Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / drivers / scsi / aic7xxx / aic7xxx_osm.c
blobd978e4a3e973742ca03475584f96e0b39fff0f48
1 /*
2 * Adaptec AIC7xxx device driver for Linux.
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
6 * Copyright (c) 1994 John Aycock
7 * The University of Calgary Department of Computer Science.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, write to
21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
30 * ANSI SCSI-2 specification (draft 10c), ...
32 * --------------------------------------------------------------------------
34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
36 * Substantially modified to include support for wide and twin bus
37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
38 * SCB paging, and other rework of the code.
40 * --------------------------------------------------------------------------
41 * Copyright (c) 1994-2000 Justin T. Gibbs.
42 * Copyright (c) 2000-2001 Adaptec Inc.
43 * All rights reserved.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification.
51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
52 * substantially similar to the "NO WARRANTY" disclaimer below
53 * ("Disclaimer") and any redistribution must be conditioned upon
54 * including a substantially similar Disclaimer requirement for further
55 * binary redistribution.
56 * 3. Neither the names of the above-listed copyright holders nor the names
57 * of any contributors may be used to endorse or promote products derived
58 * from this software without specific prior written permission.
60 * Alternatively, this software may be distributed under the terms of the
61 * GNU General Public License ("GPL") version 2 as published by the Free
62 * Software Foundation.
64 * NO WARRANTY
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
75 * POSSIBILITY OF SUCH DAMAGES.
77 *---------------------------------------------------------------------------
79 * Thanks also go to (in alphabetical order) the following:
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
86 * A Boot time option was also added for not resetting the scsi bus.
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=verbose
92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
98 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
100 * Copyright (c) 1997-1999 Doug Ledford
102 * These changes are released under the same licensing terms as the FreeBSD
103 * driver written by Justin Gibbs. Please see his Copyright notice above
104 * for the exact terms and conditions covering my changes as well as the
105 * warranty statement.
107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
108 * but are not limited to:
110 * 1: Import of the latest FreeBSD sequencer code for this driver
111 * 2: Modification of kernel code to accommodate different sequencer semantics
112 * 3: Extensive changes throughout kernel portion of driver to improve
113 * abort/reset processing and error hanndling
114 * 4: Other work contributed by various people on the Internet
115 * 5: Changes to printk information and verbosity selection code
116 * 6: General reliability related changes, especially in IRQ management
117 * 7: Modifications to the default probe/attach order for supported cards
118 * 8: SMP friendliness has been improved
122 #include "aic7xxx_osm.h"
123 #include "aic7xxx_inline.h"
124 #include <scsi/scsicam.h>
125 #include <scsi/scsi_transport.h>
126 #include <scsi/scsi_transport_spi.h>
128 static struct scsi_transport_template *ahc_linux_transport_template = NULL;
131 * Include aiclib.c as part of our
132 * "module dependencies are hard" work around.
134 #include "aiclib.c"
136 #include <linux/init.h> /* __setup */
138 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
139 #include "sd.h" /* For geometry detection */
140 #endif
142 #include <linux/mm.h> /* For fetching system memory size */
143 #include <linux/blkdev.h> /* For block_size() */
144 #include <linux/delay.h> /* For ssleep/msleep */
147 * Lock protecting manipulation of the ahc softc list.
149 spinlock_t ahc_list_spinlock;
151 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
152 /* For dynamic sglist size calculation. */
153 u_int ahc_linux_nseg;
154 #endif
157 * Set this to the delay in seconds after SCSI bus reset.
158 * Note, we honor this only for the initial bus reset.
159 * The scsi error recovery code performs its own bus settle
160 * delay handling for error recovery actions.
162 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
163 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
164 #else
165 #define AIC7XXX_RESET_DELAY 5000
166 #endif
169 * Control collection of SCSI transfer statistics for the /proc filesystem.
171 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below.
172 * NOTE: This does affect performance since it has to maintain statistics.
174 #ifdef CONFIG_AIC7XXX_PROC_STATS
175 #define AIC7XXX_PROC_STATS
176 #endif
179 * To change the default number of tagged transactions allowed per-device,
180 * add a line to the lilo.conf file like:
181 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
182 * which will result in the first four devices on the first two
183 * controllers being set to a tagged queue depth of 32.
185 * The tag_commands is an array of 16 to allow for wide and twin adapters.
186 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
187 * for channel 1.
189 typedef struct {
190 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
191 } adapter_tag_info_t;
194 * Modify this as you see fit for your system.
196 * 0 tagged queuing disabled
197 * 1 <= n <= 253 n == max tags ever dispatched.
199 * The driver will throttle the number of commands dispatched to a
200 * device if it returns queue full. For devices with a fixed maximum
201 * queue depth, the driver will eventually determine this depth and
202 * lock it in (a console message is printed to indicate that a lock
203 * has occurred). On some devices, queue full is returned for a temporary
204 * resource shortage. These devices will return queue full at varying
205 * depths. The driver will throttle back when the queue fulls occur and
206 * attempt to slowly increase the depth over time as the device recovers
207 * from the resource shortage.
209 * In this example, the first line will disable tagged queueing for all
210 * the devices on the first probed aic7xxx adapter.
212 * The second line enables tagged queueing with 4 commands/LUN for IDs
213 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
214 * driver to attempt to use up to 64 tags for ID 1.
216 * The third line is the same as the first line.
218 * The fourth line disables tagged queueing for devices 0 and 3. It
219 * enables tagged queueing for the other IDs, with 16 commands/LUN
220 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
221 * IDs 2, 5-7, and 9-15.
225 * NOTE: The below structure is for reference only, the actual structure
226 * to modify in order to change things is just below this comment block.
227 adapter_tag_info_t aic7xxx_tag_info[] =
229 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
230 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
231 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
232 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
236 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
237 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
238 #else
239 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
240 #endif
242 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
243 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
244 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
245 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
246 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
247 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
248 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
249 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
250 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
254 * By default, use the number of commands specified by
255 * the users kernel configuration.
257 static adapter_tag_info_t aic7xxx_tag_info[] =
259 {AIC7XXX_CONFIGED_TAG_COMMANDS},
260 {AIC7XXX_CONFIGED_TAG_COMMANDS},
261 {AIC7XXX_CONFIGED_TAG_COMMANDS},
262 {AIC7XXX_CONFIGED_TAG_COMMANDS},
263 {AIC7XXX_CONFIGED_TAG_COMMANDS},
264 {AIC7XXX_CONFIGED_TAG_COMMANDS},
265 {AIC7XXX_CONFIGED_TAG_COMMANDS},
266 {AIC7XXX_CONFIGED_TAG_COMMANDS},
267 {AIC7XXX_CONFIGED_TAG_COMMANDS},
268 {AIC7XXX_CONFIGED_TAG_COMMANDS},
269 {AIC7XXX_CONFIGED_TAG_COMMANDS},
270 {AIC7XXX_CONFIGED_TAG_COMMANDS},
271 {AIC7XXX_CONFIGED_TAG_COMMANDS},
272 {AIC7XXX_CONFIGED_TAG_COMMANDS},
273 {AIC7XXX_CONFIGED_TAG_COMMANDS},
274 {AIC7XXX_CONFIGED_TAG_COMMANDS}
278 * There should be a specific return value for this in scsi.h, but
279 * it seems that most drivers ignore it.
281 #define DID_UNDERFLOW DID_ERROR
283 void
284 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
286 printk("(scsi%d:%c:%d:%d): ",
287 ahc->platform_data->host->host_no,
288 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
289 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
290 scb != NULL ? SCB_GET_LUN(scb) : -1);
294 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
295 * cards in the system. This should be fixed. Exceptions to this
296 * rule are noted in the comments.
300 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
301 * has no effect on any later resets that might occur due to things like
302 * SCSI bus timeouts.
304 static uint32_t aic7xxx_no_reset;
307 * Certain PCI motherboards will scan PCI devices from highest to lowest,
308 * others scan from lowest to highest, and they tend to do all kinds of
309 * strange things when they come into contact with PCI bridge chips. The
310 * net result of all this is that the PCI card that is actually used to boot
311 * the machine is very hard to detect. Most motherboards go from lowest
312 * PCI slot number to highest, and the first SCSI controller found is the
313 * one you boot from. The only exceptions to this are when a controller
314 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
315 * from lowest PCI slot number to highest PCI slot number. We also force
316 * all controllers with their BIOS disabled to the end of the list. This
317 * works on *almost* all computers. Where it doesn't work, we have this
318 * option. Setting this option to non-0 will reverse the order of the sort
319 * to highest first, then lowest, but will still leave cards with their BIOS
320 * disabled at the very end. That should fix everyone up unless there are
321 * really strange cirumstances.
323 static uint32_t aic7xxx_reverse_scan;
326 * Should we force EXTENDED translation on a controller.
327 * 0 == Use whatever is in the SEEPROM or default to off
328 * 1 == Use whatever is in the SEEPROM or default to on
330 static uint32_t aic7xxx_extended;
333 * PCI bus parity checking of the Adaptec controllers. This is somewhat
334 * dubious at best. To my knowledge, this option has never actually
335 * solved a PCI parity problem, but on certain machines with broken PCI
336 * chipset configurations where stray PCI transactions with bad parity are
337 * the norm rather than the exception, the error messages can be overwelming.
338 * It's included in the driver for completeness.
339 * 0 = Shut off PCI parity check
340 * non-0 = reverse polarity pci parity checking
342 static uint32_t aic7xxx_pci_parity = ~0;
345 * Certain newer motherboards have put new PCI based devices into the
346 * IO spaces that used to typically be occupied by VLB or EISA cards.
347 * This overlap can cause these newer motherboards to lock up when scanned
348 * for older EISA and VLB devices. Setting this option to non-0 will
349 * cause the driver to skip scanning for any VLB or EISA controllers and
350 * only support the PCI controllers. NOTE: this means that if the kernel
351 * os compiled with PCI support disabled, then setting this to non-0
352 * would result in never finding any devices :)
354 #ifndef CONFIG_AIC7XXX_PROBE_EISA_VL
355 uint32_t aic7xxx_probe_eisa_vl;
356 #else
357 uint32_t aic7xxx_probe_eisa_vl = ~0;
358 #endif
361 * There are lots of broken chipsets in the world. Some of them will
362 * violate the PCI spec when we issue byte sized memory writes to our
363 * controller. I/O mapped register access, if allowed by the given
364 * platform, will work in almost all cases.
366 uint32_t aic7xxx_allow_memio = ~0;
369 * aic7xxx_detect() has been run, so register all device arrivals
370 * immediately with the system rather than deferring to the sorted
371 * attachment performed by aic7xxx_detect().
373 int aic7xxx_detect_complete;
376 * So that we can set how long each device is given as a selection timeout.
377 * The table of values goes like this:
378 * 0 - 256ms
379 * 1 - 128ms
380 * 2 - 64ms
381 * 3 - 32ms
382 * We default to 256ms because some older devices need a longer time
383 * to respond to initial selection.
385 static uint32_t aic7xxx_seltime;
388 * Certain devices do not perform any aging on commands. Should the
389 * device be saturated by commands in one portion of the disk, it is
390 * possible for transactions on far away sectors to never be serviced.
391 * To handle these devices, we can periodically send an ordered tag to
392 * force all outstanding transactions to be serviced prior to a new
393 * transaction.
395 uint32_t aic7xxx_periodic_otag;
398 * Module information and settable options.
400 static char *aic7xxx = NULL;
402 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
403 MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
404 MODULE_LICENSE("Dual BSD/GPL");
405 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
406 module_param(aic7xxx, charp, 0444);
407 MODULE_PARM_DESC(aic7xxx,
408 "period delimited, options string.\n"
409 " verbose Enable verbose/diagnostic logging\n"
410 " allow_memio Allow device registers to be memory mapped\n"
411 " debug Bitmask of debug values to enable\n"
412 " no_probe Toggle EISA/VLB controller probing\n"
413 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
414 " no_reset Supress initial bus resets\n"
415 " extended Enable extended geometry on all controllers\n"
416 " periodic_otag Send an ordered tagged transaction\n"
417 " periodically to prevent tag starvation.\n"
418 " This may be required by some older disk\n"
419 " drives or RAID arrays.\n"
420 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
421 " tag_info:<tag_str> Set per-target tag depth\n"
422 " global_tag_depth:<int> Global tag depth for every target\n"
423 " on every bus\n"
424 " seltime:<int> Selection Timeout\n"
425 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
426 "\n"
427 " Sample /etc/modprobe.conf line:\n"
428 " Toggle EISA/VLB probing\n"
429 " Set tag depth on Controller 1/Target 1 to 10 tags\n"
430 " Shorten the selection timeout to 128ms\n"
431 "\n"
432 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
435 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
436 struct ahc_linux_device *,
437 struct scb *);
438 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
439 Scsi_Cmnd *cmd);
440 static void ahc_linux_sem_timeout(u_long arg);
441 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
442 static void ahc_linux_release_simq(u_long arg);
443 static void ahc_linux_dev_timed_unfreeze(u_long arg);
444 static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag);
445 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
446 static void ahc_linux_size_nseg(void);
447 static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc);
448 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
449 struct ahc_devinfo *devinfo);
450 static void ahc_linux_device_queue_depth(struct ahc_softc *ahc,
451 struct ahc_linux_device *dev);
452 static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*,
453 u_int, u_int);
454 static void ahc_linux_free_target(struct ahc_softc*,
455 struct ahc_linux_target*);
456 static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*,
457 struct ahc_linux_target*,
458 u_int);
459 static void ahc_linux_free_device(struct ahc_softc*,
460 struct ahc_linux_device*);
461 static void ahc_linux_run_device_queue(struct ahc_softc*,
462 struct ahc_linux_device*);
463 static void ahc_linux_setup_tag_info_global(char *p);
464 static aic_option_callback_t ahc_linux_setup_tag_info;
465 static int aic7xxx_setup(char *s);
466 static int ahc_linux_next_unit(void);
467 static void ahc_runq_tasklet(unsigned long data);
468 static struct ahc_cmd *ahc_linux_run_complete_queue(struct ahc_softc *ahc);
470 /********************************* Inlines ************************************/
471 static __inline void ahc_schedule_runq(struct ahc_softc *ahc);
472 static __inline struct ahc_linux_device*
473 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel,
474 u_int target, u_int lun, int alloc);
475 static __inline void ahc_schedule_completeq(struct ahc_softc *ahc);
476 static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc,
477 struct ahc_linux_device *dev);
478 static __inline struct ahc_linux_device *
479 ahc_linux_next_device_to_run(struct ahc_softc *ahc);
480 static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc);
481 static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
483 static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
484 struct ahc_dma_seg *sg,
485 dma_addr_t addr, bus_size_t len);
487 static __inline void
488 ahc_schedule_completeq(struct ahc_softc *ahc)
490 if ((ahc->platform_data->flags & AHC_RUN_CMPLT_Q_TIMER) == 0) {
491 ahc->platform_data->flags |= AHC_RUN_CMPLT_Q_TIMER;
492 ahc->platform_data->completeq_timer.expires = jiffies;
493 add_timer(&ahc->platform_data->completeq_timer);
498 * Must be called with our lock held.
