1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
18 #include <asm/iommu.h>
21 #include <asm/oplib.h>
24 #include "iommu_common.h"
26 /* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
30 #define sabre_read(__reg) \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
38 #define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR 0x0030UL
47 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56 #define SABRE_UECE_AFAR 0x0038UL
57 #define SABRE_CE_AFSR 0x0040UL
58 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL 0x0200UL
68 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE 0x0208UL
85 #define SABRE_IOMMU_FLUSH 0x0210UL
86 #define SABRE_IMAP_A_SLOT0 0x0c00UL
87 #define SABRE_IMAP_B_SLOT0 0x0c20UL
88 #define SABRE_IMAP_SCSI 0x1000UL
89 #define SABRE_IMAP_ETH 0x1008UL
90 #define SABRE_IMAP_BPP 0x1010UL
91 #define SABRE_IMAP_AU_REC 0x1018UL
92 #define SABRE_IMAP_AU_PLAY 0x1020UL
93 #define SABRE_IMAP_PFAIL 0x1028UL
94 #define SABRE_IMAP_KMS 0x1030UL
95 #define SABRE_IMAP_FLPY 0x1038UL
96 #define SABRE_IMAP_SHW 0x1040UL
97 #define SABRE_IMAP_KBD 0x1048UL
98 #define SABRE_IMAP_MS 0x1050UL
99 #define SABRE_IMAP_SER 0x1058UL
100 #define SABRE_IMAP_UE 0x1070UL
101 #define SABRE_IMAP_CE 0x1078UL
102 #define SABRE_IMAP_PCIERR 0x1080UL
103 #define SABRE_IMAP_GFX 0x1098UL
104 #define SABRE_IMAP_EUPA 0x10a0UL
105 #define SABRE_ICLR_A_SLOT0 0x1400UL
106 #define SABRE_ICLR_B_SLOT0 0x1480UL
107 #define SABRE_ICLR_SCSI 0x1800UL
108 #define SABRE_ICLR_ETH 0x1808UL
109 #define SABRE_ICLR_BPP 0x1810UL
110 #define SABRE_ICLR_AU_REC 0x1818UL
111 #define SABRE_ICLR_AU_PLAY 0x1820UL
112 #define SABRE_ICLR_PFAIL 0x1828UL
113 #define SABRE_ICLR_KMS 0x1830UL
114 #define SABRE_ICLR_FLPY 0x1838UL
115 #define SABRE_ICLR_SHW 0x1840UL
116 #define SABRE_ICLR_KBD 0x1848UL
117 #define SABRE_ICLR_MS 0x1850UL
118 #define SABRE_ICLR_SER 0x1858UL
119 #define SABRE_ICLR_UE 0x1870UL
120 #define SABRE_ICLR_CE 0x1878UL
121 #define SABRE_ICLR_PCIERR 0x1880UL
122 #define SABRE_WRSYNC 0x1c20UL
123 #define SABRE_PCICTRL 0x2000UL
124 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR 0x2010UL
133 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143 #define SABRE_PIOAFAR 0x2018UL
144 #define SABRE_PCIDIAG 0x2020UL
145 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150 #define SABRE_PCITASR 0x2028UL
151 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG 0x5000UL
160 #define SABRE_DMABUF_DIAGLO 0x5100UL
161 #define SABRE_DMABUF_DIAGHI 0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG 0xa400UL
165 #define SABRE_IOMMU_TCDIAG 0xa408UL
166 #define SABRE_IOMMU_TAG 0xa580UL
167 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA 0xa600UL
174 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE 0xa800UL
179 #define SABRE_OBIO_IRQSTATE 0xa808UL
180 #define SABRE_FFBCFG 0xf000UL
181 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0 0xf010UL
184 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189 #define SABRE_MCCTRL1 0xf018UL
190 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL 0xf020UL
202 #define SABRE_CONFIGSPACE 0x001000000UL
203 #define SABRE_IOSPACE 0x002000000UL
204 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
205 #define SABRE_MEMSPACE 0x100000000UL
206 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
209 * configuration space address format:
211 * 32 24 23 16 15 11 10 8 7 2 1 0
212 * ---------------------------------------------------------
213 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214 * ---------------------------------------------------------
216 #define SABRE_CONFIG_BASE(PBM) \
217 ((PBM)->config_space | (1UL << 24))
218 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
219 (((unsigned long)(BUS) << 16) | \
220 ((unsigned long)(DEVFN) << 8) | \
221 ((unsigned long)(REG)))
223 static int hummingbird_p
;
224 static struct pci_bus
*sabre_root_bus
;
226 static void *sabre_pci_config_mkaddr(struct pci_pbm_info
*pbm
,
234 (SABRE_CONFIG_BASE(pbm
) |
235 SABRE_CONFIG_ENCODE(bus
, devfn
, where
));
238 static int sabre_out_of_range(unsigned char devfn
)
243 return (((PCI_SLOT(devfn
) == 0) && (PCI_FUNC(devfn
) > 0)) ||
244 ((PCI_SLOT(devfn
) == 1) && (PCI_FUNC(devfn
) > 1)) ||
245 (PCI_SLOT(devfn
) > 1));
248 static int __sabre_out_of_range(struct pci_pbm_info
*pbm
,
255 return ((pbm
->parent
== 0) ||
256 ((pbm
== &pbm
->parent
->pbm_B
) &&
257 (bus
== pbm
->pci_first_busno
) &&
258 PCI_SLOT(devfn
) > 8) ||
259 ((pbm
== &pbm
->parent
->pbm_A
) &&
260 (bus
== pbm
->pci_first_busno
) &&
261 PCI_SLOT(devfn
) > 8));
264 static int __sabre_read_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
265 int where
, int size
, u32
*value
)
267 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
268 unsigned char bus
= bus_dev
->number
;
285 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
287 return PCIBIOS_SUCCESSFUL
;
289 if (__sabre_out_of_range(pbm
, bus
, devfn
))
290 return PCIBIOS_SUCCESSFUL
;
294 pci_config_read8((u8
*) addr
, &tmp8
);
300 printk("pci_read_config_word: misaligned reg [%x]\n",
302 return PCIBIOS_SUCCESSFUL
;
304 pci_config_read16((u16
*) addr
, &tmp16
);
310 printk("pci_read_config_dword: misaligned reg [%x]\n",
312 return PCIBIOS_SUCCESSFUL
;
314 pci_config_read32(addr
, value
);
318 return PCIBIOS_SUCCESSFUL
;
321 static int sabre_read_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
322 int where
, int size
, u32
*value
)
324 if (!bus
->number
&& sabre_out_of_range(devfn
)) {
336 return PCIBIOS_SUCCESSFUL
;
339 if (bus
->number
|| PCI_SLOT(devfn
))
340 return __sabre_read_pci_cfg(bus
, devfn
, where
, size
, value
);
342 /* When accessing PCI config space of the PCI controller itself (bus
343 * 0, device slot 0, function 0) there are restrictions. Each
344 * register must be accessed as it's natural size. Thus, for example
345 * the Vendor ID must be accessed as a 16-bit quantity.
