Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / arch / sparc / mm / fault.c
blob37f4107bae667b73c7bc14b05f85df48646347f2
1 /* $Id: fault.c,v 1.122 2001/11/17 07:19:26 davem Exp $
2 * fault.c: Page fault handlers for the Sparc.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
9 #include <asm/head.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/ptrace.h>
15 #include <linux/mman.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/signal.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/smp_lock.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
25 #include <asm/system.h>
26 #include <asm/segment.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/memreg.h>
30 #include <asm/openprom.h>
31 #include <asm/oplib.h>
32 #include <asm/smp.h>
33 #include <asm/traps.h>
34 #include <asm/kdebug.h>
35 #include <asm/uaccess.h>
37 #define ELEMENTS(arr) (sizeof (arr)/sizeof (arr[0]))
39 extern int prom_node_root;
41 /* At boot time we determine these two values necessary for setting
42 * up the segment maps and page table entries (pte's).
45 int num_segmaps, num_contexts;
46 int invalid_segment;
48 /* various Virtual Address Cache parameters we find at boot time... */
50 int vac_size, vac_linesize, vac_do_hw_vac_flushes;
51 int vac_entries_per_context, vac_entries_per_segment;
52 int vac_entries_per_page;
54 /* Nice, simple, prom library does all the sweating for us. ;) */
55 int prom_probe_memory (void)
57 register struct linux_mlist_v0 *mlist;
58 register unsigned long bytes, base_paddr, tally;
59 register int i;
61 i = 0;
62 mlist= *prom_meminfo()->v0_available;
63 bytes = tally = mlist->num_bytes;
64 base_paddr = (unsigned long) mlist->start_adr;
66 sp_banks[0].base_addr = base_paddr;
67 sp_banks[0].num_bytes = bytes;
69 while (mlist->theres_more != (void *) 0){
70 i++;
71 mlist = mlist->theres_more;
72 bytes = mlist->num_bytes;
73 tally += bytes;
74 if (i > SPARC_PHYS_BANKS-1) {
75 printk ("The machine has more banks than "
76 "this kernel can support\n"
77 "Increase the SPARC_PHYS_BANKS "
78 "setting (currently %d)\n",
79 SPARC_PHYS_BANKS);
80 i = SPARC_PHYS_BANKS-1;
81 break;
84 sp_banks[i].base_addr = (unsigned long) mlist->start_adr;
85 sp_banks[i].num_bytes = mlist->num_bytes;
88 i++;
89 sp_banks[i].base_addr = 0xdeadbeef;
90 sp_banks[i].num_bytes = 0;
92 /* Now mask all bank sizes on a page boundary, it is all we can
93 * use anyways.
95 for(i=0; sp_banks[i].num_bytes != 0; i++)
96 sp_banks[i].num_bytes &= PAGE_MASK;
98 return tally;
101 /* Traverse the memory lists in the prom to see how much physical we
102 * have.
104 unsigned long
105 probe_memory(void)
107 int total;
109 total = prom_probe_memory();
111 /* Oh man, much nicer, keep the dirt in promlib. */
112 return total;
115 extern void sun4c_complete_all_stores(void);
117 /* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
118 asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
119 unsigned long svaddr, unsigned long aerr,
120 unsigned long avaddr)
122 sun4c_complete_all_stores();
123 printk("FAULT: NMI received\n");
124 printk("SREGS: Synchronous Error %08lx\n", serr);
125 printk(" Synchronous Vaddr %08lx\n", svaddr);
126 printk(" Asynchronous Error %08lx\n", aerr);
127 printk(" Asynchronous Vaddr %08lx\n", avaddr);
128 if (sun4c_memerr_reg)
129 printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
130 printk("REGISTER DUMP:\n");
131 show_regs(regs);
132 prom_halt();
135 static void unhandled_fault(unsigned long, struct task_struct *,
136 struct pt_regs *) __attribute__ ((noreturn));
138 static void unhandled_fault(unsigned long address, struct task_struct *tsk,
139 struct pt_regs *regs)
141 if((unsigned long) address < PAGE_SIZE) {
142 printk(KERN_ALERT
143 "Unable to handle kernel NULL pointer dereference\n");
144 } else {
145 printk(KERN_ALERT "Unable to handle kernel paging request "
146 "at virtual address %08lx\n", address);
148 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
