Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / drivers / media / dvb / frontends / tda80xx.c
blob032d348dafb749acfb9144453e8400d8666c42a8
1 /*
2 * tda80xx.c
4 * Philips TDA8044 / TDA8083 QPSK demodulator driver
6 * Copyright (C) 2001 Felix Domke <tmbinc@elitedvb.net>
7 * Copyright (C) 2002-2004 Andreas Oberritter <obi@linuxtv.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/config.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/threads.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <asm/div64.h>
36 #include "dvb_frontend.h"
37 #include "tda80xx.h"
39 enum {
40 ID_TDA8044 = 0x04,
41 ID_TDA8083 = 0x05,
45 struct tda80xx_state {
47 struct i2c_adapter* i2c;
49 struct dvb_frontend_ops ops;
51 /* configuration settings */
52 const struct tda80xx_config* config;
54 struct dvb_frontend frontend;
56 u32 clk;
57 int afc_loop;
58 struct work_struct worklet;
59 fe_code_rate_t code_rate;
60 fe_spectral_inversion_t spectral_inversion;
61 fe_status_t status;
62 u8 id;
65 static int debug = 1;
66 #define dprintk if (debug) printk
68 static u8 tda8044_inittab_pre[] = {
69 0x02, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
70 0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x58,
71 0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
72 0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x00,
73 0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
74 0x00, 0x00
77 static u8 tda8044_inittab_post[] = {
78 0x04, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
79 0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x50,
80 0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
81 0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x6c,
82 0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
83 0x00, 0x00
86 static u8 tda8083_inittab[] = {
87 0x04, 0x00, 0x4a, 0x79, 0x04, 0x00, 0xff, 0xea,
88 0x48, 0x42, 0x79, 0x60, 0x70, 0x52, 0x9a, 0x10,
89 0x0e, 0x10, 0xf2, 0xa7, 0x93, 0x0b, 0x05, 0xc8,
90 0x9d, 0x00, 0x42, 0x80, 0x00, 0x60, 0x40, 0x00,
91 0x00, 0x75, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x00,
92 0x00, 0x00, 0x00, 0x00
95 static __inline__ u32 tda80xx_div(u32 a, u32 b)
97 return (a + (b / 2)) / b;
100 static __inline__ u32 tda80xx_gcd(u32 a, u32 b)
102 u32 r;
104 while ((r = a % b)) {
105 a = b;
106 b = r;
109 return b;
112 static int tda80xx_read(struct tda80xx_state* state, u8 reg, u8 *buf, u8 len)
114 int ret;
115 struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
116 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = buf, .len = len } };
118 ret = i2c_transfer(state->i2c, msg, 2);
120 if (ret != 2)
121 dprintk("%s: readreg error (reg %02x, ret == %i)\n",
122 __FUNCTION__, reg, ret);
124 mdelay(10);
126 return (ret == 2) ? 0 : -EREMOTEIO;
129 static int tda80xx_write(struct tda80xx_state* state, u8 reg, const u8 *buf, u8 len)
131 int ret;
132 u8 wbuf[len + 1];
133 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = wbuf, .len = len + 1 };
135 wbuf[0] = reg;
136 memcpy(&wbuf[1], buf, len);
138 ret = i2c_transfer(state->i2c, &msg, 1);
140 if (ret != 1)
141 dprintk("%s: i2c xfer error (ret == %i)\n", __FUNCTION__, ret);