354 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
359 *value
= tmp16
& 0xff;
361 return __sabre_read_pci_cfg(bus
, devfn
, where
, 1, value
);
366 return __sabre_read_pci_cfg(bus
, devfn
, where
, 2, value
);
371 __sabre_read_pci_cfg(bus
, devfn
, where
, 1, &tmp32
);
374 __sabre_read_pci_cfg(bus
, devfn
, where
+ 1, 1, &tmp32
);
384 sabre_read_pci_cfg(bus
, devfn
, where
, 2, &tmp32
);
387 sabre_read_pci_cfg(bus
, devfn
, where
+ 2, 2, &tmp32
);
389 *value
|= tmp16
<< 16;
393 return PCIBIOS_SUCCESSFUL
;
396 static int __sabre_write_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
397 int where
, int size
, u32 value
)
399 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
400 unsigned char bus
= bus_dev
->number
;
403 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
405 return PCIBIOS_SUCCESSFUL
;
407 if (__sabre_out_of_range(pbm
, bus
, devfn
))
408 return PCIBIOS_SUCCESSFUL
;
412 pci_config_write8((u8
*) addr
, value
);
417 printk("pci_write_config_word: misaligned reg [%x]\n",
419 return PCIBIOS_SUCCESSFUL
;
421 pci_config_write16((u16
*) addr
, value
);
426 printk("pci_write_config_dword: misaligned reg [%x]\n",
428 return PCIBIOS_SUCCESSFUL
;
430 pci_config_write32(addr
, value
);
434 return PCIBIOS_SUCCESSFUL
;
437 static int sabre_write_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
438 int where
, int size
, u32 value
)
441 return __sabre_write_pci_cfg(bus
, devfn
, where
, size
, value
);
443 if (sabre_out_of_range(devfn
))
444 return PCIBIOS_SUCCESSFUL
;
452 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
462 return __sabre_write_pci_cfg(bus
, devfn
, where
& ~1, 2, tmp32
);
464 return __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
);
468 return __sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
);
470 __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
& 0xff);
471 __sabre_write_pci_cfg(bus
, devfn
, where
+ 1, 1, value
>> 8);
475 sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
& 0xffff);
476 sabre_write_pci_cfg(bus
, devfn
, where
+ 2, 2, value
>> 16);
479 return PCIBIOS_SUCCESSFUL
;
482 static struct pci_ops sabre_ops
= {
483 .read
= sabre_read_pci_cfg
,
484 .write
= sabre_write_pci_cfg
,
487 static unsigned long sabre_pcislot_imap_offset(unsigned long ino
)
489 unsigned int bus
= (ino
& 0x10) >> 4;
490 unsigned int slot
= (ino
& 0x0c) >> 2;
493 return SABRE_IMAP_A_SLOT0
+ (slot
* 8);
495 return SABRE_IMAP_B_SLOT0
+ (slot
* 8);
498 static unsigned long __onboard_imap_off
[] = {
499 /*0x20*/ SABRE_IMAP_SCSI
,
500 /*0x21*/ SABRE_IMAP_ETH
,
501 /*0x22*/ SABRE_IMAP_BPP
,
502 /*0x23*/ SABRE_IMAP_AU_REC
,
503 /*0x24*/ SABRE_IMAP_AU_PLAY
,
504 /*0x25*/ SABRE_IMAP_PFAIL
,
505 /*0x26*/ SABRE_IMAP_KMS
,
506 /*0x27*/ SABRE_IMAP_FLPY
,
507 /*0x28*/ SABRE_IMAP_SHW
,
508 /*0x29*/ SABRE_IMAP_KBD
,
509 /*0x2a*/ SABRE_IMAP_MS
,
510 /*0x2b*/ SABRE_IMAP_SER
,
511 /*0x2c*/ 0 /* reserved */,
512 /*0x2d*/ 0 /* reserved */,
513 /*0x2e*/ SABRE_IMAP_UE
,
514 /*0x2f*/ SABRE_IMAP_CE
,
515 /*0x30*/ SABRE_IMAP_PCIERR
,
517 #define SABRE_ONBOARD_IRQ_BASE 0x20
518 #define SABRE_ONBOARD_IRQ_LAST 0x30
519 #define sabre_onboard_imap_offset(__ino) \
520 __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
522 #define sabre_iclr_offset(ino) \
523 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
524 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
526 /* PCI SABRE INO number to Sparc PIL level. */
527 static unsigned char sabre_pil_table
[] = {
528 /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */
529 /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */
530 /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */
531 /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */
532 /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */
533 /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */
534 /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */
535 /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */
536 /*0x20*/4, /* SCSI */
537 /*0x21*/5, /* Ethernet */
538 /*0x22*/8, /* Parallel Port */
539 /*0x23*/13, /* Audio Record */
540 /*0x24*/14, /* Audio Playback */
541 /*0x25*/15, /* PowerFail */
542 /*0x26*/4, /* second SCSI */
543 /*0x27*/11, /* Floppy */
544 /*0x28*/4, /* Spare Hardware */
545 /*0x29*/9, /* Keyboard */
546 /*0x2a*/4, /* Mouse */
547 /*0x2b*/12, /* Serial */
548 /*0x2c*/10, /* Timer 0 */
549 /*0x2d*/11, /* Timer 1 */
550 /*0x2e*/15, /* Uncorrectable ECC */
551 /*0x2f*/15, /* Correctable ECC */
552 /*0x30*/15, /* PCI Bus A Error */
553 /*0x31*/15, /* PCI Bus B Error */
554 /*0x32*/15, /* Power Management */
557 static int __init
sabre_ino_to_pil(struct pci_dev
*pdev
, unsigned int ino
)
562 pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
563 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_USB
)
566 ret
= sabre_pil_table
[ino
];
567 if (ret
== 0 && pdev
== NULL
) {
569 } else if (ret
== 0) {
570 switch ((pdev
->class >> 16) & 0xff) {
571 case PCI_BASE_CLASS_STORAGE
:
575 case PCI_BASE_CLASS_NETWORK
