Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blob50a176b3888d4c62336135db89eb1c9ef054bb82
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include "sym_glue.h"
41 #include "sym_nvram.h"
43 #if 0
44 #define SYM_DEBUG_GENERIC_SUPPORT
45 #endif
48 * Needed function prototypes.
50 static void sym_int_ma (struct sym_hcb *np);
51 static void sym_int_sir (struct sym_hcb *np);
52 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
53 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
54 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
55 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
56 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
57 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
60 * Print a buffer in hexadecimal format with a ".\n" at end.
62 static void sym_printl_hex(u_char *p, int n)
64 while (n-- > 0)
65 printf (" %x", *p++);
66 printf (".\n");
70 * Print out the content of a SCSI message.
72 static int sym_show_msg (u_char * msg)
74 u_char i;
75 printf ("%x",*msg);
76 if (*msg==M_EXTENDED) {
77 for (i=1;i<8;i++) {
78 if (i-1>msg[1]) break;
79 printf ("-%x",msg[i]);
81 return (i+1);
82 } else if ((*msg & 0xf0) == 0x20) {
83 printf ("-%x",msg[1]);
84 return (2);
86 return (1);
89 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
91 sym_print_addr(cp->cmd, "%s: ", label);
93 sym_show_msg(msg);
94 printf(".\n");
97 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
99 struct sym_tcb *tp = &np->target[target];
100 dev_info(&tp->sdev->sdev_target->dev, "%s: ", label);
102 sym_show_msg(msg);
103 printf(".\n");
107 * Print something that tells about extended errors.
109 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
111 if (x_status & XE_PARITY_ERR) {
112 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
114 if (x_status & XE_EXTRA_DATA) {
115 sym_print_addr(cmd, "extraneous data discarded.\n");
117 if (x_status & XE_BAD_PHASE) {
118 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
120 if (x_status & XE_SODL_UNRUN) {
121 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
123 if (x_status & XE_SWIDE_OVRUN) {
124 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
129 * Return a string for SCSI BUS mode.
131 static char *sym_scsi_bus_mode(int mode)
133 switch(mode) {
134 case SMODE_HVD: return "HVD";
135 case SMODE_SE: return "SE";
136 case SMODE_LVD: return "LVD";
138 return "??";
142 * Soft reset the chip.
144 * Raising SRST when the chip is running may cause
145 * problems on dual function chips (see below).
146 * On the other hand, LVD devices need some delay
147 * to settle and report actual BUS mode in STEST4.
149 static void sym_chip_reset (struct sym_hcb *np)
151 OUTB(np, nc_istat, SRST);
152 udelay(10);
153 OUTB(np, nc_istat, 0);
154 udelay(2000); /* For BUS MODE to settle */
158 * Really soft reset the chip.:)
160 * Some 896 and 876 chip revisions may hang-up if we set
161 * the SRST (soft reset) bit at the wrong time when SCRIPTS
162 * are running.
163 * So, we need to abort the current operation prior to
164 * soft resetting the chip.
166 static void sym_soft_reset (struct sym_hcb *np)
168 u_char istat = 0;
169 int i;
171 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
172 goto do_chip_reset;
174 OUTB(np, nc_istat, CABRT);
175 for (i = 100000 ; i ; --i) {
176 istat = INB(np, nc_istat);
177 if (istat & SIP) {
178 INW(np, nc_sist);
180 else if (istat & DIP) {
181 if (INB(np, nc_dstat) & ABRT)
182 break;
184 udelay(5);
186 OUTB(np, nc_istat, 0);
187 if (!i)
188 printf("%s: unable to abort current chip operation, "
189 "ISTAT=0x%02x.\n", sym_name(np), istat);
190 do_chip_reset:
191 sym_chip_reset(np);
195 * Start reset process.
197 * The interrupt handler will reinitialize the chip.
199 static void sym_start_reset(struct sym_hcb *np)
201 sym_reset_scsi_bus(np, 1);
204 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
206 u32 term;
207 int retv = 0;
209 sym_soft_reset(np); /* Soft reset the chip */
210 if (enab_int)
211 OUTW(np, nc_sien, RST);
213 * Enable Tolerant, reset IRQD if present and
214 * properly set IRQ mode, prior to resetting the bus.
216 OUTB(np, nc_stest3, TE);
217 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
218 OUTB(np, nc_scntl1, CRST);
219 udelay(200);
221 if (!SYM_SETUP_SCSI_BUS_CHECK)
222 goto out;
224 * Check for no terminators or SCSI bus shorts to ground.
225 * Read SCSI data bus, data parity bits and control signals.
226 * We are expecting RESET to be TRUE and other signals to be
227 * FALSE.
229 term = INB(np, nc_sstat0);
230 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
231 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
232 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
233 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
234 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
236 if (!np->maxwide)
237 term &= 0x3ffff;
239 if (term != (2<<7)) {
240 printf("%s: suspicious SCSI data while resetting the BUS.\n",
241 sym_name(np));
242 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
243 "0x%lx, expecting 0x%lx\n",
244 sym_name(np),
245 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
246 (u_long)term, (u_long)(2<<7));
247 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
248 retv = 1;
250 out:
251 OUTB(np, nc_scntl1, 0);
252 return retv;
256 * Select SCSI clock frequency
258 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
261 * If multiplier not present or not selected, leave here.
263 if (np->multiplier <= 1) {
264 OUTB(np, nc_scntl3, scntl3);
265 return;
268 if (sym_verbose >= 2)
269 printf ("%s: enabling clock multiplier\n", sym_name(np));
271 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
273 * Wait for the LCKFRQ bit to be set if supported by the chip.
