *s;
299 va_list args;
300 unsigned long v;
301 struct prom_t *_prom = PTRRELOC(&prom);
303 va_start(args, format);
304 for (p = PTRRELOC(format); *p != 0; p = q) {
305 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
307 if (q > p)
308 call_prom("write", 3, 1, _prom->stdout, p, q - p);
309 if (*q == 0)
310 break;
311 if (*q == '\n') {
312 ++q;
313 call_prom("write", 3, 1, _prom->stdout,
314 ADDR("\r\n"), 2);
315 continue;
317 ++q;
318 if (*q == 0)
319 break;
320 switch (*q) {
321 case 's':
322 ++q;
323 s = va_arg(args, const char *);
324 prom_print(s);
325 break;
326 case 'x':
327 ++q;
328 v = va_arg(args, unsigned long);
329 prom_print_hex(v);
330 break;
336 static void __init __attribute__((noreturn)) prom_panic(const char *reason)
338 unsigned long offset = reloc_offset();
340 prom_print(PTRRELOC(reason));
341 /* ToDo: should put up an SRC here */
342 call_prom("exit", 0, 0);
344 for (;;) /* should never get here */
349 static int __init prom_next_node(phandle *nodep)
351 phandle node;
353 if ((node = *nodep) != 0
354 && (*nodep = call_prom("child", 1, 1, node)) != 0)
355 return 1;
356 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
357 return 1;
358 for (;;) {
359 if ((node = call_prom("parent", 1, 1, node)) == 0)
360 return 0;
361 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
362 return 1;
366 static int __init prom_getprop(phandle node, const char *pname,
367 void *value, size_t valuelen)
369 unsigned long offset = reloc_offset();
371 return call_prom("getprop", 4, 1, node, ADDR(pname),
372 (u32)(unsigned long) value, (u32) valuelen);
375 static int __init prom_getproplen(phandle node, const char *pname)
377 unsigned long offset = reloc_offset();
379 return call_prom("getproplen", 2, 1, node, ADDR(pname));
382 static int __init prom_setprop(phandle node, const char *pname,
383 void *value, size_t valuelen)
385 unsigned long offset = reloc_offset();
387 return call_prom("setprop", 4, 1, node, ADDR(pname),
388 (u32)(unsigned long) value, (u32) valuelen);
391 /* We can't use the standard versions because of RELOC headaches. */
392 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \
393 || ('a' <= (c) && (c) <= 'f') \
394 || ('A' <= (c) && (c) <= 'F'))
396 #define isdigit(c) ('0' <= (c) && (c) <= '9')
397 #define islower(c) ('a' <= (c) && (c) <= 'z')
398 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
400 unsigned long prom_strtoul(const char *cp, const char **endp)
402 unsigned long result = 0, base = 10, value;
404 if (*cp == '0') {
405 base = 8;
406 cp++;
407 if (toupper(*cp) == 'X') {
408 cp++;
409 base = 16;
413 while (isxdigit(*cp) &&
414 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
415 result = result * base + value;
416 cp++;
419 if (endp)
420 *endp = cp;
422 return result;
425 unsigned long prom_memparse(const char *ptr, const char **retptr)
427 unsigned long ret = prom_strtoul(ptr, retptr);
428 int shift = 0;
431 * We can't use a switch here because GCC *may* generate a
432 * jump table which won't work, because we're not running at
433 * the address we're linked at.
435 if ('G' == **retptr || 'g' == **retptr)
436 shift = 30;
438 if ('M' == **retptr || 'm' == **retptr)
439 shift = 20;
441 if ('K' == **retptr || 'k' == **retptr)
442 shift = 10;
444 if (shift) {
445 ret <<= shift;
446 (*retptr)++;
449 return ret;
453 * Early parsing of the command line passed to the kernel, used for
454 * "mem=x" and the options that affect the iommu
456 static void __init early_cmdline_parse(void)
458 unsigned long offset = reloc_offset();
459 struct prom_t *_prom = PTRRELOC(&prom);
460 char *opt, *p;
461 int l = 0;
463 RELOC(prom_cmd_line[0]) = 0;
464 p = RELOC(prom_cmd_line);
465 if ((long)_prom->chosen > 0)
466 l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
467 #ifdef CONFIG_CMDLINE
468 if (l == 0) /* dbl check */
469 strlcpy(RELOC(prom_cmd_line),
470 RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
471 #endif /* CONFIG_CMDLINE */
472 prom_printf("command line: %s\n", RELOC(prom_cmd_line));
474 opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
475 if (opt) {
476 prom_printf("iommu opt is: %s\n", opt);
477 opt += 6;
478 while (*opt && *opt == ' ')
479 opt++;
480 if (!strncmp(opt, RELOC("off"), 3))
481 RELOC(ppc64_iommu_off) = 1;
482 else if (!strncmp(opt, RELOC("force"), 5))
483 RELOC(iommu_force_on) = 1;
486 opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
487 if (opt) {
488 opt += 4;
489 RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
490 /* Align to 16 MB == size of large page */
491 RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
496 * To tell the firmware what our capabilities are, we have to pass
497 * it a fake 32-bit ELF header containing a couple of PT_NOTE sections
498 * that contain structures that contain the actual values.