:
579 case PCI_BASE_CLASS_DISPLAY
:
583 case PCI_BASE_CLASS_MULTIMEDIA
:
584 case PCI_BASE_CLASS_MEMORY
:
585 case PCI_BASE_CLASS_BRIDGE
:
586 case PCI_BASE_CLASS_SERIAL
:
598 static unsigned int __init
sabre_irq_build(struct pci_pbm_info
*pbm
,
599 struct pci_dev
*pdev
,
602 struct ino_bucket
*bucket
;
603 unsigned long imap
, iclr
;
604 unsigned long imap_off
, iclr_off
;
605 int pil
, inofixup
= 0;
608 if (ino
< SABRE_ONBOARD_IRQ_BASE
) {
610 imap_off
= sabre_pcislot_imap_offset(ino
);
613 if (ino
> SABRE_ONBOARD_IRQ_LAST
) {
614 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino
);
617 imap_off
= sabre_onboard_imap_offset(ino
);
620 /* Now build the IRQ bucket. */
621 pil
= sabre_ino_to_pil(pdev
, ino
);
623 if (PIL_RESERVED(pil
))
626 imap
= pbm
->controller_regs
+ imap_off
;
629 iclr_off
= sabre_iclr_offset(ino
);
630 iclr
= pbm
->controller_regs
+ iclr_off
;
633 if ((ino
& 0x20) == 0)
634 inofixup
= ino
& 0x03;
636 bucket
= __bucket(build_irq(pil
, inofixup
, iclr
, imap
));
637 bucket
->flags
|= IBF_PCI
;
640 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
642 /* When a device lives behind a bridge deeper in the
643 * PCI bus topology than APB, a special sequence must
644 * run to make sure all pending DMA transfers at the
645 * time of IRQ delivery are visible in the coherency
646 * domain by the cpu. This sequence is to perform
647 * a read on the far side of the non-APB bridge, then
648 * perform a read of Sabre's DMA write-sync register.
650 * Currently, the PCI_CONFIG register for the device
651 * is used for this read from the far side of the bridge.
653 if (pdev
->bus
->number
!= pcp
->pbm
->pci_first_busno
) {
654 bucket
->flags
|= IBF_DMA_SYNC
;
655 bucket
->synctab_ent
= dma_sync_reg_table_entry
++;
656 dma_sync_reg_table
[bucket
->synctab_ent
] =
657 (unsigned long) sabre_pci_config_mkaddr(
659 pdev
->bus
->number
, pdev
->devfn
, PCI_COMMAND
);
662 return __irq(bucket
);
665 /* SABRE error handling support. */
666 static void sabre_check_iommu_error(struct pci_controller_info
*p
,
670 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
671 unsigned long iommu_tag
[16];
672 unsigned long iommu_data
[16];
677 spin_lock_irqsave(&iommu
->lock
, flags
);
678 control
= sabre_read(iommu
->iommu_control
);
679 if (control
& SABRE_IOMMUCTRL_ERR
) {
682 /* Clear the error encountered bit.
683 * NOTE: On Sabre this is write 1 to clear,
684 * which is different from Psycho.
686 sabre_write(iommu
->iommu_control
, control
);
687 switch((control
& SABRE_IOMMUCTRL_ERRSTS
) >> 25UL) {
689 type_string
= "Invalid Error";
692 type_string
= "ECC Error";
695 type_string
= "Unknown";
698 printk("SABRE%d: IOMMU Error, type[%s]\n",
699 p
->index
, type_string
);
701 /* Enter diagnostic mode and probe for error'd
702 * entries in the IOTLB.
704 control
&= ~(SABRE_IOMMUCTRL_ERRSTS
| SABRE_IOMMUCTRL_ERR
);
705 sabre_write(iommu
->iommu_control
,
706 (control
| SABRE_IOMMUCTRL_DENAB
));
707 for (i
= 0; i
< 16; i
++) {
708 unsigned long base
= p
->pbm_A
.controller_regs
;
711 sabre_read(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL));
713 sabre_read(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL));
714 sabre_write(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
715 sabre_write(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
717 sabre_write(iommu
->iommu_control
, control
);
719 for (i
= 0; i
< 16; i
++) {
720 unsigned long tag
, data
;
723 if (!(tag
& SABRE_IOMMUTAG_ERR
))
726 data
= iommu_data
[i
];
727 switch((tag
& SABRE_IOMMUTAG_ERRSTS
) >> 23UL) {
729 type_string
= "Invalid Error";
732 type_string
= "ECC Error";
735 type_string
= "Unknown";
738 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
739 p
->index
, i
, tag
, type_string
,
740 ((tag
& SABRE_IOMMUTAG_WRITE
) ? 1 : 0),
741 ((tag
& SABRE_IOMMUTAG_SIZE
) ? 64 : 8),
742 ((tag
& SABRE_IOMMUTAG_VPN
) << IOMMU_PAGE_SHIFT
));
743 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
745 ((data
& SABRE_IOMMUDATA_VALID
) ? 1 : 0),
746 ((data
& SABRE_IOMMUDATA_USED
) ? 1 : 0),
747 ((data
& SABRE_IOMMUDATA_CACHE
) ? 1 : 0),
748 ((data
& SABRE_IOMMUDATA_PPN
) << IOMMU_PAGE_SHIFT
));
751 spin_unlock_irqrestore(&iommu
->lock
, flags
);
754 static irqreturn_t
sabre_ue_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
756 struct pci_controller_info
*p
= dev_id
;
757 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_UE_AFSR
;
758 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
759 unsigned long afsr
, afar
, error_bits
;
762 /* Latch uncorrectable error status. */
763 afar
= sabre_read(afar_reg
);
764 afsr
= sabre_read(afsr_reg
);
766 /* Clear the primary/secondary error status bits. */
768 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
769 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
770 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
);
773 sabre_write(afsr_reg
, error_bits
);
776 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
778 ((error_bits
& SABRE_UEAFSR_PDRD
) ?