500 static __inline void
501 ahc_schedule_runq(struct ahc_softc *ahc)
503 tasklet_schedule(&ahc->platform_data->runq_tasklet);
506 static __inline struct ahc_linux_device*
507 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target,
508 u_int lun, int alloc)
510 struct ahc_linux_target *targ;
511 struct ahc_linux_device *dev;
512 u_int target_offset;
514 target_offset = target;
515 if (channel != 0)
516 target_offset += 8;
517 targ = ahc->platform_data->targets[target_offset];
518 if (targ == NULL) {
519 if (alloc != 0) {
520 targ = ahc_linux_alloc_target(ahc, channel, target);
521 if (targ == NULL)
522 return (NULL);
523 } else
524 return (NULL);
526 dev = targ->devices[lun];
527 if (dev == NULL && alloc != 0)
528 dev = ahc_linux_alloc_device(ahc, targ, lun);
529 return (dev);
532 #define AHC_LINUX_MAX_RETURNED_ERRORS 4
533 static struct ahc_cmd *
534 ahc_linux_run_complete_queue(struct ahc_softc *ahc)
536 struct ahc_cmd *acmd;
537 u_long done_flags;
538 int with_errors;
540 with_errors = 0;
541 ahc_done_lock(ahc, &done_flags);
542 while ((acmd = TAILQ_FIRST(&ahc->platform_data->completeq)) != NULL) {
543 Scsi_Cmnd *cmd;
545 if (with_errors > AHC_LINUX_MAX_RETURNED_ERRORS) {
547 * Linux uses stack recursion to requeue
548 * commands that need to be retried. Avoid
549 * blowing out the stack by "spoon feeding"
550 * commands that completed with error back
551 * the operating system in case they are going
552 * to be retried. "ick"
554 ahc_schedule_completeq(ahc);
555 break;
557 TAILQ_REMOVE(&ahc->platform_data->completeq,
558 acmd, acmd_links.tqe);
559 cmd = &acmd_scsi_cmd(acmd);
560 cmd->host_scribble = NULL;
561 if (ahc_cmd_get_transaction_status(cmd) != DID_OK
562 || (cmd->result & 0xFF) != SCSI_STATUS_OK)
563 with_errors++;
565 cmd->scsi_done(cmd);
567 ahc_done_unlock(ahc, &done_flags);
568 return (acmd);
571 static __inline void
572 ahc_linux_check_device_queue(struct ahc_softc *ahc,
573 struct ahc_linux_device *dev)
575 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0
576 && dev->active == 0) {
577 dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY;
578 dev->qfrozen--;
581 if (TAILQ_FIRST(&dev->busyq) == NULL
582 || dev->openings == 0 || dev->qfrozen != 0)
583 return;
585 ahc_linux_run_device_queue(ahc, dev);
588 static __inline struct ahc_linux_device *
589 ahc_linux_next_device_to_run(struct ahc_softc *ahc)
592 if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0
593 || (ahc->platform_data->qfrozen != 0))
594 return (NULL);
595 return (TAILQ_FIRST(&ahc->platform_data->device_runq));
598 static __inline void
599 ahc_linux_run_device_queues(struct ahc_softc *ahc)
601 struct ahc_linux_device *dev;
603 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
604 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
605 dev->flags &= ~AHC_DEV_ON_RUN_LIST;
606 ahc_linux_check_device_queue(ahc, dev);
610 static __inline void
611 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
613 Scsi_Cmnd *cmd;
615 cmd = scb->io_ctx;
616 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
617 if (cmd->use_sg != 0) {
618 struct scatterlist *sg;
620 sg = (struct scatterlist *)cmd->request_buffer;
621 pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg,
622 cmd->sc_data_direction);
623 } else if (cmd->request_bufflen != 0) {
624 pci_unmap_single(ahc->dev_softc,
625 scb->platform_data->buf_busaddr,
626 cmd->request_bufflen,
627 cmd->sc_data_direction);
631 static __inline int
632 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
633 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
635 int consumed;
637 if ((scb->sg_count + 1) > AHC_NSEG)
638 panic("Too few segs for dma mapping. "
639 "Increase AHC_NSEG\n");
641 consumed = 1;
642 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
643 scb->platform_data->xfer_len += len;
645 if (sizeof(dma_addr_t) > 4
646 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
647 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
649 sg->len = ahc_htole32(len);
650 return (consumed);
653 /************************ Host template entry points *************************/
654 static int ahc_linux_detect(Scsi_Host_Template *);
655 static int ahc_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
656 static const char *ahc_linux_info(struct Scsi_Host *);
657 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
658 static int ahc_linux_slave_alloc(Scsi_Device *);
659 static int ahc_linux_slave_configure(Scsi_Device *);
660 static void ahc_linux_slave_destroy(Scsi_Device *);
661 #if defined(__i386__)
662 static int ahc_linux_biosparam(struct scsi_device*,
663 struct block_device*,
664 sector_t, int[]);
665 #endif
666 #else
667 static int ahc_linux_release(struct Scsi_Host *);
668 static void ahc_linux_select_queue_depth(struct Scsi_Host *host,
669 Scsi_Device *scsi_devs);
670 #if defined(__i386__)
671 static int ahc_linux_biosparam(Disk *, kdev_t, int[]);
672 #endif
673 #endif
674 static int ahc_linux_bus_reset(Scsi_Cmnd *);
675 static int ahc_linux_dev_reset(Scsi_Cmnd *);
676 static int ahc_linux_abort(Scsi_Cmnd *);
679 * Calculate a safe value for AHC_NSEG (as expressed through ahc_linux_nseg).
681 * In pre-2.5.X...
682 * The midlayer allocates an S/G array dynamically when a command is issued
683 * using SCSI malloc. This array, which is in an OS dependent format that
684 * must later be copied to our private S/G list, is sized to house just the
685 * number of segments needed for the current transfer. Since the code that
686 * sizes the SCSI malloc pool does not take into consideration fragmentation
687 * of the pool, executing transactions numbering just a fraction of our
688 * concurrent transaction limit with list lengths aproaching AHC_NSEG will
689 * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
690 * mid-layer does not properly handle this scsi malloc failures for the S/G
691 * array and the result can be a lockup of the I/O subsystem. We try to size
692 * our S/G list so that it satisfies our drivers allocation requirements in
693 * addition to avoiding fragmentation of the SCSI malloc pool.
695 static void
696 ahc_linux_size_nseg(void)
698 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
699 u_int cur_size;
700 u_int best_size;
703 * The SCSI allocator rounds to the nearest 512 bytes
704 * an cannot allocate across a page boundary. Our algorithm
705 * is to start at 1K of scsi malloc space per-command and
706 * loop through all factors of the PAGE_SIZE and pick the best.
708 best_size = 0;
709 for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
710 u_int nseg;
712 nseg = cur_size / sizeof(struct scatterlist);
713 if (nseg < AHC_LINUX_MIN_NSEG)
714 continue;
716 if (best_size == 0) {
717 best_size = cur_size;
718 ahc_linux_nseg = nseg;
719 } else {
720 u_int best_rem;
721 u_int cur_rem;
724 * Compare the traits of the current "best_size"
725 * with the current size to determine if the
726 * current size is a better size.
728 best_rem = best_size % sizeof(struct scatterlist);
729 cur_rem = cur_size % sizeof(struct scatterlist);
730 if (cur_rem < best_rem) {
731 best_size = cur_size;
732 ahc_linux_nseg = nseg;
736 #endif
740 * Try to detect an Adaptec 7XXX controller.
742 static int
743 ahc_linux_detect(Scsi_Host_Template *template)
745 struct ahc_softc *ahc;
746 int found = 0;
748 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
750 * It is a bug that the upper layer takes
751 * this lock just prior to calling us.
753 spin_unlock_irq(&io_request_lock);
754 #endif
757 * Sanity checking of Linux SCSI data structures so
758 * that some of our hacks^H^H^H^H^Hassumptions aren't
759 * violated.
761 if (offsetof(struct ahc_cmd_internal, end)
762 > offsetof(struct scsi_cmnd, host_scribble)) {
763 printf("ahc_linux_detect: SCSI data structures changed.\n");
764 printf("ahc_linux_detect: Unable to attach\n");
765 return (0);
767 ahc_linux_size_nseg();
769 * If we've been passed any parameters, process them now.
771 if (aic7xxx)
772 aic7xxx_setup(aic7xxx);
774 template->proc_name = "aic7xxx";
777 * Initialize our softc list lock prior to
778 * probing for any adapters.
780 ahc_list_lockinit();
782 found = ahc_linux_pci_init();
783 if (!ahc_linux_eisa_init())
784 found++;
787 * Register with the SCSI layer all
788 * controllers we've found.
790 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
792 if (ahc_linux_register_host(ahc, template) == 0)
793 found++;
796 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
797 spin_lock_irq(&io_request_lock);
798 #endif
799 aic7xxx_detect_complete++;
801 return (found);
804 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
806 * Free the passed in Scsi_Host memory structures prior to unloading the
807 * module.
810 ahc_linux_release(struct Scsi_Host * host)
812 struct ahc_softc *ahc;
813 u_long l;
815 ahc_list_lock(&l);
816 if (host != NULL) {
819 * We should be able to just perform
820 * the free directly, but check our
821 * list for extra sanity.
823 ahc = ahc_find_softc(*(struct ahc_softc **)host->hostdata);
824 if (ahc != NULL) {
825 u_long s;
827 ahc_lock(ahc, &s);
828 ahc_intr_enable(ahc, FALSE);
829 ahc_unlock(ahc, &s);
830 ahc_free(ahc);
833 ahc_list_unlock(&l);
834 return (0);
836 #endif
839 * Return a string describing the driver.
841 static const char *
842 ahc_linux_info(struct Scsi_Host *host)
844 static char buffer[512];
845 char ahc_info[256];
846 char *bp;
847 struct ahc_softc *ahc;
849 bp = &buffer[0];
850 ahc = *(struct ahc_softc **)host->hostdata;
851 memset(bp, 0, sizeof(buffer));
852 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev ");
853 strcat(bp, AIC7XXX_DRIVER_VERSION);
854 strcat(bp, "\n");
855 strcat(bp, " <");
856 strcat(bp, ahc->description);
857 strcat(bp, ">\n");
858 strcat(bp, " ");
859 ahc_controller_info(ahc, ahc_info);
860 strcat(bp, ahc_info);
861 strcat(bp, "\n");
863 return (bp);
867 * Queue an SCB to the controller.
869 static int
870 ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
872 struct ahc_softc *ahc;
873 struct ahc_linux_device *dev;
874 u_long flags;
876 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
879 * Save the callback on completion function.
881 cmd->scsi_done = scsi_done;
883 ahc_midlayer_entrypoint_lock(ahc, &flags);
886 * Close the race of a command that was in the process of
887 * being queued to us just as our simq was frozen. Let
888 * DV commands through so long as we are only frozen to
889 * perform DV.
891 if (ahc->platform_data->qfrozen != 0) {
893 ahc_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
894 ahc_linux_queue_cmd_complete(ahc, cmd);
895 ahc_schedule_completeq(ahc);
896 ahc_midlayer_entrypoint_unlock(ahc, &flags);
897 return (0);
899 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
900 cmd->device->lun, /*alloc*/TRUE);
901 if (dev == NULL) {
902 ahc_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
903 ahc_linux_queue_cmd_complete(ahc, cmd);
904 ahc_schedule_completeq(ahc);
905 ahc_midlayer_entrypoint_unlock(ahc, &flags);
906 printf("%s: aic7xxx_linux_queue - Unable to allocate device!\n",
907 ahc_name(ahc));
908 return (0);
910 cmd->result = CAM_REQ_INPROG << 16;
911 TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe);
912 if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
913 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
914 dev->flags |= AHC_DEV_ON_RUN_LIST;
915 ahc_linux_run_device_queues(ahc);
917 ahc_midlayer_entrypoint_unlock(ahc, &flags);
918 return (0);
921 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
922 static int
923 ahc_linux_slave_alloc(Scsi_Device *device)
925 struct ahc_softc *ahc;
927 ahc = *((struct ahc_softc **)device->host->hostdata);
928 if (bootverbose)
929 printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id);
930 return (0);
933 static int
934 ahc_linux_slave_configure(Scsi_Device *device)
936 struct ahc_softc *ahc;
937 struct ahc_linux_device *dev;
938 u_long flags;
940 ahc = *((struct ahc_softc **)device->host->hostdata);
941 if (bootverbose)
942 printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id);
943 ahc_midlayer_entrypoint_lock(ahc, &flags);
945 * Since Linux has attached to the device, configure
946 * it so we don't free and allocate the device
947 * structure on every command.