500 static struct fake_elf {
501 Elf32_Ehdr elfhdr;
502 Elf32_Phdr phdr[2];
503 struct chrpnote {
504 u32 namesz;
505 u32 descsz;
506 u32 type;
507 char name[8]; /* "PowerPC" */
508 struct chrpdesc {
509 u32 real_mode;
510 u32 real_base;
511 u32 real_size;
512 u32 virt_base;
513 u32 virt_size;
514 u32 load_base;
515 } chrpdesc;
516 } chrpnote;
517 struct rpanote {
518 u32 namesz;
519 u32 descsz;
520 u32 type;
521 char name[24]; /* "IBM,RPA-Client-Config" */
522 struct rpadesc {
523 u32 lpar_affinity;
524 u32 min_rmo_size;
525 u32 min_rmo_percent;
526 u32 max_pft_size;
527 u32 splpar;
528 u32 min_load;
529 u32 new_mem_def;
530 u32 ignore_me;
531 } rpadesc;
532 } rpanote;
533 } fake_elf = {
534 .elfhdr = {
535 .e_ident = { 0x7f, 'E', 'L', 'F',
536 ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
537 .e_type = ET_EXEC, /* yeah right */
538 .e_machine = EM_PPC,
539 .e_version = EV_CURRENT,
540 .e_phoff = offsetof(struct fake_elf, phdr),
541 .e_phentsize = sizeof(Elf32_Phdr),
542 .e_phnum = 2
544 .phdr = {
545 [0] = {
546 .p_type = PT_NOTE,
547 .p_offset = offsetof(struct fake_elf, chrpnote),
548 .p_filesz = sizeof(struct chrpnote)
549 }, [1] = {
550 .p_type = PT_NOTE,
551 .p_offset = offsetof(struct fake_elf, rpanote),
552 .p_filesz = sizeof(struct rpanote)
555 .chrpnote = {
556 .namesz = sizeof("PowerPC"),
557 .descsz = sizeof(struct chrpdesc),
558 .type = 0x1275,
559 .name = "PowerPC",
560 .chrpdesc = {
561 .real_mode = ~0U, /* ~0 means "don't care" */
562 .real_base = ~0U,
563 .real_size = ~0U,
564 .virt_base = ~0U,
565 .virt_size = ~0U,
566 .load_base = ~0U
569 .rpanote = {
570 .namesz = sizeof("IBM,RPA-Client-Config"),
571 .descsz = sizeof(struct rpadesc),
572 .type = 0x12759999,
573 .name = "IBM,RPA-Client-Config",
574 .rpadesc = {
575 .lpar_affinity = 0,
576 .min_rmo_size = 64, /* in megabytes */
577 .min_rmo_percent = 0,
578 .max_pft_size = 48, /* 2^48 bytes max PFT size */
579 .splpar = 1,
580 .min_load = ~0U,
581 .new_mem_def = 0
586 static void __init prom_send_capabilities(void)
588 unsigned long offset = reloc_offset();
589 ihandle elfloader;
590 int ret;
592 elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
593 if (elfloader == 0) {
594 prom_printf("couldn't open /packages/elf-loader\n");
595 return;
597 ret = call_prom("call-method", 3, 1, ADDR("process-elf-header"),
598 elfloader, ADDR(&fake_elf));
599 call_prom("close", 1, 0, elfloader);
603 * Memory allocation strategy... our layout is normally:
605 * at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd
606 * might end up beeing before the kernel though. We assume this won't override
607 * the final kernel at 0, we have no provision to handle that in this version,
608 * but it should hopefully never happen.
610 * alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap
611 * alloc_bottom is set to the top of kernel/initrd
613 * from there, allocations are done that way : rtas is allocated topmost, and
614 * the device-tree is allocated from the bottom. We try to grow the device-tree
615 * allocation as we progress. If we can't, then we fail, we don't currently have
616 * a facility to restart elsewhere, but that shouldn't be necessary neither
618 * Note that calls to reserve_mem have to be done explicitely, memory allocated
619 * with either alloc_up or alloc_down isn't automatically reserved.
624 * Allocates memory in the RMO upward from the kernel/initrd
626 * When align is 0, this is a special case, it means to allocate in place
627 * at the current location of alloc_bottom or fail (that is basically
628 * extending the previous allocation). Used for the device-tree flattening
630 static unsigned long __init alloc_up(unsigned long size, unsigned long align)
632 unsigned long offset = reloc_offset();
633 unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
634 unsigned long addr = 0;
636 prom_debug("alloc_up(%x, %x)\n", size, align);
637 if (RELOC(ram_top) == 0)
638 prom_panic("alloc_up() called with mem not initialized\n");
640 if (align)
641 base = _ALIGN_UP(RELOC(alloc_bottom), align);
642 else
643 base = RELOC(alloc_bottom);
645 for(; (base + size) <= RELOC(alloc_top);
646 base = _ALIGN_UP(base + 0x100000, align)) {
647 prom_debug(" trying: 0x%x\n\r", base);
648 addr = (unsigned long)prom_claim(base, size, 0);
649 if ((int)addr != PROM_ERROR)
650 break;
651 addr = 0;
652 if (align == 0)
653 break;
655 if (addr == 0)
656 return 0;
657 RELOC(alloc_bottom) = addr;
659 prom_debug(" -> %x\n", addr);
660 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
661 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
662 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
663 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
664 prom_debug(" ram_top : %x\n", RELOC(ram_top));
666 return addr;
670 * Allocates memory downard, either from top of RMO, or if highmem
671 * is set, from the top of RAM. Note that this one doesn't handle
672 * failures. In does claim memory if highmem is not set.
674 static unsigned long __init alloc_down(unsigned long size, unsigned long align,
675 int highmem)
677 unsigned long offset = reloc_offset();
678 unsigned long base, addr = 0;
680 prom_debug("alloc_down(%x, %x, %s)\n", size, align,
681 highmem ? RELOC("(high)") : RELOC("(low)"));
682 if (RELOC(ram_top) == 0)
683 prom_panic("alloc_down() called with mem not initialized\n");
685 if (highmem) {
686 /* Carve out storage for the TCE table. */
687 addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
688 if (addr <= RELOC(alloc_bottom))
689 return 0;
690 else {
691 /* Will we bump into the RMO ? If yes, check out that we
692 * didn't overlap existing allocations there, if we did,
693 * we are dead, we must be the first in town !
695 if (addr < RELOC(rmo_top)) {
696 /* Good, we are first */
697 if (RELOC(alloc_top) == RELOC(rmo_top))
698 RELOC(alloc_top) = RELOC(rmo_top) = addr;
699 else
700 return 0;
702 RELOC(alloc_top_high) = addr;
704 goto bail;
707 base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
708 for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) {
709 prom_debug(" trying: 0x%x\n\r", base);
710 addr = (unsigned long)prom_claim(base, size, 0);
711 if ((int)addr != PROM_ERROR)
712 break;
713 addr = 0;
715 if (addr == 0)
716 return 0;
717 RELOC(alloc_top) = addr;
719 bail:
720 prom_debug(" -> %x\n", addr);
721 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
722 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
723 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
724 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
725 prom_debug(" ram_top : %x\n", RELOC(ram_top));
727 return addr;
731 * Parse a "reg" cell
733 static unsigned long __init prom_next_cell(int s, cell_t **cellp)
735 cell_t *p = *cellp;
736 unsigned long r = 0;
738 /* Ignore more than 2 cells */
739 while (s > 2) {
740 p++;
741 s--;
743 while (s) {
744 r <<= 32;
745 r |= *(p++);
746 s--;
749 *cellp = p;
750 return r;
754 * Very dumb function for adding to the memory reserve list, but
755 * we don't need anything smarter at this point
757 * XXX Eventually check for collisions. They should NEVER happen
758 * if problems seem to show up, it would be a good start to track
759 * them down.