780 ((error_bits
& SABRE_UEAFSR_PDWR
) ?
781 "DMA Write" : "???")),
782 ((error_bits
& SABRE_UEAFSR_PDTE
) ?
783 ":Translation Error" : ""));
784 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
786 (afsr
& SABRE_UEAFSR_BMSK
) >> 32UL,
787 (afsr
& SABRE_UEAFSR_OFF
) >> 29UL,
788 ((afsr
& SABRE_UEAFSR_BLK
) ? 1 : 0));
789 printk("SABRE%d: UE AFAR [%016lx]\n", p
->index
, afar
);
790 printk("SABRE%d: UE Secondary errors [", p
->index
);
792 if (afsr
& SABRE_UEAFSR_SDRD
) {
794 printk("(DMA Read)");
796 if (afsr
& SABRE_UEAFSR_SDWR
) {
798 printk("(DMA Write)");
800 if (afsr
& SABRE_UEAFSR_SDTE
) {
802 printk("(Translation Error)");
808 /* Interrogate IOMMU for error status. */
809 sabre_check_iommu_error(p
, afsr
, afar
);
814 static irqreturn_t
sabre_ce_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
816 struct pci_controller_info
*p
= dev_id
;
817 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_CE_AFSR
;
818 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
819 unsigned long afsr
, afar
, error_bits
;
822 /* Latch error status. */
823 afar
= sabre_read(afar_reg
);
824 afsr
= sabre_read(afsr_reg
);
826 /* Clear primary/secondary error status bits. */
828 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
829 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
);
832 sabre_write(afsr_reg
, error_bits
);
835 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
837 ((error_bits
& SABRE_CEAFSR_PDRD
) ?
839 ((error_bits
& SABRE_CEAFSR_PDWR
) ?
840 "DMA Write" : "???")));
842 /* XXX Use syndrome and afar to print out module string just like
843 * XXX UDB CE trap handler does... -DaveM
845 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
848 (afsr
& SABRE_CEAFSR_ESYND
) >> 48UL,
849 (afsr
& SABRE_CEAFSR_BMSK
) >> 32UL,
850 (afsr
& SABRE_CEAFSR_OFF
) >> 29UL,
851 ((afsr
& SABRE_CEAFSR_BLK
) ? 1 : 0));
852 printk("SABRE%d: CE AFAR [%016lx]\n", p
->index
, afar
);
853 printk("SABRE%d: CE Secondary errors [", p
->index
);
855 if (afsr
& SABRE_CEAFSR_SDRD
) {
857 printk("(DMA Read)");
859 if (afsr
& SABRE_CEAFSR_SDWR
) {
861 printk("(DMA Write)");
870 static irqreturn_t
sabre_pcierr_intr_other(struct pci_controller_info
*p
)
872 unsigned long csr_reg
, csr
, csr_error_bits
;
873 irqreturn_t ret
= IRQ_NONE
;
876 csr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
;
877 csr
= sabre_read(csr_reg
);
879 csr
& SABRE_PCICTRL_SERR
;
880 if (csr_error_bits
) {
881 /* Clear the errors. */
882 sabre_write(csr_reg
, csr
);
885 if (csr_error_bits
& SABRE_PCICTRL_SERR
)
886 printk("SABRE%d: PCI SERR signal asserted.\n",
890 pci_read_config_word(sabre_root_bus
->self
,
892 if (stat
& (PCI_STATUS_PARITY
|
893 PCI_STATUS_SIG_TARGET_ABORT
|
894 PCI_STATUS_REC_TARGET_ABORT
|
895 PCI_STATUS_REC_MASTER_ABORT
|
896 PCI_STATUS_SIG_SYSTEM_ERROR
)) {
897 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
899 pci_write_config_word(sabre_root_bus
->self
,
906 static irqreturn_t
sabre_pcierr_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
908 struct pci_controller_info
*p
= dev_id
;
909 unsigned long afsr_reg
, afar_reg
;
910 unsigned long afsr
, afar
, error_bits
;
913 afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFSR
;
914 afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFAR
;
916 /* Latch error status. */
917 afar
= sabre_read(afar_reg
);
918 afsr
= sabre_read(afsr_reg
);
920 /* Clear primary/secondary error status bits. */
922 (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_PTA
|
923 SABRE_PIOAFSR_PRTRY
| SABRE_PIOAFSR_PPERR
|
924 SABRE_PIOAFSR_SMA
| SABRE_PIOAFSR_STA
|
925 SABRE_PIOAFSR_SRTRY
| SABRE_PIOAFSR_SPERR
);
927 return sabre_pcierr_intr_other(p
);
928 sabre_write(afsr_reg
, error_bits
);
931 printk("SABRE%d: PCI Error, primary error type[%s]\n",
933 (((error_bits
& SABRE_PIOAFSR_PMA
) ?
935 ((error_bits
& SABRE_PIOAFSR_PTA
) ?
937 ((error_bits
& SABRE_PIOAFSR_PRTRY
) ?
938 "Excessive Retries" :
939 ((error_bits
& SABRE_PIOAFSR_PPERR
) ?
