2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
46 * fib_map_alloc - allocate the fib objects
47 * @dev: Adapter to allocate for
49 * Allocate and map the shared PCI space for the FIB blocks used to
50 * talk to the Adaptec firmware.
53 static int fib_map_alloc(struct aac_dev
*dev
)
55 if((dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
, sizeof(struct hw_fib
) * AAC_NUM_FIB
, &dev
->hw_fib_pa
))==NULL
)
61 * fib_map_free - free the fib objects
62 * @dev: Adapter to free
64 * Free the PCI mappings and the memory allocated for FIB blocks
68 void fib_map_free(struct aac_dev
*dev
)
70 pci_free_consistent(dev
->pdev
, sizeof(struct hw_fib
) * AAC_NUM_FIB
, dev
->hw_fib_va
, dev
->hw_fib_pa
);
74 * fib_setup - setup the fibs
75 * @dev: Adapter to set up
77 * Allocate the PCI space for the fibs, map it and then intialise the
78 * fib area, the unmapped fib data and also the free list
81 int fib_setup(struct aac_dev
* dev
)
84 struct hw_fib
*hw_fib_va
;
88 if(fib_map_alloc(dev
)<0)
91 hw_fib_va
= dev
->hw_fib_va
;
92 hw_fib_pa
= dev
->hw_fib_pa
;
93 memset(hw_fib_va
, 0, sizeof(struct hw_fib
) * AAC_NUM_FIB
);
97 for (i
= 0, fibptr
= &dev
->fibs
[i
]; i
< AAC_NUM_FIB
; i
++, fibptr
++)
100 fibptr
->hw_fib
= hw_fib_va
;
101 fibptr
->data
= (void *) fibptr
->hw_fib
->data
;
102 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
103 init_MUTEX_LOCKED(&fibptr
->event_wait
);
104 spin_lock_init(&fibptr
->event_lock
);
105 hw_fib_va
->header
.XferState
= 0xffffffff;
106 hw_fib_va
->header
.SenderSize
= cpu_to_le16(sizeof(struct hw_fib
));
107 fibptr
->hw_fib_pa
= hw_fib_pa
;
108 hw_fib_va
= (struct hw_fib
*)((unsigned char *)hw_fib_va
+ sizeof(struct hw_fib
));
109 hw_fib_pa
= hw_fib_pa
+ sizeof(struct hw_fib
);
112 * Add the fib chain to the free list
114 dev
->fibs
[AAC_NUM_FIB
-1].next
= NULL
;
116 * Enable this to debug out of queue space
118 dev
->free_fib
= &dev
->fibs
[0];
123 * fib_alloc - allocate a fib
124 * @dev: Adapter to allocate the fib for
126 * Allocate a fib from the adapter fib pool. If the pool is empty we
127 * wait for fibs to become free.
130 struct fib
* fib_alloc(struct aac_dev
*dev
)
134 spin_lock_irqsave(&dev
->fib_lock
, flags
);
135 fibptr
= dev
->free_fib
;
136 /* Cannot sleep here or you get hangs. Instead we did the
137 maths at compile time. */
140 dev
->free_fib
= fibptr
->next
;
141 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
143 * Set the proper node type code and node byte size
145 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
146 fibptr
->size
= sizeof(struct fib
);
148 * Null out fields that depend on being zero at the start of
151 fibptr
->hw_fib
->header
.XferState
= 0;
152 fibptr
->callback
= NULL
;
153 fibptr
->callback_data
= NULL
;
159 * fib_free - free a fib
160 * @fibptr: fib to free up
162 * Frees up a fib and places it on the appropriate queue
163 * (either free or timed out)
166 void fib_free(struct fib
* fibptr
)
170 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
171 if (fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
) {
172 aac_config
.fib_timeouts
++;
173 fibptr
->next
= fibptr
->dev
->timeout_fib
;
174 fibptr
->dev
->timeout_fib
= fibptr
;
176 if (fibptr
->hw_fib
->header
.XferState
!= 0) {
177 printk(KERN_WARNING
"fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
179 le32_to_cpu(fibptr
->hw_fib
->header
.XferState
));
181 fibptr
->next
= fibptr
->dev
->free_fib
;
182 fibptr
->dev
->free_fib
= fibptr
;
184 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
188 * fib_init - initialise a fib
189 * @fibptr: The fib to initialize
191 * Set up the generic fib fields ready for use
194 void fib_init(struct fib
*fibptr
)
196 struct hw_fib
*hw_fib
= fibptr
->hw_fib
;
198 hw_fib
->header
.StructType
= FIB_MAGIC
;
199 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct hw_fib
));
200 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
201 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
202 hw_fib
->header
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
203 hw_fib
->header
.SenderSize
= cpu_to_le16(sizeof(struct hw_fib
));
207 * fib_deallocate - deallocate a fib
208 * @fibptr: fib to deallocate
210 * Will deallocate and return to the free pool the FIB pointed to by the
214 void fib_dealloc(struct fib
* fibptr
)
216 struct hw_fib
*hw_fib
= fibptr
->hw_fib
;
217 if(hw_fib
->header
.StructType
!= FIB_MAGIC
)
219 hw_fib
->header
.XferState
= 0;
223 * Commuication primitives define and support the queuing method we use to
224 * support host to adapter commuication. All queue accesses happen through
225 * these routines and are the only routines which have a knowledge of the
226 * how these queues are implemented.