949 dev = ahc_linux_get_device(ahc, device->channel,
950 device->id, device->lun,
951 /*alloc*/TRUE);
952 if (dev != NULL) {
953 dev->flags &= ~AHC_DEV_UNCONFIGURED;
954 dev->scsi_device = device;
955 ahc_linux_device_queue_depth(ahc, dev);
957 ahc_midlayer_entrypoint_unlock(ahc, &flags);
959 /* Initial Domain Validation */
960 if (!spi_initial_dv(device->sdev_target))
961 spi_dv_device(device);
963 return (0);
966 static void
967 ahc_linux_slave_destroy(Scsi_Device *device)
969 struct ahc_softc *ahc;
970 struct ahc_linux_device *dev;
971 u_long flags;
973 ahc = *((struct ahc_softc **)device->host->hostdata);
974 if (bootverbose)
975 printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id);
976 ahc_midlayer_entrypoint_lock(ahc, &flags);
977 dev = ahc_linux_get_device(ahc, device->channel,
978 device->id, device->lun,
979 /*alloc*/FALSE);
981 * Filter out "silly" deletions of real devices by only
982 * deleting devices that have had slave_configure()
983 * called on them. All other devices that have not
984 * been configured will automatically be deleted by
985 * the refcounting process.
987 if (dev != NULL
988 && (dev->flags & AHC_DEV_SLAVE_CONFIGURED) != 0) {
989 dev->flags |= AHC_DEV_UNCONFIGURED;
990 if (TAILQ_EMPTY(&dev->busyq)
991 && dev->active == 0
992 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
993 ahc_linux_free_device(ahc, dev);
995 ahc_midlayer_entrypoint_unlock(ahc, &flags);
997 #else
999 * Sets the queue depth for each SCSI device hanging
1000 * off the input host adapter.
1002 static void
1003 ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs)
1005 Scsi_Device *device;
1006 Scsi_Device *ldev;
1007 struct ahc_softc *ahc;
1008 u_long flags;
1010 ahc = *((struct ahc_softc **)host->hostdata);
1011 ahc_lock(ahc, &flags);
1012 for (device = scsi_devs; device != NULL; device = device->next) {
1015 * Watch out for duplicate devices. This works around
1016 * some quirks in how the SCSI scanning code does its
1017 * device management.
1019 for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
1020 if (ldev->host == device->host
1021 && ldev->channel == device->channel
1022 && ldev->id == device->id
1023 && ldev->lun == device->lun)
1024 break;
1026 /* Skip duplicate. */
1027 if (ldev != device)
1028 continue;
1030 if (device->host == host) {
1031 struct ahc_linux_device *dev;
1034 * Since Linux has attached to the device, configure
1035 * it so we don't free and allocate the device
1036 * structure on every command.
1038 dev = ahc_linux_get_device(ahc, device->channel,
1039 device->id, device->lun,
1040 /*alloc*/TRUE);
1041 if (dev != NULL) {
1042 dev->flags &= ~AHC_DEV_UNCONFIGURED;
1043 dev->scsi_device = device;
1044 ahc_linux_device_queue_depth(ahc, dev);
1045 device->queue_depth = dev->openings
1046 + dev->active;
1047 if ((dev->flags & (AHC_DEV_Q_BASIC
1048 | AHC_DEV_Q_TAGGED)) == 0) {
1050 * We allow the OS to queue 2 untagged
1051 * transactions to us at any time even
1052 * though we can only execute them
1053 * serially on the controller/device.
1054 * This should remove some latency.
1056 device->queue_depth = 2;
1061 ahc_unlock(ahc, &flags);
1063 #endif
1065 #if defined(__i386__)
1067 * Return the disk geometry for the given SCSI device.
1069 static int
1070 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1071 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
1072 sector_t capacity, int geom[])
1074 uint8_t *bh;
1075 #else
1076 ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
1078 struct scsi_device *sdev = disk->device;
1079 u_long capacity = disk->capacity;
1080 struct buffer_head *bh;
1081 #endif
1082 int heads;
1083 int sectors;
1084 int cylinders;
1085 int ret;
1086 int extended;
1087 struct ahc_softc *ahc;
1088 u_int channel;
1090 ahc = *((struct ahc_softc **)sdev->host->hostdata);
1091 channel = sdev->channel;
1093 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1094 bh = scsi_bios_ptable(bdev);
1095 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
1096 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
1097 #else
1098 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
1099 #endif
1101 if (bh) {
1102 ret = scsi_partsize(bh, capacity,
1103 &geom[2], &geom[0], &geom[1]);
1104 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1105 kfree(bh);
1106 #else
1107 brelse(bh);
1108 #endif
1109 if (ret != -1)
1110 return (ret);
1112 heads = 64;
1113 sectors = 32;
1114 cylinders = aic_sector_div(capacity, heads, sectors);
1116 if (aic7xxx_extended != 0)
1117 extended = 1;
1118 else if (channel == 0)
1119 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
1120 else
1121 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
1122 if (extended && cylinders >= 1024) {
1123 heads = 255;
1124 sectors = 63;
1125 cylinders = aic_sector_div(capacity, heads, sectors);
1127 geom[0] = heads;
1128 geom[1] = sectors;
1129 geom[2] = cylinders;
1130 return (0);
1132 #endif
1135 * Abort the current SCSI command(s).
1137 static int
1138 ahc_linux_abort(Scsi_Cmnd *cmd)
1140 int error;
1142 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
1143 if (error != 0)
1144 printf("aic7xxx_abort returns 0x%x\n", error);
1145 return (error);
1149 * Attempt to send a target reset message to the device that timed out.
1151 static int
1152 ahc_linux_dev_reset(Scsi_Cmnd *cmd)
1154 int error;
1156 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
1157 if (error != 0)
1158 printf("aic7xxx_dev_reset returns 0x%x\n", error);
1159 return (error);
1163 * Reset the SCSI bus.
1165 static int
1166 ahc_linux_bus_reset(Scsi_Cmnd *cmd)
1168 struct ahc_softc *ahc;
1169 u_long s;
1170 int found;
1172 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
1173 ahc_midlayer_entrypoint_lock(ahc, &s);
1174 found = ahc_reset_channel(ahc, cmd->device->channel + 'A',
1175 /*initiate reset*/TRUE);
1176 ahc_linux_run_complete_queue(ahc);
1177 ahc_midlayer_entrypoint_unlock(ahc, &s);
1179 if (bootverbose)
1180 printf("%s: SCSI bus reset delivered. "
1181 "%d SCBs aborted.\n", ahc_name(ahc), found);
1183 return SUCCESS;
1186 Scsi_Host_Template aic7xxx_driver_template = {
1187 .module = THIS_MODULE,
1188 .name = "aic7xxx",
1189 .proc_info = ahc_linux_proc_info,
1190 .info = ahc_linux_info,
1191 .queuecommand = ahc_linux_queue,
1192 .eh_abort_handler = ahc_linux_abort,
1193 .eh_device_reset_handler = ahc_linux_dev_reset,
1194 .eh_bus_reset_handler = ahc_linux_bus_reset,
1195 #if defined(__i386__)
1196 .bios_param = ahc_linux_biosparam,
1197 #endif
1198 .can_queue = AHC_MAX_QUEUE,
1199 .this_id = -1,
1200 .cmd_per_lun = 2,
1201 .use_clustering = ENABLE_CLUSTERING,
1202 .slave_alloc = ahc_linux_slave_alloc,
1203 .slave_configure = ahc_linux_slave_configure,
1204 .slave_destroy = ahc_linux_slave_destroy,
1207 /**************************** Tasklet Handler *********************************/
1210 * In 2.4.X and above, this routine is called from a tasklet,
1211 * so we must re-acquire our lock prior to executing this code.
1212 * In all prior kernels, ahc_schedule_runq() calls this routine
1213 * directly and ahc_schedule_runq() is called with our lock held.
1215 static void
1216 ahc_runq_tasklet(unsigned long data)
1218 struct ahc_softc* ahc;
1219 struct ahc_linux_device *dev;
1220 u_long flags;
1222 ahc = (struct ahc_softc *)data;
1223 ahc_lock(ahc, &flags);
1224 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
1226 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
1227 dev->flags &= ~AHC_DEV_ON_RUN_LIST;
1228 ahc_linux_check_device_queue(ahc, dev);
1229 /* Yeild to our interrupt handler */
1230 ahc_unlock(ahc, &flags);
1231 ahc_lock(ahc, &flags);
1233 ahc_unlock(ahc, &flags);
1236 /******************************** Macros **************************************/
1237 #define BUILD_SCSIID(ahc, cmd) \
1238 ((((cmd)->device->id << TID_SHIFT) & TID) \
1239 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
1240 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
1242 /******************************** Bus DMA *************************************/
1244 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
1245 bus_size_t alignment, bus_size_t boundary,
1246 dma_addr_t lowaddr, dma_addr_t highaddr,
1247 bus_dma_filter_t *filter, void *filterarg,
1248 bus_size_t maxsize, int nsegments,
1249 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
1251 bus_dma_tag_t dmat;
1253 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
1254 if (dmat == NULL)
1255 return (ENOMEM);
1258 * Linux is very simplistic about DMA memory. For now don't
1259 * maintain all specification information. Once Linux supplies
1260 * better facilities for doing these operations, or the
1261 * needs of this particular driver change, we might need to do
1262 * more here.
1264 dmat->alignment = alignment;
1265 dmat->boundary = boundary;
1266 dmat->maxsize = maxsize;
1267 *ret_tag = dmat;
1268 return (0);
1271 void
1272 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
1274 free(dmat, M_DEVBUF);
1278 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
1279 int flags, bus_dmamap_t *mapp)
1281 bus_dmamap_t map;
1283 map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
1284 if (map == NULL)
1285 return (ENOMEM);
1287 * Although we can dma data above 4GB, our
1288 * "consistent" memory is below 4GB for
1289 * space efficiency reasons (only need a 4byte
1290 * address). For this reason, we have to reset
1291 * our dma mask when doing allocations.
1293 if (ahc->dev_softc != NULL)
1294 if (pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF)) {
1295 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
1296 kfree(map);
1297 return (ENODEV);
1299 *vaddr = pci_alloc_consistent(ahc->dev_softc,
1300 dmat->maxsize, &map->bus_addr);
1301 if (ahc->dev_softc != NULL)
1302 if (pci_set_dma_mask(ahc->dev_softc,
1303 ahc->platform_data->hw_dma_mask)) {
1304 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
1305 kfree(map);
1306 return (ENODEV);
1308 if (*vaddr == NULL)
1309 return (ENOMEM);
1310 *mapp = map;
1311 return(0);
1314 void
1315 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
1316 void* vaddr, bus_dmamap_t map)
1318 pci_free_consistent(ahc->dev_softc, dmat->maxsize,
1319 vaddr, map->bus_addr);
1323 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
1324 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
1325 void *cb_arg, int flags)
1328 * Assume for now that this will only be used during
1329 * initialization and not for per-transaction buffer mapping.
1331 bus_dma_segment_t stack_sg;
1333 stack_sg.ds_addr = map->bus_addr;
1334 stack_sg.ds_len = dmat->maxsize;
1335 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
1336 return (0);
1339 void
1340 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
1343 * The map may is NULL in our < 2.3.X implementation.
1344 * Now it's 2.6.5, but just in case...
1346 BUG_ON(map == NULL);
1347 free(map, M_DEVBUF);
1351 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
1353 /* Nothing to do */
1354 return (0);
1357 /********************* Platform Dependent Functions ***************************/
1359 * Compare "left hand" softc with "right hand" softc, returning:
1360 * < 0 - lahc has a lower priority than rahc
1361 * 0 - Softcs are equal
1362 * > 0 - lahc has a higher priority than rahc
1365 ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc)
1367 int value;
1368 int rvalue;
1369 int lvalue;
1372 * Under Linux, cards are ordered as follows:
1373 * 1) VLB/EISA BIOS enabled devices sorted by BIOS address.
1374 * 2) PCI devices with BIOS enabled sorted by bus/slot/func.
1375 * 3) All remaining VLB/EISA devices sorted by ioport.
1376 * 4) All remaining PCI devices sorted by bus/slot/func.
1378 value = (lahc->flags & AHC_BIOS_ENABLED)
1379 - (rahc->flags & AHC_BIOS_ENABLED);
1380 if (value != 0)
1381 /* Controllers with BIOS enabled have a *higher* priority */
1382 return (value);
1385 * Same BIOS setting, now sort based on bus type.
1386 * EISA and VL controllers sort together. EISA/VL
1387 * have higher priority than PCI.