274 * Otherwise wait 50 micro-seconds (at least).
276 if (np->features & FE_LCKFRQ) {
277 int i = 20;
278 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
279 udelay(20);
280 if (!i)
281 printf("%s: the chip cannot lock the frequency\n",
282 sym_name(np));
283 } else
284 udelay((50+10));
285 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
286 OUTB(np, nc_scntl3, scntl3);
287 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
288 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
293 * Determine the chip's clock frequency.
295 * This is essential for the negotiation of the synchronous
296 * transfer rate.
298 * Note: we have to return the correct value.
299 * THERE IS NO SAFE DEFAULT VALUE.
301 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
302 * 53C860 and 53C875 rev. 1 support fast20 transfers but
303 * do not have a clock doubler and so are provided with a
304 * 80 MHz clock. All other fast20 boards incorporate a doubler
305 * and so should be delivered with a 40 MHz clock.
306 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
307 * clock and provide a clock quadrupler (160 Mhz).
311 * calculate SCSI clock frequency (in KHz)
313 static unsigned getfreq (struct sym_hcb *np, int gen)
315 unsigned int ms = 0;
316 unsigned int f;
319 * Measure GEN timer delay in order
320 * to calculate SCSI clock frequency
322 * This code will never execute too
323 * many loop iterations (if DELAY is
324 * reasonably correct). It could get
325 * too low a delay (too high a freq.)
326 * if the CPU is slow executing the
327 * loop for some reason (an NMI, for
328 * example). For this reason we will
329 * if multiple measurements are to be
330 * performed trust the higher delay
331 * (lower frequency returned).
333 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
334 INW(np, nc_sist); /* clear pending scsi interrupt */
335 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
336 INW(np, nc_sist); /* another one, just to be sure :) */
338 * The C1010-33 core does not report GEN in SIST,
339 * if this interrupt is masked in SIEN.
340 * I don't know yet if the C1010-66 behaves the same way.
342 if (np->features & FE_C10) {
343 OUTW(np, nc_sien, GEN);
344 OUTB(np, nc_istat1, SIRQD);
346 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
347 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
348 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
349 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
350 udelay(1000/4); /* count in 1/4 of ms */
351 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
353 * Undo C1010-33 specific settings.
355 if (np->features & FE_C10) {
356 OUTW(np, nc_sien, 0);
357 OUTB(np, nc_istat1, 0);
360 * set prescaler to divide by whatever 0 means
361 * 0 ought to choose divide by 2, but appears
362 * to set divide by 3.5 mode in my 53c810 ...
364 OUTB(np, nc_scntl3, 0);
367 * adjust for prescaler, and convert into KHz
369 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
372 * The C1010-33 result is biased by a factor
373 * of 2/3 compared to earlier chips.
375 if (np->features & FE_C10)
376 f = (f * 2) / 3;
378 if (sym_verbose >= 2)
379 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
380 sym_name(np), gen, ms/4, f);
382 return f;
385 static unsigned sym_getfreq (struct sym_hcb *np)
387 u_int f1, f2;
388 int gen = 8;
390 getfreq (np, gen); /* throw away first result */
391 f1 = getfreq (np, gen);
392 f2 = getfreq (np, gen);
393 if (f1 > f2) f1 = f2; /* trust lower result */
394 return f1;
398 * Get/probe chip SCSI clock frequency
400 static void sym_getclock (struct sym_hcb *np, int mult)
402 unsigned char scntl3 = np->sv_scntl3;
403 unsigned char stest1 = np->sv_stest1;
404 unsigned f1;
406 np->multiplier = 1;
407 f1 = 40000;
409 * True with 875/895/896/895A with clock multiplier selected
411 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
412 if (sym_verbose >= 2)
413 printf ("%s: clock multiplier found\n", sym_name(np));
414 np->multiplier = mult;
418 * If multiplier not found or scntl3 not 7,5,3,
419 * reset chip and get frequency from general purpose timer.
420 * Otherwise trust scntl3 BIOS setting.
422 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
423 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
424 f1 = sym_getfreq (np);
426 if (sym_verbose)
427 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
429 if (f1 < 45000) f1 = 40000;
430 else if (f1 < 55000) f1 = 50000;
431 else f1 = 80000;
433 if (f1 < 80000 && mult > 1) {
434 if (sym_verbose >= 2)
435 printf ("%s: clock multiplier assumed\n",
436 sym_name(np));
437 np->multiplier = mult;
439 } else {
440 if ((scntl3 & 7) == 3) f1 = 40000;
441 else if ((scntl3 & 7) == 5) f1 = 80000;
442 else f1 = 160000;
444 f1 /= np->multiplier;
448 * Compute controller synchronous parameters.
450 f1 *= np->multiplier;
451 np->clock_khz = f1;
455 * Get/probe PCI clock frequency
457 static int sym_getpciclock (struct sym_hcb *np)
459 int f = 0;
462 * For now, we only need to know about the actual
463 * PCI BUS clock frequency for C1010-66 chips.
465 #if 1
466 if (np->features & FE_66MHZ) {
467 #else
468 if (1) {
469 #endif
470 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
471 f = sym_getfreq(np);
472 OUTB(np, nc_stest1, 0);
474 np->pciclk_khz = f;
476 return f;
480 * SYMBIOS chip clock divisor table.
482 * Divisors are multiplied by 10,000,000 in order to make
483 * calculations more simple.
485 #define _5M 5000000
486 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
489 * Get clock factor and sync divisor for a given
490 * synchronous factor period.