143 mdelay(10);
145 return (ret == 1) ? 0 : -EREMOTEIO;
148 static __inline__ u8 tda80xx_readreg(struct tda80xx_state* state, u8 reg)
150 u8 val;
152 tda80xx_read(state, reg, &val, 1);
154 return val;
157 static __inline__ int tda80xx_writereg(struct tda80xx_state* state, u8 reg, u8 data)
159 return tda80xx_write(state, reg, &data, 1);
162 static int tda80xx_set_parameters(struct tda80xx_state* state,
163 fe_spectral_inversion_t inversion,
164 u32 symbol_rate,
165 fe_code_rate_t fec_inner)
167 u8 buf[15];
168 u64 ratio;
169 u32 clk;
170 u32 k;
171 u32 sr = symbol_rate;
172 u32 gcd;
173 u8 scd;
175 if (symbol_rate > (state->clk * 3) / 16)
176 scd = 0;
177 else if (symbol_rate > (state->clk * 3) / 32)
178 scd = 1;
179 else if (symbol_rate > (state->clk * 3) / 64)
180 scd = 2;
181 else
182 scd = 3;
184 clk = scd ? (state->clk / (scd * 2)) : state->clk;
187 * Viterbi decoder:
188 * Differential decoding off
189 * Spectral inversion unknown
190 * QPSK modulation
192 if (inversion == INVERSION_ON)
193 buf[0] = 0x60;
194 else if (inversion == INVERSION_OFF)
195 buf[0] = 0x20;
196 else
197 buf[0] = 0x00;
200 * CLK ratio:
201 * system clock frequency is up to 64 or 96 MHz
203 * formula:
204 * r = k * clk / symbol_rate
206 * k: 2^21 for caa 0..3,
207 * 2^20 for caa 4..5,
208 * 2^19 for caa 6..7
210 if (symbol_rate <= (clk * 3) / 32)
211 k = (1 << 19);
212 else if (symbol_rate <= (clk * 3) / 16)
213 k = (1 << 20);
214 else
215 k = (1 << 21);
217 gcd = tda80xx_gcd(clk, sr);
218 clk /= gcd;
219 sr /= gcd;
221 gcd = tda80xx_gcd(k, sr);
222 k /= gcd;
223 sr /= gcd;
225 ratio = (u64)k * (u64)clk;
226 do_div(ratio, sr);
228 buf[1] = ratio >> 16;
229 buf[2] = ratio >> 8;
230 buf[3] = ratio;
232 /* nyquist filter roll-off factor 35% */
233 buf[4] = 0x20;
235 clk = scd ? (state->clk / (scd * 2)) : state->clk;
237 /* Anti Alias Filter */
238 if (symbol_rate < (clk * 3) / 64)
239 printk("tda80xx: unsupported symbol rate: %u\n", symbol_rate);
240 else if (symbol_rate <= clk / 16)
241 buf[4] |= 0x07;
242 else if (symbol_rate <= (clk * 3) / 32)
243 buf[4] |= 0x06;
244 else if (symbol_rate <= clk / 8)
245 buf[4] |= 0x05;
246 else if (symbol_rate <= (clk * 3) / 16)
247 buf[4] |= 0x04;
248 else if (symbol_rate <= clk / 4)
249 buf[4] |= 0x03;
250 else if (symbol_rate <= (clk * 3) / 8)
251 buf[4] |= 0x02;
252 else if (symbol_rate <= clk / 2)
253 buf[4] |= 0x01;
254 else
255 buf[4] |= 0x00;
257 /* Sigma Delta converter */
258 buf[5] = 0x00;
260 /* FEC: Possible puncturing rates */
261 if (fec_inner == FEC_NONE)
262 buf[6] = 0x00;
263 else if ((fec_inner >= FEC_1_2) && (fec_inner <= FEC_8_9))
264 buf[6] = (1 << (8 - fec_inner));
265 else if (fec_inner == FEC_AUTO)
266 buf[6] = 0xff;
267 else
268 return -EINVAL;
270 /* carrier lock detector threshold value */
271 buf[7] = 0x30;
272 /* AFC1: proportional part settings */
273 buf[8] = 0x42;
274 /* AFC1: integral part settings */
275 buf[9] = 0x98;
276 /* PD: Leaky integrator SCPC mode */
277 buf[10] = 0x28;
278 /* AFC2, AFC1 controls */
279 buf[11] = 0x30;
280 /* PD: proportional part settings */
