2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/config.h>
12 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/bootmem.h>
21 #include <linux/seq_file.h>
23 #include <asm/bitext.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
28 #include <asm/kdebug.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
38 #include <asm/a.out.h>
39 #include <asm/mmu_context.h>
40 #include <asm/io-unit.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlbflush.h>
44 /* Now the cpu specific definitions. */
45 #include <asm/viking.h>
48 #include <asm/tsunami.h>
49 #include <asm/swift.h>
50 #include <asm/turbosparc.h>
52 #include <asm/btfixup.h>
54 enum mbus_module srmmu_modtype
;
55 unsigned int hwbug_bitmask
;
59 extern struct resource sparc_iomap
;
61 extern unsigned long last_valid_pfn
;
63 extern unsigned long page_kernel
;
65 pgd_t
*srmmu_swapper_pg_dir
;
68 #define FLUSH_BEGIN(mm)
71 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
75 BTFIXUPDEF_CALL(void, flush_page_for_dma
, unsigned long)
76 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
78 int flush_page_for_dma_global
= 1;
81 BTFIXUPDEF_CALL(void, local_flush_page_for_dma
, unsigned long)
82 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
87 ctxd_t
*srmmu_ctx_table_phys
;
88 ctxd_t
*srmmu_context_table
;
90 int viking_mxcc_present
;
91 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
96 * In general all page table modifications should use the V8 atomic
97 * swap instruction. This insures the mmu and the cpu are in sync
98 * with respect to ref/mod bits in the page tables.
100 static inline unsigned long srmmu_swap(unsigned long *addr
, unsigned long value
)
102 __asm__
__volatile__("swap [%2], %0" : "=&r" (value
) : "0" (value
), "r" (addr
));
106 static inline void srmmu_set_pte(pte_t
*ptep
, pte_t pteval
)
108 srmmu_swap((unsigned long *)ptep
, pte_val(pteval
));
111 /* The very generic SRMMU page table operations. */
112 static inline int srmmu_device_memory(unsigned long x
)
114 return ((x
& 0xF0000000) != 0);
117 int srmmu_cache_pagetables
;
119 /* these will be initialized in srmmu_nocache_calcsize() */
120 unsigned long srmmu_nocache_size
;
121 unsigned long srmmu_nocache_end
;
123 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
124 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
126 /* The context table is a nocache user with the biggest alignment needs. */
127 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
129 void *srmmu_nocache_pool
;
130 void *srmmu_nocache_bitmap
;
131 static struct bit_map srmmu_nocache_map
;
133 static unsigned long srmmu_pte_pfn(pte_t pte
)
135 if (srmmu_device_memory(pte_val(pte
))) {
136 /* Just return something that will cause
137 * pfn_valid() to return false. This makes
138 * copy_one_pte() to just directly copy to
143 return (pte_val(pte
) & SRMMU_PTE_PMASK
) >> (PAGE_SHIFT
-4);
146 static struct page
*srmmu_pmd_page(pmd_t pmd
)
149 if (srmmu_device_memory(pmd_val(pmd
)))
151 return pfn_to_page((pmd_val(pmd
) & SRMMU_PTD_PMASK
) >> (PAGE_SHIFT
-4));
154 static inline unsigned long srmmu_pgd_page(pgd_t pgd
)
155 { return srmmu_device_memory(pgd_val(pgd
))?~0:(unsigned long)__nocache_va((pgd_val(pgd
) & SRMMU_PTD_PMASK
) << 4); }
158 static inline int srmmu_pte_none(pte_t pte
)
159 { return !(pte_val(pte
) & 0xFFFFFFF); }
161 static inline int srmmu_pte_present(pte_t pte
)
162 { return ((pte_val(pte
) & SRMMU_ET_MASK
) == SRMMU_ET_PTE
); }
164 static inline int srmmu_pte_read(pte_t pte
)
165 { return !(pte_val(pte
) & SRMMU_NOREAD
); }
167 static inline void srmmu_pte_clear(pte_t
*ptep
)
168 { srmmu_set_pte(ptep
, __pte(0)); }
170 static inline int srmmu_pmd_none(pmd_t pmd
)
171 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
173 static inline int srmmu_pmd_bad(pmd_t pmd
)
174 { return (pmd_val(pmd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
176 static inline int srmmu_pmd_present(pmd_t pmd
)
177 { return ((pmd_val(pmd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
179 static inline void srmmu_pmd_clear(pmd_t
*pmdp
) {
181 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++)
182 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(0));
185 static inline int srmmu_pgd_none(pgd_t pgd
)
186 { return !(pgd_val(pgd
) & 0xFFFFFFF); }
188 static inline int srmmu_pgd_bad(pgd_t pgd
)
189 { return (pgd_val(pgd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
191 static inline int srmmu_pgd_present(pgd_t pgd
)
192 { return ((pgd_val(pgd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
194 static inline void srmmu_pgd_clear(pgd_t
* pgdp
)
195 { srmmu_set_pte((pte_t
*)pgdp
, __pte(0)); }
197 static inline pte_t
srmmu_pte_wrprotect(pte_t pte
)
198 { return __pte(pte_val(pte
) & ~SRMMU_WRITE
);}
200 static inline pte_t
srmmu_pte_mkclean(pte_t pte
)
201 { return __pte(pte_val(pte
) & ~SRMMU_DIRTY
);}
203 static inline pte_t
srmmu_pte_mkold(pte_t pte
)
204 { return __pte(pte_val(pte
) & ~SRMMU_REF
);}
206 static inline pte_t
srmmu_pte_mkwrite(pte_t pte
)
207 { return __pte(pte_val(pte
) | SRMMU_WRITE
);}
209 static inline pte_t
srmmu_pte_mkdirty(pte_t pte
)
210 { return __pte(pte_val(pte
) | SRMMU_DIRTY
);}
212 static inline pte_t
srmmu_pte_mkyoung(pte_t pte
)
213 { return __pte(pte_val(pte
) | SRMMU_REF
);}
216 * Conversion functions: convert a page and protection to a page entry,
217 * and a page entry and page directory to the page they refer to.
219 static pte_t
srmmu_mk_pte(struct page
*page
, pgprot_t pgprot
)
220 { return __pte((page_to_pfn(page
) << (PAGE_SHIFT
-4)) | pgprot_val(pgprot
)); }
222 static pte_t
srmmu_mk_pte_phys(unsigned long page
, pgprot_t pgprot
)
223 { return __pte(((page
) >> 4) | pgprot_val(pgprot
)); }
225 static pte_t
srmmu_mk_pte_io(unsigned long page
, pgprot_t pgprot
, int space
)
226 { return __pte(((page
) >> 4) | (space
<< 28) | pgprot_val(pgprot
)); }
228 /* XXX should we hyper_flush_whole_icache here - Anton */
229 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
230 { srmmu_set_pte((pte_t
*)ctxp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pgdp
) >> 4))); }
232 static inline void srmmu_pgd_set(pgd_t
* pgdp
, pmd_t
* pmdp
)
233 { srmmu_set_pte((pte_t
*)pgdp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pmdp
) >> 4))); }
235 static void srmmu_pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
237 unsigned long ptp
; /* Physical address, shifted right by 4 */
240 ptp
= __nocache_pa((unsigned long) ptep
) >> 4;
241 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
242 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
243 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
247 static void srmmu_pmd_populate(pmd_t
*pmdp
, struct page
*ptep
)
249 unsigned long ptp
; /* Physical address, shifted right by 4 */
252 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
253 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
254 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
255 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
259 static inline pte_t
srmmu_pte_modify(pte_t pte
, pgprot_t newprot
)
260 { return __pte((pte_val(pte
) & SRMMU_CHG_MASK
) | pgprot_val(newprot
)); }
262 /* to find an entry in a top-level page table... */
263 extern inline pgd_t
*srmmu_pgd_offset(struct mm_struct
* mm
, unsigned long address
)
264 { return mm
->pgd
+ (address
>> SRMMU_PGDIR_SHIFT
); }
266 /* Find an entry in the second-level page table.. */
267 static inline pmd_t
*srmmu_pmd_offset(pgd_t
* dir
, unsigned long address
)
269 return (pmd_t
*) srmmu_pgd_page(*dir
) +
270 ((address
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
273 /* Find an entry in the third-level page table.. */
274 static inline pte_t
*srmmu_pte_offset(pmd_t
* dir
, unsigned long address
)
278 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
279 return (pte_t
*) pte
+
280 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
283 static unsigned long srmmu_swp_type(swp_entry_t entry
)
285 return (entry
.val
>> SRMMU_SWP_TYPE_SHIFT
) & SRMMU_SWP_TYPE_MASK
;
288 static unsigned long srmmu_swp_offset(swp_entry_t entry
)
290 return (entry
.val
>> SRMMU_SWP_OFF_SHIFT
) & SRMMU_SWP_OFF_MASK
;
293 static swp_entry_t
srmmu_swp_entry(unsigned long type
, unsigned long offset
)
295 return (swp_entry_t
) {
296 (type
& SRMMU_SWP_TYPE_MASK
) << SRMMU_SWP_TYPE_SHIFT
297 | (offset
& SRMMU_SWP_OFF_MASK
) << SRMMU_SWP_OFF_SHIFT
};
301 * size: bytes to allocate in the nocache area.