492 static int
493 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
495 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
496 int div = np->clock_divn; /* Number of divisors supported */
497 u32 fak; /* Sync factor in sxfer */
498 u32 per; /* Period in tenths of ns */
499 u32 kpc; /* (per * clk) */
500 int ret;
503 * Compute the synchronous period in tenths of nano-seconds
505 if (dt && sfac <= 9) per = 125;
506 else if (sfac <= 10) per = 250;
507 else if (sfac == 11) per = 303;
508 else if (sfac == 12) per = 500;
509 else per = 40 * sfac;
510 ret = per;
512 kpc = per * clk;
513 if (dt)
514 kpc <<= 1;
517 * For earliest C10 revision 0, we cannot use extra
518 * clocks for the setting of the SCSI clocking.
519 * Note that this limits the lowest sync data transfer
520 * to 5 Mega-transfers per second and may result in
521 * using higher clock divisors.
523 #if 1
524 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
526 * Look for the lowest clock divisor that allows an
527 * output speed not faster than the period.
529 while (div > 0) {
530 --div;
531 if (kpc > (div_10M[div] << 2)) {
532 ++div;
533 break;
536 fak = 0; /* No extra clocks */
537 if (div == np->clock_divn) { /* Are we too fast ? */
538 ret = -1;
540 *divp = div;
541 *fakp = fak;
542 return ret;
544 #endif
547 * Look for the greatest clock divisor that allows an
548 * input speed faster than the period.
550 while (div-- > 0)
551 if (kpc >= (div_10M[div] << 2)) break;
554 * Calculate the lowest clock factor that allows an output
555 * speed not faster than the period, and the max output speed.
556 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
557 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
559 if (dt) {
560 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
561 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
562 } else {
563 fak = (kpc - 1) / div_10M[div] + 1 - 4;
564 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
568 * Check against our hardware limits, or bugs :).
570 if (fak > 2) {
571 fak = 2;
572 ret = -1;
576 * Compute and return sync parameters.
578 *divp = div;
579 *fakp = fak;
581 return ret;
585 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
586 * 128 transfers. All chips support at least 16 transfers
587 * bursts. The 825A, 875 and 895 chips support bursts of up
588 * to 128 transfers and the 895A and 896 support bursts of up
589 * to 64 transfers. All other chips support up to 16
590 * transfers bursts.
592 * For PCI 32 bit data transfers each transfer is a DWORD.
593 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
595 * We use log base 2 (burst length) as internal code, with
596 * value 0 meaning "burst disabled".
600 * Burst length from burst code.
602 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
605 * Burst code from io register bits.
607 #define burst_code(dmode, ctest4, ctest5) \
608 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
611 * Set initial io register bits from burst code.
613 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
615 np->rv_ctest4 &= ~0x80;
616 np->rv_dmode &= ~(0x3 << 6);
617 np->rv_ctest5 &= ~0x4;
619 if (!bc) {
620 np->rv_ctest4 |= 0x80;
622 else {
623 --bc;
624 np->rv_dmode |= ((bc & 0x3) << 6);
625 np->rv_ctest5 |= (bc & 0x4);
631 * Print out the list of targets that have some flag disabled by user.
633 static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
635 int cnt;
636 int i;
638 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
639 if (i == np->myaddr)
640 continue;
641 if (np->target[i].usrflags & mask) {
642 if (!cnt++)
643 printf("%s: %s disabled for targets",
644 sym_name(np), msg);
645 printf(" %d", i);
648 if (cnt)
649 printf(".\n");
653 * Save initial settings of some IO registers.
654 * Assumed to have been set by BIOS.
655 * We cannot reset the chip prior to reading the
656 * IO registers, since informations will be lost.
657 * Since the SCRIPTS processor may be running, this
658 * is not safe on paper, but it seems to work quite
659 * well. :)
661 static void sym_save_initial_setting (struct sym_hcb *np)
663 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
664 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
665 np->sv_dmode = INB(np, nc_dmode) & 0xce;
666 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
667 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
668 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
669 np->sv_gpcntl = INB(np, nc_gpcntl);
670 np->sv_stest1 = INB(np, nc_stest1);
671 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
672 np->sv_stest4 = INB(np, nc_stest4);
673 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
674 np->sv_scntl4 = INB(np, nc_scntl4);
675 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
677 else
678 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
687 u_char burst_max;
688 u32 period;
689 int i;
692 * Wide ?
694 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
697 * Guess the frequency of the chip's clock.
699 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
700 np->clock_khz = 160000;
701 else if (np->features & FE_ULTRA)
702 np->clock_khz = 80000;
703 else
704 np->clock_khz = 40000;
707 * Get the clock multiplier factor.
709 if (np->features & FE_QUAD)
710 np->multiplier = 4;
711 else if (np->features & FE_DBLR)
712 np->multiplier = 2;
713 else
714 np->multiplier = 1;
717 * Measure SCSI clock frequency for chips
718 * it may vary from assumed one.
720 if (np->features & FE_VARCLK)
721 sym_getclock(np, np->multiplier);
724 * Divisor to be used for async (timer pre-scaler).
726 i = np->clock_divn - 1;
727 while (--i >= 0) {
728 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
729 ++i;
730 break;
733 np->rv_scntl3 = i+1;
736 * The C1010 uses hardwired divisors for async.
737 * So, we just throw away, the async. divisor.:-)
739 if (np->features & FE_C10)
740 np->rv_scntl3 = 0;
743 * Minimum synchronous period factor supported by the chip.
744 * Btw, 'period' is in tenths of nanoseconds.