230 * aac_get_entry - get a queue entry
233 * @entry: Entry return
234 * @index: Index return
235 * @nonotify: notification control
237 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
238 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
242 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
244 struct aac_queue
* q
;
247 * All of the queues wrap when they reach the end, so we check
248 * to see if they have reached the end and if they have we just
249 * set the index back to zero. This is a wrap. You could or off
250 * the high bits in all updates but this is a bit faster I think.
253 q
= &dev
->queues
->queue
[qid
];
255 *index
= le32_to_cpu(*(q
->headers
.producer
));
256 if ((*index
- 2) == le32_to_cpu(*(q
->headers
.consumer
)))
259 if (qid
== AdapHighCmdQueue
) {
260 if (*index
>= ADAP_HIGH_CMD_ENTRIES
)
262 } else if (qid
== AdapNormCmdQueue
) {
263 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
264 *index
= 0; /* Wrap to front of the Producer Queue. */
266 else if (qid
== AdapHighRespQueue
)
268 if (*index
>= ADAP_HIGH_RESP_ENTRIES
)
271 else if (qid
== AdapNormRespQueue
)
273 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
274 *index
= 0; /* Wrap to front of the Producer Queue. */
277 printk("aacraid: invalid qid\n");
281 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) { /* Queue is full */
282 printk(KERN_WARNING
"Queue %d full, %d outstanding.\n",
286 *entry
= q
->base
+ *index
;
292 * aac_queue_get - get the next free QE
294 * @index: Returned index
295 * @priority: Priority of fib
296 * @fib: Fib to associate with the queue entry
297 * @wait: Wait if queue full
298 * @fibptr: Driver fib object to go with fib
299 * @nonotify: Don't notify the adapter
301 * Gets the next free QE off the requested priorty adapter command
302 * queue and associates the Fib with the QE. The QE represented by
303 * index is ready to insert on the queue when this routine returns
307 static int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
309 struct aac_entry
* entry
= NULL
;
311 struct aac_queue
* q
= &dev
->queues
->queue
[qid
];
313 spin_lock_irqsave(q
->lock
, q
->SavedIrql
);
315 if (qid
== AdapHighCmdQueue
|| qid
== AdapNormCmdQueue
)
317 /* if no entries wait for some if caller wants to */
318 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
320 printk(KERN_ERR
"GetEntries failed\n");
323 * Setup queue entry with a command, status and fib mapped
325 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
328 else if (qid
== AdapHighRespQueue
|| qid
== AdapNormRespQueue
)
330 while(!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
332 /* if no entries wait for some if caller wants to */
335 * Setup queue entry with command, status and fib mapped
337 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
338 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
339 /* Restore adapters pointer to the FIB */
340 hw_fib
->header
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
344 * If MapFib is true than we need to map the Fib and put pointers
345 * in the queue entry.
348 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
354 * aac_insert_entry - insert a queue entry
356 * @index: Index of entry to insert
358 * @nonotify: Suppress adapter notification
360 * Gets the next free QE off the requested priorty adapter command
361 * queue and associates the Fib with the QE. The QE represented by
362 * index is ready to insert on the queue when this routine returns
366 static int aac_insert_entry(struct aac_dev
* dev
, u32 index
, u32 qid
, unsigned long nonotify
)
368 struct aac_queue
* q
= &dev
->queues
->queue
[qid
];
372 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
373 spin_unlock_irqrestore(q
->lock
, q
->SavedIrql
);
375 if (qid
== AdapHighCmdQueue
||
376 qid
== AdapNormCmdQueue
||
377 qid
== AdapHighRespQueue
||
378 qid
== AdapNormRespQueue
)
381 aac_adapter_notify(dev
, qid
);
384 printk("Suprise insert!\n");
389 * Define the highest level of host to adapter communication routines.