302 * align: bytes, number to align at.
303 * Returns the virtual address of the allocated area.
305 static unsigned long __srmmu_get_nocache(int size
, int align
)
309 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
310 printk("Size 0x%x too small for nocache request\n", size
);
311 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
313 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
-1)) {
314 printk("Size 0x%x unaligned int nocache request\n", size
);
315 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
-1;
317 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
319 offset
= bit_map_string_get(&srmmu_nocache_map
,
320 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
321 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
323 printk("srmmu: out of nocache %d: %d/%d\n",
324 size
, (int) srmmu_nocache_size
,
325 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
329 return (SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
));
332 unsigned inline long srmmu_get_nocache(int size
, int align
)
336 tmp
= __srmmu_get_nocache(size
, align
);
339 memset((void *)tmp
, 0, size
);
344 void srmmu_free_nocache(unsigned long vaddr
, int size
)
348 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
349 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
350 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
353 if (vaddr
+size
> srmmu_nocache_end
) {
354 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
355 vaddr
, srmmu_nocache_end
);
358 if (size
& (size
-1)) {
359 printk("Size 0x%x is not a power of 2\n", size
);
362 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
363 printk("Size 0x%x is too small\n", size
);
366 if (vaddr
& (size
-1)) {
367 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
371 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
372 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
374 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
377 void srmmu_early_allocate_ptable_skeleton(unsigned long start
, unsigned long end
);
379 extern unsigned long probe_memory(void); /* in fault.c */
382 * Reserve nocache dynamically proportionally to the amount of
383 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
385 void srmmu_nocache_calcsize(void)
387 unsigned long sysmemavail
= probe_memory() / 1024;
388 int srmmu_nocache_npages
;
390 srmmu_nocache_npages
=
391 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
393 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
394 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
395 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
396 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
398 /* anything above 1280 blows up */
399 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
400 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
402 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
403 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
406 void srmmu_nocache_init(void)
408 unsigned int bitmap_bits
;
412 unsigned long paddr
, vaddr
;
413 unsigned long pteval
;
415 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
417 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
418 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
419 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
421 srmmu_nocache_bitmap
= __alloc_bootmem(bitmap_bits
>> 3, SMP_CACHE_BYTES
, 0UL);
422 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
424 srmmu_swapper_pg_dir
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
425 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
426 init_mm
.pgd
= srmmu_swapper_pg_dir
;
428 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
430 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
431 vaddr
= SRMMU_NOCACHE_VADDR
;
433 while (vaddr
< srmmu_nocache_end
) {
434 pgd
= pgd_offset_k(vaddr
);
435 pmd
= srmmu_pmd_offset(__nocache_fix(pgd
), vaddr
);
436 pte
= srmmu_pte_offset(__nocache_fix(pmd
), vaddr
);
438 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
440 if (srmmu_cache_pagetables
)
441 pteval
|= SRMMU_CACHE
;
443 srmmu_set_pte(__nocache_fix(pte
), __pte(pteval
));
453 static inline pgd_t
*srmmu_get_pgd_fast(void)
457 pgd
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
459 pgd_t
*init
= pgd_offset_k(0);
460 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
461 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
462 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
468 static void srmmu_free_pgd_fast(pgd_t
*pgd
)
470 srmmu_free_nocache((unsigned long)pgd
, SRMMU_PGD_TABLE_SIZE
);
473 static pmd_t
*srmmu_pmd_alloc_one(struct mm_struct
*mm
, unsigned long address
)
475 return (pmd_t
*)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
478 static void srmmu_pmd_free(pmd_t
* pmd
)
480 srmmu_free_nocache((unsigned long)pmd
, SRMMU_PMD_TABLE_SIZE
);
484 * Hardware needs alignment to 256 only, but we align to whole page size
485 * to reduce fragmentation problems due to the buddy principle.
486 * XXX Provide actual fragmentation statistics in /proc.
488 * Alignments up to the page size are the same for physical and virtual
489 * addresses of the nocache area.
492 srmmu_pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
494 return (pte_t
*)srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
498 srmmu_pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
502 if ((pte
= (unsigned long)srmmu_pte_alloc_one_kernel(mm
, address
)) == 0)
504 return pfn_to_page( __nocache_pa(pte
) >> PAGE_SHIFT
);
507 static void srmmu_free_pte_fast(pte_t
*pte
)
509 srmmu_free_nocache((unsigned long)pte
, PTE_SIZE
);
512 static void srmmu_pte_free(struct page
*pte
)
516 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
519 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
520 p
= (unsigned long) __nocache_va(p
); /* Nocached virtual */
521 srmmu_free_nocache(p
, PTE_SIZE
);
526 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
528 struct ctx_list
*ctxp
;
530 ctxp
= ctx_free
.next
;
531 if(ctxp
!= &ctx_free
) {
532 remove_from_ctx_list(ctxp
);
533 add_to_used_ctxlist(ctxp
);
534 mm
->context
= ctxp
->ctx_number
;
538 ctxp
= ctx_used
.next
;
539 if(ctxp
->ctx_mm
== old_mm
)
541 if(ctxp
== &ctx_used
)
542 panic("out of mmu contexts");
543 flush_cache_mm(ctxp
->ctx_mm
);
544 flush_tlb_mm(ctxp
->ctx_mm
);
545 remove_from_ctx_list(ctxp
);
546 add_to_used_ctxlist(ctxp
);
547 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
549 mm
->context
= ctxp
->ctx_number
;
552 static inline void free_context(int context
)
554 struct ctx_list
*ctx_old
;
556 ctx_old
= ctx_list_pool
+ context
;
557 remove_from_ctx_list(ctx_old
);
558 add_to_free_ctxlist(ctx_old
);
562 static void srmmu_switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
563 struct task_struct
*tsk
, int cpu
)
565 if(mm
->context
== NO_CONTEXT
) {
566 spin_lock(&srmmu_context_spinlock
);
567 alloc_context(old_mm
, mm
);
568 spin_unlock(&srmmu_context_spinlock
);
569 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
573 hyper_flush_whole_icache();
575 srmmu_set_context(mm
->context
);
578 /* Low level IO area allocation on the SRMMU. */
579 static inline void srmmu_mapioaddr(unsigned long physaddr
,
580 unsigned long virt_addr
, int bus_type
)
587 physaddr
&= PAGE_MASK
;
588 pgdp
= pgd_offset_k(virt_addr
);
589 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
590 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
591 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
594 * I need to test whether this is consistent over all
595 * sun4m's. The bus_type represents the upper 4 bits of
596 * 36-bit physical address on the I/O space lines...
598 tmp
|= (bus_type
<< 28);
600 __flush_page_to_ram(virt_addr
);
601 srmmu_set_pte(ptep
, __pte(tmp
));
604 static void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
605 unsigned long xva
, unsigned int len
)
609 srmmu_mapioaddr(xpa
, xva
, bus
);
616 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
622 pgdp
= pgd_offset_k(virt_addr
);
623 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
624 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
626 /* No need to flush uncacheable page. */
627 srmmu_pte_clear(ptep
);
630 static void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
634 srmmu_unmapioaddr(virt_addr
);
635 virt_addr
+= PAGE_SIZE
;
641 * On the SRMMU we do not have the problems with limited tlb entries
642 * for mapping kernel pages, so we just take things from the free page
643 * pool. As a side effect we are putting a little too much pressure
644 * on the gfp() subsystem. This setup also makes the logic of the
645 * iommu mapping code a lot easier as we can transparently handle
646 * mappings on the kernel stack without any special code as we did
649 struct thread_info
*srmmu_alloc_thread_info(void)
651 struct thread_info
*ret
;
653 ret
= (struct thread_info
*)__get_free_pages(GFP_KERNEL
,
655 #ifdef CONFIG_DEBUG_STACK_USAGE
657 memset(ret
, 0, PAGE_SIZE
<< THREAD_INFO_ORDER
);
658 #endif /* DEBUG_STACK_USAGE */
663 static void srmmu_free_thread_info(struct thread_info
*ti
)
665 free_pages((unsigned long)ti
, THREAD_INFO_ORDER
);
669 extern void tsunami_flush_cache_all(void);
670 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
671 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
672 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
673 extern void tsunami_flush_page_to_ram(unsigned long page
);
674 extern void tsunami_flush_page_for_dma(unsigned long page
);
675 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
676 extern void tsunami_flush_tlb_all(void);
677 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
678 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
679 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
680 extern void tsunami_setup_blockops(void);
683 * Workaround, until we find what's going on with Swift. When low on memory,
684 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685 * out it is already in page tables/ fault again on the same instruction.
686 * I really don't understand it, have checked it and contexts
687 * are right, flush_tlb_all is done as well, and it faults again...