281 buf[12] = 0x42;
282 /* PD: integral part settings */
283 buf[13] = 0x99;
284 /* AGC */
285 buf[14] = 0x50 | scd;
287 printk("symbol_rate=%u clk=%u\n", symbol_rate, clk);
289 return tda80xx_write(state, 0x01, buf, sizeof(buf));
292 static int tda80xx_set_clk(struct tda80xx_state* state)
294 u8 buf[2];
296 /* CLK proportional part */
297 buf[0] = (0x06 << 5) | 0x08; /* CMP[2:0], CSP[4:0] */
298 /* CLK integral part */
299 buf[1] = (0x04 << 5) | 0x1a; /* CMI[2:0], CSI[4:0] */
301 return tda80xx_write(state, 0x17, buf, sizeof(buf));
304 #if 0
305 static int tda80xx_set_scpc_freq_offset(struct tda80xx_state* state)
307 /* a constant value is nonsense here imho */
308 return tda80xx_writereg(state, 0x22, 0xf9);
310 #endif
312 static int tda80xx_close_loop(struct tda80xx_state* state)
314 u8 buf[2];
316 /* PD: Loop closed, LD: lock detect enable, SCPC: Sweep mode - AFC1 loop closed */
317 buf[0] = 0x68;
318 /* AFC1: Loop closed, CAR Feedback: 8192 */
319 buf[1] = 0x70;
321 return tda80xx_write(state, 0x0b, buf, sizeof(buf));
324 static irqreturn_t tda80xx_irq(int irq, void *priv, struct pt_regs *pt)
326 schedule_work(priv);
328 return IRQ_HANDLED;
331 static void tda80xx_read_status_int(struct tda80xx_state* state)
333 u8 val;
335 static const fe_spectral_inversion_t inv_tab[] = {
336 INVERSION_OFF, INVERSION_ON
339 static const fe_code_rate_t fec_tab[] = {
340 FEC_8_9, FEC_1_2, FEC_2_3, FEC_3_4,
341 FEC_4_5, FEC_5_6, FEC_6_7, FEC_7_8,
344 val = tda80xx_readreg(state, 0x02);
346 state->status = 0;
348 if (val & 0x01) /* demodulator lock */
349 state->status |= FE_HAS_SIGNAL;
350 if (val & 0x02) /* clock recovery lock */
351 state->status |= FE_HAS_CARRIER;
352 if (val & 0x04) /* viterbi lock */
353 state->status |= FE_HAS_VITERBI;
354 if (val & 0x08) /* deinterleaver lock (packet sync) */
355 state->status |= FE_HAS_SYNC;
356 if (val & 0x10) /* derandomizer lock (frame sync) */
357 state->status |= FE_HAS_LOCK;
358 if (val & 0x20) /* frontend can not lock */
359 state->status |= FE_TIMEDOUT;
361 if ((state->status & (FE_HAS_CARRIER)) && (state->afc_loop)) {
362 printk("tda80xx: closing loop\n");
363 tda80xx_close_loop(state);
364 state->afc_loop = 0;
367 if (state->status & (FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK)) {
368 val = tda80xx_readreg(state, 0x0e);
369 state->code_rate = fec_tab[val & 0x07];
370 if (state->status & (FE_HAS_SYNC | FE_HAS_LOCK))
371 state->spectral_inversion = inv_tab[(val >> 7) & 0x01];
372 else
373 state->spectral_inversion = INVERSION_AUTO;
375 else {
376 state->code_rate = FEC_AUTO;
380 static void tda80xx_worklet(void *priv)
382 struct tda80xx_state *state = priv;
384 tda80xx_writereg(state, 0x00, 0x04);
385 enable_irq(state->config->irq);
387 tda80xx_read_status_int(state);
390 static void tda80xx_wait_diseqc_fifo(struct tda80xx_state* state)
392 size_t i;
394 for (i = 0; i < 100; i++) {
395 if (tda80xx_readreg(state, 0x02) & 0x80)
396 break;
397 msleep(10);
401 static int tda8044_init(struct dvb_frontend* fe)
403 struct tda80xx_state* state = fe->demodulator_priv;
404 int ret;
407 * this function is a mess...