940 "Parity Error" : "???"))))));
941 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
943 (afsr
& SABRE_PIOAFSR_BMSK
) >> 32UL,
944 (afsr
& SABRE_PIOAFSR_BLK
) ? 1 : 0);
945 printk("SABRE%d: PCI AFAR [%016lx]\n", p
->index
, afar
);
946 printk("SABRE%d: PCI Secondary errors [", p
->index
);
948 if (afsr
& SABRE_PIOAFSR_SMA
) {
950 printk("(Master Abort)");
952 if (afsr
& SABRE_PIOAFSR_STA
) {
954 printk("(Target Abort)");
956 if (afsr
& SABRE_PIOAFSR_SRTRY
) {
958 printk("(Excessive Retries)");
960 if (afsr
& SABRE_PIOAFSR_SPERR
) {
962 printk("(Parity Error)");
968 /* For the error types shown, scan both PCI buses for devices
969 * which have logged that error type.
972 /* If we see a Target Abort, this could be the result of an
973 * IOMMU translation error of some sort. It is extremely
974 * useful to log this information as usually it indicates
975 * a bug in the IOMMU support code or a PCI device driver.
977 if (error_bits
& (SABRE_PIOAFSR_PTA
| SABRE_PIOAFSR_STA
)) {
978 sabre_check_iommu_error(p
, afsr
, afar
);
979 pci_scan_for_target_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
980 pci_scan_for_target_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
982 if (error_bits
& (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_SMA
)) {
983 pci_scan_for_master_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
984 pci_scan_for_master_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
986 /* For excessive retries, SABRE/PBM will abort the device
987 * and there is no way to specifically check for excessive
988 * retries in the config space status registers. So what
989 * we hope is that we'll catch it via the master/target
993 if (error_bits
& (SABRE_PIOAFSR_PPERR
| SABRE_PIOAFSR_SPERR
)) {
994 pci_scan_for_parity_error(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
995 pci_scan_for_parity_error(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
1001 /* XXX What about PowerFail/PowerManagement??? -DaveM */
1002 #define SABRE_UE_INO 0x2e
1003 #define SABRE_CE_INO 0x2f
1004 #define SABRE_PCIERR_INO 0x30
1005 static void __init
sabre_register_error_handlers(struct pci_controller_info
*p
)
1007 struct pci_pbm_info
*pbm
= &p
->pbm_A
; /* arbitrary */
1008 unsigned long base
= pbm
->controller_regs
;
1009 unsigned long irq
, portid
= pbm
->portid
;
1012 /* We clear the error bits in the appropriate AFSR before
1013 * registering the handler so that we don't get spurious
1016 sabre_write(base
+ SABRE_UE_AFSR
,
1017 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
1018 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
1019 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
));
1020 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_UE_INO
);
1021 if (request_irq(irq
, sabre_ue_intr
,
1022 SA_SHIRQ
, "SABRE UE", p
) < 0) {
1023 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
1028 sabre_write(base
+ SABRE_CE_AFSR
,
1029 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
1030 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
));
1031 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_CE_INO
);
1032 if (request_irq(irq
, sabre_ce_intr
,
1033 SA_SHIRQ
, "SABRE CE", p
) < 0) {
1034 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
1039 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_PCIERR_INO
);
1040 if (request_irq(irq
, sabre_pcierr_intr
,
1041 SA_SHIRQ
, "SABRE PCIERR", p
) < 0) {
1042 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
1047 tmp
= sabre_read(base
+ SABRE_PCICTRL
);
1048 tmp
|= SABRE_PCICTRL_ERREN
;
1049 sabre_write(base
+ SABRE_PCICTRL
, tmp
);
1052 static void __init
sabre_resource_adjust(struct pci_dev
*pdev
,
1053 struct resource
*res
,
1054 struct resource
*root
)
1056 struct pci_pbm_info
*pbm
= pdev
->bus
->sysdata
;
1059 if (res
->flags
& IORESOURCE_IO
)
1060 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
1062 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
1068 static void __init
sabre_base_address_update(struct pci_dev
*pdev
, int resource
)
1070 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
1071 struct pci_pbm_info
*pbm
= pcp
->pbm
;
1072 struct resource
*res
;
1075 int where
, size
, is_64bit
;
1077 res
= &pdev
->resource
[resource
];
1079 where
= PCI_BASE_ADDRESS_0
+ (resource
* 4);
1080 } else if (resource
== PCI_ROM_RESOURCE
) {
1081 where
= pdev
->rom_base_reg
;
1083 /* Somebody might have asked allocation of a non-standard resource */
1088 if (res
->flags
& IORESOURCE_IO
)
1089 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
1091 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
1092 if ((res
->flags
& PCI_BASE_ADDRESS_MEM_TYPE_MASK
)
1093 == PCI_BASE_ADDRESS_MEM_TYPE_64
)
1097 size
= res
->end
- res
->start
;
1098 pci_read_config_dword(pdev
, where
, ®
);
1099 reg
= ((reg
& size
) |
1100 (((u32
)(res
->start
- base
)) & ~size
));
1101 if (resource
== PCI_ROM_RESOURCE
) {
1102 reg
|= PCI_ROM_ADDRESS_ENABLE
;
1103 res
->flags
|= IORESOURCE_ROM_ENABLE
;
1105 pci_write_config_dword(pdev
, where
, reg
);
1107 /* This knows that the upper 32-bits of the address
1108 * must be zero. Our PCI common layer enforces this.