761 static void reserve_mem(unsigned long base, unsigned long size)
763 unsigned long offset = reloc_offset();
764 unsigned long top = base + size;
765 unsigned long cnt = RELOC(mem_reserve_cnt);
767 if (size == 0)
768 return;
770 /* We need to always keep one empty entry so that we
771 * have our terminator with "size" set to 0 since we are
772 * dumb and just copy this entire array to the boot params
774 base = _ALIGN_DOWN(base, PAGE_SIZE);
775 top = _ALIGN_UP(top, PAGE_SIZE);
776 size = top - base;
778 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
779 prom_panic("Memory reserve map exhausted !\n");
780 RELOC(mem_reserve_map)[cnt].base = base;
781 RELOC(mem_reserve_map)[cnt].size = size;
782 RELOC(mem_reserve_cnt) = cnt + 1;
786 * Initialize memory allocation mecanism, parse "memory" nodes and
787 * obtain that way the top of memory and RMO to setup out local allocator
789 static void __init prom_init_mem(void)
791 phandle node;
792 char *path, type[64];
793 unsigned int plen;
794 cell_t *p, *endp;
795 unsigned long offset = reloc_offset();
796 struct prom_t *_prom = PTRRELOC(&prom);
799 * We iterate the memory nodes to find
800 * 1) top of RMO (first node)
801 * 2) top of memory
803 prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells);
804 prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells);
806 prom_debug("scanning memory:\n");
807 path = RELOC(prom_scratch);
809 for (node = 0; prom_next_node(&node); ) {
810 type[0] = 0;
811 prom_getprop(node, "device_type", type, sizeof(type));
813 if (strcmp(type, RELOC("memory")))
814 continue;
816 plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
817 if (plen > sizeof(regbuf)) {
818 prom_printf("memory node too large for buffer !\n");
819 plen = sizeof(regbuf);
821 p = RELOC(regbuf);
822 endp = p + (plen / sizeof(cell_t));
824 #ifdef DEBUG_PROM
825 memset(path, 0, PROM_SCRATCH_SIZE);
826 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
827 prom_debug(" node %s :\n", path);
828 #endif /* DEBUG_PROM */
830 while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) {
831 unsigned long base, size;
833 base = prom_next_cell(_prom->root_addr_cells, &p);
834 size = prom_next_cell(_prom->root_size_cells, &p);
836 if (size == 0)
837 continue;
838 prom_debug(" %x %x\n", base, size);
839 if (base == 0)
840 RELOC(rmo_top) = size;
841 if ((base + size) > RELOC(ram_top))
842 RELOC(ram_top) = base + size;
846 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000);
848 /* Check if we have an initrd after the kernel, if we do move our bottom
849 * point to after it
851 if (RELOC(prom_initrd_start)) {
852 if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
853 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
857 * If prom_memory_limit is set we reduce the upper limits *except* for
858 * alloc_top_high. This must be the real top of RAM so we can put
859 * TCE's up there.
862 RELOC(alloc_top_high) = RELOC(ram_top);
864 if (RELOC(prom_memory_limit)) {
865 if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
866 prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
867 RELOC(prom_memory_limit));
868 RELOC(prom_memory_limit) = 0;
869 } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
870 prom_printf("Ignoring mem=%x >= ram_top.\n",
871 RELOC(prom_memory_limit));
872 RELOC(prom_memory_limit) = 0;
873 } else {
874 RELOC(ram_top) = RELOC(prom_memory_limit);
875 RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
880 * Setup our top alloc point, that is top of RMO or top of
881 * segment 0 when running non-LPAR.
883 if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR )
884 RELOC(alloc_top) = RELOC(rmo_top);
885 else
886 RELOC(alloc_top) = RELOC(rmo_top) = min(0x40000000ul, RELOC(ram_top));
888 prom_printf("memory layout at init:\n");
889 prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
890 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
891 prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
892 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
893 prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
894 prom_printf(" ram_top : %x\n", RELOC(ram_top));
899 * Allocate room for and instanciate RTAS
901 static void __init prom_instantiate_rtas(void)
903 unsigned long offset = reloc_offset();
904 struct prom_t *_prom = PTRRELOC(&prom);
905 phandle prom_rtas, rtas_node;
906 u32 base, entry = 0;
907 u32 size = 0;
909 prom_debug("prom_instantiate_rtas: start...\n");
911 prom_rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
912 prom_debug("prom_rtas: %x\n", prom_rtas);
913 if (prom_rtas == (phandle) -1)
914 return;
916 prom_getprop(prom_rtas, "rtas-size", &size, sizeof(size));
917 if (size == 0)
918 return;
920 base = alloc_down(size, PAGE_SIZE, 0);
921 if (base == 0) {
922 prom_printf("RTAS allocation failed !\n");
923 return;
925 prom_printf("instantiating rtas at 0x%x", base);
927 rtas_node = call_prom("open", 1, 1, ADDR("/rtas"));
928 prom_printf("...");
930 if (call_prom("call-method", 3, 2,
931 ADDR("instantiate-rtas"),
932 rtas_node, base) != PROM_ERROR) {
933 entry = (long)_prom->args.rets[1];
935 if (entry == 0) {
936 prom_printf(" failed\n");
937 return;
939 prom_printf(" done\n");
941 reserve_mem(base, size);
943 prom_setprop(prom_rtas, "linux,rtas-base", &base, sizeof(base));
944 prom_setprop(prom_rtas, "linux,rtas-entry", &entry, sizeof(entry));
946 prom_debug("rtas base = 0x%x\n", base);
947 prom_debug("rtas entry = 0x%x\n", entry);
948 prom_debug("rtas size = 0x%x\n", (long)size);
950 prom_debug("prom_instantiate_rtas: end...\n");
955 * Allocate room for and initialize TCE tables
957 static void __init prom_initialize_tce_table(void)
959 phandle node;
960 ihandle phb_node;
961 unsigned long offset = reloc_offset();
962 char compatible[64], type[64], model[64];
963 char *path = RELOC(prom_scratch);
964 u64 base, align;
965 u32 minalign, minsize;
966 u64 tce_entry, *tce_entryp;
967 u64 local_alloc_top, local_alloc_bottom;
968 u64 i;
970 if (RELOC(ppc64_iommu_off))
971 return;