149 (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
150 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
151 (tsk->mm ? (unsigned long) tsk->mm->pgd :
152 (unsigned long) tsk->active_mm->pgd));
153 die_if_kernel("Oops", regs);
156 asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
157 unsigned long address)
159 struct pt_regs regs;
160 unsigned long g2;
161 unsigned int insn;
162 int i;
164 i = search_extables_range(ret_pc, &g2);
165 switch (i) {
166 case 3:
167 /* load & store will be handled by fixup */
168 return 3;
170 case 1:
171 /* store will be handled by fixup, load will bump out */
172 /* for _to_ macros */
173 insn = *((unsigned int *) pc);
174 if ((insn >> 21) & 1)
175 return 1;
176 break;
178 case 2:
179 /* load will be handled by fixup, store will bump out */
180 /* for _from_ macros */
181 insn = *((unsigned int *) pc);
182 if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
183 return 2;
184 break;
186 default:
187 break;
190 memset(&regs, 0, sizeof (regs));
191 regs.pc = pc;
192 regs.npc = pc + 4;
193 __asm__ __volatile__(
194 "rd %%psr, %0\n\t"
195 "nop\n\t"
196 "nop\n\t"
197 "nop\n" : "=r" (regs.psr));
198 unhandled_fault(address, current, &regs);
200 /* Not reached */
201 return 0;
204 extern unsigned long safe_compute_effective_address(struct pt_regs *,
205 unsigned int);
207 static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
209 unsigned int insn;
211 if (text_fault)
212 return regs->pc;
214 if (regs->psr & PSR_PS) {
215 insn = *(unsigned int *) regs->pc;
216 } else {
217 __get_user(insn, (unsigned int *) regs->pc);
220 return safe_compute_effective_address(regs, insn);
223 asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
224 unsigned long address)
226 struct vm_area_struct *vma;
227 struct task_struct *tsk = current;
228 struct mm_struct *mm = tsk->mm;
229 unsigned int fixup;
230 unsigned long g2;
231 siginfo_t info;
232 int from_user = !(regs->psr & PSR_PS);
234 if(text_fault)
235 address = regs->pc;
238 * We fault-in kernel-space virtual memory on-demand. The
239 * 'reference' page table is init_mm.pgd.
241 * NOTE! We MUST NOT take any locks for this case. We may
242 * be in an interrupt or a critical region, and should
243 * only copy the information from the master page table,
244 * nothing more.
246 if (!ARCH_SUN4C_SUN4 && address >= TASK_SIZE)
247 goto vmalloc_fault;
249 info.si_code = SEGV_MAPERR;
252 * If we're in an interrupt or have no user
253 * context, we must not take the fault..
255 if (in_atomic() || !mm)
256 goto no_context;
258 down_read(&mm->mmap_sem);
261 * The kernel referencing a bad kernel pointer can lock up
262 * a sun4c machine completely, so we must attempt recovery.
264 if(!from_user && address >= PAGE_OFFSET)
265 goto bad_area;
267 vma = find_vma(mm, address);
268 if(!vma)
269 goto bad_area;
270 if(vma->vm_start <= address)
271 goto good_area;
272 if(!(vma->vm_flags & VM_GROWSDOWN))
273 goto bad_area;
274 if(expand_stack(vma, address))
275 goto bad_area;
277 * Ok, we have a good vm_area for this memory access, so
278 * we can handle it..
280 good_area:
281 info.si_code = SEGV_ACCERR;
282 if(write) {
283 if(!(vma->vm_flags & VM_WRITE))
284 goto bad_area;
285 } else {
286 /* Allow reads even for write-only mappings */
287 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
288 goto bad_area;
292 * If for any reason at all we couldn't handle the fault,
293 * make sure we exit gracefully rather than endlessly redo
294 * the fault.
296 switch (handle_mm_fault(mm, vma, address, write)) {
297 case VM_FAULT_SIGBUS:
298 goto do_sigbus;
299 case VM_FAULT_OOM:
300 goto out_of_memory;
301 case VM_FAULT_MAJOR:
302 current->maj_flt++;
303 break;
304 case VM_FAULT_MINOR:
305 default:
306 current->min_flt++;
307 break;
309 up_read(&mm->mmap_sem);
310 return;
313 * Something tried to access memory that isn't in our memory map..
314 * Fix it, but check if it's kernel or user first..