746 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
748 if (period <= 250) np->minsync = 10;
749 else if (period <= 303) np->minsync = 11;
750 else if (period <= 500) np->minsync = 12;
751 else np->minsync = (period + 40 - 1) / 40;
754 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
756 if (np->minsync < 25 &&
757 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
758 np->minsync = 25;
759 else if (np->minsync < 12 &&
760 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
761 np->minsync = 12;
764 * Maximum synchronous period factor supported by the chip.
766 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
767 np->maxsync = period > 2540 ? 254 : period / 10;
770 * If chip is a C1010, guess the sync limits in DT mode.
772 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
773 if (np->clock_khz == 160000) {
774 np->minsync_dt = 9;
775 np->maxsync_dt = 50;
776 np->maxoffs_dt = nvram->type ? 62 : 31;
781 * 64 bit addressing (895A/896/1010) ?
783 if (np->features & FE_DAC) {
784 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
785 np->rv_ccntl1 |= (DDAC);
786 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
787 if (!np->use_dac)
788 np->rv_ccntl1 |= (DDAC);
789 else
790 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
791 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
792 if (!np->use_dac)
793 np->rv_ccntl1 |= (DDAC);
794 else
795 np->rv_ccntl1 |= (0 | EXTIBMV);
796 #endif
800 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
802 if (np->features & FE_NOPM)
803 np->rv_ccntl0 |= (ENPMJ);
806 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
807 * In dual channel mode, contention occurs if internal cycles
808 * are used. Disable internal cycles.
810 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
811 np->revision_id < 0x1)
812 np->rv_ccntl0 |= DILS;
815 * Select burst length (dwords)
817 burst_max = SYM_SETUP_BURST_ORDER;
818 if (burst_max == 255)
819 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
820 np->sv_ctest5);
821 if (burst_max > 7)
822 burst_max = 7;
823 if (burst_max > np->maxburst)
824 burst_max = np->maxburst;
827 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
828 * This chip and the 860 Rev 1 may wrongly use PCI cache line
829 * based transactions on LOAD/STORE instructions. So we have
830 * to prevent these chips from using such PCI transactions in
831 * this driver. The generic ncr driver that does not use
832 * LOAD/STORE instructions does not need this work-around.
834 if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
835 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
836 (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
837 np->revision_id <= 0x1))
838 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
841 * Select all supported special features.
842 * If we are using on-board RAM for scripts, prefetch (PFEN)
843 * does not help, but burst op fetch (BOF) does.
844 * Disabling PFEN makes sure BOF will be used.
846 if (np->features & FE_ERL)
847 np->rv_dmode |= ERL; /* Enable Read Line */
848 if (np->features & FE_BOF)
849 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
850 if (np->features & FE_ERMP)
851 np->rv_dmode |= ERMP; /* Enable Read Multiple */
852 #if 1
853 if ((np->features & FE_PFEN) && !np->ram_ba)
854 #else
855 if (np->features & FE_PFEN)
856 #endif
857 np->rv_dcntl |= PFEN; /* Prefetch Enable */
858 if (np->features & FE_CLSE)
859 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
860 if (np->features & FE_WRIE)
861 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
862 if (np->features & FE_DFS)
863 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
866 * Select some other
868 np->rv_ctest4 |= MPEE; /* Master parity checking */
869 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
872 * Get parity checking, host ID and verbose mode from NVRAM
874 np->myaddr = 255;
875 sym_nvram_setup_host(shost, np, nvram);
878 * Get SCSI addr of host adapter (set by bios?).
880 if (np->myaddr == 255) {
881 np->myaddr = INB(np, nc_scid) & 0x07;
882 if (!np->myaddr)
883 np->myaddr = SYM_SETUP_HOST_ID;
887 * Prepare initial io register bits for burst length
889 sym_init_burst(np, burst_max);
892 * Set SCSI BUS mode.
893 * - LVD capable chips (895/895A/896/1010) report the
894 * current BUS mode through the STEST4 IO register.
895 * - For previous generation chips (825/825A/875),
896 * user has to tell us how to check against HVD,
897 * since a 100% safe algorithm is not possible.
899 np->scsi_mode = SMODE_SE;
900 if (np->features & (FE_ULTRA2|FE_ULTRA3))
901 np->scsi_mode = (np->sv_stest4 & SMODE);
902 else if (np->features & FE_DIFF) {
903 if (SYM_SETUP_SCSI_DIFF == 1) {
904 if (np->sv_scntl3) {
905 if (np->sv_stest2 & 0x20)
906 np->scsi_mode = SMODE_HVD;
908 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
909 if (!(INB(np, nc_gpreg) & 0x08))
910 np->scsi_mode = SMODE_HVD;
913 else if (SYM_SETUP_SCSI_DIFF == 2)
914 np->scsi_mode = SMODE_HVD;
916 if (np->scsi_mode == SMODE_HVD)
917 np->rv_stest2 |= 0x20;
920 * Set LED support from SCRIPTS.
921 * Ignore this feature for boards known to use a
922 * specific GPIO wiring and for the 895A, 896
923 * and 1010 that drive the LED directly.
925 if ((SYM_SETUP_SCSI_LED ||
926 (nvram->type == SYM_SYMBIOS_NVRAM ||
927 (nvram->type == SYM_TEKRAM_NVRAM &&
928 np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
929 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
930 np->features |= FE_LED0;
933 * Set irq mode.
935 switch(SYM_SETUP_IRQ_MODE & 3) {
936 case 2:
937 np->rv_dcntl |= IRQM;
938 break;
939 case 1:
940 np->rv_dcntl |= (np->sv_dcntl & IRQM);
941 break;
942 default:
943 break;
947 * Configure targets according to driver setup.
948 * If NVRAM present get targets setup from NVRAM.