973 prom_debug("starting prom_initialize_tce_table\n");
975 /* Cache current top of allocs so we reserve a single block */
976 local_alloc_top = RELOC(alloc_top_high);
977 local_alloc_bottom = local_alloc_top;
979 /* Search all nodes looking for PHBs. */
980 for (node = 0; prom_next_node(&node); ) {
981 compatible[0] = 0;
982 type[0] = 0;
983 model[0] = 0;
984 prom_getprop(node, "compatible",
985 compatible, sizeof(compatible));
986 prom_getprop(node, "device_type", type, sizeof(type));
987 prom_getprop(node, "model", model, sizeof(model));
989 if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
990 continue;
992 /* Keep the old logic in tack to avoid regression. */
993 if (compatible[0] != 0) {
994 if ((strstr(compatible, RELOC("python")) == NULL) &&
995 (strstr(compatible, RELOC("Speedwagon")) == NULL) &&
996 (strstr(compatible, RELOC("Winnipeg")) == NULL))
997 continue;
998 } else if (model[0] != 0) {
999 if ((strstr(model, RELOC("ython")) == NULL) &&
1000 (strstr(model, RELOC("peedwagon")) == NULL) &&
1001 (strstr(model, RELOC("innipeg")) == NULL))
1002 continue;
1005 if (prom_getprop(node, "tce-table-minalign", &minalign,
1006 sizeof(minalign)) == PROM_ERROR)
1007 minalign = 0;
1008 if (prom_getprop(node, "tce-table-minsize", &minsize,
1009 sizeof(minsize)) == PROM_ERROR)
1010 minsize = 4UL << 20;
1013 * Even though we read what OF wants, we just set the table
1014 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
1015 * By doing this, we avoid the pitfalls of trying to DMA to
1016 * MMIO space and the DMA alias hole.
1018 * On POWER4, firmware sets the TCE region by assuming
1019 * each TCE table is 8MB. Using this memory for anything
1020 * else will impact performance, so we always allocate 8MB.
1021 * Anton
1023 if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
1024 minsize = 8UL << 20;
1025 else
1026 minsize = 4UL << 20;
1028 /* Align to the greater of the align or size */
1029 align = max(minalign, minsize);
1030 base = alloc_down(minsize, align, 1);
1031 if (base == 0)
1032 prom_panic("ERROR, cannot find space for TCE table.\n");
1033 if (base < local_alloc_bottom)
1034 local_alloc_bottom = base;
1036 /* Save away the TCE table attributes for later use. */
1037 prom_setprop(node, "linux,tce-base", &base, sizeof(base));
1038 prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
1040 /* It seems OF doesn't null-terminate the path :-( */
1041 memset(path, 0, sizeof(path));
1042 /* Call OF to setup the TCE hardware */
1043 if (call_prom("package-to-path", 3, 1, node,
1044 path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
1045 prom_printf("package-to-path failed\n");
1048 prom_debug("TCE table: %s\n", path);
1049 prom_debug("\tnode = 0x%x\n", node);
1050 prom_debug("\tbase = 0x%x\n", base);
1051 prom_debug("\tsize = 0x%x\n", minsize);
1053 /* Initialize the table to have a one-to-one mapping
1054 * over the allocated size.
1056 tce_entryp = (unsigned long *)base;
1057 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
1058 tce_entry = (i << PAGE_SHIFT);
1059 tce_entry |= 0x3;
1060 *tce_entryp = tce_entry;
1063 prom_printf("opening PHB %s", path);
1064 phb_node = call_prom("open", 1, 1, path);
1065 if ( (long)phb_node <= 0)
1066 prom_printf("... failed\n");
1067 else
1068 prom_printf("... done\n");
1070 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
1071 phb_node, -1, minsize,
1072 (u32) base, (u32) (base >> 32));
1073 call_prom("close", 1, 0, phb_node);
1076 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
1078 if (RELOC(prom_memory_limit)) {
1080 * We align the start to a 16MB boundary so we can map the TCE area
1081 * using large pages if possible. The end should be the top of RAM
1082 * so no need to align it.
1084 RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000);
1085 RELOC(prom_tce_alloc_end) = local_alloc_top;
1088 /* Flag the first invalid entry */
1089 prom_debug("ending prom_initialize_tce_table\n");
1093 * With CHRP SMP we need to use the OF to start the other
1094 * processors so we can't wait until smp_boot_cpus (the OF is
1095 * trashed by then) so we have to put the processors into
1096 * a holding pattern controlled by the kernel (not OF) before
1097 * we destroy the OF.
1099 * This uses a chunk of low memory, puts some holding pattern
1100 * code there and sends the other processors off to there until
1101 * smp_boot_cpus tells them to do something. The holding pattern
1102 * checks that address until its cpu # is there, when it is that
1103 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
1104 * of setting those values.
1106 * We also use physical address 0x4 here to tell when a cpu
1107 * is in its holding pattern code.
1109 * Fixup comment... DRENG / PPPBBB - Peter
1111 * -- Cort
1113 static void __init prom_hold_cpus(void)
1115 unsigned long i;
1116 unsigned int reg;
1117 phandle node;
1118 unsigned long offset = reloc_offset();
1119 char type[64];
1120 int cpuid = 0;
1121 unsigned int interrupt_server[MAX_CPU_THREADS];
1122 unsigned int cpu_threads, hw_cpu_num;
1123 int propsize;
1124 extern void __secondary_hold(void);
1125 extern unsigned long __secondary_hold_spinloop;
1126 extern unsigned long __secondary_hold_acknowledge;
1127 unsigned long *spinloop
1128 = (void *)virt_to_abs(&__secondary_hold_spinloop);
1129 unsigned long *acknowledge
1130 = (void *)virt_to_abs(&__secondary_hold_acknowledge);
1131 unsigned long secondary_hold
1132 = virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold));
1133 struct prom_t *_prom = PTRRELOC(&prom);
1135 prom_debug("prom_hold_cpus: start...\n");
1136 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
1137 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
1138 prom_debug(" 1) acknowledge = 0x%x\n",
1139 (unsigned long)acknowledge);
1140 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
1141 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
1143 /* Set the common spinloop variable, so all of the secondary cpus
1144 * will block when they are awakened from their OF spinloop.