1389 rvalue = (rahc->chip & AHC_BUS_MASK);
1390 if (rvalue == AHC_VL)
1391 rvalue = AHC_EISA;
1392 lvalue = (lahc->chip & AHC_BUS_MASK);
1393 if (lvalue == AHC_VL)
1394 lvalue = AHC_EISA;
1395 value = rvalue - lvalue;
1396 if (value != 0)
1397 return (value);
1399 /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */
1400 switch (rvalue) {
1401 #ifdef CONFIG_PCI
1402 case AHC_PCI:
1404 char primary_channel;
1406 if (aic7xxx_reverse_scan != 0)
1407 value = ahc_get_pci_bus(lahc->dev_softc)
1408 - ahc_get_pci_bus(rahc->dev_softc);
1409 else
1410 value = ahc_get_pci_bus(rahc->dev_softc)
1411 - ahc_get_pci_bus(lahc->dev_softc);
1412 if (value != 0)
1413 break;
1414 if (aic7xxx_reverse_scan != 0)
1415 value = ahc_get_pci_slot(lahc->dev_softc)
1416 - ahc_get_pci_slot(rahc->dev_softc);
1417 else
1418 value = ahc_get_pci_slot(rahc->dev_softc)
1419 - ahc_get_pci_slot(lahc->dev_softc);
1420 if (value != 0)
1421 break;
1423 * On multi-function devices, the user can choose
1424 * to have function 1 probed before function 0.
1425 * Give whichever channel is the primary channel
1426 * the highest priority.
1428 primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A';
1429 value = -1;
1430 if (lahc->channel == primary_channel)
1431 value = 1;
1432 break;
1434 #endif
1435 case AHC_EISA:
1436 if ((rahc->flags & AHC_BIOS_ENABLED) != 0) {
1437 value = rahc->platform_data->bios_address
1438 - lahc->platform_data->bios_address;
1439 } else {
1440 value = rahc->bsh.ioport
1441 - lahc->bsh.ioport;
1443 break;
1444 default:
1445 panic("ahc_softc_sort: invalid bus type");
1447 return (value);
1450 static void
1451 ahc_linux_setup_tag_info_global(char *p)
1453 int tags, i, j;
1455 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1456 printf("Setting Global Tags= %d\n", tags);
1458 for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) {
1459 for (j = 0; j < AHC_NUM_TARGETS; j++) {
1460 aic7xxx_tag_info[i].tag_commands[j] = tags;
1465 static void
1466 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1469 if ((instance >= 0) && (targ >= 0)
1470 && (instance < NUM_ELEMENTS(aic7xxx_tag_info))
1471 && (targ < AHC_NUM_TARGETS)) {
1472 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
1473 if (bootverbose)
1474 printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1479 * Handle Linux boot parameters. This routine allows for assigning a value
1480 * to a parameter with a ':' between the parameter and the value.
1481 * ie. aic7xxx=stpwlev:1,extended
1483 static int
1484 aic7xxx_setup(char *s)
1486 int i, n;
1487 char *p;
1488 char *end;
1490 static struct {
1491 const char *name;
1492 uint32_t *flag;
1493 } options[] = {
1494 { "extended", &aic7xxx_extended },
1495 { "no_reset", &aic7xxx_no_reset },
1496 { "verbose", &aic7xxx_verbose },
1497 { "allow_memio", &aic7xxx_allow_memio},
1498 #ifdef AHC_DEBUG
1499 { "debug", &ahc_debug },
1500 #endif
1501 { "reverse_scan", &aic7xxx_reverse_scan },
1502 { "no_probe", &aic7xxx_probe_eisa_vl },
1503 { "probe_eisa_vl", &aic7xxx_probe_eisa_vl },
1504 { "periodic_otag", &aic7xxx_periodic_otag },
1505 { "pci_parity", &aic7xxx_pci_parity },
1506 { "seltime", &aic7xxx_seltime },
1507 { "tag_info", NULL },
1508 { "global_tag_depth", NULL },
1509 { "dv", NULL }
1512 end = strchr(s, '\0');
1515 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
1516 * will never be 0 in this case.
1518 n = 0;
1520 while ((p = strsep(&s, ",.")) != NULL) {
1521 if (*p == '\0')
1522 continue;
1523 for (i = 0; i < NUM_ELEMENTS(options); i++) {
1525 n = strlen(options[i].name);
1526 if (strncmp(options[i].name, p, n) == 0)
1527 break;
1529 if (i == NUM_ELEMENTS(options))
1530 continue;
1532 if (strncmp(p, "global_tag_depth", n) == 0) {
1533 ahc_linux_setup_tag_info_global(p + n);
1534 } else if (strncmp(p, "tag_info", n) == 0) {
1535 s = aic_parse_brace_option("tag_info", p + n, end,
1536 2, ahc_linux_setup_tag_info, 0);
1537 } else if (p[n] == ':') {
1538 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1539 } else if (strncmp(p, "verbose", n) == 0) {
1540 *(options[i].flag) = 1;
1541 } else {
1542 *(options[i].flag) ^= 0xFFFFFFFF;
1545 return 1;
1548 __setup("aic7xxx=", aic7xxx_setup);
1550 uint32_t aic7xxx_verbose;
1553 ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template)
1555 char buf[80];
1556 struct Scsi_Host *host;
1557 char *new_name;
1558 u_long s;
1560 template->name = ahc->description;
1561 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1562 if (host == NULL)
1563 return (ENOMEM);
1565 *((struct ahc_softc **)host->hostdata) = ahc;
1566 ahc_lock(ahc, &s);
1567 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1568 scsi_assign_lock(host, &ahc->platform_data->spin_lock);
1569 #elif AHC_SCSI_HAS_HOST_LOCK != 0
1570 host->lock = &ahc->platform_data->spin_lock;
1571 #endif
1572 ahc->platform_data->host = host;
1573 host->can_queue = AHC_MAX_QUEUE;
1574 host->cmd_per_lun = 2;
1575 /* XXX No way to communicate the ID for multiple channels */
1576 host->this_id = ahc->our_id;
1577 host->irq = ahc->platform_data->irq;
1578 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1579 host->max_lun = AHC_NUM_LUNS;
1580 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1581 host->sg_tablesize = AHC_NSEG;
1582 ahc_set_unit(ahc, ahc_linux_next_unit());
1583 sprintf(buf, "scsi%d", host->host_no);
1584 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
1585 if (new_name != NULL) {
1586 strcpy(new_name, buf);
1587 ahc_set_name(ahc, new_name);
1589 host->unique_id = ahc->unit;
1590 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
1591 scsi_set_pci_device(host, ahc->dev_softc);
1592 #endif
1593 ahc_linux_initialize_scsi_bus(ahc);
1594 ahc_intr_enable(ahc, TRUE);
1595 ahc_unlock(ahc, &s);
1597 host->transportt = ahc_linux_transport_template;
1599 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1600 scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */
1601 scsi_scan_host(host);
1602 #endif
1603 return (0);
1606 uint64_t
1607 ahc_linux_get_memsize(void)
1609 struct sysinfo si;
1611 si_meminfo(&si);
1612 return ((uint64_t)si.totalram << PAGE_SHIFT);
1616 * Find the smallest available unit number to use
1617 * for a new device. We don't just use a static
1618 * count to handle the "repeated hot-(un)plug"
1619 * scenario.
1621 static int
1622 ahc_linux_next_unit(void)
1624 struct ahc_softc *ahc;
1625 int unit;
1627 unit = 0;
1628 retry:
1629 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
1630 if (ahc->unit == unit) {
1631 unit++;
1632 goto retry;
1635 return (unit);
1639 * Place the SCSI bus into a known state by either resetting it,
1640 * or forcing transfer negotiations on the next command to any
1641 * target.
1643 void
1644 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1646 int i;
1647 int numtarg;
1649 i = 0;
1650 numtarg = 0;
1652 if (aic7xxx_no_reset != 0)
1653 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1655 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1656 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1657 else
1658 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1660 if ((ahc->features & AHC_TWIN) != 0) {
1662 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1663 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1664 } else {
1665 if (numtarg == 0)
1666 i = 8;
1667 numtarg += 8;
1672 * Force negotiation to async for all targets that
1673 * will not see an initial bus reset.
1675 for (; i < numtarg; i++) {
1676 struct ahc_devinfo devinfo;
1677 struct ahc_initiator_tinfo *tinfo;
1678 struct ahc_tmode_tstate *tstate;
1679 u_int our_id;
1680 u_int target_id;
1681 char channel;
1683 channel = 'A';
1684 our_id = ahc->our_id;
1685 target_id = i;
1686 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1687 channel = 'B';
1688 our_id = ahc->our_id_b;
1689 target_id = i % 8;
1691 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1692 target_id, &tstate);
1693 ahc_compile_devinfo(&devinfo, our_id, target_id,
1694 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1695 ahc_update_neg_request(ahc, &devinfo, tstate,
1696 tinfo, AHC_NEG_ALWAYS);
1698 /* Give the bus some time to recover */
1699 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1700 ahc_linux_freeze_simq(ahc);
1701 init_timer(&ahc->platform_data->reset_timer);
1702 ahc->platform_data->reset_timer.data = (u_long)ahc;
1703 ahc->platform_data->reset_timer.expires =
1704 jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000;
1705 ahc->platform_data->reset_timer.function =
1706 ahc_linux_release_simq;
1707 add_timer(&ahc->platform_data->reset_timer);
1712 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1715 ahc->platform_data =
1716 malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT);
1717 if (ahc->platform_data == NULL)
1718 return (ENOMEM);
1719 memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data));
1720 TAILQ_INIT(&ahc->platform_data->completeq);
1721 TAILQ_INIT(&ahc->platform_data->device_runq);
1722 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1723 ahc->platform_data->hw_dma_mask = 0xFFFFFFFF;
1724 ahc_lockinit(ahc);
1725 ahc_done_lockinit(ahc);
1726 init_timer(&ahc->platform_data->completeq_timer);
1727 ahc->platform_data->completeq_timer.data = (u_long)ahc;
1728 ahc->platform_data->completeq_timer.function =
1729 (ahc_linux_callback_t *)ahc_linux_thread_run_complete_queue;
1730 init_MUTEX_LOCKED(&ahc->platform_data->eh_sem);
1731 tasklet_init(&ahc->platform_data->runq_tasklet, ahc_runq_tasklet,
1732 (unsigned long)ahc);
1733 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1734 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1735 if (aic7xxx_pci_parity == 0)
1736 ahc->flags |= AHC_DISABLE_PCI_PERR;
1738 return (0);
1741 void
1742 ahc_platform_free(struct ahc_softc *ahc)
1744 struct ahc_linux_target *targ;
1745 struct ahc_linux_device *dev;
1746 int i, j;
1748 if (ahc->platform_data != NULL) {
1749 del_timer_sync(&ahc->platform_data->completeq_timer);
1750 tasklet_kill(&ahc->platform_data->runq_tasklet);
1751 if (ahc->platform_data->host != NULL) {
1752 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1753 scsi_remove_host(ahc->platform_data->host);
1754 #endif
1755 scsi_host_put(ahc->platform_data->host);
1758 /* destroy all of the device and target objects */
1759 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1760 targ = ahc->platform_data->targets[i];
1761 if (targ != NULL) {
1762 /* Keep target around through the loop. */
1763 targ->refcount++;
1764 for (j = 0; j < AHC_NUM_LUNS; j++) {
1766 if (targ->devices[j] == NULL)
1767 continue;
1768 dev = targ->devices[j];
1769 ahc_linux_free_device(ahc, dev);
1772 * Forcibly free the target now that
1773 * all devices are gone.
1775 ahc_linux_free_target(ahc, targ);
1779 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1780 free_irq(ahc->platform_data->irq, ahc);
1781 if (ahc->tag == BUS_SPACE_PIO
1782 && ahc->bsh.ioport != 0)
1783 release_region(ahc->bsh.ioport, 256);
1784 if (ahc->tag == BUS_SPACE_MEMIO
1785 && ahc->bsh.maddr != NULL) {
1786 iounmap(ahc->bsh.maddr);
1787 release_mem_region(ahc->platform_data->mem_busaddr,
1788 0x1000);
1790 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
1792 * In 2.4 we detach from the scsi midlayer before the PCI
1793 * layer invokes our remove callback. No per-instance
1794 * detach is provided, so we must reach inside the PCI
1795 * subsystem's internals and detach our driver manually.
1797 if (ahc->dev_softc != NULL)
1798 ahc->dev_softc->driver = NULL;
1799 #endif
1800 free(ahc->platform_data, M_DEVBUF);
1804 void
1805 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1807 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1808 SCB_GET_CHANNEL(ahc, scb),
1809 SCB_GET_LUN(scb), SCB_LIST_NULL,
1810 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1813 void
1814 ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
1815 ahc_queue_alg alg)
1817 struct ahc_linux_device *dev;
1818 int was_queuing;
1819 int now_queuing;
1821 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
1822 devinfo->target,
1823 devinfo->lun, /*alloc*/FALSE);
1824 if (dev == NULL)
1825 return;
1826 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1827 switch (alg) {
1828 default:
1829 case AHC_QUEUE_NONE:
1830 now_queuing = 0;
1831 break;
1832 case AHC_QUEUE_BASIC:
1833 now_queuing = AHC_DEV_Q_BASIC;
1834 break;
1835 case AHC_QUEUE_TAGGED:
1836 now_queuing = AHC_DEV_Q_TAGGED;
1837 break;
1839 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1840 && (was_queuing != now_queuing)
1841 && (dev->active != 0)) {
1842 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1843 dev->qfrozen++;
1846 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1847 if (now_queuing) {
1848 u_int usertags;
1850 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1851 if (!was_queuing) {
1853 * Start out agressively and allow our
1854 * dynamic queue depth algorithm to take
1855 * care of the rest.
1857 dev->maxtags = usertags;
1858 dev->openings = dev->maxtags - dev->active;
1860 if (dev->maxtags == 0) {
1862 * Queueing is disabled by the user.