690 * The following code is a deadwood that may be necessary when
691 * we start to make precise page flushes again. --zaitcev
693 static void swift_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
696 static unsigned long last
;
698 /* unsigned int n; */
700 if (address
== last
) {
701 val
= srmmu_hwprobe(address
);
702 if (val
!= 0 && pte_val(pte
) != val
) {
703 printk("swift_update_mmu_cache: "
704 "addr %lx put %08x probed %08x from %p\n",
705 address
, pte_val(pte
), val
,
706 __builtin_return_address(0));
707 srmmu_flush_whole_tlb();
715 extern void swift_flush_cache_all(void);
716 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
717 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
718 unsigned long start
, unsigned long end
);
719 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
720 extern void swift_flush_page_to_ram(unsigned long page
);
721 extern void swift_flush_page_for_dma(unsigned long page
);
722 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
723 extern void swift_flush_tlb_all(void);
724 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
725 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
726 unsigned long start
, unsigned long end
);
727 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
729 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
730 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
735 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
736 cctx
= srmmu_get_context();
737 /* Is context # ever different from current context? P3 */
739 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
740 srmmu_set_context(ctx1
);
741 swift_flush_page(page
);
742 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
743 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
744 srmmu_set_context(cctx
);
746 /* Rm. prot. bits from virt. c. */
747 /* swift_flush_cache_all(); */
748 /* swift_flush_cache_page(vma, page); */
749 swift_flush_page(page
);
751 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
752 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
753 /* same as above: srmmu_flush_tlb_page() */
760 * The following are all MBUS based SRMMU modules, and therefore could
761 * be found in a multiprocessor configuration. On the whole, these
762 * chips seems to be much more touchy about DVMA and page tables
763 * with respect to cache coherency.
766 /* Cypress flushes. */
767 static void cypress_flush_cache_all(void)
769 volatile unsigned long cypress_sucks
;
770 unsigned long faddr
, tagval
;
772 flush_user_windows();
773 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
774 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
776 "r" (faddr
), "r" (0x40000),
777 "i" (ASI_M_DATAC_TAG
));
779 /* If modified and valid, kick it. */
780 if((tagval
& 0x60) == 0x60)
781 cypress_sucks
= *(unsigned long *)(0xf0020000 + faddr
);
785 static void cypress_flush_cache_mm(struct mm_struct
*mm
)
787 register unsigned long a
, b
, c
, d
, e
, f
, g
;
788 unsigned long flags
, faddr
;
792 flush_user_windows();
793 local_irq_save(flags
);
794 octx
= srmmu_get_context();
795 srmmu_set_context(mm
->context
);
796 a
= 0x20; b
= 0x40; c
= 0x60;
797 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
799 faddr
= (0x10000 - 0x100);
804 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
805 "sta %%g0, [%0 + %2] %1\n\t"
806 "sta %%g0, [%0 + %3] %1\n\t"
807 "sta %%g0, [%0 + %4] %1\n\t"
808 "sta %%g0, [%0 + %5] %1\n\t"
809 "sta %%g0, [%0 + %6] %1\n\t"
810 "sta %%g0, [%0 + %7] %1\n\t"
811 "sta %%g0, [%0 + %8] %1\n\t" : :
812 "r" (faddr
), "i" (ASI_M_FLUSH_CTX
),
813 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
814 "r" (e
), "r" (f
), "r" (g
));
816 srmmu_set_context(octx
);
817 local_irq_restore(flags
);
821 static void cypress_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
823 struct mm_struct
*mm
= vma
->vm_mm
;
824 register unsigned long a
, b
, c
, d
, e
, f
, g
;
825 unsigned long flags
, faddr
;
829 flush_user_windows();
830 local_irq_save(flags
);
831 octx
= srmmu_get_context();
832 srmmu_set_context(mm
->context
);
833 a
= 0x20; b
= 0x40; c
= 0x60;
834 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
836 start
&= SRMMU_REAL_PMD_MASK
;
838 faddr
= (start
+ (0x10000 - 0x100));
843 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
844 "sta %%g0, [%0 + %2] %1\n\t"
845 "sta %%g0, [%0 + %3] %1\n\t"
846 "sta %%g0, [%0 + %4] %1\n\t"
847 "sta %%g0, [%0 + %5] %1\n\t"
848 "sta %%g0, [%0 + %6] %1\n\t"
849 "sta %%g0, [%0 + %7] %1\n\t"
850 "sta %%g0, [%0 + %8] %1\n\t" : :
852 "i" (ASI_M_FLUSH_SEG
),
853 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
854 "r" (e
), "r" (f
), "r" (g
));
855 } while (faddr
!= start
);
856 start
+= SRMMU_REAL_PMD_SIZE
;
858 srmmu_set_context(octx
);
859 local_irq_restore(flags
);
863 static void cypress_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
865 register unsigned long a
, b
, c
, d
, e
, f
, g
;
866 struct mm_struct
*mm
= vma
->vm_mm
;
867 unsigned long flags
, line
;
871 flush_user_windows();
872 local_irq_save(flags
);
873 octx
= srmmu_get_context();
874 srmmu_set_context(mm
->context
);
875 a
= 0x20; b
= 0x40; c
= 0x60;
876 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
879 line
= (page
+ PAGE_SIZE
) - 0x100;
884 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
885 "sta %%g0, [%0 + %2] %1\n\t"
886 "sta %%g0, [%0 + %3] %1\n\t"
887 "sta %%g0, [%0 + %4] %1\n\t"
888 "sta %%g0, [%0 + %5] %1\n\t"
889 "sta %%g0, [%0 + %6] %1\n\t"
890 "sta %%g0, [%0 + %7] %1\n\t"
891 "sta %%g0, [%0 + %8] %1\n\t" : :
893 "i" (ASI_M_FLUSH_PAGE
),
894 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
895 "r" (e
), "r" (f
), "r" (g
));
896 } while(line
!= page
);
897 srmmu_set_context(octx
);
898 local_irq_restore(flags
);
902 /* Cypress is copy-back, at least that is how we configure it. */
903 static void cypress_flush_page_to_ram(unsigned long page
)
905 register unsigned long a
, b
, c
, d
, e
, f
, g
;
908 a
= 0x20; b
= 0x40; c
= 0x60; d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
910 line
= (page
+ PAGE_SIZE
) - 0x100;
915 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
916 "sta %%g0, [%0 + %2] %1\n\t"
917 "sta %%g0, [%0 + %3] %1\n\t"
918 "sta %%g0, [%0 + %4] %1\n\t"
919 "sta %%g0, [%0 + %5] %1\n\t"
920 "sta %%g0, [%0 + %6] %1\n\t"
921 "sta %%g0, [%0 + %7] %1\n\t"
922 "sta %%g0, [%0 + %8] %1\n\t" : :
924 "i" (ASI_M_FLUSH_PAGE
),
925 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
926 "r" (e
), "r" (f
), "r" (g
));
927 } while(line
!= page
);
930 /* Cypress is also IO cache coherent. */
931 static void cypress_flush_page_for_dma(unsigned long page
)
935 /* Cypress has unified L2 VIPT, from which both instructions and data
936 * are stored. It does not have an onboard icache of any sort, therefore
937 * no flush is necessary.
939 static void cypress_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
943 static void cypress_flush_tlb_all(void)
945 srmmu_flush_whole_tlb();
948 static void cypress_flush_tlb_mm(struct mm_struct
*mm
)
951 __asm__
__volatile__(
952 "lda [%0] %3, %%g5\n\t"
953 "sta %2, [%0] %3\n\t"
954 "sta %%g0, [%1] %4\n\t"
955 "sta %%g5, [%0] %3\n"
957 : "r" (SRMMU_CTX_REG
), "r" (0x300), "r" (mm
->context
),
958 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
963 static void cypress_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
965 struct mm_struct
*mm
= vma
->vm_mm
;
969 start
&= SRMMU_PGDIR_MASK
;
970 size
= SRMMU_PGDIR_ALIGN(end
) - start
;
971 __asm__
__volatile__(
972 "lda [%0] %5, %%g5\n\t"
975 "subcc %3, %4, %3\n\t"
977 " sta %%g0, [%2 + %3] %6\n\t"
978 "sta %%g5, [%0] %5\n"
980 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (start
| 0x200),
981 "r" (size
), "r" (SRMMU_PGDIR_SIZE
), "i" (ASI_M_MMUREGS
),
982 "i" (ASI_M_FLUSH_PROBE
)
987 static void cypress_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
989 struct mm_struct
*mm
= vma
->vm_mm
;
992 __asm__
__volatile__(
993 "lda [%0] %3, %%g5\n\t"
994 "sta %1, [%0] %3\n\t"
995 "sta %%g0, [%2] %4\n\t"
996 "sta %%g5, [%0] %3\n"
998 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (page
& PAGE_MASK
),
999 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
1005 extern void viking_flush_cache_all(void);
1006 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
1007 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
1009 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1010 extern void viking_flush_page_to_ram(unsigned long page
);
1011 extern void viking_flush_page_for_dma(unsigned long page
);
1012 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
1013 extern void viking_flush_page(unsigned long page
);
1014 extern void viking_mxcc_flush_page(unsigned long page
);
1015 extern void viking_flush_tlb_all(void);
1016 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
1017 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1019 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
1020 unsigned long page
);
1021 extern void sun4dsmp_flush_tlb_all(void);
1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
1026 unsigned long page
);
1029 extern void hypersparc_flush_cache_all(void);
1030 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
1031 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1032 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1033 extern void hypersparc_flush_page_to_ram(unsigned long page
);
1034 extern void hypersparc_flush_page_for_dma(unsigned long page
);
1035 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
1036 extern void hypersparc_flush_tlb_all(void);
1037 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
1040 extern void hypersparc_setup_blockops(void);
1043 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044 * kernel mappings are done with one single contiguous chunk of
1045 * ram. On small ram machines (classics mainly) we only get
1046 * around 8mb mapped for us.