1145 * This must occur for both SMP and non SMP kernels, since OF will
1146 * be trashed when we move the kernel.
1148 *spinloop = 0;
1150 #ifdef CONFIG_HMT
1151 for (i=0; i < NR_CPUS; i++) {
1152 RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
1154 #endif
1155 /* look for cpus */
1156 for (node = 0; prom_next_node(&node); ) {
1157 type[0] = 0;
1158 prom_getprop(node, "device_type", type, sizeof(type));
1159 if (strcmp(type, RELOC("cpu")) != 0)
1160 continue;
1162 /* Skip non-configured cpus. */
1163 if (prom_getprop(node, "status", type, sizeof(type)) > 0)
1164 if (strcmp(type, RELOC("okay")) != 0)
1165 continue;
1167 reg = -1;
1168 prom_getprop(node, "reg", &reg, sizeof(reg));
1170 prom_debug("\ncpuid = 0x%x\n", cpuid);
1171 prom_debug("cpu hw idx = 0x%x\n", reg);
1173 /* Init the acknowledge var which will be reset by
1174 * the secondary cpu when it awakens from its OF
1175 * spinloop.
1177 *acknowledge = (unsigned long)-1;
1179 propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
1180 &interrupt_server,
1181 sizeof(interrupt_server));
1182 if (propsize < 0) {
1183 /* no property. old hardware has no SMT */
1184 cpu_threads = 1;
1185 interrupt_server[0] = reg; /* fake it with phys id */
1186 } else {
1187 /* We have a threaded processor */
1188 cpu_threads = propsize / sizeof(u32);
1189 if (cpu_threads > MAX_CPU_THREADS) {
1190 prom_printf("SMT: too many threads!\n"
1191 "SMT: found %x, max is %x\n",
1192 cpu_threads, MAX_CPU_THREADS);
1193 cpu_threads = 1; /* ToDo: panic? */
1197 hw_cpu_num = interrupt_server[0];
1198 if (hw_cpu_num != _prom->cpu) {
1199 /* Primary Thread of non-boot cpu */
1200 prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
1201 call_prom("start-cpu", 3, 0, node,
1202 secondary_hold, reg);
1204 for ( i = 0 ; (i < 100000000) &&
1205 (*acknowledge == ((unsigned long)-1)); i++ )
1206 mb();
1208 if (*acknowledge == reg) {
1209 prom_printf("done\n");
1210 /* We have to get every CPU out of OF,
1211 * even if we never start it. */
1212 if (cpuid >= NR_CPUS)
1213 goto next;
1214 } else {
1215 prom_printf("failed: %x\n", *acknowledge);
1218 #ifdef CONFIG_SMP
1219 else
1220 prom_printf("%x : boot cpu %x\n", cpuid, reg);
1221 #endif
1222 next:
1223 #ifdef CONFIG_SMP
1224 /* Init paca for secondary threads. They start later. */
1225 for (i=1; i < cpu_threads; i++) {
1226 cpuid++;
1227 if (cpuid >= NR_CPUS)
1228 continue;
1230 #endif /* CONFIG_SMP */
1231 cpuid++;
1233 #ifdef CONFIG_HMT
1234 /* Only enable HMT on processors that provide support. */
1235 if (__is_processor(PV_PULSAR) ||
1236 __is_processor(PV_ICESTAR) ||
1237 __is_processor(PV_SSTAR)) {
1238 prom_printf(" starting secondary threads\n");
1240 for (i = 0; i < NR_CPUS; i += 2) {
1241 if (!cpu_online(i))
1242 continue;
1244 if (i == 0) {
1245 unsigned long pir = mfspr(SPRN_PIR);
1246 if (__is_processor(PV_PULSAR)) {
1247 RELOC(hmt_thread_data)[i].pir =
1248 pir & 0x1f;
1249 } else {
1250 RELOC(hmt_thread_data)[i].pir =
1251 pir & 0x3ff;
1255 } else {
1256 prom_printf("Processor is not HMT capable\n");
1258 #endif
1260 if (cpuid > NR_CPUS)
1261 prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
1262 ") exceeded: ignoring extras\n");
1264 prom_debug("prom_hold_cpus: end...\n");
1268 static void __init prom_init_client_services(unsigned long pp)
1270 unsigned long offset = reloc_offset();
1271 struct prom_t *_prom = PTRRELOC(&prom);
1273 /* Get a handle to the prom entry point before anything else */
1274 _prom->entry = pp;
1276 /* Init default value for phys size */
1277 _prom->root_size_cells = 1;
1278 _prom->root_addr_cells = 2;
1280 /* get a handle for the stdout device */
1281 _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
1282 if ((long)_prom->chosen <= 0)
1283 prom_panic("cannot find chosen"); /* msg won't be printed :( */
1285 /* get device tree root */
1286 _prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
1287 if ((long)_prom->root <= 0)
1288 prom_panic("cannot find device tree root"); /* msg won't be printed :( */
1291 static void __init prom_init_stdout(void)
1293 unsigned long offset = reloc_offset();
1294 struct prom_t *_prom = PTRRELOC(&prom);
1295 char *path = RELOC(of_stdout_device);
1296 char type[16];
1297 u32 val;
1299 if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
1300 prom_panic("cannot find stdout");
1302 _prom->stdout = val;
1304 /* Get the full OF pathname of the stdout device */
1305 memset(path, 0, 256);
1306 call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
1307 val = call_prom("instance-to-package", 1, 1, _prom->stdout);
1308 prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
1309 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
1310 prom_setprop(_prom->chosen, "linux,stdout-path",
1311 RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
1313 /* If it's a display, note it */
1314 memset(type, 0, sizeof(type));
1315 prom_getprop(val, "device_type", type, sizeof(type));
1316 if (strcmp(type, RELOC("display")) == 0) {
1317 _prom->disp_node = val;
1318 prom_setprop(val, "linux,boot-display", NULL, 0);
1322 static void __init prom_close_stdin(void)
1324 unsigned long offset = reloc_offset();
1325 struct prom_t *_prom = PTRRELOC(&prom);
1326 ihandle val;
1328 if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
1329 call_prom("close", 1, 0, val);
1332 static int __init prom_find_machine_type(void)
1334 unsigned long offset = reloc_offset();
1335 struct prom_t *_prom = PTRRELOC(&prom);
1336 char compat[256];
1337 int len, i = 0;
1338 phandle rtas;
1340 len = prom_getprop(_prom->root, "compatible",
1341 compat, sizeof(compat)-1);
1342 if (len > 0) {
1343 compat[len] = 0;
1344 while (i < len) {
1345 char *p = &compat[i];
1346 int sl = strlen(p);
1347 if (sl == 0)
1348 break;
1349 if (strstr(p, RELOC("Power Macintosh")) ||
1350 strstr(p, RELOC("MacRISC4")))
1351 return PLATFORM_POWERMAC;
1352 if (strstr(p, RELOC("Momentum,Maple")))
1353 return PLATFORM_MAPLE;
1354 i += sl + 1;
1357 /* Default to pSeries. We need to know if we are running LPAR */
1358 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
1359 if (rtas != (phandle) -1) {
1360 unsigned long x;
1361 x = prom_getproplen(rtas, "ibm,hypertas-functions");
1362 if (x != PROM_ERROR) {
1363 prom_printf("Hypertas detected, assuming LPAR !\n");
1364 return PLATFORM_PSERIES_LPAR;
1367 return PLATFORM_PSERIES;
1370 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
1372 unsigned long offset = reloc_offset();
1374 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
1378 * If we have a display that we don't know how to drive,
1379 * we will want to try to execute OF's open method for it
1380 * later. However, OF will probably fall over if we do that
1381 * we've taken over the MMU.