1111 pci_write_config_dword(pdev
, where
+ 4, 0);
1114 static void __init
apb_init(struct pci_controller_info
*p
, struct pci_bus
*sabre_bus
)
1116 struct pci_dev
*pdev
;
1118 list_for_each_entry(pdev
, &sabre_bus
->devices
, bus_list
) {
1120 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1121 pdev
->device
== PCI_DEVICE_ID_SUN_SIMBA
) {
1125 sabre_read_pci_cfg(pdev
->bus
, pdev
->devfn
,
1126 PCI_COMMAND
, 2, &word32
);
1127 word16
= (u16
) word32
;
1128 word16
|= PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
|
1129 PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
|
1131 word32
= (u32
) word16
;
1132 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1133 PCI_COMMAND
, 2, word32
);
1135 /* Status register bits are "write 1 to clear". */
1136 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1137 PCI_STATUS
, 2, 0xffff);
1138 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1139 PCI_SEC_STATUS
, 2, 0xffff);
1141 /* Use a primary/seconday latency timer value
1144 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1145 PCI_LATENCY_TIMER
, 1, 64);
1146 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1147 PCI_SEC_LATENCY_TIMER
, 1, 64);
1149 /* Enable reporting/forwarding of master aborts,
1152 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1153 PCI_BRIDGE_CONTROL
, 1,
1154 (PCI_BRIDGE_CTL_PARITY
|
1155 PCI_BRIDGE_CTL_SERR
|
1156 PCI_BRIDGE_CTL_MASTER_ABORT
));
1161 static struct pcidev_cookie
*alloc_bridge_cookie(struct pci_pbm_info
*pbm
)
1163 struct pcidev_cookie
*cookie
= kmalloc(sizeof(*cookie
), GFP_KERNEL
);
1166 prom_printf("SABRE: Critical allocation failure.\n");
1170 /* All we care about is the PBM. */
1171 memset(cookie
, 0, sizeof(*cookie
));
1177 static void __init
sabre_scan_bus(struct pci_controller_info
*p
)
1180 struct pci_bus
*sabre_bus
, *pbus
;
1181 struct pci_pbm_info
*pbm
;
1182 struct pcidev_cookie
*cookie
;
1185 /* The APB bridge speaks to the Sabre host PCI bridge
1186 * at 66Mhz, but the front side of APB runs at 33Mhz
1187 * for both segments.
1189 p
->pbm_A
.is_66mhz_capable
= 0;
1190 p
->pbm_B
.is_66mhz_capable
= 0;
1192 /* This driver has not been verified to handle
1193 * multiple SABREs yet, so trap this.
1195 * Also note that the SABRE host bridge is hardwired
1199 prom_printf("SABRE: Multiple controllers unsupported.\n");
1204 cookie
= alloc_bridge_cookie(&p
->pbm_A
);
1206 sabre_bus
= pci_scan_bus(p
->pci_first_busno
,
1209 pci_fixup_host_bridge_self(sabre_bus
);
1210 sabre_bus
->self
->sysdata
= cookie
;
1212 sabre_root_bus
= sabre_bus
;
1214 apb_init(p
, sabre_bus
);
1218 list_for_each_entry(pbus
, &sabre_bus
->children
, node
) {
1220 if (pbus
->number
== p
->pbm_A
.pci_first_busno
) {
1222 } else if (pbus
->number
== p
->pbm_B
.pci_first_busno
) {
1227 cookie
= alloc_bridge_cookie(pbm
);
1228 pbus
->self
->sysdata
= cookie
;
1232 pbus
->sysdata
= pbm
;
1233 pbm
->pci_bus
= pbus
;
1234 pci_fill_in_pbm_cookies(pbus
, pbm
, pbm
->prom_node
);
1235 pci_record_assignments(pbm
, pbus
);
1236 pci_assign_unassigned(pbm
, pbus
);
1237 pci_fixup_irq(pbm
, pbus
);
1238 pci_determine_66mhz_disposition(pbm
, pbus
);
1239 pci_setup_busmastering(pbm
, pbus
);
1242 if (!sabres_scanned
) {
1243 /* Hummingbird, no APBs. */
1245 sabre_bus
->sysdata
= pbm
;
1246 pbm
->pci_bus
= sabre_bus
;
1247 pci_fill_in_pbm_cookies(sabre_bus
, pbm
, pbm
->prom_node
);
1248 pci_record_assignments(pbm
, sabre_bus
);
1249 pci_assign_unassigned(pbm
, sabre_bus
);
1250 pci_fixup_irq(pbm
, sabre_bus
);
1251 pci_determine_66mhz_disposition(pbm
, sabre_bus
);
1252 pci_setup_busmastering(pbm
, sabre_bus
);
1255 sabre_register_error_handlers(p
);
1258 static void __init
sabre_iommu_init(struct pci_controller_info
*p
,
1259 int tsbsize
, unsigned long dvma_offset
,
1262 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
1263 unsigned long tsbbase
, i
, order
;
1266 /* Setup initial software IOMMU state. */
1267 spin_lock_init(&iommu
->lock
);
1268 iommu
->iommu_cur_ctx
= 0;
1270 /* Register addresses. */
1271 iommu
->iommu_control
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
;
1272 iommu
->iommu_tsbbase
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
;
1273 iommu
->iommu_flush
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_FLUSH
;
1274 iommu
->write_complete_reg
= p
->pbm_A
.controller_regs
+ SABRE_WRSYNC
;
1275 /* Sabre's IOMMU lacks ctx flushing. */
1276 iommu
->iommu_ctxflush
= 0;
1278 /* Invalidate TLB Entries. */
1279 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1280 control
|= SABRE_IOMMUCTRL_DENAB
;
1281 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1283 for(i
= 0; i
< 16; i
++) {
1284 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
1285 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
1288 /* Leave diag mode enabled for full-flushing done
1292 iommu
->dummy_page
= __get_free_pages(GFP_KERNEL
, 0);
1293 if (!iommu
->dummy_page
) {
1294 prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n");
1297 memset((void *)iommu
->dummy_page
, 0, PAGE_SIZE
);
1298 iommu
->dummy_page_pa
= (unsigned long) __pa(iommu
->dummy_page
);
1300 tsbbase
= __get_free_pages(GFP_KERNEL
, order
= get_order(tsbsize
* 1024 * 8));
1302 prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
1305 iommu
->page_table
= (iopte_t
*)tsbbase
;
1306 iommu
->page_table_map_base
= dvma_offset
;
1307 iommu
->dma_addr_mask
= dma_mask
;
1308 pci_iommu_table_init(iommu
, PAGE_SIZE
<< order
);
1310 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
, __pa(tsbbase
));
1312 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1313 control
&= ~(SABRE_IOMMUCTRL_TSBSZ
| SABRE_IOMMUCTRL_TBWSZ
);
1314 control
|= SABRE_IOMMUCTRL_ENAB
;
1317 control
|= SABRE_IOMMU_TSBSZ_64K
;
1318 iommu
->page_table_sz_bits
= 16;
1321 control
|= SABRE_IOMMU_TSBSZ_128K
;
1322 iommu
->page_table_sz_bits
= 17;
1325 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize
);
1329 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1331 /* We start with no consistent mappings. */
1332 iommu
->lowest_consistent_map
=
1333 1 << (iommu
->page_table_sz_bits
- PBM_LOGCLUSTERS
);