316 bad_area:
317 up_read(&mm->mmap_sem);
319 bad_area_nosemaphore:
320 /* User mode accesses just cause a SIGSEGV */
321 if(from_user) {
322 #if 0
323 printk("Fault whee %s [%d]: segfaults at %08lx pc=%08lx\n",
324 tsk->comm, tsk->pid, address, regs->pc);
325 #endif
326 info.si_signo = SIGSEGV;
327 info.si_errno = 0;
328 /* info.si_code set above to make clear whether
329 this was a SEGV_MAPERR or SEGV_ACCERR fault. */
330 info.si_addr = (void __user *)compute_si_addr(regs, text_fault);
331 info.si_trapno = 0;
332 force_sig_info (SIGSEGV, &info, tsk);
333 return;
336 /* Is this in ex_table? */
337 no_context:
338 g2 = regs->u_regs[UREG_G2];
339 if (!from_user && (fixup = search_extables_range(regs->pc, &g2))) {
340 if (fixup > 10) { /* Values below are reserved for other things */
341 extern const unsigned __memset_start[];
342 extern const unsigned __memset_end[];
343 extern const unsigned __csum_partial_copy_start[];
344 extern const unsigned __csum_partial_copy_end[];
346 #ifdef DEBUG_EXCEPTIONS
347 printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
348 printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
349 regs->pc, fixup, g2);
350 #endif
351 if ((regs->pc >= (unsigned long)__memset_start &&
352 regs->pc < (unsigned long)__memset_end) ||
353 (regs->pc >= (unsigned long)__csum_partial_copy_start &&
354 regs->pc < (unsigned long)__csum_partial_copy_end)) {
355 regs->u_regs[UREG_I4] = address;
356 regs->u_regs[UREG_I5] = regs->pc;
358 regs->u_regs[UREG_G2] = g2;
359 regs->pc = fixup;
360 regs->npc = regs->pc + 4;
361 return;
365 unhandled_fault (address, tsk, regs);
366 do_exit(SIGKILL);
369 * We ran out of memory, or some other thing happened to us that made
370 * us unable to handle the page fault gracefully.
372 out_of_memory:
373 up_read(&mm->mmap_sem);
374 printk("VM: killing process %s\n", tsk->comm);
375 if (from_user)
376 do_exit(SIGKILL);
377 goto no_context;
379 do_sigbus:
380 up_read(&mm->mmap_sem);
381 info.si_signo = SIGBUS;
382 info.si_errno = 0;
383 info.si_code = BUS_ADRERR;
384 info.si_addr = (void __user *) compute_si_addr(regs, text_fault);
385 info.si_trapno = 0;
386 force_sig_info (SIGBUS, &info, tsk);
387 if (!from_user)
388 goto no_context;
390 vmalloc_fault:
393 * Synchronize this task's top level page-table
394 * with the 'reference' page table.
396 int offset = pgd_index(address);
397 pgd_t *pgd, *pgd_k;
398 pmd_t *pmd, *pmd_k;
400 pgd = tsk->active_mm->pgd + offset;
401 pgd_k = init_mm.pgd + offset;
403 if (!pgd_present(*pgd)) {
404 if (!pgd_present(*pgd_k))
405 goto bad_area_nosemaphore;
406 pgd_val(*pgd) = pgd_val(*pgd_k);
407 return;
410 pmd = pmd_offset(pgd, address);
411 pmd_k = pmd_offset(pgd_k, address);
413 if (pmd_present(*pmd) || !pmd_present(*pmd_k))
414 goto bad_area_nosemaphore;
415 *pmd = *pmd_k;
416 return;
420 asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
421 unsigned long address)
423 extern void sun4c_update_mmu_cache(struct vm_area_struct *,
424 unsigned long,pte_t);
425 extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
426 struct task_struct *tsk = current;
427 struct mm_struct *mm = tsk->mm;
428 pgd_t *pgdp;
429 pte_t *ptep;
431 if (text_fault) {
432 address = regs->pc;
433 } else if (!write &&
434 !(regs->psr & PSR_PS)) {
435 unsigned int insn, __user *ip;
437 ip = (unsigned int __user *)regs->pc;
438 if (!get_user(insn, ip)) {
439 if ((insn & 0xc1680000) == 0xc0680000)
440 write = 1;
444 if (!mm) {
445 /* We are oopsing. */
446 do_sparc_fault(regs, text_fault, write, address);
447 BUG(); /* P3 Oops already, you bitch */
450 pgdp = pgd_offset(mm, address);
451 ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
453 if (pgd_val(*pgdp)) {
454 if (write) {
455 if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