1382 * So we check whether we will need to open the display,
1383 * and if so, open it now.
1385 static void __init prom_check_displays(void)
1387 unsigned long offset = reloc_offset();
1388 struct prom_t *_prom = PTRRELOC(&prom);
1389 char type[16], *path;
1390 phandle node;
1391 ihandle ih;
1392 int i;
1394 static unsigned char default_colors[] = {
1395 0x00, 0x00, 0x00,
1396 0x00, 0x00, 0xaa,
1397 0x00, 0xaa, 0x00,
1398 0x00, 0xaa, 0xaa,
1399 0xaa, 0x00, 0x00,
1400 0xaa, 0x00, 0xaa,
1401 0xaa, 0xaa, 0x00,
1402 0xaa, 0xaa, 0xaa,
1403 0x55, 0x55, 0x55,
1404 0x55, 0x55, 0xff,
1405 0x55, 0xff, 0x55,
1406 0x55, 0xff, 0xff,
1407 0xff, 0x55, 0x55,
1408 0xff, 0x55, 0xff,
1409 0xff, 0xff, 0x55,
1410 0xff, 0xff, 0xff
1412 const unsigned char *clut;
1414 prom_printf("Looking for displays\n");
1415 for (node = 0; prom_next_node(&node); ) {
1416 memset(type, 0, sizeof(type));
1417 prom_getprop(node, "device_type", type, sizeof(type));
1418 if (strcmp(type, RELOC("display")) != 0)
1419 continue;
1421 /* It seems OF doesn't null-terminate the path :-( */
1422 path = RELOC(prom_scratch);
1423 memset(path, 0, PROM_SCRATCH_SIZE);
1426 * leave some room at the end of the path for appending extra
1427 * arguments
1429 if (call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-10) < 0)
1430 continue;
1431 prom_printf("found display : %s, opening ... ", path);
1433 ih = call_prom("open", 1, 1, path);
1434 if (ih == (ihandle)0 || ih == (ihandle)-1) {
1435 prom_printf("failed\n");
1436 continue;
1439 /* Success */
1440 prom_printf("done\n");
1441 prom_setprop(node, "linux,opened", NULL, 0);
1444 * stdout wasn't a display node, pick the first we can find
1445 * for btext
1447 if (_prom->disp_node == 0)
1448 _prom->disp_node = node;
1450 /* Setup a useable color table when the appropriate
1451 * method is available. Should update this to set-colors */
1452 clut = RELOC(default_colors);
1453 for (i = 0; i < 32; i++, clut += 3)
1454 if (prom_set_color(ih, i, clut[0], clut[1],
1455 clut[2]) != 0)
1456 break;
1458 #ifdef CONFIG_LOGO_LINUX_CLUT224
1459 clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
1460 for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
1461 if (prom_set_color(ih, i + 32, clut[0], clut[1],
1462 clut[2]) != 0)
1463 break;
1464 #endif /* CONFIG_LOGO_LINUX_CLUT224 */
1469 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */
1470 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
1471 unsigned long needed, unsigned long align)
1473 unsigned long offset = reloc_offset();
1474 void *ret;
1476 *mem_start = _ALIGN(*mem_start, align);
1477 while ((*mem_start + needed) > *mem_end) {
1478 unsigned long room, chunk;
1480 prom_debug("Chunk exhausted, claiming more at %x...\n",
1481 RELOC(alloc_bottom));
1482 room = RELOC(alloc_top) - RELOC(alloc_bottom);
1483 if (room > DEVTREE_CHUNK_SIZE)
1484 room = DEVTREE_CHUNK_SIZE;
1485 if (room < PAGE_SIZE)
1486 prom_panic("No memory for flatten_device_tree (no room)");
1487 chunk = alloc_up(room, 0);
1488 if (chunk == 0)
1489 prom_panic("No memory for flatten_device_tree (claim failed)");
1490 *mem_end = RELOC(alloc_top);
1493 ret = (void *)*mem_start;
1494 *mem_start += needed;
1496 return ret;
1499 #define dt_push_token(token, mem_start, mem_end) \
1500 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
1502 static unsigned long __init dt_find_string(char *str)
1504 unsigned long offset = reloc_offset();
1505 char *s, *os;
1507 s = os = (char *)RELOC(dt_string_start);
1508 s += 4;
1509 while (s < (char *)RELOC(dt_string_end)) {
1510 if (strcmp(s, str) == 0)
1511 return s - os;
1512 s += strlen(s) + 1;
1514 return 0;
1517 static void __init scan_dt_build_strings(phandle node, unsigned long *mem_start,
1518 unsigned long *mem_end)
1520 unsigned long offset = reloc_offset();
1521 char *prev_name, *namep, *sstart;
1522 unsigned long soff;
1523 phandle child;
1525 sstart = (char *)RELOC(dt_string_start);
1527 /* get and store all property names */
1528 prev_name = RELOC("");
1529 for (;;) {
1531 /* 32 is max len of name including nul. */
1532 namep = make_room(mem_start, mem_end, 32, 1);
1533 if (call_prom("nextprop", 3, 1, node, prev_name, namep) <= 0) {
1534 /* No more nodes: unwind alloc */
1535 *mem_start = (unsigned long)namep;
1536 break;
1538 soff = dt_find_string(namep);
1539 if (soff != 0) {
1540 *mem_start = (unsigned long)namep;
1541 namep = sstart + soff;
1542 } else {
1543 /* Trim off some if we can */
1544 *mem_start = (unsigned long)namep + strlen(namep) + 1;
1545 RELOC(dt_string_end) = *mem_start;
1547 prev_name = namep;
1550 /* do all our children */
1551 child = call_prom("child", 1, 1, node);
1552 while (child != (phandle)0) {
1553 scan_dt_build_strings(child, mem_start, mem_end);
1554 child = call_prom("peer", 1, 1, child);
1559 * The Open Firmware 1275 specification states properties must be 31 bytes or
1560 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
1562 #define MAX_PROPERTY_NAME 64
1564 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
1565 unsigned long *mem_end)
1567 int l, align;
1568 phandle child;
1569 char *namep, *prev_name, *sstart;
1570 unsigned long soff;
1571 unsigned char *valp;
1572 unsigned long offset = reloc_offset();