950 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
951 struct sym_tcb *tp = &np->target[i];
953 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
954 tp->usrtags = SYM_SETUP_MAX_TAG;
956 sym_nvram_setup_target(np, i, nvram);
958 if (!tp->usrtags)
959 tp->usrflags &= ~SYM_TAGS_ENABLED;
963 * Let user know about the settings.
965 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
966 sym_nvram_type(nvram), np->myaddr,
967 (np->features & FE_ULTRA3) ? 80 :
968 (np->features & FE_ULTRA2) ? 40 :
969 (np->features & FE_ULTRA) ? 20 : 10,
970 sym_scsi_bus_mode(np->scsi_mode),
971 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
973 * Tell him more on demand.
975 if (sym_verbose) {
976 printf("%s: %s IRQ line driver%s\n",
977 sym_name(np),
978 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
979 np->ram_ba ? ", using on-chip SRAM" : "");
980 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
981 if (np->features & FE_NOPM)
982 printf("%s: handling phase mismatch from SCRIPTS.\n",
983 sym_name(np));
986 * And still more.
988 if (sym_verbose >= 2) {
989 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
990 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
991 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
992 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
994 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
995 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
996 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
997 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1000 * Let user be aware of targets that have some disable flags set.
1002 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1003 if (sym_verbose)
1004 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1005 "SCAN FOR LUNS");
1007 return 0;
1011 * Test the pci bus snoop logic :-(
1013 * Has to be called with interrupts disabled.
1015 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1016 static int sym_regtest (struct sym_hcb *np)
1018 register volatile u32 data;
1020 * chip registers may NOT be cached.
1021 * write 0xffffffff to a read only register area,
1022 * and try to read it back.
1024 data = 0xffffffff;
1025 OUTL(np, nc_dstat, data);
1026 data = INL(np, nc_dstat);
1027 #if 1
1028 if (data == 0xffffffff) {
1029 #else
1030 if ((data & 0xe2f0fffd) != 0x02000080) {
1031 #endif
1032 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1033 (unsigned) data);
1034 return (0x10);
1036 return (0);
1038 #endif
1040 static int sym_snooptest (struct sym_hcb *np)
1042 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1043 int i, err=0;
1044 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1045 err |= sym_regtest (np);
1046 if (err) return (err);
1047 #endif
1048 restart_test:
1050 * Enable Master Parity Checking as we intend
1051 * to enable it for normal operations.
1053 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1055 * init
1057 pc = SCRIPTZ_BA(np, snooptest);
1058 host_wr = 1;
1059 sym_wr = 2;
1061 * Set memory and register.
1063 np->scratch = cpu_to_scr(host_wr);
1064 OUTL(np, nc_temp, sym_wr);
1066 * Start script (exchange values)
1068 OUTL(np, nc_dsa, np->hcb_ba);
1069 OUTL_DSP(np, pc);
1071 * Wait 'til done (with timeout)
1073 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1074 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1075 break;
1076 if (i>=SYM_SNOOP_TIMEOUT) {
1077 printf ("CACHE TEST FAILED: timeout.\n");
1078 return (0x20);
1081 * Check for fatal DMA errors.
1083 dstat = INB(np, nc_dstat);
1084 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1085 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1086 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1087 "DISABLING MASTER DATA PARITY CHECKING.\n",
1088 sym_name(np));
1089 np->rv_ctest4 &= ~MPEE;
1090 goto restart_test;
1092 #endif
1093 if (dstat & (MDPE|BF|IID)) {
1094 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1095 return (0x80);
1098 * Save termination position.
1100 pc = INL(np, nc_dsp);
1102 * Read memory and register.
1104 host_rd = scr_to_cpu(np->scratch);
1105 sym_rd = INL(np, nc_scratcha);
1106 sym_bk = INL(np, nc_temp);
1108 * Check termination position.
1110 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1111 printf ("CACHE TEST FAILED: script execution failed.\n");
1112 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1113 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1114 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1115 return (0x40);
1118 * Show results.
1120 if (host_wr != sym_rd) {
1121 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1122 (int) host_wr, (int) sym_rd);
1123 err |= 1;
1125 if (host_rd != sym_wr) {
1126 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1127 (int) sym_wr, (int) host_rd);
1128 err |= 2;
1130 if (sym_bk != sym_wr) {
1131 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1132 (int) sym_wr, (int) sym_bk);
1133 err |= 4;
1136 return (err);
1140 * log message for real hard errors
1142 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1143 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1145 * exception register:
1146 * ds: dstat
1147 * si: sist
1149 * SCSI bus lines:
1150 * so: control lines as driven by chip.
1151 * si: control lines as seen by chip.
1152 * sd: scsi data lines as seen by chip.
1154 * wide/fastmode:
1155 * sx: sxfer (see the manual)
1156 * s3: scntl3 (see the manual)
1157 * s4: scntl4 (see the manual)
1159 * current script command:
1160 * dsp: script address (relative to start of script).
1161 * dbc: first word of script command.