410 if ((ret = tda80xx_write(state, 0x00, tda8044_inittab_pre, sizeof(tda8044_inittab_pre))))
411 return ret;
413 tda80xx_writereg(state, 0x0f, 0x50);
414 #if 1
415 tda80xx_writereg(state, 0x20, 0x8F); /* FIXME */
416 tda80xx_writereg(state, 0x20, state->config->volt18setting); /* FIXME */
417 //tda80xx_writereg(state, 0x00, 0x04);
418 tda80xx_writereg(state, 0x00, 0x0C);
419 #endif
420 //tda80xx_writereg(state, 0x00, 0x08); /* Reset AFC1 loop filter */
422 tda80xx_write(state, 0x00, tda8044_inittab_post, sizeof(tda8044_inittab_post));
424 if (state->config->pll_init) {
425 tda80xx_writereg(state, 0x1c, 0x80);
426 state->config->pll_init(fe);
427 tda80xx_writereg(state, 0x1c, 0x00);
430 return 0;
433 static int tda8083_init(struct dvb_frontend* fe)
435 struct tda80xx_state* state = fe->demodulator_priv;
437 tda80xx_write(state, 0x00, tda8083_inittab, sizeof(tda8083_inittab));
439 if (state->config->pll_init) {
440 tda80xx_writereg(state, 0x1c, 0x80);
441 state->config->pll_init(fe);
442 tda80xx_writereg(state, 0x1c, 0x00);
445 return 0;
448 static int tda80xx_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
450 struct tda80xx_state* state = fe->demodulator_priv;
452 switch (voltage) {
453 case SEC_VOLTAGE_13:
454 return tda80xx_writereg(state, 0x20, state->config->volt13setting);
455 case SEC_VOLTAGE_18:
456 return tda80xx_writereg(state, 0x20, state->config->volt18setting);
457 case SEC_VOLTAGE_OFF:
458 return tda80xx_writereg(state, 0x20, 0);
459 default:
460 return -EINVAL;
464 static int tda80xx_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
466 struct tda80xx_state* state = fe->demodulator_priv;
468 switch (tone) {
469 case SEC_TONE_OFF:
470 return tda80xx_writereg(state, 0x29, 0x00);
471 case SEC_TONE_ON:
472 return tda80xx_writereg(state, 0x29, 0x80);
473 default:
474 return -EINVAL;
478 static int tda80xx_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
480 struct tda80xx_state* state = fe->demodulator_priv;
482 if (cmd->msg_len > 6)
483 return -EINVAL;
485 tda80xx_writereg(state, 0x29, 0x08 | (cmd->msg_len - 3));
486 tda80xx_write(state, 0x23, cmd->msg, cmd->msg_len);
487 tda80xx_writereg(state, 0x29, 0x0c | (cmd->msg_len - 3));
488 tda80xx_wait_diseqc_fifo(state);
490 return 0;
493 static int tda80xx_send_diseqc_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t cmd)
495 struct tda80xx_state* state = fe->demodulator_priv;
497 switch (cmd) {
498 case SEC_MINI_A:
499 tda80xx_writereg(state, 0x29, 0x14);
500 break;
501 case SEC_MINI_B:
502 tda80xx_writereg(state, 0x29, 0x1c);
503 break;
504 default:
505 return -EINVAL;
508 tda80xx_wait_diseqc_fifo(state);
510 return 0;
513 static int tda80xx_sleep(struct dvb_frontend* fe)
515 struct tda80xx_state* state = fe->demodulator_priv;
517 tda80xx_writereg(state, 0x00, 0x02); /* enter standby */
519 return 0;
522 static int tda80xx_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
524 struct tda80xx_state* state = fe->demodulator_priv;
526 tda80xx_writereg(state, 0x1c, 0x80);
527 state->config->pll_set(fe, p);
528 tda80xx_writereg(state, 0x1c, 0x00);
530 tda80xx_set_parameters(state, p->inversion, p->u.qpsk.symbol_rate, p->u.qpsk.fec_inner);
531 tda80xx_set_clk(state);
532 //tda80xx_set_scpc_freq_offset(state);
533 state->afc_loop = 1;
535 return 0;
538 static int tda80xx_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
540 struct tda80xx_state* state = fe->demodulator_priv;
542 if (!state->config->irq)
543 tda80xx_read_status_int(state);
545 p->inversion = state->spectral_inversion;
546 p->u.qpsk.fec_inner = state->code_rate;
548 return 0;
551 static int tda80xx_read_status(struct dvb_frontend* fe, fe_status_t* status)
553 struct tda80xx_state* state = fe->demodulator_priv;
555 if (!state->config->irq)
556 tda80xx_read_status_int(state);
557 *status = state->status;
559 return 0;
562 static int tda80xx_read_ber(struct dvb_frontend* fe, u32* ber)
564 struct tda80xx_state* state = fe->demodulator_priv;
565 int ret;
566 u8 buf[3];
568 if ((ret = tda80xx_read(state, 0x0b, buf, sizeof(buf))))
569 return ret;