1335 for (i
= 0; i
< PBM_NCLUSTERS
; i
++) {
1336 iommu
->alloc_info
[i
].flush
= 0;
1337 iommu
->alloc_info
[i
].next
= 0;
1341 static void __init
pbm_register_toplevel_resources(struct pci_controller_info
*p
,
1342 struct pci_pbm_info
*pbm
)
1344 char *name
= pbm
->name
;
1345 unsigned long ibase
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1346 unsigned long mbase
= p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
;
1348 unsigned long first
, last
, i
;
1351 sprintf(name
, "SABRE%d PBM%c",
1353 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1354 pbm
->io_space
.name
= pbm
->mem_space
.name
= name
;
1356 devfn
= PCI_DEVFN(1, (pbm
== &p
->pbm_A
) ? 0 : 1);
1357 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_IO_ADDRESS_MAP
);
1359 pci_config_read8(addr
, &map
);
1363 for (i
= 0; i
< 8; i
++) {
1364 if ((map
& (1 << i
)) != 0) {
1371 pbm
->io_space
.start
= ibase
+ (first
<< 21UL);
1372 pbm
->io_space
.end
= ibase
+ (last
<< 21UL) + ((1 << 21UL) - 1);
1373 pbm
->io_space
.flags
= IORESOURCE_IO
;
1375 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_MEM_ADDRESS_MAP
);
1377 pci_config_read8(addr
, &map
);
1381 for (i
= 0; i
< 8; i
++) {
1382 if ((map
& (1 << i
)) != 0) {
1389 pbm
->mem_space
.start
= mbase
+ (first
<< 29UL);
1390 pbm
->mem_space
.end
= mbase
+ (last
<< 29UL) + ((1 << 29UL) - 1);
1391 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1393 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1394 prom_printf("Cannot register PBM-%c's IO space.\n",
1395 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1398 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1399 prom_printf("Cannot register PBM-%c's MEM space.\n",
1400 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1404 /* Register legacy regions if this PBM covers that area. */
1405 if (pbm
->io_space
.start
== ibase
&&
1406 pbm
->mem_space
.start
== mbase
)
1407 pci_register_legacy_regions(&pbm
->io_space
,
1411 static void __init
sabre_pbm_init(struct pci_controller_info
*p
, int sabre_node
, u32 dma_begin
)
1413 struct pci_pbm_info
*pbm
;
1416 int node
, simbas_found
;
1419 node
= prom_getchild(sabre_node
);
1420 while ((node
= prom_searchsiblings(node
, "pci")) != 0) {
1423 err
= prom_getproperty(node
, "model", namebuf
, sizeof(namebuf
));
1424 if ((err
<= 0) || strncmp(namebuf
, "SUNW,simba", err
))
1427 err
= prom_getproperty(node
, "bus-range",
1428 (char *)&busrange
[0], sizeof(busrange
));
1429 if (err
== 0 || err
== -1) {
1430 prom_printf("APB: Error, cannot get PCI bus-range.\n");
1435 if (busrange
[0] == 1)
1439 pbm
->chip_type
= PBM_CHIP_TYPE_SABRE
;
1441 pbm
->prom_node
= node
;
1442 pbm
->pci_first_slot
= 1;
1443 pbm
->pci_first_busno
= busrange
[0];
1444 pbm
->pci_last_busno
= busrange
[1];
1446 prom_getstring(node
, "name", pbm
->prom_name
, sizeof(pbm
->prom_name
));
1447 err
= prom_getproperty(node
, "ranges",
1448 (char *)pbm
->pbm_ranges
,
1449 sizeof(pbm
->pbm_ranges
));
1451 pbm
->num_pbm_ranges
=
1452 (err
/ sizeof(struct linux_prom_pci_ranges
));
1454 pbm
->num_pbm_ranges
= 0;
1456 err
= prom_getproperty(node
, "interrupt-map",
1457 (char *)pbm
->pbm_intmap
,
1458 sizeof(pbm
->pbm_intmap
));
1460 pbm
->num_pbm_intmap
= (err
/ sizeof(struct linux_prom_pci_intmap
));
1461 err
= prom_getproperty(node
, "interrupt-map-mask",
1462 (char *)&pbm
->pbm_intmask
,
1463 sizeof(pbm
->pbm_intmask
));
1465 prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
1469 pbm
->num_pbm_intmap
= 0;
1470 memset(&pbm
->pbm_intmask
, 0, sizeof(pbm
->pbm_intmask
));
1473 pbm_register_toplevel_resources(p
, pbm
);
1476 node
= prom_getsibling(node
);
1480 if (simbas_found
== 0) {
1483 /* No APBs underneath, probably this is a hummingbird
1488 pbm
->prom_node
= sabre_node
;
1489 pbm
->pci_first_busno
= p
->pci_first_busno
;
1490 pbm
->pci_last_busno
= p
->pci_last_busno
;
1492 prom_getstring(sabre_node
, "name", pbm
->prom_name
, sizeof(pbm
->prom_name
));
1493 err
= prom_getproperty(sabre_node
, "ranges",
1494 (char *) pbm
->pbm_ranges
,
1495 sizeof(pbm
->pbm_ranges
));
1497 pbm
->num_pbm_ranges
=
1498 (err
/ sizeof(struct linux_prom_pci_ranges
));
1500 pbm
->num_pbm_ranges
= 0;
1502 err
= prom_getproperty(sabre_node
, "interrupt-map",
1503 (char *) pbm
->pbm_intmap
,
1504 sizeof(pbm
->pbm_intmap
));
1507 pbm
->num_pbm_intmap
= (err
/ sizeof(struct linux_prom_pci_intmap
));
1508 err
= prom_getproperty(sabre_node
, "interrupt-map-mask",
1509 (char *)&pbm
->pbm_intmask
,
1510 sizeof(pbm
->pbm_intmask
));
1512 prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n");
1516 pbm
->num_pbm_intmap
= 0;
1517 memset(&pbm
->pbm_intmask
, 0, sizeof(pbm
->pbm_intmask
));
1521 sprintf(pbm
->name
, "SABRE%d PBM%c", p
->index
,
1522 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1523 pbm
->io_space
.name
= pbm
->mem_space
.name
= pbm
->name
;
1525 /* Hack up top-level resources. */
1526 pbm
->io_space
.start
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1527 pbm
->io_space
.end
= pbm
->io_space
.start
+ (1UL << 24) - 1UL;
1528 pbm
->io_space
.flags
= IORESOURCE_IO
;
1530 pbm
->mem_space
.start
= p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
;
1531 pbm
->mem_space
.end
= pbm
->mem_space
.start
+ (unsigned long)dma_begin
- 1UL;
1532 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1534 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1535 prom_printf("Cannot register Hummingbird's IO space.\n");
1538 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1539 prom_printf("Cannot register Hummingbird's MEM space.\n");
1543 pci_register_legacy_regions(&pbm
->io_space
,
1548 void __init
sabre_init(int pnode
, char *model_name
)
1550 struct linux_prom64_registers pr_regs
[2];
1551 struct pci_controller_info
*p
;
1552 struct pci_iommu
*iommu
;
1556 u32 upa_portid
, dma_mask
;
1560 if (!strcmp(model_name
, "pci108e,a001"))
1562 else if (!strcmp(model_name
, "SUNW,sabre")) {
1565 if (prom_getproperty(pnode
, "compatible",
1566 compat
, sizeof(compat
)) > 0 &&
1567 !strcmp(compat
, "pci108e,a001")) {
1572 /* Of course, Sun has to encode things a thousand
1573 * different ways, inconsistently.