1049 void __init
early_pgtable_allocfail(char *type
)
1051 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
1055 void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
, unsigned long end
)
1061 while(start
< end
) {
1062 pgdp
= pgd_offset_k(start
);
1063 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1064 pmdp
= (pmd_t
*) __srmmu_get_nocache(
1065 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1067 early_pgtable_allocfail("pmd");
1068 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1069 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1071 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1072 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1073 ptep
= (pte_t
*)__srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
1075 early_pgtable_allocfail("pte");
1076 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1077 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1079 if (start
> (0xffffffffUL
- PMD_SIZE
))
1081 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1085 void __init
srmmu_allocate_ptable_skeleton(unsigned long start
, unsigned long end
)
1091 while(start
< end
) {
1092 pgdp
= pgd_offset_k(start
);
1093 if(srmmu_pgd_none(*pgdp
)) {
1094 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1096 early_pgtable_allocfail("pmd");
1097 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
1098 srmmu_pgd_set(pgdp
, pmdp
);
1100 pmdp
= srmmu_pmd_offset(pgdp
, start
);
1101 if(srmmu_pmd_none(*pmdp
)) {
1102 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1105 early_pgtable_allocfail("pte");
1106 memset(ptep
, 0, PTE_SIZE
);
1107 srmmu_pmd_set(pmdp
, ptep
);
1109 if (start
> (0xffffffffUL
- PMD_SIZE
))
1111 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1116 * This is much cleaner than poking around physical address space
1117 * looking at the prom's page table directly which is what most
1118 * other OS's do. Yuck... this is much better.
1120 void __init
srmmu_inherit_prom_mappings(unsigned long start
,unsigned long end
)
1125 int what
= 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1126 unsigned long prompte
;
1128 while(start
<= end
) {
1130 break; /* probably wrap around */
1131 if(start
== 0xfef00000)
1132 start
= KADB_DEBUGGER_BEGVM
;
1133 if(!(prompte
= srmmu_hwprobe(start
))) {
1138 /* A red snapper, see what it really is. */
1141 if(!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
1142 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_REAL_PMD_SIZE
) == prompte
)
1146 if(!(start
& ~(SRMMU_PGDIR_MASK
))) {
1147 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_PGDIR_SIZE
) ==
1152 pgdp
= pgd_offset_k(start
);
1154 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(prompte
);
1155 start
+= SRMMU_PGDIR_SIZE
;
1158 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1159 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1161 early_pgtable_allocfail("pmd");
1162 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1163 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1165 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1166 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1167 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1170 early_pgtable_allocfail("pte");
1171 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1172 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1176 * We bend the rule where all 16 PTPs in a pmd_t point
1177 * inside the same PTE page, and we leak a perfectly
1178 * good hardware PTE piece. Alternatives seem worse.
1180 unsigned int x
; /* Index of HW PMD in soft cluster */
1181 x
= (start
>> PMD_SHIFT
) & 15;
1182 *(unsigned long *)__nocache_fix(&pmdp
->pmdv
[x
]) = prompte
;
1183 start
+= SRMMU_REAL_PMD_SIZE
;
1186 ptep
= srmmu_pte_offset(__nocache_fix(pmdp
), start
);
1187 *(pte_t
*)__nocache_fix(ptep
) = __pte(prompte
);
1192 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1194 /* Create a third-level SRMMU 16MB page mapping. */
1195 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
1197 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
1198 unsigned long big_pte
;
1200 big_pte
= KERNEL_PTE(phys_base
>> 4);
1201 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
1204 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1205 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
1207 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
1208 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
1209 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
1210 /* Map "low" memory only */
1211 const unsigned long min_vaddr
= PAGE_OFFSET
;
1212 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
1214 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
1217 if (vend
> max_vaddr
|| vend
< min_vaddr
)
1220 while(vstart
< vend
) {
1221 do_large_mapping(vstart
, pstart
);
1222 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
1227 static inline void memprobe_error(char *msg
)
1230 prom_printf("Halting now...\n");
1234 static inline void map_kernel(void)
1238 if (phys_base
> 0) {
1239 do_large_mapping(PAGE_OFFSET
, phys_base
);
1242 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
1243 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
1246 BTFIXUPSET_SIMM13(user_ptrs_per_pgd
, PAGE_OFFSET
/ SRMMU_PGDIR_SIZE
);
1249 /* Paging initialization on the Sparc Reference MMU. */
1250 extern void sparc_context_init(int);
1252 void (*poke_srmmu
)(void) __initdata
= NULL
;
1254 extern unsigned long bootmem_init(unsigned long *pages_avail
);
1256 void __init
srmmu_paging_init(void)
1263 unsigned long pages_avail
;
1265 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
1267 if (sparc_cpu_model
== sun4d
)
1268 num_contexts
= 65536; /* We know it is Viking */
1270 /* Find the number of contexts on the srmmu. */
1271 cpunode
= prom_getchild(prom_root_node
);
1273 while(cpunode
!= 0) {
1274 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1275 if(!strcmp(node_str
, "cpu")) {
1276 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
1279 cpunode
= prom_getsibling(cpunode
);
1284 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1289 last_valid_pfn
= bootmem_init(&pages_avail
);
1291 srmmu_nocache_calcsize();
1292 srmmu_nocache_init();
1293 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM
-PAGE_SIZE
));
1296 /* ctx table has to be physically aligned to its size */
1297 srmmu_context_table
= (ctxd_t
*)__srmmu_get_nocache(num_contexts
*sizeof(ctxd_t
), num_contexts
*sizeof(ctxd_t
));
1298 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa((unsigned long)srmmu_context_table
);
1300 for(i
= 0; i
< num_contexts
; i
++)
1301 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
1304 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
1308 #ifdef CONFIG_SUN_IO
1309 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
1310 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
1313 srmmu_allocate_ptable_skeleton(
1314 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
1315 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
1317 pgd
= pgd_offset_k(PKMAP_BASE
);
1318 pmd
= srmmu_pmd_offset(pgd
, PKMAP_BASE
);
1319 pte
= srmmu_pte_offset(pmd
, PKMAP_BASE
);
1320 pkmap_page_table
= pte
;
1325 sparc_context_init(num_contexts
);
1330 unsigned long zones_size
[MAX_NR_ZONES
];
1331 unsigned long zholes_size
[MAX_NR_ZONES
];
1332 unsigned long npages
;
1335 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1336 zones_size
[znum
] = zholes_size
[znum
] = 0;
1338 npages
= max_low_pfn
- pfn_base
;
1340 zones_size
[ZONE_DMA
] = npages
;
1341 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
1343 npages
= highend_pfn
- max_low_pfn
;
1344 zones_size
[ZONE_HIGHMEM
] = npages
;
1345 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
1347 free_area_init_node(0, &contig_page_data
, zones_size
,
1348 pfn_base
, zholes_size
);
1352 static void srmmu_mmu_info(struct seq_file
*m
)
1357 "nocache total\t: %ld\n"
1358 "nocache used\t: %d\n",
1362 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1365 static void srmmu_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
1369 static void srmmu_destroy_context(struct mm_struct
*mm
)
1372 if(mm
->context
!= NO_CONTEXT
) {
1374 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1376 spin_lock(&srmmu_context_spinlock
);
1377 free_context(mm
->context
);
1378 spin_unlock(&srmmu_context_spinlock
);
1379 mm
->context
= NO_CONTEXT
;
1383 /* Init various srmmu chip types. */
1384 static void __init
srmmu_is_bad(void)
1386 prom_printf("Could not determine SRMMU chip type.\n");
1390 static void __init
init_vac_layout(void)
1392 int nd
, cache_lines
;
1396 unsigned long max_size
= 0;
1397 unsigned long min_line_size
= 0x10000000;
1400 nd
= prom_getchild(prom_root_node
);
1401 while((nd
= prom_getsibling(nd
)) != 0) {
1402 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1403 if(!strcmp(node_str
, "cpu")) {
1404 vac_line_size
= prom_getint(nd
, "cache-line-size");
1405 if (vac_line_size