571 *ber = ((buf[0] & 0x1f) << 16) | (buf[1] << 8) | buf[2];
573 return 0;
576 static int tda80xx_read_signal_strength(struct dvb_frontend* fe, u16* strength)
578 struct tda80xx_state* state = fe->demodulator_priv;
580 u8 gain = ~tda80xx_readreg(state, 0x01);
581 *strength = (gain << 8) | gain;
583 return 0;
586 static int tda80xx_read_snr(struct dvb_frontend* fe, u16* snr)
588 struct tda80xx_state* state = fe->demodulator_priv;
590 u8 quality = tda80xx_readreg(state, 0x08);
591 *snr = (quality << 8) | quality;
593 return 0;
596 static int tda80xx_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
598 struct tda80xx_state* state = fe->demodulator_priv;
600 *ucblocks = tda80xx_readreg(state, 0x0f);
601 if (*ucblocks == 0xff)
602 *ucblocks = 0xffffffff;
604 return 0;
607 static int tda80xx_init(struct dvb_frontend* fe)
609 struct tda80xx_state* state = fe->demodulator_priv;
611 switch(state->id) {
612 case ID_TDA8044:
613 return tda8044_init(fe);
615 case ID_TDA8083:
616 return tda8083_init(fe);
618 return 0;
621 static void tda80xx_release(struct dvb_frontend* fe)
623 struct tda80xx_state* state = fe->demodulator_priv;
625 if (state->config->irq)
626 free_irq(state->config->irq, &state->worklet);
628 kfree(state);
631 static struct dvb_frontend_ops tda80xx_ops;
633 struct dvb_frontend* tda80xx_attach(const struct tda80xx_config* config,
634 struct i2c_adapter* i2c)
636 struct tda80xx_state* state = NULL;
637 int ret;
639 /* allocate memory for the internal state */
640 state = kmalloc(sizeof(struct tda80xx_state), GFP_KERNEL);
641 if (state == NULL) goto error;
643 /* setup the state */
644 state->config = config;
645 state->i2c = i2c;
646 memcpy(&state->ops, &tda80xx_ops, sizeof(struct dvb_frontend_ops));
647 state->spectral_inversion = INVERSION_AUTO;
648 state->code_rate = FEC_AUTO;
649 state->status = 0;
650 state->afc_loop = 0;
652 /* check if the demod is there */
653 if (tda80xx_writereg(state, 0x89, 0x00) < 0) goto error;
654 state->id = tda80xx_readreg(state, 0x00);
656 switch (state->id) {
657 case ID_TDA8044:
658 state->clk = 96000000;
659 printk("tda80xx: Detected tda8044\n");
660 break;
662 case ID_TDA8083:
663 state->clk = 64000000;
664 printk("tda80xx: Detected tda8083\n");
665 break;
667 default:
668 goto error;
671 /* setup IRQ */
672 if (state->config->irq) {
673 INIT_WORK(&state->worklet, tda80xx_worklet, state);
674 if ((ret = request_irq(state->config->irq, tda80xx_irq, SA_ONESHOT, "tda80xx", &state->worklet)) < 0) {
675 printk(KERN_ERR "tda80xx: request_irq failed (%d)\n", ret);
676 goto error;
680 /* create dvb_frontend */
681 state->frontend.ops = &state->ops;
682 state->frontend.demodulator_priv = state;
683 return &state->frontend;
685 error:
686 kfree(state);
687 return NULL;
690 static struct dvb_frontend_ops tda80xx_ops = {
692 .info = {
693 .name = "Philips TDA80xx DVB-S",
694 .type = FE_QPSK,
695 .frequency_min = 500000,
696 .frequency_max = 2700000,
697 .frequency_stepsize = 125,
698 .symbol_rate_min = 4500000,
699 .symbol_rate_max = 45000000,
700 .caps = FE_CAN_INVERSION_AUTO |
701 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
702 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
703 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
704 FE_CAN_QPSK |
705 FE_CAN_MUTE_TS
708 .release = tda80xx_release,
710 .init = tda80xx_init,
711 .sleep = tda80xx_sleep,
713 .set_frontend = tda80xx_set_frontend,
714 .get_frontend = tda80xx_get_frontend,
716 .read_status = tda80xx_read_status,
717 .read_ber = tda80xx_read_ber,
718 .read_signal_strength = tda80xx_read_signal_strength,
719 .read_snr = tda80xx_read_snr,
720 .read_ucblocks = tda80xx_read_ucblocks,
722 .diseqc_send_master_cmd = tda80xx_send_diseqc_msg,
723 .diseqc_send_burst = tda80xx_send_diseqc_burst,
724 .set_tone = tda80xx_set_tone,
725 .set_voltage = tda80xx_set_voltage,
728 module_param(debug, int, 0644);
730 MODULE_DESCRIPTION("Philips TDA8044 / TDA8083 DVB-S Demodulator driver");
731 MODULE_AUTHOR("Felix Domke, Andreas Oberritter");
732 MODULE_LICENSE("GPL");
734 EXPORT_SYMBOL(tda80xx_attach);