1573 char pname[MAX_PROPERTY_NAME];
1574 char *path;
1576 path = RELOC(prom_scratch);
1578 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
1580 /* get the node's full name */
1581 namep = (char *)*mem_start;
1582 l = call_prom("package-to-path", 3, 1, node,
1583 namep, *mem_end - *mem_start);
1584 if (l >= 0) {
1585 /* Didn't fit? Get more room. */
1586 if (l+1 > *mem_end - *mem_start) {
1587 namep = make_room(mem_start, mem_end, l+1, 1);
1588 call_prom("package-to-path", 3, 1, node, namep, l);
1590 namep[l] = '\0';
1591 *mem_start = _ALIGN(((unsigned long) namep) + strlen(namep) + 1, 4);
1594 /* get it again for debugging */
1595 memset(path, 0, PROM_SCRATCH_SIZE);
1596 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
1598 /* get and store all properties */
1599 prev_name = RELOC("");
1600 sstart = (char *)RELOC(dt_string_start);
1601 for (;;) {
1602 if (call_prom("nextprop", 3, 1, node, prev_name, pname) <= 0)
1603 break;
1605 /* find string offset */
1606 soff = dt_find_string(pname);
1607 if (soff == 0) {
1608 prom_printf("WARNING: Can't find string index for <%s>, node %s\n",
1609 pname, path);
1610 break;
1612 prev_name = sstart + soff;
1614 /* get length */
1615 l = call_prom("getproplen", 2, 1, node, pname);
1617 /* sanity checks */
1618 if (l < 0)
1619 continue;
1620 if (l > MAX_PROPERTY_LENGTH) {
1621 prom_printf("WARNING: ignoring large property ");
1622 /* It seems OF doesn't null-terminate the path :-( */
1623 prom_printf("[%s] ", path);
1624 prom_printf("%s length 0x%x\n", pname, l);
1625 continue;
1628 /* push property head */
1629 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1630 dt_push_token(l, mem_start, mem_end);
1631 dt_push_token(soff, mem_start, mem_end);
1633 /* push property content */
1634 align = (l >= 8) ? 8 : 4;
1635 valp = make_room(mem_start, mem_end, l, align);
1636 call_prom("getprop", 4, 1, node, pname, valp, l);
1637 *mem_start = _ALIGN(*mem_start, 4);
1640 /* Add a "linux,phandle" property. */
1641 soff = dt_find_string(RELOC("linux,phandle"));
1642 if (soff == 0)
1643 prom_printf("WARNING: Can't find string index for <linux-phandle>"
1644 " node %s\n", path);
1645 else {
1646 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1647 dt_push_token(4, mem_start, mem_end);
1648 dt_push_token(soff, mem_start, mem_end);
1649 valp = make_room(mem_start, mem_end, 4, 4);
1650 *(u32 *)valp = node;
1653 /* do all our children */
1654 child = call_prom("child", 1, 1, node);
1655 while (child != (phandle)0) {
1656 scan_dt_build_struct(child, mem_start, mem_end);
1657 child = call_prom("peer", 1, 1, child);
1660 dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
1663 static void __init flatten_device_tree(void)
1665 phandle root;
1666 unsigned long offset = reloc_offset();
1667 unsigned long mem_start, mem_end, room;
1668 struct boot_param_header *hdr;
1669 char *namep;
1670 u64 *rsvmap;
1673 * Check how much room we have between alloc top & bottom (+/- a
1674 * few pages), crop to 4Mb, as this is our "chuck" size
1676 room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
1677 if (room > DEVTREE_CHUNK_SIZE)
1678 room = DEVTREE_CHUNK_SIZE;
1679 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
1681 /* Now try to claim that */
1682 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
1683 if (mem_start == 0)
1684 prom_panic("Can't allocate initial device-tree chunk\n");
1685 mem_end = RELOC(alloc_top);
1687 /* Get root of tree */
1688 root = call_prom("peer", 1, 1, (phandle)0);
1689 if (root == (phandle)0)
1690 prom_panic ("couldn't get device tree root\n");
1692 /* Build header and make room for mem rsv map */
1693 mem_start = _ALIGN(mem_start, 4);
1694 hdr = make_room(&mem_start, &mem_end, sizeof(struct boot_param_header), 4);
1695 RELOC(dt_header_start) = (unsigned long)hdr;
1696 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
1698 /* Start of strings */
1699 mem_start = PAGE_ALIGN(mem_start);
1700 RELOC(dt_string_start) = mem_start;
1701 mem_start += 4; /* hole */
1703 /* Add "linux,phandle" in there, we'll need it */
1704 namep = make_room(&mem_start, &mem_end, 16, 1);
1705 strcpy(namep, RELOC("linux,phandle"));
1706 mem_start = (unsigned long)namep + strlen(namep) + 1;
1707 RELOC(dt_string_end) = mem_start;
1709 /* Build string array */
1710 prom_printf("Building dt strings...\n");
1711 scan_dt_build_strings(root, &mem_start, &mem_end);
1713 /* Build structure */
1714 mem_start = PAGE_ALIGN(mem_start);
1715 RELOC(dt_struct_start) = mem_start;
1716 prom_printf("Building dt structure...\n");
1717 scan_dt_build_struct(root, &mem_start, &mem_end);
1718 dt_push_token(OF_DT_END, &mem_start, &mem_end);
1719 RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
1721 /* Finish header */
1722 hdr->magic = OF_DT_HEADER;
1723 hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
1724 hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
1725 hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
1726 hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
1727 hdr->version = OF_DT_VERSION;
1728 hdr->last_comp_version = 1;
1730 /* Reserve the whole thing and copy the reserve map in, we
1731 * also bump mem_reserve_cnt to cause further reservations to
1732 * fail since it's too late.