== -1) {
1406 prom_printf("can't determine cache-line-size, "
1410 cache_lines
= prom_getint(nd
, "cache-nlines");
1411 if (cache_lines
== -1) {
1412 prom_printf("can't determine cache-nlines, halting.\n");
1416 vac_cache_size
= cache_lines
* vac_line_size
;
1418 if(vac_cache_size
> max_size
)
1419 max_size
= vac_cache_size
;
1420 if(vac_line_size
< min_line_size
)
1421 min_line_size
= vac_line_size
;
1423 if (cpu
>= NR_CPUS
|| !cpu_online(cpu
))
1431 prom_printf("No CPU nodes found, halting.\n");
1435 vac_cache_size
= max_size
;
1436 vac_line_size
= min_line_size
;
1438 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1439 (int)vac_cache_size
, (int)vac_line_size
);
1442 static void __init
poke_hypersparc(void)
1444 volatile unsigned long clear
;
1445 unsigned long mreg
= srmmu_get_mmureg();
1447 hyper_flush_unconditional_combined();
1449 mreg
&= ~(HYPERSPARC_CWENABLE
);
1450 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1451 mreg
|= (HYPERSPARC_CMODE
);
1453 srmmu_set_mmureg(mreg
);
1455 #if 0 /* XXX I think this is bad news... -DaveM */
1456 hyper_clear_all_tags();
1459 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1460 hyper_flush_whole_icache();
1461 clear
= srmmu_get_faddr();
1462 clear
= srmmu_get_fstatus();
1465 static void __init
init_hypersparc(void)
1467 srmmu_name
= "ROSS HyperSparc";
1468 srmmu_modtype
= HyperSparc
;
1474 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1475 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1476 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1477 BTFIXUPSET_CALL(flush_cache_all
, hypersparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1478 BTFIXUPSET_CALL(flush_cache_mm
, hypersparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1479 BTFIXUPSET_CALL(flush_cache_range
, hypersparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1480 BTFIXUPSET_CALL(flush_cache_page
, hypersparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1482 BTFIXUPSET_CALL(flush_tlb_all
, hypersparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1483 BTFIXUPSET_CALL(flush_tlb_mm
, hypersparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1484 BTFIXUPSET_CALL(flush_tlb_range
, hypersparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1485 BTFIXUPSET_CALL(flush_tlb_page
, hypersparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1487 BTFIXUPSET_CALL(__flush_page_to_ram
, hypersparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1488 BTFIXUPSET_CALL(flush_sig_insns
, hypersparc_flush_sig_insns
, BTFIXUPCALL_NORM
);
1489 BTFIXUPSET_CALL(flush_page_for_dma
, hypersparc_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1492 poke_srmmu
= poke_hypersparc
;
1494 hypersparc_setup_blockops();
1497 static void __init
poke_cypress(void)
1499 unsigned long mreg
= srmmu_get_mmureg();
1500 unsigned long faddr
, tagval
;
1501 volatile unsigned long cypress_sucks
;
1502 volatile unsigned long clear
;
1504 clear
= srmmu_get_faddr();
1505 clear
= srmmu_get_fstatus();
1507 if (!(mreg
& CYPRESS_CENABLE
)) {
1508 for(faddr
= 0x0; faddr
< 0x10000; faddr
+= 20) {
1509 __asm__
__volatile__("sta %%g0, [%0 + %1] %2\n\t"
1510 "sta %%g0, [%0] %2\n\t" : :
1511 "r" (faddr
), "r" (0x40000),
1512 "i" (ASI_M_DATAC_TAG
));
1515 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
1516 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
1518 "r" (faddr
), "r" (0x40000),
1519 "i" (ASI_M_DATAC_TAG
));
1521 /* If modified and valid, kick it. */
1522 if((tagval
& 0x60) == 0x60)
1523 cypress_sucks
= *(unsigned long *)
1524 (0xf0020000 + faddr
);
1528 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1529 clear
= srmmu_get_faddr();
1530 clear
= srmmu_get_fstatus();
1532 mreg
|= (CYPRESS_CENABLE
| CYPRESS_CMODE
);
1533 srmmu_set_mmureg(mreg
);
1536 static void __init
init_cypress_common(void)
1540 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1541 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1542 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1543 BTFIXUPSET_CALL(flush_cache_all
, cypress_flush_cache_all
, BTFIXUPCALL_NORM
);
1544 BTFIXUPSET_CALL(flush_cache_mm
, cypress_flush_cache_mm
, BTFIXUPCALL_NORM
);
1545 BTFIXUPSET_CALL(flush_cache_range
, cypress_flush_cache_range
, BTFIXUPCALL_NORM
);
1546 BTFIXUPSET_CALL(flush_cache_page
, cypress_flush_cache_page
, BTFIXUPCALL_NORM
);
1548 BTFIXUPSET_CALL(flush_tlb_all
, cypress_flush_tlb_all
, BTFIXUPCALL_NORM
);
1549 BTFIXUPSET_CALL(flush_tlb_mm
, cypress_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1550 BTFIXUPSET_CALL(flush_tlb_page
, cypress_flush_tlb_page
, BTFIXUPCALL_NORM
);
1551 BTFIXUPSET_CALL(flush_tlb_range
, cypress_flush_tlb_range
, BTFIXUPCALL_NORM
);
1554 BTFIXUPSET_CALL(__flush_page_to_ram
, cypress_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1555 BTFIXUPSET_CALL(flush_sig_insns
, cypress_flush_sig_insns
, BTFIXUPCALL_NOP
);
1556 BTFIXUPSET_CALL(flush_page_for_dma
, cypress_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1558 poke_srmmu
= poke_cypress
;
1561 static void __init
init_cypress_604(void)
1563 srmmu_name
= "ROSS Cypress-604(UP)";
1564 srmmu_modtype
= Cypress
;
1565 init_cypress_common();
1568 static void __init
init_cypress_605(unsigned long mrev
)
1570 srmmu_name
= "ROSS Cypress-605(MP)";
1572 srmmu_modtype
= Cypress_vE
;
1573 hwbug_bitmask
|= HWBUG_COPYBACK_BROKEN
;
1576 srmmu_modtype
= Cypress_vD
;
1577 hwbug_bitmask
|= HWBUG_ASIFLUSH_BROKEN
;
1579 srmmu_modtype
= Cypress
;
1582 init_cypress_common();
1585 static void __init
poke_swift(void)
1589 /* Clear any crap from the cache or else... */
1590 swift_flush_cache_all();
1592 /* Enable I & D caches */
1593 mreg
= srmmu_get_mmureg();
1594 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1596 * The Swift branch folding logic is completely broken. At
1597 * trap time, if things are just right, if can mistakenly
1598 * think that a trap is coming from kernel mode when in fact
1599 * it is coming from user mode (it mis-executes the branch in
1600 * the trap code). So you see things like crashme completely
1601 * hosing your machine which is completely unacceptable. Turn
1602 * this shit off... nice job Fujitsu.
1604 mreg
&= ~(SWIFT_BF
);
1605 srmmu_set_mmureg(mreg
);
1608 #define SWIFT_MASKID_ADDR 0x10003018
1609 static void __init
init_swift(void)
1611 unsigned long swift_rev
;
1613 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1614 "srl %0, 0x18, %0\n\t" :
1616 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1617 srmmu_name
= "Fujitsu Swift";
1623 srmmu_modtype
= Swift_lots_o_bugs
;
1624 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1626 * Gee george, I wonder why Sun is so hush hush about
1627 * this hardware bug... really braindamage stuff going
1628 * on here. However I think we can find a way to avoid
1629 * all of the workaround overhead under Linux. Basically,
1630 * any page fault can cause kernel pages to become user
1631 * accessible (the mmu gets confused and clears some of
1632 * the ACC bits in kernel ptes). Aha, sounds pretty
1633 * horrible eh? But wait, after extensive testing it appears
1634 * that if you use pgd_t level large kernel pte's (like the
1635 * 4MB pages on the Pentium) the bug does not get tripped
1636 * at all. This avoids almost all of the major overhead.
1637 * Welcome to a world where your vendor tells you to,
1638 * "apply this kernel patch" instead of "sorry for the
1639 * broken hardware, send it back and we'll give you
1640 * properly functioning parts"
1645 srmmu_modtype
= Swift_bad_c
;
1646 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1648 * You see Sun allude to this hardware bug but never
1649 * admit things directly, they'll say things like,
1650 * "the Swift chip cache problems" or similar.
1654 srmmu_modtype
= Swift_ok
;
1658 BTFIXUPSET_CALL(flush_cache_all
, swift_flush_cache_all
, BTFIXUPCALL_NORM
);
1659 BTFIXUPSET_CALL(flush_cache_mm
, swift_flush_cache_mm
, BTFIXUPCALL_NORM
);
1660 BTFIXUPSET_CALL(flush_cache_page
, swift_flush_cache_page
, BTFIXUPCALL_NORM
);
1661 BTFIXUPSET_CALL(flush_cache_range
, swift_flush_cache_range
, BTFIXUPCALL_NORM
);
1664 BTFIXUPSET_CALL(flush_tlb_all
, swift_flush_tlb_all
, BTFIXUPCALL_NORM
);
1665 BTFIXUPSET_CALL(flush_tlb_mm
, swift_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1666 BTFIXUPSET_CALL(flush_tlb_page
, swift_flush_tlb_page
, BTFIXUPCALL_NORM
);
1667 BTFIXUPSET_CALL(flush_tlb_range
, swift_flush_tlb_range
, BTFIXUPCALL_NORM
);
1669 BTFIXUPSET_CALL(__flush_page_to_ram
, swift_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1670 BTFIXUPSET_CALL(flush_sig_insns
, swift_flush_sig_insns
, BTFIXUPCALL_NORM
);
1671 BTFIXUPSET_CALL(flush_page_for_dma
, swift_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1673 BTFIXUPSET_CALL(update_mmu_cache
, swift_update_mmu_cache
, BTFIXUPCALL_NORM
);
1675 flush_page_for_dma_global
= 0;
1678 * Are you now convinced that the Swift is one of the
1679 * biggest VLSI abortions of all time? Bravo Fujitsu!