390 * These routines will support host to adapter FS commuication. These
391 * routines have no knowledge of the commuication method used. This level
392 * sends and receives FIBs. This level has no knowledge of how these FIBs
393 * get passed back and forth.
397 * fib_send - send a fib to the adapter
398 * @command: Command to send
400 * @size: Size of fib data area
401 * @priority: Priority of Fib
402 * @wait: Async/sync select
403 * @reply: True if a reply is wanted
404 * @callback: Called with reply
405 * @callback_data: Passed to callback
407 * Sends the requested FIB to the adapter and optionally will wait for a
408 * response FIB. If the caller does not wish to wait for a response than
409 * an event to wait on must be supplied. This event will be set when a
410 * response FIB is received from the adapter.
413 int fib_send(u16 command
, struct fib
* fibptr
, unsigned long size
, int priority
, int wait
, int reply
, fib_callback callback
, void * callback_data
)
417 struct aac_dev
* dev
= fibptr
->dev
;
418 unsigned long nointr
= 0;
419 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
420 struct aac_queue
* q
;
421 unsigned long flags
= 0;
422 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
425 * There are 5 cases with the wait and reponse requested flags.
426 * The only invalid cases are if the caller requests to wait and
427 * does not request a response and if the caller does not want a
428 * response and the Fib is not allocated from pool. If a response
429 * is not requesed the Fib will just be deallocaed by the DPC
430 * routine when the response comes back from the adapter. No
431 * further processing will be done besides deleting the Fib. We
432 * will have a debug mode where the adapter can notify the host
433 * it had a problem and the host can log that fact.
435 if (wait
&& !reply
) {
437 } else if (!wait
&& reply
) {
438 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
439 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
440 } else if (!wait
&& !reply
) {
441 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
442 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
443 } else if (wait
&& reply
) {
444 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
445 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
448 * Map the fib into 32bits by using the fib number
451 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
-dev
->fibs
)) << 1);
452 hw_fib
->header
.SenderData
= (u32
)(fibptr
- dev
->fibs
);
454 * Set FIB state to indicate where it came from and if we want a
455 * response from the adapter. Also load the command from the
458 * Map the hw fib pointer as a 32bit value
460 hw_fib
->header
.Command
= cpu_to_le16(command
);
461 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
462 fibptr
->hw_fib
->header
.Flags
= 0; /* 0 the flags field - internal only*/
464 * Set the size of the Fib we want to send to the adapter
466 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
467 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
471 * Get a queue entry connect the FIB to it and send an notify
472 * the adapter a command is ready.
474 if (priority
== FsaHigh
) {
475 hw_fib
->header
.XferState
|= cpu_to_le32(HighPriority
);
476 qid
= AdapHighCmdQueue
;
478 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
479 qid
= AdapNormCmdQueue
;
481 q
= &dev
->queues
->queue
[qid
];
484 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
485 if(aac_queue_get( dev
, &index
, qid
, hw_fib
, 1, fibptr
, &nointr
)<0)
487 dprintk((KERN_DEBUG
"fib_send: inserting a queue entry at index %d.\n",index
));
488 dprintk((KERN_DEBUG
"Fib contents:.\n"));
489 dprintk((KERN_DEBUG
" Command = %d.\n", hw_fib
->header
.Command
));
490 dprintk((KERN_DEBUG
" XferState = %x.\n", hw_fib
->header
.XferState
));
491 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib
));
492 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
493 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
495 * Fill in the Callback and CallbackContext if we are not
499 fibptr
->callback
= callback
;
500 fibptr
->callback_data
= callback_data
;
502 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
503 list_add_tail(&fibptr
->queue
, &q
->pendingq
);
509 if(aac_insert_entry(dev
, index
, qid
, (nointr
& aac_config
.irq_mod
)) < 0)
512 * If the caller wanted us to wait for response wait now.