1864 dev->openings = 1;
1865 } else if (alg == AHC_QUEUE_TAGGED) {
1866 dev->flags |= AHC_DEV_Q_TAGGED;
1867 if (aic7xxx_periodic_otag != 0)
1868 dev->flags |= AHC_DEV_PERIODIC_OTAG;
1869 } else
1870 dev->flags |= AHC_DEV_Q_BASIC;
1871 } else {
1872 /* We can only have one opening. */
1873 dev->maxtags = 0;
1874 dev->openings = 1 - dev->active;
1876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1877 if (dev->scsi_device != NULL) {
1878 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1879 case AHC_DEV_Q_BASIC:
1880 scsi_adjust_queue_depth(dev->scsi_device,
1881 MSG_SIMPLE_TASK,
1882 dev->openings + dev->active);
1883 break;
1884 case AHC_DEV_Q_TAGGED:
1885 scsi_adjust_queue_depth(dev->scsi_device,
1886 MSG_ORDERED_TASK,
1887 dev->openings + dev->active);
1888 break;
1889 default:
1891 * We allow the OS to queue 2 untagged transactions to
1892 * us at any time even though we can only execute them
1893 * serially on the controller/device. This should
1894 * remove some latency.
1896 scsi_adjust_queue_depth(dev->scsi_device,
1897 /*NON-TAGGED*/0,
1898 /*queue depth*/2);
1899 break;
1902 #endif
1906 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1907 int lun, u_int tag, role_t role, uint32_t status)
1909 int chan;
1910 int maxchan;
1911 int targ;
1912 int maxtarg;
1913 int clun;
1914 int maxlun;
1915 int count;
1917 if (tag != SCB_LIST_NULL)
1918 return (0);
1920 chan = 0;
1921 if (channel != ALL_CHANNELS) {
1922 chan = channel - 'A';
1923 maxchan = chan + 1;
1924 } else {
1925 maxchan = (ahc->features & AHC_TWIN) ? 2 : 1;
1927 targ = 0;
1928 if (target != CAM_TARGET_WILDCARD) {
1929 targ = target;
1930 maxtarg = targ + 1;
1931 } else {
1932 maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1934 clun = 0;
1935 if (lun != CAM_LUN_WILDCARD) {
1936 clun = lun;
1937 maxlun = clun + 1;
1938 } else {
1939 maxlun = AHC_NUM_LUNS;
1942 count = 0;
1943 for (; chan < maxchan; chan++) {
1945 for (; targ < maxtarg; targ++) {
1947 for (; clun < maxlun; clun++) {
1948 struct ahc_linux_device *dev;
1949 struct ahc_busyq *busyq;
1950 struct ahc_cmd *acmd;
1952 dev = ahc_linux_get_device(ahc, chan,
1953 targ, clun,
1954 /*alloc*/FALSE);
1955 if (dev == NULL)
1956 continue;
1958 busyq = &dev->busyq;
1959 while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
1960 Scsi_Cmnd *cmd;
1962 cmd = &acmd_scsi_cmd(acmd);
1963 TAILQ_REMOVE(busyq, acmd,
1964 acmd_links.tqe);
1965 count++;
1966 cmd->result = status << 16;
1967 ahc_linux_queue_cmd_complete(ahc, cmd);
1973 return (count);
1976 static void
1977 ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc)
1979 u_long flags;
1981 ahc_lock(ahc, &flags);
1982 del_timer(&ahc->platform_data->completeq_timer);
1983 ahc->platform_data->flags &= ~AHC_RUN_CMPLT_Q_TIMER;
1984 ahc_linux_run_complete_queue(ahc);
1985 ahc_unlock(ahc, &flags);
1988 static u_int
1989 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1991 static int warned_user;
1992 u_int tags;
1994 tags = 0;
1995 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1996 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) {
1997 if (warned_user == 0) {
1999 printf(KERN_WARNING
2000 "aic7xxx: WARNING: Insufficient tag_info instances\n"
2001 "aic7xxx: for installed controllers. Using defaults\n"
2002 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
2003 "aic7xxx: the aic7xxx_osm..c source file.\n");
2004 warned_user++;
2006 tags = AHC_MAX_QUEUE;
2007 } else {
2008 adapter_tag_info_t *tag_info;
2010 tag_info = &aic7xxx_tag_info[ahc->unit];
2011 tags = tag_info->tag_commands[devinfo->target_offset];
2012 if (tags > AHC_MAX_QUEUE)
2013 tags = AHC_MAX_QUEUE;
2016 return (tags);
2020 * Determines the queue depth for a given device.
2022 static void
2023 ahc_linux_device_queue_depth(struct ahc_softc *ahc,
2024 struct ahc_linux_device *dev)
2026 struct ahc_devinfo devinfo;
2027 u_int tags;
2029 ahc_compile_devinfo(&devinfo,
2030 dev->target->channel == 0
2031 ? ahc->our_id : ahc->our_id_b,
2032 dev->target->target, dev->lun,
2033 dev->target->channel == 0 ? 'A' : 'B',
2034 ROLE_INITIATOR);
2035 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
2036 if (tags != 0
2037 && dev->scsi_device != NULL
2038 && dev->scsi_device->tagged_supported != 0) {
2040 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED);
2041 ahc_print_devinfo(ahc, &devinfo);
2042 printf("Tagged Queuing enabled. Depth %d\n", tags);
2043 } else {
2044 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE);
2048 static void
2049 ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev)
2051 struct ahc_cmd *acmd;
2052 struct scsi_cmnd *cmd;
2053 struct scb *scb;
2054 struct hardware_scb *hscb;
2055 struct ahc_initiator_tinfo *tinfo;
2056 struct ahc_tmode_tstate *tstate;
2057 uint16_t mask;
2059 if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0)
2060 panic("running device on run list");
2062 while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
2063 && dev->openings > 0 && dev->qfrozen == 0) {
2066 * Schedule us to run later. The only reason we are not
2067 * running is because the whole controller Q is frozen.
2069 if (ahc->platform_data->qfrozen != 0) {
2070 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
2071 dev, links);
2072 dev->flags |= AHC_DEV_ON_RUN_LIST;
2073 return;
2076 * Get an scb to use.
2078 if ((scb = ahc_get_scb(ahc)) == NULL) {
2079 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
2080 dev, links);
2081 dev->flags |= AHC_DEV_ON_RUN_LIST;
2082 ahc->flags |= AHC_RESOURCE_SHORTAGE;
2083 return;
2085 TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
2086 cmd = &acmd_scsi_cmd(acmd);
2087 scb->io_ctx = cmd;
2088 scb->platform_data->dev = dev;
2089 hscb = scb->hscb;
2090 cmd->host_scribble = (char *)scb;
2093 * Fill out basics of the HSCB.
2095 hscb->control = 0;
2096 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
2097 hscb->lun = cmd->device->lun;
2098 mask = SCB_GET_TARGET_MASK(ahc, scb);
2099 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
2100 SCB_GET_OUR_ID(scb),
2101 SCB_GET_TARGET(ahc, scb), &tstate);
2102 hscb->scsirate = tinfo->scsirate;
2103 hscb->scsioffset = tinfo->curr.offset;
2104 if ((tstate->ultraenb & mask) != 0)
2105 hscb->control |= ULTRAENB;
2107 if ((ahc->user_discenable & mask) != 0)
2108 hscb->control |= DISCENB;
2110 if ((tstate->auto_negotiate & mask) != 0) {
2111 scb->flags |= SCB_AUTO_NEGOTIATE;
2112 scb->hscb->control |= MK_MESSAGE;
2115 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
2116 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2117 int msg_bytes;
2118 uint8_t tag_msgs[2];
2120 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
2121 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
2122 hscb->control |= tag_msgs[0];
2123 if (tag_msgs[0] == MSG_ORDERED_TASK)
2124 dev->commands_since_idle_or_otag = 0;
2125 } else
2126 #endif
2127 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
2128 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
2129 hscb->control |= MSG_ORDERED_TASK;
2130 dev->commands_since_idle_or_otag = 0;
2131 } else {
2132 hscb->control |= MSG_SIMPLE_TASK;
2136 hscb->cdb_len = cmd->cmd_len;
2137 if (hscb->cdb_len <= 12) {
2138 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
2139 } else {
2140 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
2141 scb->flags |= SCB_CDB32_PTR;
2144 scb->platform_data->xfer_len = 0;
2145 ahc_set_residual(scb, 0);
2146 ahc_set_sense_residual(scb, 0);
2147 scb->sg_count = 0;
2148 if (cmd->use_sg != 0) {
2149 struct ahc_dma_seg *sg;
2150 struct scatterlist *cur_seg;
2151 struct scatterlist *end_seg;
2152 int nseg;
2154 cur_seg = (struct scatterlist *)cmd->request_buffer;
2155 nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg,
2156 cmd->sc_data_direction);
2157 end_seg = cur_seg + nseg;
2158 /* Copy the segments into the SG list. */
2159 sg = scb->sg_list;
2161 * The sg_count may be larger than nseg if
2162 * a transfer crosses a 32bit page.
2164 while (cur_seg < end_seg) {
2165 dma_addr_t addr;
2166 bus_size_t len;
2167 int consumed;
2169 addr = sg_dma_address(cur_seg);
2170 len = sg_dma_len(cur_seg);
2171 consumed = ahc_linux_map_seg(ahc, scb,
2172 sg, addr, len);
2173 sg += consumed;
2174 scb->sg_count += consumed;
2175 cur_seg++;
2177 sg--;
2178 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
2181 * Reset the sg list pointer.
2183 scb->hscb->sgptr =
2184 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
2187 * Copy the first SG into the "current"
2188 * data pointer area.
2190 scb->hscb->dataptr = scb->sg_list->addr;
2191 scb->hscb->datacnt = scb->sg_list->len;
2192 } else if (cmd->request_bufflen != 0) {
2193 struct ahc_dma_seg *sg;
2194 dma_addr_t addr;
2196 sg = scb->sg_list;
2197 addr = pci_map_single(ahc->dev_softc,
2198 cmd->request_buffer,
2199 cmd->request_bufflen,
2200 cmd->sc_data_direction);
2201 scb->platform_data->buf_busaddr = addr;
2202 scb->sg_count = ahc_linux_map_seg(ahc, scb,
2203 sg, addr,
2204 cmd->request_bufflen);
2205 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
2208 * Reset the sg list pointer.
2210 scb->hscb->sgptr =
2211 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
2214 * Copy the first SG into the "current"
2215 * data pointer area.
2217 scb->hscb->dataptr = sg->addr;
2218 scb->hscb->datacnt = sg->len;
2219 } else {
2220 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
2221 scb->hscb->dataptr = 0;
2222 scb->hscb->datacnt = 0;
2223 scb->sg_count = 0;
2226 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE);
2227 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
2228 dev->openings--;
2229 dev->active++;
2230 dev->commands_issued++;
2231 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
2232 dev->commands_since_idle_or_otag++;
2235 * We only allow one untagged transaction
2236 * per target in the initiator role unless
2237 * we are storing a full busy target *lun*
2238 * table in SCB space.
2240 if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0
2241 && (ahc->features & AHC_SCB_BTT) == 0) {
2242 struct scb_tailq *untagged_q;
2243 int target_offset;
2245 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
2246 untagged_q = &(ahc->untagged_queues[target_offset]);
2247 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
2248 scb->flags |= SCB_UNTAGGEDQ;
2249 if (TAILQ_FIRST(untagged_q) != scb)
2250 continue;
2252 scb->flags |= SCB_ACTIVE;
2253 ahc_queue_scb(ahc, scb);
2258 * SCSI controller interrupt handler.
2260 irqreturn_t
2261 ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
2263 struct ahc_softc *ahc;
2264 u_long flags;
2265 int ours;
2267 ahc = (struct ahc_softc *) dev_id;
2268 ahc_lock(ahc, &flags);
2269 ours = ahc_intr(ahc);
2270 if (ahc_linux_next_device_to_run(ahc) != NULL)
2271 ahc_schedule_runq(ahc);
2272 ahc_linux_run_complete_queue(ahc);
2273 ahc_unlock(ahc, &flags);
2274 return IRQ_RETVAL(ours);
2277 void
2278 ahc_platform_flushwork(struct ahc_softc *ahc)
2281 while (ahc_linux_run_complete_queue(ahc) != NULL)
2285 static struct ahc_linux_target*
2286 ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target)
2288 struct ahc_linux_target *targ;
2289 u_int target_offset;
2291 target_offset = target;
2292 if (channel != 0)
2293 target_offset += 8;
2295 targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT);
2296 if (targ == NULL)
2297 return (NULL);
2298 memset(targ, 0, sizeof(*targ));
2299 targ->channel = channel;
2300 targ->target = target;
2301 targ->ahc = ahc;
2302 ahc->platform_data->targets[target_offset] = targ;
2303 return (targ);
2306 static void
2307 ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ)
2309 struct ahc_devinfo devinfo;
2310 struct ahc_initiator_tinfo *tinfo;
2311 struct ahc_tmode_tstate *tstate;
2312 u_int our_id;
2313 u_int target_offset;
2314 char channel;
2317 * Force a negotiation to async/narrow on any
2318 * future command to this device unless a bus
2319 * reset occurs between now and that command.
2321 channel = 'A' + targ->channel;
2322 our_id = ahc->our_id;
2323 target_offset = targ->target;
2324 if (targ->channel != 0) {
2325 target_offset += 8;
2326 our_id = ahc->our_id_b;
2328 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
2329 targ->target, &tstate);
2330 ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
2331 channel, ROLE_INITIATOR);
2332 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
2333 AHC_TRANS_GOAL, /*paused*/FALSE);
2334 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
2335 AHC_TRANS_GOAL, /*paused*/FALSE);
2336 ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS);
2337 ahc->platform_data->targets[target_offset] = NULL;
2338 free(targ, M_DEVBUF);
2341 static struct ahc_linux_device*
2342 ahc_linux_alloc_device(struct ahc_softc *ahc,
2343 struct ahc_linux_target *targ, u_int lun)
2345 struct ahc_linux_device *dev;
2347 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
2348 if (dev == NULL)
2349 return (NULL);
2350 memset(dev, 0, sizeof(*dev));
2351 init_timer(&dev->timer);
2352 TAILQ_INIT(&dev->busyq);
2353 dev->flags = AHC_DEV_UNCONFIGURED;
2354 dev->lun = lun;
2355 dev->target = targ;
2358 * We start out life using untagged
2359 * transactions of which we allow one.