1680 * Fujitsu, the !#?!%$'d up processor people. I bet if
1681 * you examined the microcode of the Swift you'd find
1682 * XXX's all over the place.
1684 poke_srmmu
= poke_swift
;
1687 static void turbosparc_flush_cache_all(void)
1689 flush_user_windows();
1690 turbosparc_idflash_clear();
1693 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1696 flush_user_windows();
1697 turbosparc_idflash_clear();
1701 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1703 FLUSH_BEGIN(vma
->vm_mm
)
1704 flush_user_windows();
1705 turbosparc_idflash_clear();
1709 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1711 FLUSH_BEGIN(vma
->vm_mm
)
1712 flush_user_windows();
1713 if (vma
->vm_flags
& VM_EXEC
)
1714 turbosparc_flush_icache();
1715 turbosparc_flush_dcache();
1719 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1720 static void turbosparc_flush_page_to_ram(unsigned long page
)
1722 #ifdef TURBOSPARC_WRITEBACK
1723 volatile unsigned long clear
;
1725 if (srmmu_hwprobe(page
))
1726 turbosparc_flush_page_cache(page
);
1727 clear
= srmmu_get_fstatus();
1731 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1735 static void turbosparc_flush_page_for_dma(unsigned long page
)
1737 turbosparc_flush_dcache();
1740 static void turbosparc_flush_tlb_all(void)
1742 srmmu_flush_whole_tlb();
1745 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1748 srmmu_flush_whole_tlb();
1752 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1754 FLUSH_BEGIN(vma
->vm_mm
)
1755 srmmu_flush_whole_tlb();
1759 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1761 FLUSH_BEGIN(vma
->vm_mm
)
1762 srmmu_flush_whole_tlb();
1767 static void __init
poke_turbosparc(void)
1769 unsigned long mreg
= srmmu_get_mmureg();
1770 unsigned long ccreg
;
1772 /* Clear any crap from the cache or else... */
1773 turbosparc_flush_cache_all();
1774 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* Temporarily disable I & D caches */
1775 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1776 srmmu_set_mmureg(mreg
);
1778 ccreg
= turbosparc_get_ccreg();
1780 #ifdef TURBOSPARC_WRITEBACK
1781 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1782 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1783 /* Write-back D-cache, emulate VLSI
1784 * abortion number three, not number one */
1786 /* For now let's play safe, optimize later */
1787 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1788 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1789 ccreg
&= ~(TURBOSPARC_uS2
);
1790 /* Emulate VLSI abortion number three, not number one */
1793 switch (ccreg
& 7) {
1794 case 0: /* No SE cache */
1795 case 7: /* Test mode */
1798 ccreg
|= (TURBOSPARC_SCENABLE
);
1800 turbosparc_set_ccreg (ccreg
);
1802 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1803 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1804 srmmu_set_mmureg(mreg
);
1807 static void __init
init_turbosparc(void)
1809 srmmu_name
= "Fujitsu TurboSparc";
1810 srmmu_modtype
= TurboSparc
;
1812 BTFIXUPSET_CALL(flush_cache_all
, turbosparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1813 BTFIXUPSET_CALL(flush_cache_mm
, turbosparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1814 BTFIXUPSET_CALL(flush_cache_page
, turbosparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1815 BTFIXUPSET_CALL(flush_cache_range
, turbosparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1817 BTFIXUPSET_CALL(flush_tlb_all
, turbosparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1818 BTFIXUPSET_CALL(flush_tlb_mm
, turbosparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1819 BTFIXUPSET_CALL(flush_tlb_page
, turbosparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1820 BTFIXUPSET_CALL(flush_tlb_range
, turbosparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1822 BTFIXUPSET_CALL(__flush_page_to_ram
, turbosparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1824 BTFIXUPSET_CALL(flush_sig_insns
, turbosparc_flush_sig_insns
, BTFIXUPCALL_NOP
);
1825 BTFIXUPSET_CALL(flush_page_for_dma
, turbosparc_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1827 poke_srmmu
= poke_turbosparc
;
1830 static void __init
poke_tsunami(void)
1832 unsigned long mreg
= srmmu_get_mmureg();
1834 tsunami_flush_icache();
1835 tsunami_flush_dcache();
1836 mreg
&= ~TSUNAMI_ITD
;
1837 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1838 srmmu_set_mmureg(mreg
);
1841 static void __init
init_tsunami(void)
1844 * Tsunami's pretty sane, Sun and TI actually got it
1845 * somewhat right this time. Fujitsu should have
1846 * taken some lessons from them.
1849 srmmu_name
= "TI Tsunami";
1850 srmmu_modtype
= Tsunami
;
1852 BTFIXUPSET_CALL(flush_cache_all
, tsunami_flush_cache_all
, BTFIXUPCALL_NORM
);
1853 BTFIXUPSET_CALL(flush_cache_mm
, tsunami_flush_cache_mm
, BTFIXUPCALL_NORM
);
1854 BTFIXUPSET_CALL(flush_cache_page
, tsunami_flush_cache_page
, BTFIXUPCALL_NORM
);
1855 BTFIXUPSET_CALL(flush_cache_range
, tsunami_flush_cache_range
, BTFIXUPCALL_NORM
);
1858 BTFIXUPSET_CALL(flush_tlb_all
, tsunami_flush_tlb_all
, BTFIXUPCALL_NORM
);
1859 BTFIXUPSET_CALL(flush_tlb_mm
, tsunami_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1860 BTFIXUPSET_CALL(flush_tlb_page
, tsunami_flush_tlb_page
, BTFIXUPCALL_NORM
);
1861 BTFIXUPSET_CALL(flush_tlb_range
, tsunami_flush_tlb_range
, BTFIXUPCALL_NORM
);
1863 BTFIXUPSET_CALL(__flush_page_to_ram
, tsunami_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1864 BTFIXUPSET_CALL(flush_sig_insns
, tsunami_flush_sig_insns
, BTFIXUPCALL_NORM
);
1865 BTFIXUPSET_CALL(flush_page_for_dma
, tsunami_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1867 poke_srmmu
= poke_tsunami
;
1869 tsunami_setup_blockops();
1872 static void __init
poke_viking(void)
1874 unsigned long mreg
= srmmu_get_mmureg();
1875 static int smp_catch
;
1877 if(viking_mxcc_present
) {
1878 unsigned long mxcc_control
= mxcc_get_creg();
1880 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1881 mxcc_control
&= ~(MXCC_CTL_RRC
);
1882 mxcc_set_creg(mxcc_control
);
1885 * We don't need memory parity checks.
1886 * XXX This is a mess, have to dig out later. ecd.
1887 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1890 /* We do cache ptables on MXCC. */
1891 mreg
|= VIKING_TCENABLE
;
1893 unsigned long bpreg
;
1895 mreg
&= ~(VIKING_TCENABLE
);
1897 /* Must disable mixed-cmd mode here for other cpu's. */
1898 bpreg
= viking_get_bpreg();
1899 bpreg
&= ~(VIKING_ACTION_MIX
);
1900 viking_set_bpreg(bpreg
);
1902 /* Just in case PROM does something funny. */
1907 mreg
|= VIKING_SPENABLE
;
1908 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1909 mreg
|= VIKING_SBENABLE
;
1910 mreg
&= ~(VIKING_ACENABLE
);
1911 srmmu_set_mmureg(mreg
);
1914 /* Avoid unnecessary cross calls. */
1915 BTFIXUPCOPY_CALL(flush_cache_all
, local_flush_cache_all
);
1916 BTFIXUPCOPY_CALL(flush_cache_mm
, local_flush_cache_mm
);
1917 BTFIXUPCOPY_CALL(flush_cache_range
, local_flush_cache_range
);
1918 BTFIXUPCOPY_CALL(flush_cache_page
, local_flush_cache_page
);
1919 BTFIXUPCOPY_CALL(__flush_page_to_ram
, local_flush_page_to_ram
);
1920 BTFIXUPCOPY_CALL(flush_sig_insns
, local_flush_sig_insns
);
1921 BTFIXUPCOPY_CALL(flush_page_for_dma
, local_flush_page_for_dma
);
1926 static void __init
init_viking(void)
1928 unsigned long mreg
= srmmu_get_mmureg();
1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1931 if(mreg
& VIKING_MMODE
) {
1932 srmmu_name
= "TI Viking";
1933 viking_mxcc_present
= 0;
1936 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1937 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1938 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1941 * We need this to make sure old viking takes no hits
1942 * on it's cache for dma snoops to workaround the
1943 * "load from non-cacheable memory" interrupt bug.