1575 cpu_find_by_instance(0, &cpu_node
, NULL
);
1576 if (prom_getproperty(cpu_node
, "name",
1577 compat
, sizeof(compat
)) > 0 &&
1578 !strcmp(compat
, "SUNW,UltraSPARC-IIe"))
1583 p
= kmalloc(sizeof(*p
), GFP_ATOMIC
);
1585 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1588 memset(p
, 0, sizeof(*p
));
1590 iommu
= kmalloc(sizeof(*iommu
), GFP_ATOMIC
);
1592 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1595 memset(iommu
, 0, sizeof(*iommu
));
1596 p
->pbm_A
.iommu
= p
->pbm_B
.iommu
= iommu
;
1598 upa_portid
= prom_getintdefault(pnode
, "upa-portid", 0xff);
1600 p
->next
= pci_controller_root
;
1601 pci_controller_root
= p
;
1603 p
->pbm_A
.portid
= upa_portid
;
1604 p
->pbm_B
.portid
= upa_portid
;
1605 p
->index
= pci_num_controllers
++;
1606 p
->pbms_same_domain
= 1;
1607 p
->scan_bus
= sabre_scan_bus
;
1608 p
->irq_build
= sabre_irq_build
;
1609 p
->base_address_update
= sabre_base_address_update
;
1610 p
->resource_adjust
= sabre_resource_adjust
;
1611 p
->pci_ops
= &sabre_ops
;
1614 * Map in SABRE register set and report the presence of this SABRE.
1616 err
= prom_getproperty(pnode
, "reg",
1617 (char *)&pr_regs
[0], sizeof(pr_regs
));
1618 if(err
== 0 || err
== -1) {
1619 prom_printf("SABRE: Error, cannot get U2P registers "
1625 * First REG in property is base of entire SABRE register space.
1627 p
->pbm_A
.controller_regs
= pr_regs
[0].phys_addr
;
1628 p
->pbm_B
.controller_regs
= pr_regs
[0].phys_addr
;
1629 pci_dma_wsync
= p
->pbm_A
.controller_regs
+ SABRE_WRSYNC
;
1631 printk("PCI: Found SABRE, main regs at %016lx, wsync at %016lx\n",
1632 p
->pbm_A
.controller_regs
, pci_dma_wsync
);
1634 /* Clear interrupts */
1637 for (clear_irq
= SABRE_ICLR_A_SLOT0
; clear_irq
< SABRE_ICLR_B_SLOT0
+ 0x80; clear_irq
+= 8)
1638 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1641 for (clear_irq
= SABRE_ICLR_SCSI
; clear_irq
< SABRE_ICLR_SCSI
+ 0x80; clear_irq
+= 8)
1642 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1644 /* Error interrupts are enabled later after the bus scan. */
1645 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
,
1646 (SABRE_PCICTRL_MRLEN
| SABRE_PCICTRL_SERR
|
1647 SABRE_PCICTRL_ARBPARK
| SABRE_PCICTRL_AEN
));
1649 /* Now map in PCI config space for entire SABRE. */
1650 p
->pbm_A
.config_space
= p
->pbm_B
.config_space
=
1651 (p
->pbm_A
.controller_regs
+ SABRE_CONFIGSPACE
);
1652 printk("SABRE: Shared PCI config space at %016lx\n",
1653 p
->pbm_A
.config_space
);
1655 err
= prom_getproperty(pnode
, "virtual-dma",
1656 (char *)&vdma
[0], sizeof(vdma
));
1657 if(err
== 0 || err
== -1) {
1658 prom_printf("SABRE: Error, cannot get virtual-dma property "
1666 dma_mask
|= 0x1fffffff;
1670 dma_mask
|= 0x3fffffff;
1675 dma_mask
|= 0x7fffffff;
1679 prom_printf("SABRE: strange virtual-dma size.\n");
1683 sabre_iommu_init(p
, tsbsize
, vdma
[0], dma_mask
);
1685 printk("SABRE: DVMA at %08x [%08x]\n", vdma
[0], vdma
[1]);
1687 err
= prom_getproperty(pnode
, "bus-range",
1688 (char *)&busrange
[0], sizeof(busrange
));
1689 if(err
== 0 || err
== -1) {
1690 prom_printf("SABRE: Error, cannot get PCI bus-range "
1695 p
->pci_first_busno
= busrange
[0];
1696 p
->pci_last_busno
= busrange
[1];
1699 * Look for APB underneath.
1701 sabre_pbm_init(p
, pnode
, vdma
[0]);