2361 dev->openings = 1;
2364 * Set maxtags to 0. This will be changed if we
2365 * later determine that we are dealing with
2366 * a tagged queuing capable device.
2368 dev->maxtags = 0;
2370 targ->refcount++;
2371 targ->devices[lun] = dev;
2372 return (dev);
2375 static void
2376 __ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
2378 struct ahc_linux_target *targ;
2380 targ = dev->target;
2381 targ->devices[dev->lun] = NULL;
2382 free(dev, M_DEVBUF);
2383 targ->refcount--;
2384 if (targ->refcount == 0)
2385 ahc_linux_free_target(ahc, targ);
2388 static void
2389 ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
2391 del_timer_sync(&dev->timer);
2392 __ahc_linux_free_device(ahc, dev);
2395 void
2396 ahc_send_async(struct ahc_softc *ahc, char channel,
2397 u_int target, u_int lun, ac_code code, void *arg)
2399 switch (code) {
2400 case AC_TRANSFER_NEG:
2402 char buf[80];
2403 struct ahc_linux_target *targ;
2404 struct info_str info;
2405 struct ahc_initiator_tinfo *tinfo;
2406 struct ahc_tmode_tstate *tstate;
2407 int target_offset;
2409 info.buffer = buf;
2410 info.length = sizeof(buf);
2411 info.offset = 0;
2412 info.pos = 0;
2413 tinfo = ahc_fetch_transinfo(ahc, channel,
2414 channel == 'A' ? ahc->our_id
2415 : ahc->our_id_b,
2416 target, &tstate);
2419 * Don't bother reporting results while
2420 * negotiations are still pending.
2422 if (tinfo->curr.period != tinfo->goal.period
2423 || tinfo->curr.width != tinfo->goal.width
2424 || tinfo->curr.offset != tinfo->goal.offset
2425 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
2426 if (bootverbose == 0)
2427 break;
2430 * Don't bother reporting results that
2431 * are identical to those last reported.
2433 target_offset = target;
2434 if (channel == 'B')
2435 target_offset += 8;
2436 targ = ahc->platform_data->targets[target_offset];
2437 if (targ == NULL)
2438 break;
2439 if (tinfo->curr.period == targ->last_tinfo.period
2440 && tinfo->curr.width == targ->last_tinfo.width
2441 && tinfo->curr.offset == targ->last_tinfo.offset
2442 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
2443 if (bootverbose == 0)
2444 break;
2446 targ->last_tinfo.period = tinfo->curr.period;
2447 targ->last_tinfo.width = tinfo->curr.width;
2448 targ->last_tinfo.offset = tinfo->curr.offset;
2449 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
2451 printf("(%s:%c:", ahc_name(ahc), channel);
2452 if (target == CAM_TARGET_WILDCARD)
2453 printf("*): ");
2454 else
2455 printf("%d): ", target);
2456 ahc_format_transinfo(&info, &tinfo->curr);
2457 if (info.pos < info.length)
2458 *info.buffer = '\0';
2459 else
2460 buf[info.length - 1] = '\0';
2461 printf("%s", buf);
2462 break;
2464 case AC_SENT_BDR:
2466 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2467 WARN_ON(lun != CAM_LUN_WILDCARD);
2468 scsi_report_device_reset(ahc->platform_data->host,
2469 channel - 'A', target);
2470 #else
2471 Scsi_Device *scsi_dev;
2474 * Find the SCSI device associated with this
2475 * request and indicate that a UA is expected.
2477 for (scsi_dev = ahc->platform_data->host->host_queue;
2478 scsi_dev != NULL; scsi_dev = scsi_dev->next) {
2479 if (channel - 'A' == scsi_dev->channel
2480 && target == scsi_dev->id
2481 && (lun == CAM_LUN_WILDCARD
2482 || lun == scsi_dev->lun)) {
2483 scsi_dev->was_reset = 1;
2484 scsi_dev->expecting_cc_ua = 1;
2487 #endif
2488 break;
2490 case AC_BUS_RESET:
2491 if (ahc->platform_data->host != NULL) {
2492 scsi_report_bus_reset(ahc->platform_data->host,
2493 channel - 'A');
2495 break;
2496 default:
2497 panic("ahc_send_async: Unexpected async event");
2502 * Calls the higher level scsi done function and frees the scb.
2504 void
2505 ahc_done(struct ahc_softc *ahc, struct scb *scb)
2507 Scsi_Cmnd *cmd;
2508 struct ahc_linux_device *dev;
2510 LIST_REMOVE(scb, pending_links);
2511 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
2512 struct scb_tailq *untagged_q;
2513 int target_offset;
2515 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
2516 untagged_q = &(ahc->untagged_queues[target_offset]);
2517 TAILQ_REMOVE(untagged_q, scb, links.tqe);
2518 ahc_run_untagged_queue(ahc, untagged_q);
2521 if ((scb->flags & SCB_ACTIVE) == 0) {
2522 printf("SCB %d done'd twice\n", scb->hscb->tag);
2523 ahc_dump_card_state(ahc);
2524 panic("Stopping for safety");
2526 cmd = scb->io_ctx;
2527 dev = scb->platform_data->dev;
2528 dev->active--;
2529 dev->openings++;
2530 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
2531 cmd->result &= ~(CAM_DEV_QFRZN << 16);
2532 dev->qfrozen--;
2534 ahc_linux_unmap_scb(ahc, scb);
2537 * Guard against stale sense data.
2538 * The Linux mid-layer assumes that sense
2539 * was retrieved anytime the first byte of
2540 * the sense buffer looks "sane".
2542 cmd->sense_buffer[0] = 0;
2543 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
2544 uint32_t amount_xferred;
2546 amount_xferred =
2547 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
2548 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
2549 #ifdef AHC_DEBUG
2550 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
2551 ahc_print_path(ahc, scb);
2552 printf("Set CAM_UNCOR_PARITY\n");
2554 #endif
2555 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
2556 #ifdef AHC_REPORT_UNDERFLOWS
2558 * This code is disabled by default as some
2559 * clients of the SCSI system do not properly
2560 * initialize the underflow parameter. This
2561 * results in spurious termination of commands
2562 * that complete as expected (e.g. underflow is
2563 * allowed as command can return variable amounts
2564 * of data.
2566 } else if (amount_xferred < scb->io_ctx->underflow) {
2567 u_int i;
2569 ahc_print_path(ahc, scb);
2570 printf("CDB:");
2571 for (i = 0; i < scb->io_ctx->cmd_len; i++)
2572 printf(" 0x%x", scb->io_ctx->cmnd[i]);
2573 printf("\n");
2574 ahc_print_path(ahc, scb);
2575 printf("Saw underflow (%ld of %ld bytes). "
2576 "Treated as error\n",
2577 ahc_get_residual(scb),
2578 ahc_get_transfer_length(scb));
2579 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2580 #endif
2581 } else {
2582 ahc_set_transaction_status(scb, CAM_REQ_CMP);
2584 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
2585 ahc_linux_handle_scsi_status(ahc, dev, scb);
2586 } else if (ahc_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
2587 dev->flags |= AHC_DEV_UNCONFIGURED;
2590 if (dev->openings == 1
2591 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
2592 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
2593 dev->tag_success_count++;
2595 * Some devices deal with temporary internal resource
2596 * shortages by returning queue full. When the queue
2597 * full occurrs, we throttle back. Slowly try to get
2598 * back to our previous queue depth.
2600 if ((dev->openings + dev->active) < dev->maxtags
2601 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
2602 dev->tag_success_count = 0;
2603 dev->openings++;
2606 if (dev->active == 0)
2607 dev->commands_since_idle_or_otag = 0;
2609 if (TAILQ_EMPTY(&dev->busyq)) {
2610 if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0
2611 && dev->active == 0
2612 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
2613 ahc_linux_free_device(ahc, dev);
2614 } else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
2615 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
2616 dev->flags |= AHC_DEV_ON_RUN_LIST;
2619 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
2620 printf("Recovery SCB completes\n");
2621 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
2622 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
2623 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
2624 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
2625 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
2626 up(&ahc->platform_data->eh_sem);
2630 ahc_free_scb(ahc, scb);
2631 ahc_linux_queue_cmd_complete(ahc, cmd);
2634 static void
2635 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
2636 struct ahc_linux_device *dev, struct scb *scb)
2638 struct ahc_devinfo devinfo;
2640 ahc_compile_devinfo(&devinfo,
2641 ahc->our_id,
2642 dev->target->target, dev->lun,
2643 dev->target->channel == 0 ? 'A' : 'B',
2644 ROLE_INITIATOR);
2647 * We don't currently trust the mid-layer to
2648 * properly deal with queue full or busy. So,
2649 * when one occurs, we tell the mid-layer to
2650 * unconditionally requeue the command to us
2651 * so that we can retry it ourselves. We also
2652 * implement our own throttling mechanism so
2653 * we don't clobber the device with too many
2654 * commands.
2656 switch (ahc_get_scsi_status(scb)) {
2657 default:
2658 break;
2659 case SCSI_STATUS_CHECK_COND:
2660 case SCSI_STATUS_CMD_TERMINATED:
2662 Scsi_Cmnd *cmd;
2665 * Copy sense information to the OS's cmd
2666 * structure if it is available.
2668 cmd = scb->io_ctx;
2669 if (scb->flags & SCB_SENSE) {
2670 u_int sense_size;
2672 sense_size = MIN(sizeof(struct scsi_sense_data)
2673 - ahc_get_sense_residual(scb),
2674 sizeof(cmd->sense_buffer));
2675 memcpy(cmd->sense_buffer,
2676 ahc_get_sense_buf(ahc, scb), sense_size);
2677 if (sense_size < sizeof(cmd->sense_buffer))
2678 memset(&cmd->sense_buffer[sense_size], 0,
2679 sizeof(cmd->sense_buffer) - sense_size);
2680 cmd->result |= (DRIVER_SENSE << 24);
2681 #ifdef AHC_DEBUG
2682 if (ahc_debug & AHC_SHOW_SENSE) {
2683 int i;
2685 printf("Copied %d bytes of sense data:",
2686 sense_size);
2687 for (i = 0; i < sense_size; i++) {
2688 if ((i & 0xF) == 0)
2689 printf("\n");
2690 printf("0x%x ", cmd->sense_buffer[i]);
2692 printf("\n");
2694 #endif
2696 break;
2698 case SCSI_STATUS_QUEUE_FULL:
2701 * By the time the core driver has returned this
2702 * command, all other commands that were queued
2703 * to us but not the device have been returned.
2704 * This ensures that dev->active is equal to
2705 * the number of commands actually queued to
2706 * the device.
2708 dev->tag_success_count = 0;
2709 if (dev->active != 0) {
2711 * Drop our opening count to the number
2712 * of commands currently outstanding.
2714 dev->openings = 0;
2716 ahc_print_path(ahc, scb);
2717 printf("Dropping tag count to %d\n", dev->active);
2719 if (dev->active == dev->tags_on_last_queuefull) {
2721 dev->last_queuefull_same_count++;
2723 * If we repeatedly see a queue full
2724 * at the same queue depth, this
2725 * device has a fixed number of tag
2726 * slots. Lock in this tag depth
2727 * so we stop seeing queue fulls from
2728 * this device.
2730 if (dev->last_queuefull_same_count
2731 == AHC_LOCK_TAGS_COUNT) {
2732 dev->maxtags = dev->active;
2733 ahc_print_path(ahc, scb);
2734 printf("Locking max tag count at %d\n",
2735 dev->active);
2737 } else {
2738 dev->tags_on_last_queuefull = dev->active;
2739 dev->last_queuefull_same_count = 0;
2741 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
2742 ahc_set_scsi_status(scb, SCSI_STATUS_OK);
2743 ahc_platform_set_tags(ahc, &devinfo,
2744 (dev->flags & AHC_DEV_Q_BASIC)
2745 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
2746 break;
2749 * Drop down to a single opening, and treat this
2750 * as if the target returned BUSY SCSI status.
2752 dev->openings = 1;
2753 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
2754 ahc_platform_set_tags(ahc, &devinfo,
2755 (dev->flags & AHC_DEV_Q_BASIC)
2756 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
2757 /* FALLTHROUGH */
2759 case SCSI_STATUS_BUSY:
2762 * Set a short timer to defer sending commands for
2763 * a bit since Linux will not delay in this case.
2765 if ((dev->flags & AHC_DEV_TIMER_ACTIVE) != 0) {
2766 printf("%s:%c:%d: Device Timer still active during "
2767 "busy processing\n", ahc_name(ahc),
2768 dev->target->channel, dev->target->target);
2769 break;
2771 dev->flags |= AHC_DEV_TIMER_ACTIVE;
2772 dev->qfrozen++;
2773 init_timer(&dev->timer);
2774 dev->timer.data = (u_long)dev;
2775 dev->timer.expires = jiffies + (HZ/2);
2776 dev->timer.function = ahc_linux_dev_timed_unfreeze;
2777 add_timer(&dev->timer);
2778 break;
2783 static void
2784 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd)
2787 * Typically, the complete queue has very few entries
2788 * queued to it before the queue is emptied by
2789 * ahc_linux_run_complete_queue, so sorting the entries
2790 * by generation number should be inexpensive.