1944 * This is only necessary because of the new way in
1945 * which we use the IOMMU.
1947 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page
, BTFIXUPCALL_NORM
);
1949 flush_page_for_dma_global
= 0;
1951 srmmu_name
= "TI Viking/MXCC";
1952 viking_mxcc_present
= 1;
1954 srmmu_cache_pagetables
= 1;
1956 /* MXCC vikings lack the DMA snooping bug. */
1957 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1960 BTFIXUPSET_CALL(flush_cache_all
, viking_flush_cache_all
, BTFIXUPCALL_NORM
);
1961 BTFIXUPSET_CALL(flush_cache_mm
, viking_flush_cache_mm
, BTFIXUPCALL_NORM
);
1962 BTFIXUPSET_CALL(flush_cache_page
, viking_flush_cache_page
, BTFIXUPCALL_NORM
);
1963 BTFIXUPSET_CALL(flush_cache_range
, viking_flush_cache_range
, BTFIXUPCALL_NORM
);
1966 if (sparc_cpu_model
== sun4d
) {
1967 BTFIXUPSET_CALL(flush_tlb_all
, sun4dsmp_flush_tlb_all
, BTFIXUPCALL_NORM
);
1968 BTFIXUPSET_CALL(flush_tlb_mm
, sun4dsmp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1969 BTFIXUPSET_CALL(flush_tlb_page
, sun4dsmp_flush_tlb_page
, BTFIXUPCALL_NORM
);
1970 BTFIXUPSET_CALL(flush_tlb_range
, sun4dsmp_flush_tlb_range
, BTFIXUPCALL_NORM
);
1974 BTFIXUPSET_CALL(flush_tlb_all
, viking_flush_tlb_all
, BTFIXUPCALL_NORM
);
1975 BTFIXUPSET_CALL(flush_tlb_mm
, viking_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1976 BTFIXUPSET_CALL(flush_tlb_page
, viking_flush_tlb_page
, BTFIXUPCALL_NORM
);
1977 BTFIXUPSET_CALL(flush_tlb_range
, viking_flush_tlb_range
, BTFIXUPCALL_NORM
);
1980 BTFIXUPSET_CALL(__flush_page_to_ram
, viking_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1981 BTFIXUPSET_CALL(flush_sig_insns
, viking_flush_sig_insns
, BTFIXUPCALL_NOP
);
1983 poke_srmmu
= poke_viking
;
1986 /* Probe for the srmmu chip version. */
1987 static void __init
get_srmmu_type(void)
1989 unsigned long mreg
, psr
;
1990 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1992 srmmu_modtype
= SRMMU_INVAL_MOD
;
1995 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1996 mod_typ
= (mreg
& 0xf0000000) >> 28;
1997 mod_rev
= (mreg
& 0x0f000000) >> 24;
1998 psr_typ
= (psr
>> 28) & 0xf;
1999 psr_vers
= (psr
>> 24) & 0xf;
2001 /* First, check for HyperSparc or Cypress. */
2005 /* UP or MP Hypersparc */
2010 /* Uniprocessor Cypress */
2016 /* _REALLY OLD_ Cypress MP chips... */
2020 /* MP Cypress mmu/cache-controller */
2021 init_cypress_605(mod_rev
);
2024 /* Some other Cypress revision, assume a 605. */
2025 init_cypress_605(mod_rev
);
2032 * Now Fujitsu TurboSparc. It might happen that it is
2033 * in Swift emulation mode, so we will check later...
2035 if (psr_typ
== 0 && psr_vers
== 5) {
2040 /* Next check for Fujitsu Swift. */
2041 if(psr_typ
== 0 && psr_vers
== 4) {
2045 /* Look if it is not a TurboSparc emulating Swift... */
2046 cpunode
= prom_getchild(prom_root_node
);
2047 while((cpunode
= prom_getsibling(cpunode
)) != 0) {
2048 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
2049 if(!strcmp(node_str
, "cpu")) {
2050 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
2051 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
2063 /* Now the Viking family of srmmu. */
2066 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
2071 /* Finally the Tsunami. */
2072 if(psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
2081 /* don't laugh, static pagetables */
2082 static void srmmu_check_pgt_cache(int low
, int high
)
2086 extern unsigned long spwin_mmu_patchme
, fwin_mmu_patchme
,
2087 tsetup_mmu_patchme
, rtrap_mmu_patchme
;
2089 extern unsigned long spwin_srmmu_stackchk
, srmmu_fwin_stackchk
,
2090 tsetup_srmmu_stackchk
, srmmu_rett_stackchk
;
2092 extern unsigned long srmmu_fault
;
2094 #define PATCH_BRANCH(insn, dest) do { \
2097 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2100 static void __init
patch_window_trap_handlers(void)
2102 unsigned long *iaddr
, *daddr
;
2104 PATCH_BRANCH(spwin_mmu_patchme
, spwin_srmmu_stackchk
);
2105 PATCH_BRANCH(fwin_mmu_patchme
, srmmu_fwin_stackchk
);
2106 PATCH_BRANCH(tsetup_mmu_patchme
, tsetup_srmmu_stackchk
);
2107 PATCH_BRANCH(rtrap_mmu_patchme
, srmmu_rett_stackchk
);
2108 PATCH_BRANCH(sparc_ttable
[SP_TRAP_TFLT
].inst_three
, srmmu_fault
);
2109 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DFLT
].inst_three
, srmmu_fault
);
2110 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DACC
].inst_three
, srmmu_fault
);
2114 /* Local cross-calls. */
2115 static void smp_flush_page_for_dma(unsigned long page
)
2117 xc1((smpfunc_t
) BTFIXUP_CALL(local_flush_page_for_dma
), page
);
2118 local_flush_page_for_dma(page
);
2123 static pte_t
srmmu_pgoff_to_pte(unsigned long pgoff
)
2125 return __pte((pgoff
<< SRMMU_PTE_FILE_SHIFT
) | SRMMU_FILE
);
2128 static unsigned long srmmu_pte_to_pgoff(pte_t pte
)
2130 return pte_val(pte
) >> SRMMU_PTE_FILE_SHIFT
;
2133 /* Load up routines and constants for sun4m and sun4d mmu */
2134 void __init
ld_mmu_srmmu(void)
2136 extern void ld_mmu_iommu(void);
2137 extern void ld_mmu_iounit(void);
2138 extern void ___xchg32_sun4md(void);
2140 BTFIXUPSET_SIMM13(pgdir_shift
, SRMMU_PGDIR_SHIFT
);
2141 BTFIXUPSET_SETHI(pgdir_size
, SRMMU_PGDIR_SIZE
);
2142 BTFIXUPSET_SETHI(pgdir_mask
, SRMMU_PGDIR_MASK
);
2144 BTFIXUPSET_SIMM13(ptrs_per_pmd
, SRMMU_PTRS_PER_PMD
);
2145 BTFIXUPSET_SIMM13(ptrs_per_pgd
, SRMMU_PTRS_PER_PGD
);
2147 BTFIXUPSET_INT(page_none
, pgprot_val(SRMMU_PAGE_NONE
));
2148 BTFIXUPSET_INT(page_shared
, pgprot_val(SRMMU_PAGE_SHARED
));
2149 BTFIXUPSET_INT(page_copy
, pgprot_val(SRMMU_PAGE_COPY
));
2150 BTFIXUPSET_INT(page_readonly
, pgprot_val(SRMMU_PAGE_RDONLY
));
2151 BTFIXUPSET_INT(page_kernel
, pgprot_val(SRMMU_PAGE_KERNEL
));
2152 page_kernel
= pgprot_val(SRMMU_PAGE_KERNEL
);
2153 pg_iobits
= SRMMU_VALID
| SRMMU_WRITE
| SRMMU_REF
;
2157 BTFIXUPSET_CALL(___xchg32
, ___xchg32_sun4md
, BTFIXUPCALL_SWAPG1G2
);