456 == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
457 unsigned long flags;
459 *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
460 _SUN4C_PAGE_MODIFIED |
461 _SUN4C_PAGE_VALID |
462 _SUN4C_PAGE_DIRTY);
464 local_irq_save(flags);
465 if (sun4c_get_segmap(address) != invalid_segment) {
466 sun4c_put_pte(address, pte_val(*ptep));
467 local_irq_restore(flags);
468 return;
470 local_irq_restore(flags);
472 } else {
473 if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
474 == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
475 unsigned long flags;
477 *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
478 _SUN4C_PAGE_VALID);
480 local_irq_save(flags);
481 if (sun4c_get_segmap(address) != invalid_segment) {
482 sun4c_put_pte(address, pte_val(*ptep));
483 local_irq_restore(flags);
484 return;
486 local_irq_restore(flags);
491 /* This conditional is 'interesting'. */
492 if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
493 && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
494 /* Note: It is safe to not grab the MMAP semaphore here because
495 * we know that update_mmu_cache() will not sleep for
496 * any reason (at least not in the current implementation)
497 * and therefore there is no danger of another thread getting
498 * on the CPU and doing a shrink_mmap() on this vma.
500 sun4c_update_mmu_cache (find_vma(current->mm, address), address,
501 *ptep);
502 else
503 do_sparc_fault(regs, text_fault, write, address);
506 /* This always deals with user addresses. */
507 inline void force_user_fault(unsigned long address, int write)
509 struct vm_area_struct *vma;
510 struct task_struct *tsk = current;
511 struct mm_struct *mm = tsk->mm;
512 siginfo_t info;
514 info.si_code = SEGV_MAPERR;
516 #if 0
517 printk("wf<pid=%d,wr=%d,addr=%08lx>\n",
518 tsk->pid, write, address);
519 #endif
520 down_read(&mm->mmap_sem);
521 vma = find_vma(mm, address);
522 if(!vma)
523 goto bad_area;
524 if(vma->vm_start <= address)
525 goto good_area;
526 if(!(vma->vm_flags & VM_GROWSDOWN))
527 goto bad_area;
528 if(expand_stack(vma, address))
529 goto bad_area;
530 good_area:
531 info.si_code = SEGV_ACCERR;
532 if(write) {
533 if(!(vma->vm_flags & VM_WRITE))
534 goto bad_area;
535 } else {
536 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
537 goto bad_area;
539 switch (handle_mm_fault(mm, vma, address, write)) {
540 case VM_FAULT_SIGBUS:
541 case VM_FAULT_OOM:
542 goto do_sigbus;
544 up_read(&mm->mmap_sem);
545 return;
546 bad_area:
547 up_read(&mm->mmap_sem);
548 #if 0
549 printk("Window whee %s [%d]: segfaults at %08lx\n",
550 tsk->comm, tsk->pid, address);
551 #endif
552 info.si_signo = SIGSEGV;
553 info.si_errno = 0;
554 /* info.si_code set above to make clear whether
555 this was a SEGV_MAPERR or SEGV_ACCERR fault. */
556 info.si_addr = (void __user *) address;
557 info.si_trapno = 0;
558 force_sig_info (SIGSEGV, &info, tsk);
559 return;
561 do_sigbus:
562 up_read(&mm->mmap_sem);
563 info.si_signo = SIGBUS;
564 info.si_errno = 0;
565 info.si_code = BUS_ADRERR;
566 info.si_addr = (void __user *) address;
567 info.si_trapno = 0;
568 force_sig_info (SIGBUS, &info, tsk);
571 void window_overflow_fault(void)
573 unsigned long sp;
575 sp = current_thread_info()->rwbuf_stkptrs[0];
576 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
577 force_user_fault(sp + 0x38, 1);
578 force_user_fault(sp, 1);
581 void window_underflow_fault(unsigned long sp)
583 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
584 force_user_fault(sp + 0x38, 0);
585 force_user_fault(sp, 0);
588 void window_ret_fault(struct pt_regs *regs)
590 unsigned long sp;
592 sp = regs->u_regs[UREG_FP];
593 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
594 force_user_fault(sp + 0x38, 0);
595 force_user_fault(sp, 0);