2791 * We perform the sort so that commands that complete
2792 * with an error are retuned in the order origionally
2793 * queued to the controller so that any subsequent retries
2794 * are performed in order. The underlying ahc routines do
2795 * not guarantee the order that aborted commands will be
2796 * returned to us.
2798 struct ahc_completeq *completeq;
2799 struct ahc_cmd *list_cmd;
2800 struct ahc_cmd *acmd;
2803 * Map CAM error codes into Linux Error codes. We
2804 * avoid the conversion so that the DV code has the
2805 * full error information available when making
2806 * state change decisions.
2809 u_int new_status;
2811 switch (ahc_cmd_get_transaction_status(cmd)) {
2812 case CAM_REQ_INPROG:
2813 case CAM_REQ_CMP:
2814 case CAM_SCSI_STATUS_ERROR:
2815 new_status = DID_OK;
2816 break;
2817 case CAM_REQ_ABORTED:
2818 new_status = DID_ABORT;
2819 break;
2820 case CAM_BUSY:
2821 new_status = DID_BUS_BUSY;
2822 break;
2823 case CAM_REQ_INVALID:
2824 case CAM_PATH_INVALID:
2825 new_status = DID_BAD_TARGET;
2826 break;
2827 case CAM_SEL_TIMEOUT:
2828 new_status = DID_NO_CONNECT;
2829 break;
2830 case CAM_SCSI_BUS_RESET:
2831 case CAM_BDR_SENT:
2832 new_status = DID_RESET;
2833 break;
2834 case CAM_UNCOR_PARITY:
2835 new_status = DID_PARITY;
2836 break;
2837 case CAM_CMD_TIMEOUT:
2838 new_status = DID_TIME_OUT;
2839 break;
2840 case CAM_UA_ABORT:
2841 case CAM_REQ_CMP_ERR:
2842 case CAM_AUTOSENSE_FAIL:
2843 case CAM_NO_HBA:
2844 case CAM_DATA_RUN_ERR:
2845 case CAM_UNEXP_BUSFREE:
2846 case CAM_SEQUENCE_FAIL:
2847 case CAM_CCB_LEN_ERR:
2848 case CAM_PROVIDE_FAIL:
2849 case CAM_REQ_TERMIO:
2850 case CAM_UNREC_HBA_ERROR:
2851 case CAM_REQ_TOO_BIG:
2852 new_status = DID_ERROR;
2853 break;
2854 case CAM_REQUEUE_REQ:
2856 * If we want the request requeued, make sure there
2857 * are sufficent retries. In the old scsi error code,
2858 * we used to be able to specify a result code that
2859 * bypassed the retry count. Now we must use this
2860 * hack. We also "fake" a check condition with
2861 * a sense code of ABORTED COMMAND. This seems to
2862 * evoke a retry even if this command is being sent
2863 * via the eh thread. Ick! Ick! Ick!
2865 if (cmd->retries > 0)
2866 cmd->retries--;
2867 new_status = DID_OK;
2868 ahc_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
2869 cmd->result |= (DRIVER_SENSE << 24);
2870 memset(cmd->sense_buffer, 0,
2871 sizeof(cmd->sense_buffer));
2872 cmd->sense_buffer[0] = SSD_ERRCODE_VALID
2873 | SSD_CURRENT_ERROR;
2874 cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
2875 break;
2876 default:
2877 /* We should never get here */
2878 new_status = DID_ERROR;
2879 break;
2882 ahc_cmd_set_transaction_status(cmd, new_status);
2885 completeq = &ahc->platform_data->completeq;
2886 list_cmd = TAILQ_FIRST(completeq);
2887 acmd = (struct ahc_cmd *)cmd;
2888 while (list_cmd != NULL
2889 && acmd_scsi_cmd(list_cmd).serial_number
2890 < acmd_scsi_cmd(acmd).serial_number)
2891 list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
2892 if (list_cmd != NULL)
2893 TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
2894 else
2895 TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
2898 static void
2899 ahc_linux_sem_timeout(u_long arg)
2901 struct ahc_softc *ahc;
2902 u_long s;
2904 ahc = (struct ahc_softc *)arg;
2906 ahc_lock(ahc, &s);
2907 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
2908 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
2909 up(&ahc->platform_data->eh_sem);
2911 ahc_unlock(ahc, &s);
2914 static void
2915 ahc_linux_freeze_simq(struct ahc_softc *ahc)
2917 ahc->platform_data->qfrozen++;
2918 if (ahc->platform_data->qfrozen == 1) {
2919 scsi_block_requests(ahc->platform_data->host);
2921 /* XXX What about Twin channels? */
2922 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2923 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2924 ROLE_INITIATOR, CAM_REQUEUE_REQ);
2928 static void
2929 ahc_linux_release_simq(u_long arg)
2931 struct ahc_softc *ahc;
2932 u_long s;
2933 int unblock_reqs;
2935 ahc = (struct ahc_softc *)arg;
2937 unblock_reqs = 0;
2938 ahc_lock(ahc, &s);
2939 if (ahc->platform_data->qfrozen > 0)
2940 ahc->platform_data->qfrozen--;
2941 if (ahc->platform_data->qfrozen == 0)
2942 unblock_reqs = 1;
2943 ahc_schedule_runq(ahc);
2944 ahc_unlock(ahc, &s);
2946 * There is still a race here. The mid-layer
2947 * should keep its own freeze count and use
2948 * a bottom half handler to run the queues
2949 * so we can unblock with our own lock held.
2951 if (unblock_reqs)
2952 scsi_unblock_requests(ahc->platform_data->host);
2955 static void
2956 ahc_linux_dev_timed_unfreeze(u_long arg)
2958 struct ahc_linux_device *dev;
2959 struct ahc_softc *ahc;
2960 u_long s;
2962 dev = (struct ahc_linux_device *)arg;
2963 ahc = dev->target->ahc;
2964 ahc_lock(ahc, &s);
2965 dev->flags &= ~AHC_DEV_TIMER_ACTIVE;
2966 if (dev->qfrozen > 0)
2967 dev->qfrozen--;
2968 if (dev->qfrozen == 0
2969 && (dev->flags & AHC_DEV_ON_RUN_LIST) == 0)
2970 ahc_linux_run_device_queue(ahc, dev);
2971 if (TAILQ_EMPTY(&dev->busyq)
2972 && dev->active == 0)
2973 __ahc_linux_free_device(ahc, dev);
2974 ahc_unlock(ahc, &s);
2977 static int
2978 ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag)
2980 struct ahc_softc *ahc;
2981 struct ahc_cmd *acmd;
2982 struct ahc_cmd *list_acmd;
2983 struct ahc_linux_device *dev;
2984 struct scb *pending_scb;
2985 u_long s;
2986 u_int saved_scbptr;
2987 u_int active_scb_index;
2988 u_int last_phase;
2989 u_int saved_scsiid;
2990 u_int cdb_byte;
2991 int retval;
2992 int was_paused;
2993 int paused;
2994 int wait;
2995 int disconnected;
2997 pending_scb = NULL;
2998 paused = FALSE;
2999 wait = FALSE;
3000 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
3001 acmd = (struct ahc_cmd *)cmd;
3003 printf("%s:%d:%d:%d: Attempting to queue a%s message\n",
3004 ahc_name(ahc), cmd->device->channel,
3005 cmd->device->id, cmd->device->lun,
3006 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
3008 printf("CDB:");
3009 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
3010 printf(" 0x%x", cmd->cmnd[cdb_byte]);
3011 printf("\n");
3014 * In all versions of Linux, we have to work around
3015 * a major flaw in how the mid-layer is locked down
3016 * if we are to sleep successfully in our error handler
3017 * while allowing our interrupt handler to run. Since
3018 * the midlayer acquires either the io_request_lock or
3019 * our lock prior to calling us, we must use the
3020 * spin_unlock_irq() method for unlocking our lock.
3021 * This will force interrupts to be enabled on the
3022 * current CPU. Since the EH thread should not have
3023 * been running with CPU interrupts disabled other than
3024 * by acquiring either the io_request_lock or our own
3025 * lock, this *should* be safe.
3027 ahc_midlayer_entrypoint_lock(ahc, &s);
3030 * First determine if we currently own this command.
3031 * Start by searching the device queue. If not found
3032 * there, check the pending_scb list. If not found
3033 * at all, and the system wanted us to just abort the
3034 * command, return success.
3036 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
3037 cmd->device->lun, /*alloc*/FALSE);
3039 if (dev == NULL) {
3041 * No target device for this command exists,
3042 * so we must not still own the command.
3044 printf("%s:%d:%d:%d: Is not an active device\n",
3045 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3046 cmd->device->lun);
3047 retval = SUCCESS;
3048 goto no_cmd;
3051 TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
3052 if (list_acmd == acmd)
3053 break;
3056 if (list_acmd != NULL) {
3057 printf("%s:%d:%d:%d: Command found on device queue\n",
3058 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3059 cmd->device->lun);
3060 if (flag == SCB_ABORT) {
3061 TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
3062 cmd->result = DID_ABORT << 16;
3063 ahc_linux_queue_cmd_complete(ahc, cmd);
3064 retval = SUCCESS;
3065 goto done;
3069 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
3070 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
3071 cmd->device->channel + 'A',
3072 cmd->device->lun,
3073 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
3074 printf("%s:%d:%d:%d: Command found on untagged queue\n",
3075 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3076 cmd->device->lun);
3077 retval = SUCCESS;
3078 goto done;
3082 * See if we can find a matching cmd in the pending list.
3084 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
3085 if (pending_scb->io_ctx == cmd)
3086 break;
3089 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
3091 /* Any SCB for this device will do for a target reset */
3092 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
3093 if (ahc_match_scb(ahc, pending_scb, cmd->device->id,
3094 cmd->device->channel + 'A',
3095 CAM_LUN_WILDCARD,
3096 SCB_LIST_NULL, ROLE_INITIATOR) == 0)
3097 break;
3101 if (pending_scb == NULL) {
3102 printf("%s:%d:%d:%d: Command not found\n",
3103 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3104 cmd->device->lun);
3105 goto no_cmd;
3108 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
3110 * We can't queue two recovery actions using the same SCB
3112 retval = FAILED;
3113 goto done;
3117 * Ensure that the card doesn't do anything
3118 * behind our back and that we didn't "just" miss
3119 * an interrupt that would affect this cmd.
3121 was_paused = ahc_is_paused(ahc);
3122 ahc_pause_and_flushwork(ahc);
3123 paused = TRUE;
3125 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
3126 printf("%s:%d:%d:%d: Command already completed\n",
3127 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3128 cmd->device->lun);
3129 goto no_cmd;
3132 printf("%s: At time of recovery, card was %spaused\n",
3133 ahc_name(ahc), was_paused ? "" : "not ");
3134 ahc_dump_card_state(ahc);
3136 disconnected = TRUE;
3137 if (flag == SCB_ABORT) {
3138 if (ahc_search_qinfifo(ahc, cmd->device->id,
3139 cmd->device->channel + 'A',
3140 cmd->device->lun,
3141 pending_scb->hscb->tag,
3142 ROLE_INITIATOR, CAM_REQ_ABORTED,
3143 SEARCH_COMPLETE) > 0) {
3144 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
3145 ahc_name(ahc), cmd->device->channel,
3146 cmd->device->id, cmd->device->lun);
3147 retval = SUCCESS;
3148 goto done;
3150 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
3151 cmd->device->channel + 'A',
3152 cmd->device->lun, pending_scb->hscb->tag,
3153 ROLE_INITIATOR, /*status*/0,
3154 SEARCH_COUNT) > 0) {
3155 disconnected = FALSE;
3158 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
3159 struct scb *bus_scb;
3161 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
3162 if (bus_scb == pending_scb)
3163 disconnected = FALSE;
3164 else if (flag != SCB_ABORT
3165 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
3166 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
3167 disconnected = FALSE;
3171 * At this point, pending_scb is the scb associated with the
3172 * passed in command. That command is currently active on the
3173 * bus, is in the disconnected state, or we're hoping to find
3174 * a command for the same target active on the bus to abuse to
3175 * send a BDR. Queue the appropriate message based on which of
3176 * these states we are in.
3178 last_phase = ahc_inb(ahc, LASTPHASE);
3179 saved_scbptr = ahc_inb(ahc, SCBPTR);
3180 active_scb_index = ahc_inb(ahc, SCB_TAG);
3181 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
3182 if (last_phase != P_BUSFREE
3183 && (pending_scb->hscb->tag == active_scb_index
3184 || (flag == SCB_DEVICE_RESET
3185 && SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) {
3188 * We're active on the bus, so assert ATN
3189 * and hope that the target responds.
3191 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
3192 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
3193 ahc_outb(ahc, MSG_OUT, HOST_MSG);
3194 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
3195 printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
3196 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3197 cmd->device->lun);
3198 wait = TRUE;
3199 } else if (disconnected) {
3202 * Actually re-queue this SCB in an attempt
3203 * to select the device before it reconnects.
3204 * In either case (selection or reselection),
3205 * we will now issue the approprate message
3206 * to the timed-out device.
3208 * Set the MK_MESSAGE control bit indicating
3209 * that we desire to send a message. We
3210 * also set the disconnected flag since
3211 * in the paging case there is no guarantee
3212 * that our SCB control byte matches the
3213 * version on the card. We don't want the
3214 * sequencer to abort the command thinking
3215 * an unsolicited reselection occurred.
3217 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
3218 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
3221 * Remove any cached copy of this SCB in the
3222 * disconnected list in preparation for the
3223 * queuing of our abort SCB. We use the
3224 * same element in the SCB, SCB_NEXT, for
3225 * both the qinfifo and the disconnected list.