2159 BTFIXUPSET_CALL(do_check_pgt_cache
, srmmu_check_pgt_cache
, BTFIXUPCALL_NOP
);
2161 BTFIXUPSET_CALL(set_pte
, srmmu_set_pte
, BTFIXUPCALL_SWAPO0O1
);
2162 BTFIXUPSET_CALL(switch_mm
, srmmu_switch_mm
, BTFIXUPCALL_NORM
);
2164 BTFIXUPSET_CALL(pte_pfn
, srmmu_pte_pfn
, BTFIXUPCALL_NORM
);
2165 BTFIXUPSET_CALL(pmd_page
, srmmu_pmd_page
, BTFIXUPCALL_NORM
);
2166 BTFIXUPSET_CALL(pgd_page
, srmmu_pgd_page
, BTFIXUPCALL_NORM
);
2168 BTFIXUPSET_SETHI(none_mask
, 0xF0000000);
2170 BTFIXUPSET_CALL(pte_present
, srmmu_pte_present
, BTFIXUPCALL_NORM
);
2171 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_SWAPO0G0
);
2172 BTFIXUPSET_CALL(pte_read
, srmmu_pte_read
, BTFIXUPCALL_NORM
);
2174 BTFIXUPSET_CALL(pmd_bad
, srmmu_pmd_bad
, BTFIXUPCALL_NORM
);
2175 BTFIXUPSET_CALL(pmd_present
, srmmu_pmd_present
, BTFIXUPCALL_NORM
);
2176 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_SWAPO0G0
);
2178 BTFIXUPSET_CALL(pgd_none
, srmmu_pgd_none
, BTFIXUPCALL_NORM
);
2179 BTFIXUPSET_CALL(pgd_bad
, srmmu_pgd_bad
, BTFIXUPCALL_NORM
);
2180 BTFIXUPSET_CALL(pgd_present
, srmmu_pgd_present
, BTFIXUPCALL_NORM
);
2181 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_SWAPO0G0
);
2183 BTFIXUPSET_CALL(mk_pte
, srmmu_mk_pte
, BTFIXUPCALL_NORM
);
2184 BTFIXUPSET_CALL(mk_pte_phys
, srmmu_mk_pte_phys
, BTFIXUPCALL_NORM
);
2185 BTFIXUPSET_CALL(mk_pte_io
, srmmu_mk_pte_io
, BTFIXUPCALL_NORM
);
2186 BTFIXUPSET_CALL(pgd_set
, srmmu_pgd_set
, BTFIXUPCALL_NORM
);
2187 BTFIXUPSET_CALL(pmd_set
, srmmu_pmd_set
, BTFIXUPCALL_NORM
);
2188 BTFIXUPSET_CALL(pmd_populate
, srmmu_pmd_populate
, BTFIXUPCALL_NORM
);
2190 BTFIXUPSET_INT(pte_modify_mask
, SRMMU_CHG_MASK
);
2191 BTFIXUPSET_CALL(pmd_offset
, srmmu_pmd_offset
, BTFIXUPCALL_NORM
);
2192 BTFIXUPSET_CALL(pte_offset_kernel
, srmmu_pte_offset
, BTFIXUPCALL_NORM
);
2194 BTFIXUPSET_CALL(free_pte_fast
, srmmu_free_pte_fast
, BTFIXUPCALL_NORM
);
2195 BTFIXUPSET_CALL(pte_free
, srmmu_pte_free
, BTFIXUPCALL_NORM
);
2196 BTFIXUPSET_CALL(pte_alloc_one_kernel
, srmmu_pte_alloc_one_kernel
, BTFIXUPCALL_NORM
);
2197 BTFIXUPSET_CALL(pte_alloc_one
, srmmu_pte_alloc_one
, BTFIXUPCALL_NORM
);
2198 BTFIXUPSET_CALL(free_pmd_fast
, srmmu_pmd_free
, BTFIXUPCALL_NORM
);
2199 BTFIXUPSET_CALL(pmd_alloc_one
, srmmu_pmd_alloc_one
, BTFIXUPCALL_NORM
);
2200 BTFIXUPSET_CALL(free_pgd_fast
, srmmu_free_pgd_fast
, BTFIXUPCALL_NORM
);
2201 BTFIXUPSET_CALL(get_pgd_fast
, srmmu_get_pgd_fast
, BTFIXUPCALL_NORM
);
2203 BTFIXUPSET_HALF(pte_writei
, SRMMU_WRITE
);
2204 BTFIXUPSET_HALF(pte_dirtyi
, SRMMU_DIRTY
);
2205 BTFIXUPSET_HALF(pte_youngi
, SRMMU_REF
);
2206 BTFIXUPSET_HALF(pte_filei
, SRMMU_FILE
);
2207 BTFIXUPSET_HALF(pte_wrprotecti
, SRMMU_WRITE
);
2208 BTFIXUPSET_HALF(pte_mkcleani
, SRMMU_DIRTY
);
2209 BTFIXUPSET_HALF(pte_mkoldi
, SRMMU_REF
);
2210 BTFIXUPSET_CALL(pte_mkwrite
, srmmu_pte_mkwrite
, BTFIXUPCALL_ORINT(SRMMU_WRITE
));
2211 BTFIXUPSET_CALL(pte_mkdirty
, srmmu_pte_mkdirty
, BTFIXUPCALL_ORINT(SRMMU_DIRTY
));
2212 BTFIXUPSET_CALL(pte_mkyoung
, srmmu_pte_mkyoung
, BTFIXUPCALL_ORINT(SRMMU_REF
));
2213 BTFIXUPSET_CALL(update_mmu_cache
, srmmu_update_mmu_cache
, BTFIXUPCALL_NOP
);
2214 BTFIXUPSET_CALL(destroy_context
, srmmu_destroy_context
, BTFIXUPCALL_NORM
);
2216 BTFIXUPSET_CALL(sparc_mapiorange
, srmmu_mapiorange
, BTFIXUPCALL_NORM
);
2217 BTFIXUPSET_CALL(sparc_unmapiorange
, srmmu_unmapiorange
, BTFIXUPCALL_NORM
);
2219 BTFIXUPSET_CALL(__swp_type
, srmmu_swp_type
, BTFIXUPCALL_NORM
);
2220 BTFIXUPSET_CALL(__swp_offset
, srmmu_swp_offset
, BTFIXUPCALL_NORM
);
2221 BTFIXUPSET_CALL(__swp_entry
, srmmu_swp_entry
, BTFIXUPCALL_NORM
);
2223 BTFIXUPSET_CALL(mmu_info
, srmmu_mmu_info
, BTFIXUPCALL_NORM
);
2225 BTFIXUPSET_CALL(alloc_thread_info
, srmmu_alloc_thread_info
, BTFIXUPCALL_NORM
);
2226 BTFIXUPSET_CALL(free_thread_info
, srmmu_free_thread_info
, BTFIXUPCALL_NORM
);
2228 BTFIXUPSET_CALL(pte_to_pgoff
, srmmu_pte_to_pgoff
, BTFIXUPCALL_NORM
);
2229 BTFIXUPSET_CALL(pgoff_to_pte
, srmmu_pgoff_to_pte
, BTFIXUPCALL_NORM
);
2232 patch_window_trap_handlers();
2235 /* El switcheroo... */
2237 BTFIXUPCOPY_CALL(local_flush_cache_all
, flush_cache_all
);
2238 BTFIXUPCOPY_CALL(local_flush_cache_mm
, flush_cache_mm
);
2239 BTFIXUPCOPY_CALL(local_flush_cache_range
, flush_cache_range
);
2240 BTFIXUPCOPY_CALL(local_flush_cache_page
, flush_cache_page
);
2241 BTFIXUPCOPY_CALL(local_flush_tlb_all
, flush_tlb_all
);
2242 BTFIXUPCOPY_CALL(local_flush_tlb_mm
, flush_tlb_mm
);
2243 BTFIXUPCOPY_CALL(local_flush_tlb_range
, flush_tlb_range
);
2244 BTFIXUPCOPY_CALL(local_flush_tlb_page
, flush_tlb_page
);
2245 BTFIXUPCOPY_CALL(local_flush_page_to_ram
, __flush_page_to_ram
);
2246 BTFIXUPCOPY_CALL(local_flush_sig_insns
, flush_sig_insns
);
2247 BTFIXUPCOPY_CALL(local_flush_page_for_dma
, flush_page_for_dma
);
2249 BTFIXUPSET_CALL(flush_cache_all
, smp_flush_cache_all
, BTFIXUPCALL_NORM
);
2250 BTFIXUPSET_CALL(flush_cache_mm
, smp_flush_cache_mm
, BTFIXUPCALL_NORM
);
2251 BTFIXUPSET_CALL(flush_cache_range
, smp_flush_cache_range
, BTFIXUPCALL_NORM
);
2252 BTFIXUPSET_CALL(flush_cache_page
, smp_flush_cache_page
, BTFIXUPCALL_NORM
);
2253 if (sparc_cpu_model
!= sun4d
) {
2254 BTFIXUPSET_CALL(flush_tlb_all
, smp_flush_tlb_all
, BTFIXUPCALL_NORM
);
2255 BTFIXUPSET_CALL(flush_tlb_mm
, smp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
2256 BTFIXUPSET_CALL(flush_tlb_range
, smp_flush_tlb_range
, BTFIXUPCALL_NORM
);
2257 BTFIXUPSET_CALL(flush_tlb_page
, smp_flush_tlb_page
, BTFIXUPCALL_NORM
);
2259 BTFIXUPSET_CALL(__flush_page_to_ram
, smp_flush_page_to_ram
, BTFIXUPCALL_NORM
);
2260 BTFIXUPSET_CALL(flush_sig_insns
, smp_flush_sig_insns
, BTFIXUPCALL_NORM
);
2261 BTFIXUPSET_CALL(flush_page_for_dma
, smp_flush_page_for_dma
, BTFIXUPCALL_NORM
);
2264 if (sparc_cpu_model
== sun4d
)
2269 if (sparc_cpu_model
== sun4d
)