1163 * First 24 register of the chip:
1164 * r0..rf
1166 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1168 u32 dsp;
1169 int script_ofs;
1170 int script_size;
1171 char *script_name;
1172 u_char *script_base;
1173 int i;
1175 dsp = INL(np, nc_dsp);
1177 if (dsp > np->scripta_ba &&
1178 dsp <= np->scripta_ba + np->scripta_sz) {
1179 script_ofs = dsp - np->scripta_ba;
1180 script_size = np->scripta_sz;
1181 script_base = (u_char *) np->scripta0;
1182 script_name = "scripta";
1184 else if (np->scriptb_ba < dsp &&
1185 dsp <= np->scriptb_ba + np->scriptb_sz) {
1186 script_ofs = dsp - np->scriptb_ba;
1187 script_size = np->scriptb_sz;
1188 script_base = (u_char *) np->scriptb0;
1189 script_name = "scriptb";
1190 } else {
1191 script_ofs = dsp;
1192 script_size = 0;
1193 script_base = NULL;
1194 script_name = "mem";
1197 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1198 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1199 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1200 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1201 (unsigned)INB(np, nc_scntl3),
1202 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1203 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1205 if (((script_ofs & 3) == 0) &&
1206 (unsigned)script_ofs < script_size) {
1207 printf ("%s: script cmd = %08x\n", sym_name(np),
1208 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1211 printf ("%s: regdump:", sym_name(np));
1212 for (i=0; i<24;i++)
1213 printf (" %02x", (unsigned)INB_OFF(np, i));
1214 printf (".\n");
1217 * PCI BUS error.
1219 if (dstat & (MDPE|BF))
1220 sym_log_bus_error(np);
1223 static struct sym_chip sym_dev_table[] = {
1224 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1225 FE_ERL}
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1229 FE_BOF}
1231 #else
1232 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1233 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1235 #endif
1236 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1237 FE_BOF|FE_ERL}
1239 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1240 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1242 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1243 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1245 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1246 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1248 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1249 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1250 FE_RAM|FE_DIFF|FE_VARCLK}
1252 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1253 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1254 FE_RAM|FE_DIFF|FE_VARCLK}
1256 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1257 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1258 FE_RAM|FE_DIFF|FE_VARCLK}
1260 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1261 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1262 FE_RAM|FE_DIFF|FE_VARCLK}
1264 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1265 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1266 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1267 FE_RAM|FE_LCKFRQ}
1269 #else
1270 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1271 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1272 FE_RAM|FE_LCKFRQ}
1274 #endif
1275 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1276 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1277 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1279 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1280 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1281 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1283 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1284 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1285 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1287 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1288 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1289 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1290 FE_C10}
1292 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1293 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1294 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1295 FE_C10|FE_U3EN}
1297 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1298 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1299 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1300 FE_C10|FE_U3EN}
1302 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1303 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1304 FE_RAM|FE_IO256|FE_LEDC}
1307 #define sym_num_devs \
1308 (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1311 * Look up the chip table.
1313 * Return a pointer to the chip entry if found,
1314 * zero otherwise.
1316 struct sym_chip *
1317 sym_lookup_chip_table (u_short device_id, u_char revision)
1319 struct sym_chip *chip;
1320 int i;
1322 for (i = 0; i < sym_num_devs; i++) {
1323 chip = &sym_dev_table[i];
1324 if (device_id != chip->device_id)
1325 continue;
1326 if (revision > chip->revision_id)
1327 continue;
1328 return chip;
1331 return NULL;
1334 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1336 * Lookup the 64 bit DMA segments map.
1337 * This is only used if the direct mapping
1338 * has been unsuccessful.
1340 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1342 int i;
1344 if (!np->use_dac)
1345 goto weird;
1347 /* Look up existing mappings */
1348 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1349 if (h == np->dmap_bah[i])
1350 return i;
1352 /* If direct mapping is free, get it */
1353 if (!np->dmap_bah[s])
1354 goto new;
1355 /* Collision -> lookup free mappings */
1356 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1357 if (!np->dmap_bah[s])
1358 goto new;
1360 weird:
1361 panic("sym: ran out of 64 bit DMA segment registers");
1362 return -1;
1363 new:
1364 np->dmap_bah[s] = h;
1365 np->dmap_dirty = 1;
1366 return s;
1370 * Update IO registers scratch C..R so they will be
1371 * in sync. with queued CCB expectations.
1373 static void sym_update_dmap_regs(struct sym_hcb *np)
1375 int o, i;
1377 if (!np->dmap_dirty)
1378 return;
1379 o = offsetof(struct sym_reg, nc_scrx[0]);
1380 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1381 OUTL_OFF(np, o, np->dmap_bah[i]);
1382 o += 4;
1384 np->dmap_dirty = 0;
1386 #endif
1388 /* Enforce all the fiddly SPI rules and the chip limitations */
1389 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1390 struct sym_trans *goal)
1392 if (!spi_support_wide(starget))
1393 goal->width = 0;
1395 if (!spi_support_sync(starget)) {
1396 goal->iu = 0;
1397 goal->dt = 0;
1398 goal->qas = 0;
1399 goal->period = 0;
1400 goal->offset = 0;
1401 return;
1404 if (spi_support_dt(starget)) {
1405 if (spi_support_dt_only(starget))
1406 goal->dt = 1;
1408 if (goal->offset == 0)
1409 goal->dt = 0;
1410 } else {
1411 goal->dt = 0;
1414 /* Some targets fail to properly negotiate DT in SE mode */
1415 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1416 goal->dt = 0;
1418 if (goal->dt) {
1419 /* all DT transfers must be wide */
1420 goal->width = 1;
1421 if (goal->offset > np->maxoffs_dt)
1422 goal->offset = np->maxoffs_dt;
1423 if (goal->period < np->minsync_dt)
1424 goal->period = np->minsync_dt;
1425 if (goal->period > np->maxsync_dt)
1426 goal->period = np->maxsync_dt;
1427 } else {
1428 goal->iu = goal->qas = 0;
1429 if (goal->offset > np->maxoffs)
1430 goal->offset = np->maxoffs;
1431 if (goal->period < np->minsync)
1432 goal->period = np->minsync;
1433 if (goal->period > np->maxsync)
1434 goal->period = np->maxsync;
1439 * Prepare the next negotiation message if needed.