516 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
517 down(&fibptr
->event_wait
);
518 if(fibptr
->done
== 0)
521 if((fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
)){
528 * If the user does not want a response than return success otherwise
538 * aac_consumer_get - get the top of the queue
541 * @entry: Return entry
543 * Will return a pointer to the entry on the top of the queue requested that
544 * we are a consumer of, and return the address of the queue entry. It does
545 * not change the state of the queue.
548 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
552 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
556 * The consumer index must be wrapped if we have reached
557 * the end of the queue, else we just use the entry
558 * pointed to by the header index
560 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
563 index
= le32_to_cpu(*q
->headers
.consumer
);
564 *entry
= q
->base
+ index
;
571 * aac_consumer_free - free consumer entry
576 * Frees up the current top of the queue we are a consumer of. If the
577 * queue was full notify the producer that the queue is no longer full.
580 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
585 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
588 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
589 *q
->headers
.consumer
= cpu_to_le32(1);
591 *q
->headers
.consumer
= cpu_to_le32(le32_to_cpu(*q
->headers
.consumer
)+1);
596 case HostNormCmdQueue
:
597 notify
= HostNormCmdNotFull
;
599 case HostHighCmdQueue
:
600 notify
= HostHighCmdNotFull
;
602 case HostNormRespQueue
:
603 notify
= HostNormRespNotFull
;
605 case HostHighRespQueue
:
606 notify
= HostHighRespNotFull
;
612 aac_adapter_notify(dev
, notify
);
617 * fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
621 * Will do all necessary work to complete a FIB that was sent from
625 int fib_adapter_complete(struct fib
* fibptr
, unsigned short size
)
627 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
628 struct aac_dev
* dev
= fibptr
->dev
;
629 unsigned long nointr
= 0;
630 if (hw_fib
->header
.XferState
== 0)
633 * If we plan to do anything check the structure type first.
635 if ( hw_fib
->header
.StructType
!= FIB_MAGIC
) {
639 * This block handles the case where the adapter had sent us a
640 * command and we have finished processing the command. We
641 * call completeFib when we are done processing the command
642 * and want to send a response back to the adapter. This will
643 * send the completed cdb to the adapter.
645 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
646 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
647 if (hw_fib
->header
.XferState
& cpu_to_le32(HighPriority
)) {
651 size
+= sizeof(struct aac_fibhdr
);
652 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
654 hw_fib
->header
.Size
= cpu_to_le16(size
);
656 if(aac_queue_get(dev
, &index
, AdapHighRespQueue
, hw_fib
, 1, NULL
, &nointr
) < 0) {
659 if (aac_insert_entry(dev
, index
, AdapHighRespQueue
, (nointr
& (int)aac_config
.irq_mod
)) != 0) {
662 else if (hw_fib
->header
.XferState
& NormalPriority
)
667 size
+= sizeof(struct aac_fibhdr
);
668 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
670 hw_fib
->header
.Size
= cpu_to_le16(size
);
672 if (aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
) < 0)
674 if (aac_insert_entry(dev
, index
, AdapNormRespQueue
, (nointr
& (int)aac_config
.irq_mod
)) != 0)
681 printk(KERN_WARNING
"fib_adapter_complete: Unknown xferstate detected.\n");
688 * fib_complete - fib completion handler
689 * @fib: FIB to complete
691 * Will do all necessary work to complete a FIB.
694 int fib_complete(struct fib
* fibptr
)
696 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
699 * Check for a fib which has already been completed
702 if (hw_fib
->header
.XferState
== 0)
705 * If we plan to do anything check the structure type first.
708 if (hw_fib
->header
.StructType
!= FIB_MAGIC
)
711 * This block completes a cdb which orginated on the host and we
712 * just need to deallocate the cdb or reinit it. At this point the
713 * command is complete that we had sent to the adapter and this
714 * cdb could be reused.