3227 ahc_search_disc_list(ahc, cmd->device->id,
3228 cmd->device->channel + 'A',
3229 cmd->device->lun, pending_scb->hscb->tag,
3230 /*stop_on_first*/TRUE,
3231 /*remove*/TRUE,
3232 /*save_state*/FALSE);
3235 * In the non-paging case, the sequencer will
3236 * never re-reference the in-core SCB.
3237 * To make sure we are notified during
3238 * reslection, set the MK_MESSAGE flag in
3239 * the card's copy of the SCB.
3241 if ((ahc->flags & AHC_PAGESCBS) == 0) {
3242 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
3243 ahc_outb(ahc, SCB_CONTROL,
3244 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
3248 * Clear out any entries in the QINFIFO first
3249 * so we are the next SCB for this target
3250 * to run.
3252 ahc_search_qinfifo(ahc, cmd->device->id,
3253 cmd->device->channel + 'A',
3254 cmd->device->lun, SCB_LIST_NULL,
3255 ROLE_INITIATOR, CAM_REQUEUE_REQ,
3256 SEARCH_COMPLETE);
3257 ahc_qinfifo_requeue_tail(ahc, pending_scb);
3258 ahc_outb(ahc, SCBPTR, saved_scbptr);
3259 ahc_print_path(ahc, pending_scb);
3260 printf("Device is disconnected, re-queuing SCB\n");
3261 wait = TRUE;
3262 } else {
3263 printf("%s:%d:%d:%d: Unable to deliver message\n",
3264 ahc_name(ahc), cmd->device->channel, cmd->device->id,
3265 cmd->device->lun);
3266 retval = FAILED;
3267 goto done;
3270 no_cmd:
3272 * Our assumption is that if we don't have the command, no
3273 * recovery action was required, so we return success. Again,
3274 * the semantics of the mid-layer recovery engine are not
3275 * well defined, so this may change in time.
3277 retval = SUCCESS;
3278 done:
3279 if (paused)
3280 ahc_unpause(ahc);
3281 if (wait) {
3282 struct timer_list timer;
3283 int ret;
3285 ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE;
3286 spin_unlock_irq(&ahc->platform_data->spin_lock);
3287 init_timer(&timer);
3288 timer.data = (u_long)ahc;
3289 timer.expires = jiffies + (5 * HZ);
3290 timer.function = ahc_linux_sem_timeout;
3291 add_timer(&timer);
3292 printf("Recovery code sleeping\n");
3293 down(&ahc->platform_data->eh_sem);
3294 printf("Recovery code awake\n");
3295 ret = del_timer_sync(&timer);
3296 if (ret == 0) {
3297 printf("Timer Expired\n");
3298 retval = FAILED;
3300 spin_lock_irq(&ahc->platform_data->spin_lock);
3302 ahc_schedule_runq(ahc);
3303 ahc_linux_run_complete_queue(ahc);
3304 ahc_midlayer_entrypoint_unlock(ahc, &s);
3305 return (retval);
3308 void
3309 ahc_platform_dump_card_state(struct ahc_softc *ahc)
3311 struct ahc_linux_device *dev;
3312 int channel;
3313 int maxchannel;
3314 int target;
3315 int maxtarget;
3316 int lun;
3317 int i;
3319 maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0;
3320 maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7;
3321 for (channel = 0; channel <= maxchannel; channel++) {
3323 for (target = 0; target <=maxtarget; target++) {
3325 for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
3326 struct ahc_cmd *acmd;
3328 dev = ahc_linux_get_device(ahc, channel, target,
3329 lun, /*alloc*/FALSE);
3330 if (dev == NULL)
3331 continue;
3333 printf("DevQ(%d:%d:%d): ",
3334 channel, target, lun);
3335 i = 0;
3336 TAILQ_FOREACH(acmd, &dev->busyq,
3337 acmd_links.tqe) {
3338 if (i++ > AHC_SCB_MAX)
3339 break;
3341 printf("%d waiting\n", i);
3347 static void ahc_linux_exit(void);
3349 static void ahc_linux_get_period(struct scsi_target *starget)
3351 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3352 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3353 struct ahc_tmode_tstate *tstate;
3354 struct ahc_initiator_tinfo *tinfo
3355 = ahc_fetch_transinfo(ahc,
3356 starget->channel + 'A',
3357 shost->this_id, starget->id, &tstate);
3358 spi_period(starget) = tinfo->curr.period;
3361 static void ahc_linux_set_period(struct scsi_target *starget, int period)
3363 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3364 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3365 struct ahc_tmode_tstate *tstate;
3366 struct ahc_initiator_tinfo *tinfo
3367 = ahc_fetch_transinfo(ahc,
3368 starget->channel + 'A',
3369 shost->this_id, starget->id, &tstate);
3370 struct ahc_devinfo devinfo;
3371 unsigned int ppr_options = tinfo->curr.ppr_options;
3372 unsigned long flags;
3373 unsigned long offset = tinfo->curr.offset;
3374 struct ahc_syncrate *syncrate;
3376 if (offset == 0)
3377 offset = MAX_OFFSET;
3379 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3380 starget->channel + 'A', ROLE_INITIATOR);
3381 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
3382 ahc_lock(ahc, &flags);
3383 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
3384 ppr_options, AHC_TRANS_GOAL, FALSE);
3385 ahc_unlock(ahc, &flags);
3388 static void ahc_linux_get_offset(struct scsi_target *starget)
3390 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3391 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3392 struct ahc_tmode_tstate *tstate;
3393 struct ahc_initiator_tinfo *tinfo
3394 = ahc_fetch_transinfo(ahc,
3395 starget->channel + 'A',
3396 shost->this_id, starget->id, &tstate);
3397 spi_offset(starget) = tinfo->curr.offset;
3400 static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
3402 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3403 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3404 struct ahc_tmode_tstate *tstate;
3405 struct ahc_initiator_tinfo *tinfo
3406 = ahc_fetch_transinfo(ahc,
3407 starget->channel + 'A',
3408 shost->this_id, starget->id, &tstate);
3409 struct ahc_devinfo devinfo;
3410 unsigned int ppr_options = 0;
3411 unsigned int period = 0;
3412 unsigned long flags;
3413 struct ahc_syncrate *syncrate = NULL;
3415 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3416 starget->channel + 'A', ROLE_INITIATOR);
3417 if (offset != 0) {
3418 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
3419 period = tinfo->curr.period;
3420 ppr_options = tinfo->curr.ppr_options;
3422 ahc_lock(ahc, &flags);
3423 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
3424 ppr_options, AHC_TRANS_GOAL, FALSE);
3425 ahc_unlock(ahc, &flags);
3428 static void ahc_linux_get_width(struct scsi_target *starget)
3430 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3431 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3432 struct ahc_tmode_tstate *tstate;
3433 struct ahc_initiator_tinfo *tinfo
3434 = ahc_fetch_transinfo(ahc,
3435 starget->channel + 'A',
3436 shost->this_id, starget->id, &tstate);
3437 spi_width(starget) = tinfo->curr.width;
3440 static void ahc_linux_set_width(struct scsi_target *starget, int width)
3442 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3443 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3444 struct ahc_devinfo devinfo;
3445 unsigned long flags;
3447 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3448 starget->channel + 'A', ROLE_INITIATOR);
3449 ahc_lock(ahc, &flags);
3450 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
3451 ahc_unlock(ahc, &flags);
3454 static void ahc_linux_get_dt(struct scsi_target *starget)
3456 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3457 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3458 struct ahc_tmode_tstate *tstate;
3459 struct ahc_initiator_tinfo *tinfo
3460 = ahc_fetch_transinfo(ahc,
3461 starget->channel + 'A',
3462 shost->this_id, starget->id, &tstate);
3463 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ;
3466 static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
3468 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3469 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3470 struct ahc_tmode_tstate *tstate;
3471 struct ahc_initiator_tinfo *tinfo
3472 = ahc_fetch_transinfo(ahc,
3473 starget->channel + 'A',
3474 shost->this_id, starget->id, &tstate);
3475 struct ahc_devinfo devinfo;
3476 unsigned int ppr_options = tinfo->curr.ppr_options
3477 & ~MSG_EXT_PPR_DT_REQ;
3478 unsigned int period = tinfo->curr.period;
3479 unsigned long flags;
3480 struct ahc_syncrate *syncrate;
3482 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3483 starget->channel + 'A', ROLE_INITIATOR);
3484 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
3485 dt ? AHC_SYNCRATE_DT : AHC_SYNCRATE_ULTRA2);
3486 ahc_lock(ahc, &flags);
3487 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
3488 ppr_options, AHC_TRANS_GOAL, FALSE);
3489 ahc_unlock(ahc, &flags);
3492 static void ahc_linux_get_qas(struct scsi_target *starget)
3494 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3495 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3496 struct ahc_tmode_tstate *tstate;
3497 struct ahc_initiator_tinfo *tinfo
3498 = ahc_fetch_transinfo(ahc,
3499 starget->channel + 'A',
3500 shost->this_id, starget->id, &tstate);
3501 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ;
3504 static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
3506 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3507 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3508 struct ahc_tmode_tstate *tstate;
3509 struct ahc_initiator_tinfo *tinfo
3510 = ahc_fetch_transinfo(ahc,
3511 starget->channel + 'A',
3512 shost->this_id, starget->id, &tstate);
3513 struct ahc_devinfo devinfo;
3514 unsigned int ppr_options = tinfo->curr.ppr_options
3515 & ~MSG_EXT_PPR_QAS_REQ;
3516 unsigned int period = tinfo->curr.period;
3517 unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ;
3518 unsigned long flags;
3519 struct ahc_syncrate *syncrate;
3521 if (qas)
3522 ppr_options |= MSG_EXT_PPR_QAS_REQ;
3524 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3525 starget->channel + 'A', ROLE_INITIATOR);
3526 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
3527 dt ? AHC_SYNCRATE_DT : AHC_SYNCRATE_ULTRA2);
3528 ahc_lock(ahc, &flags);
3529 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
3530 ppr_options, AHC_TRANS_GOAL, FALSE);
3531 ahc_unlock(ahc, &flags);
3534 static void ahc_linux_get_iu(struct scsi_target *starget)
3536 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3537 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3538 struct ahc_tmode_tstate *tstate;
3539 struct ahc_initiator_tinfo *tinfo
3540 = ahc_fetch_transinfo(ahc,
3541 starget->channel + 'A',
3542 shost->this_id, starget->id, &tstate);
3543 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ;
3546 static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
3548 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
3549 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
3550 struct ahc_tmode_tstate *tstate;
3551 struct ahc_initiator_tinfo *tinfo
3552 = ahc_fetch_transinfo(ahc,
3553 starget->channel + 'A',
3554 shost->this_id, starget->id, &tstate);
3555 struct ahc_devinfo devinfo;
3556 unsigned int ppr_options = tinfo->curr.ppr_options
3557 & ~MSG_EXT_PPR_IU_REQ;
3558 unsigned int period = tinfo->curr.period;
3559 unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ;
3560 unsigned long flags;
3561 struct ahc_syncrate *syncrate;
3563 if (iu)
3564 ppr_options |= MSG_EXT_PPR_IU_REQ;
3566 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
3567 starget->channel + 'A', ROLE_INITIATOR);
3568 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
3569 dt ? AHC_SYNCRATE_DT : AHC_SYNCRATE_ULTRA2);
3570 ahc_lock(ahc, &flags);
3571 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
3572 ppr_options, AHC_TRANS_GOAL, FALSE);
3573 ahc_unlock(ahc, &flags);
3576 static struct spi_function_template ahc_linux_transport_functions = {
3577 .get_offset = ahc_linux_get_offset,
3578 .set_offset = ahc_linux_set_offset,
3579 .show_offset = 1,
3580 .get_period = ahc_linux_get_period,
3581 .set_period = ahc_linux_set_period,
3582 .show_period = 1,
3583 .get_width = ahc_linux_get_width,
3584 .set_width = ahc_linux_set_width,
3585 .show_width = 1,
3586 .get_dt = ahc_linux_get_dt,
3587 .set_dt = ahc_linux_set_dt,
3588 .show_dt = 1,
3589 .get_iu = ahc_linux_get_iu,
3590 .set_iu = ahc_linux_set_iu,
3591 .show_iu = 1,
3592 .get_qas = ahc_linux_get_qas,
3593 .set_qas = ahc_linux_set_qas,
3594 .show_qas = 1,
3599 static int __init
3600 ahc_linux_init(void)
3602 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
3603 ahc_linux_transport_template = spi_attach_transport(&ahc_linux_transport_functions);
3604 if (!ahc_linux_transport_template)
3605 return -ENODEV;
3606 if (ahc_linux_detect(&aic7xxx_driver_template))
3607 return 0;
3608 spi_release_transport(ahc_linux_transport_template);
3609 ahc_linux_exit();
3610 return -ENODEV;
3611 #else
3612 scsi_register_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
3613 if (aic7xxx_driver_template.present == 0) {
3614 scsi_unregister_module(MODULE_SCSI_HA,
3615 &aic7xxx_driver_template);
3616 return (-ENODEV);
3619 return (0);
3620 #endif
3623 static void
3624 ahc_linux_exit(void)
3626 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
3628 * In 2.4 we have to unregister from the PCI core _after_
3629 * unregistering from the scsi midlayer to avoid dangling
3630 * references.
3632 scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
3633 #endif
3634 ahc_linux_pci_exit();
3635 ahc_linux_eisa_exit();
3636 spi_release_transport(ahc_linux_transport_template);
3639 module_init(ahc_linux_init);
3640 module_exit(ahc_linux_exit);