1441 * Fill in the part of message buffer that contains the
1442 * negotiation and the nego_status field of the CCB.
1443 * Returns the size of the message in bytes.
1445 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1447 struct sym_tcb *tp = &np->target[cp->target];
1448 struct scsi_target *starget = tp->sdev->sdev_target;
1449 struct sym_trans *goal = &tp->tgoal;
1450 int msglen = 0;
1451 int nego;
1453 sym_check_goals(np, starget, goal);
1456 * Many devices implement PPR in a buggy way, so only use it if we
1457 * really want to.
1459 if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
1460 nego = NS_PPR;
1461 } else if (spi_width(starget) != goal->width) {
1462 nego = NS_WIDE;
1463 } else if (spi_period(starget) != goal->period ||
1464 spi_offset(starget) != goal->offset) {
1465 nego = NS_SYNC;
1466 } else {
1467 goal->check_nego = 0;
1468 nego = 0;
1471 switch (nego) {
1472 case NS_SYNC:
1473 msgptr[msglen++] = M_EXTENDED;
1474 msgptr[msglen++] = 3;
1475 msgptr[msglen++] = M_X_SYNC_REQ;
1476 msgptr[msglen++] = goal->period;
1477 msgptr[msglen++] = goal->offset;
1478 break;
1479 case NS_WIDE:
1480 msgptr[msglen++] = M_EXTENDED;
1481 msgptr[msglen++] = 2;
1482 msgptr[msglen++] = M_X_WIDE_REQ;
1483 msgptr[msglen++] = goal->width;
1484 break;
1485 case NS_PPR:
1486 msgptr[msglen++] = M_EXTENDED;
1487 msgptr[msglen++] = 6;
1488 msgptr[msglen++] = M_X_PPR_REQ;
1489 msgptr[msglen++] = goal->period;
1490 msgptr[msglen++] = 0;
1491 msgptr[msglen++] = goal->offset;
1492 msgptr[msglen++] = goal->width;
1493 msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1494 (goal->dt ? PPR_OPT_DT : 0) |
1495 (goal->qas ? PPR_OPT_QAS : 0);
1496 break;
1499 cp->nego_status = nego;
1501 if (nego) {
1502 tp->nego_cp = cp; /* Keep track a nego will be performed */
1503 if (DEBUG_FLAGS & DEBUG_NEGO) {
1504 sym_print_nego_msg(np, cp->target,
1505 nego == NS_SYNC ? "sync msgout" :
1506 nego == NS_WIDE ? "wide msgout" :
1507 "ppr msgout", msgptr);
1511 return msglen;
1515 * Insert a job into the start queue.
1517 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1519 u_short qidx;
1521 #ifdef SYM_CONF_IARB_SUPPORT
1523 * If the previously queued CCB is not yet done,
1524 * set the IARB hint. The SCRIPTS will go with IARB
1525 * for this job when starting the previous one.
1526 * We leave devices a chance to win arbitration by
1527 * not using more than 'iarb_max' consecutive
1528 * immediate arbitrations.
1530 if (np->last_cp && np->iarb_count < np->iarb_max) {
1531 np->last_cp->host_flags |= HF_HINT_IARB;
1532 ++np->iarb_count;
1534 else
1535 np->iarb_count = 0;
1536 np->last_cp = cp;
1537 #endif
1539 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1541 * Make SCRIPTS aware of the 64 bit DMA
1542 * segment registers not being up-to-date.
1544 if (np->dmap_dirty)
1545 cp->host_xflags |= HX_DMAP_DIRTY;
1546 #endif
1549 * Insert first the idle task and then our job.
1550 * The MBs should ensure proper ordering.
1552 qidx = np->squeueput + 2;
1553 if (qidx >= MAX_QUEUE*2) qidx = 0;
1555 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1556 MEMORY_WRITE_BARRIER();
1557 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1559 np->squeueput = qidx;
1561 if (DEBUG_FLAGS & DEBUG_QUEUE)
1562 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1565 * Script processor may be waiting for reselect.
1566 * Wake it up.
1568 MEMORY_WRITE_BARRIER();
1569 OUTB(np, nc_istat, SIGP|np->istat_sem);
1572 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1574 * Start next ready-to-start CCBs.
1576 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1578 SYM_QUEHEAD *qp;
1579 struct sym_ccb *cp;
1582 * Paranoia, as usual. :-)
1584 assert(!lp->started_tags || !lp->started_no_tag);
1587 * Try to start as many commands as asked by caller.
1588 * Prevent from having both tagged and untagged
1589 * commands queued to the device at the same time.
1591 while (maxn--) {
1592 qp = sym_remque_head(&lp->waiting_ccbq);
1593 if (!qp)
1594 break;
1595 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1596 if (cp->tag != NO_TAG) {
1597 if (lp->started_no_tag ||
1598 lp->started_tags >= lp->started_max) {
1599 sym_insque_head(qp, &lp->waiting_ccbq);
1600 break;
1602 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1603 lp->head.resel_sa =
1604 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1605 ++lp->started_tags;
1606 } else {
1607 if (lp->started_no_tag || lp->started_tags) {
1608 sym_insque_head(qp, &lp->waiting_ccbq);
1609 break;
1611 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1612 lp->head.resel_sa =
1613 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1614 ++lp->started_no_tag;
1616 cp->started = 1;
1617 sym_insque_tail(qp, &lp->started_ccbq);
1618 sym_put_start_queue(np, cp);
1621 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1624 * The chip may have completed jobs. Look at the DONE QUEUE.