716 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
717 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
721 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
724 * This handles the case when the host has aborted the I/O
725 * to the adapter because the adapter is not responding
728 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
737 * aac_printf - handle printf from firmware
741 * Print a message passed to us by the controller firmware on the
745 void aac_printf(struct aac_dev
*dev
, u32 val
)
747 int length
= val
& 0xffff;
748 int level
= (val
>> 16) & 0xffff;
749 char *cp
= dev
->printfbuf
;
752 * The size of the printfbuf is set in port.c
753 * There is no variable or define for it
759 if (level
== LOG_AAC_HIGH_ERROR
)
760 printk(KERN_WARNING
"aacraid:%s", cp
);
762 printk(KERN_INFO
"aacraid:%s", cp
);
767 * aac_command_thread - command processing thread
768 * @dev: Adapter to monitor
770 * Waits on the commandready event in it's queue. When the event gets set
771 * it will pull FIBs off it's queue. It will continue to pull FIBs off
772 * until the queue is empty. When the queue is empty it will wait for
776 int aac_command_thread(struct aac_dev
* dev
)
778 struct hw_fib
*hw_fib
, *hw_newfib
;
779 struct fib
*fib
, *newfib
;
780 struct aac_queue_block
*queues
= dev
->queues
;
781 struct aac_fib_context
*fibctx
;
783 DECLARE_WAITQUEUE(wait
, current
);
786 * We can only have one thread per adapter for AIF's.
791 * Set up the name that will appear in 'ps'
792 * stored in task_struct.comm[16].
794 daemonize("aacraid");
795 allow_signal(SIGKILL
);
797 * Let the DPC know it has a place to send the AIF's to.
800 add_wait_queue(&queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
801 set_current_state(TASK_INTERRUPTIBLE
);
804 spin_lock_irqsave(queues
->queue
[HostNormCmdQueue
].lock
, flags
);
805 while(!list_empty(&(queues
->queue
[HostNormCmdQueue
].cmdq
))) {
806 struct list_head
*entry
;
807 struct aac_aifcmd
* aifcmd
;
809 set_current_state(TASK_RUNNING
);
811 entry
= queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
814 spin_unlock_irqrestore(queues
->queue
[HostNormCmdQueue
].lock
, flags
);
815 fib
= list_entry(entry
, struct fib
, fiblink
);
817 * We will process the FIB here or pass it to a
818 * worker thread that is TBD. We Really can't
819 * do anything at this point since we don't have
820 * anything defined for this thread to do.
822 hw_fib
= fib
->hw_fib
;
823 memset(fib
, 0, sizeof(struct fib
));
824 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
825 fib
->size
= sizeof( struct fib
);
826 fib
->hw_fib
= hw_fib
;
827 fib
->data
= hw_fib
->data
;
830 * We only handle AifRequest fibs from the adapter.
832 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
833 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
834 /* Handle Driver Notify Events */
835 *(u32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
836 fib_adapter_complete(fib
, sizeof(u32
));
838 struct list_head
*entry
;
839 /* The u32 here is important and intended. We are using
840 32bit wrapping time to fit the adapter field */
842 u32 time_now
, time_last
;
845 time_now
= jiffies
/HZ
;
847 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
848 entry
= dev
->fib_list
.next
;
850 * For each Context that is on the
851 * fibctxList, make a copy of the
852 * fib, and then set the event to wake up the
853 * thread that is waiting for it.
855 while (entry
!= &dev
->fib_list
) {
859 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
861 * Check if the queue is getting
864 if (fibctx
->count
> 20)
867 * It's *not* jiffies folks,
868 * but jiffies / HZ so do not
871 time_last
= fibctx
->jiffies
;
873 * Has it been > 2 minutes
874 * since the last read off
877 if ((time_now
- time_last
) > 120) {
879 aac_close_fib_context(dev
, fibctx
);
884 * Warning: no sleep allowed while
887 hw_newfib
= kmalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
888 newfib
= kmalloc(sizeof(struct fib
), GFP_ATOMIC
);
889 if (newfib
&& hw_newfib
) {
891 * Make the copy of the FIB
893 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
894 memcpy(newfib
, fib
, sizeof(struct fib
));
895 newfib
->hw_fib
= hw_newfib
;
897 * Put the FIB onto the
900 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
903 * Set the event to wake up the
904 * thread that will waiting.
906 up(&fibctx
->wait_sem
);
908 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
917 * Set the status of this FIB
919 *(u32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
920 fib_adapter_complete(fib
, sizeof(u32
));
921 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
923 spin_lock_irqsave(queues
->queue
[HostNormCmdQueue
].lock
, flags
);
927 * There are no more AIF's
929 spin_unlock_irqrestore(queues
->queue
[HostNormCmdQueue
].lock
, flags
);
932 if(signal_pending(current
))
934 set_current_state(TASK_INTERRUPTIBLE
);
936 remove_wait_queue(&queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
938 complete_and_exit(&dev
->aif_completion
, 0);