1734 reserve_mem(RELOC(dt_header_start), hdr->totalsize);
1735 memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
1737 #ifdef DEBUG_PROM
1739 int i;
1740 prom_printf("reserved memory map:\n");
1741 for (i = 0; i < RELOC(mem_reserve_cnt); i++)
1742 prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base,
1743 RELOC(mem_reserve_map)[i].size);
1745 #endif
1746 RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
1748 prom_printf("Device tree strings 0x%x -> 0x%x\n",
1749 RELOC(dt_string_start), RELOC(dt_string_end));
1750 prom_printf("Device tree struct 0x%x -> 0x%x\n",
1751 RELOC(dt_struct_start), RELOC(dt_struct_end));
1755 static void __init prom_find_boot_cpu(void)
1757 unsigned long offset = reloc_offset();
1758 struct prom_t *_prom = PTRRELOC(&prom);
1759 u32 getprop_rval;
1760 ihandle prom_cpu;
1761 phandle cpu_pkg;
1763 if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
1764 prom_panic("cannot find boot cpu");
1766 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
1768 prom_setprop(cpu_pkg, "linux,boot-cpu", NULL, 0);
1769 prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
1770 _prom->cpu = getprop_rval;
1772 prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
1775 static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
1777 #ifdef CONFIG_BLK_DEV_INITRD
1778 unsigned long offset = reloc_offset();
1779 struct prom_t *_prom = PTRRELOC(&prom);
1781 if ( r3 && r4 && r4 != 0xdeadbeef) {
1782 u64 val;
1784 RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
1785 RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
1787 val = (u64)RELOC(prom_initrd_start);
1788 prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val));
1789 val = (u64)RELOC(prom_initrd_end);
1790 prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val));
1792 reserve_mem(RELOC(prom_initrd_start),
1793 RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
1795 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
1796 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
1798 #endif /* CONFIG_BLK_DEV_INITRD */
1802 * We enter here early on, when the Open Firmware prom is still
1803 * handling exceptions and the MMU hash table for us.
1806 unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
1807 unsigned long r6, unsigned long r7)
1809 unsigned long offset = reloc_offset();
1810 struct prom_t *_prom = PTRRELOC(&prom);
1811 unsigned long phys = KERNELBASE - offset;
1812 u32 getprop_rval;
1815 * First zero the BSS
1817 memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start);
1820 * Init interface to Open Firmware, get some node references,
1821 * like /chosen
1823 prom_init_client_services(pp);
1826 * Init prom stdout device
1828 prom_init_stdout();
1829 prom_debug("klimit=0x%x\n", RELOC(klimit));
1830 prom_debug("offset=0x%x\n", offset);
1833 * Check for an initrd
1835 prom_check_initrd(r3, r4);
1838 * Get default machine type. At this point, we do not differenciate
1839 * between pSeries SMP and pSeries LPAR
1841 RELOC(of_platform) = prom_find_machine_type();
1842 getprop_rval = RELOC(of_platform);
1843 prom_setprop(_prom->chosen, "linux,platform",
1844 &getprop_rval, sizeof(getprop_rval));
1847 * On pSeries, copy the CPU hold code
1849 if (RELOC(of_platform) & PLATFORM_PSERIES)
1850 copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
1853 * Get memory cells format
1855 getprop_rval = 1;
1856 prom_getprop(_prom->root, "#size-cells",
1857 &getprop_rval, sizeof(getprop_rval));
1858 _prom->root_size_cells = getprop_rval;
1859 getprop_rval = 2;
1860 prom_getprop(_prom->root, "#address-cells",
1861 &getprop_rval, sizeof(getprop_rval));
1862 _prom->root_addr_cells = getprop_rval;
1865 * Do early parsing of command line
1867 early_cmdline_parse();
1870 * Initialize memory management within prom_init
1872 prom_init_mem();
1875 * Determine which cpu is actually running right _now_
1877 prom_find_boot_cpu();
1880 * Initialize display devices
1882 prom_check_displays();
1885 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
1886 * that uses the allocator, we need to make sure we get the top of memory
1887 * available for us here...
1889 if (RELOC(of_platform) == PLATFORM_PSERIES)
1890 prom_initialize_tce_table();
1893 * On non-powermacs, try to instantiate RTAS and puts all CPUs
1894 * in spin-loops. PowerMacs don't have a working RTAS and use
1895 * a different way to spin CPUs
1897 if (RELOC(of_platform) != PLATFORM_POWERMAC) {
1898 prom_instantiate_rtas();
1899 prom_hold_cpus();
1903 * Fill in some infos for use by the kernel later on
1905 if (RELOC(ppc64_iommu_off))
1906 prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
1908 if (RELOC(iommu_force_on))
1909 prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
1911 if (RELOC(prom_memory_limit))
1912 prom_setprop(_prom->chosen, "linux,memory-limit",
1913 PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit)));
1915 if (RELOC(prom_tce_alloc_start)) {
1916 prom_setprop(_prom->chosen, "linux,tce-alloc-start",
1917 PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start)));
1918 prom_setprop(_prom->chosen, "linux,tce-alloc-end",
1919 PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end)));
1923 * Now finally create the flattened device-tree
1925 prom_printf("copying OF device tree ...\n");
1926 flatten_device_tree();
1928 /* in case stdin is USB and still active on IBM machines... */
1929 prom_close_stdin();
1932 * Call OF "quiesce" method to shut down pending DMA's from
1933 * devices etc...
1935 prom_printf("Calling quiesce ...\n");
1936 call_prom("quiesce", 0, 0);
1939 * And finally, call the kernel passing it the flattened device
1940 * tree and NULL as r5, thus triggering the new entry point which
1941 * is common to us and kexec
1943 prom_printf("returning from prom_init\n");
1944 prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start));
1945 prom_debug("->phys=0x%x\n", phys);
1947 __start(RELOC(dt_header_start), phys, 0);
1949 return 0;