1626 * On paper, memory read barriers may be needed here to
1627 * prevent out of order LOADs by the CPU from having
1628 * prefetched stale data prior to DMA having occurred.
1630 static int sym_wakeup_done (struct sym_hcb *np)
1632 struct sym_ccb *cp;
1633 int i, n;
1634 u32 dsa;
1636 n = 0;
1637 i = np->dqueueget;
1639 /* MEMORY_READ_BARRIER(); */
1640 while (1) {
1641 dsa = scr_to_cpu(np->dqueue[i]);
1642 if (!dsa)
1643 break;
1644 np->dqueue[i] = 0;
1645 if ((i = i+2) >= MAX_QUEUE*2)
1646 i = 0;
1648 cp = sym_ccb_from_dsa(np, dsa);
1649 if (cp) {
1650 MEMORY_READ_BARRIER();
1651 sym_complete_ok (np, cp);
1652 ++n;
1654 else
1655 printf ("%s: bad DSA (%x) in done queue.\n",
1656 sym_name(np), (u_int) dsa);
1658 np->dqueueget = i;
1660 return n;
1664 * Complete all CCBs queued to the COMP queue.
1666 * These CCBs are assumed:
1667 * - Not to be referenced either by devices or
1668 * SCRIPTS-related queues and datas.
1669 * - To have to be completed with an error condition
1670 * or requeued.
1672 * The device queue freeze count is incremented
1673 * for each CCB that does not prevent this.
1674 * This function is called when all CCBs involved
1675 * in error handling/recovery have been reaped.
1677 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1679 SYM_QUEHEAD *qp;
1680 struct sym_ccb *cp;
1682 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1683 struct scsi_cmnd *cmd;
1684 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1685 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1686 /* Leave quiet CCBs waiting for resources */
1687 if (cp->host_status == HS_WAIT)
1688 continue;
1689 cmd = cp->cmd;
1690 if (cam_status)
1691 sym_set_cam_status(cmd, cam_status);
1692 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1693 if (sym_get_cam_status(cmd) == CAM_REQUEUE_REQ) {
1694 struct sym_tcb *tp = &np->target[cp->target];
1695 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1696 if (lp) {
1697 sym_remque(&cp->link2_ccbq);
1698 sym_insque_tail(&cp->link2_ccbq,
1699 &lp->waiting_ccbq);
1700 if (cp->started) {
1701 if (cp->tag != NO_TAG)
1702 --lp->started_tags;
1703 else
1704 --lp->started_no_tag;
1707 cp->started = 0;
1708 continue;
1710 #endif
1711 sym_free_ccb(np, cp);
1712 sym_xpt_done(np, cmd);
1717 * Complete all active CCBs with error.
1718 * Used on CHIP/SCSI RESET.
1720 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1723 * Move all active CCBs to the COMP queue
1724 * and flush this queue.
1726 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1727 sym_que_init(&np->busy_ccbq);
1728 sym_flush_comp_queue(np, cam_status);
1732 * Start chip.
1734 * 'reason' means:
1735 * 0: initialisation.
1736 * 1: SCSI BUS RESET delivered or received.
1737 * 2: SCSI BUS MODE changed.
1739 void sym_start_up (struct sym_hcb *np, int reason)
1741 int i;
1742 u32 phys;
1745 * Reset chip if asked, otherwise just clear fifos.
1747 if (reason == 1)
1748 sym_soft_reset(np);
1749 else {
1750 OUTB(np, nc_stest3, TE|CSF);
1751 OUTONB(np, nc_ctest3, CLF);
1755 * Clear Start Queue
1757 phys = np->squeue_ba;
1758 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1759 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1760 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1762 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1765 * Start at first entry.
1767 np->squeueput = 0;
1770 * Clear Done Queue
1772 phys = np->dqueue_ba;
1773 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1774 np->dqueue[i] = 0;
1775 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1777 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1780 * Start at first entry.
1782 np->dqueueget = 0;
1785 * Install patches in scripts.
1786 * This also let point to first position the start
1787 * and done queue pointers used from SCRIPTS.
1789 np->fw_patch(np);
1792 * Wakeup all pending jobs.
1794 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
1797 * Init chip.
1799 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1800 udelay(2000); /* The 895 needs time for the bus mode to settle */
1802 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1803 /* full arb., ena parity, par->ATN */
1804 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1806 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1808 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1809 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1810 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1811 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1812 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1814 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1815 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1816 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1818 /* Extended Sreq/Sack filtering not supported on the C10 */
1819 if (np->features & FE_C10)
1820 OUTB(np, nc_stest2, np->rv_stest2);
1821 else
1822 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1824 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1825 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1828 * For now, disable AIP generation on C1010-66.
1830 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1831 OUTB(np, nc_aipcntl1, DISAIP);
1834 * C10101 rev. 0 errata.
1835 * Errant SGE's when in narrow. Write bits 4 & 5 of
1836 * STEST1 register to disable SGE. We probably should do
1837 * that from SCRIPTS for each selection/reselection, but
1838 * I just don't want. :)
1840 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1841 np->revision_id < 1)
1842 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1845 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1846 * Disable overlapped arbitration for some dual function devices,
1847 * regardless revision id (kind of post-chip-design feature. ;-))
1849 if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1850 OUTB(np, nc_ctest0, (1<<5));
1851 else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1852 np->rv_ccntl0 |= DPR;
1855 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1856 * and/or hardware phase mismatch, since only such chips
1857 * seem to support those IO registers.
1859 if (np->features & (FE_DAC|FE_NOPM)) {
1860 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1861 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1864 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1866 * Set up scratch C and DRS IO registers to map the 32 bit
1867 * DMA address range our data structures are located in.
1869 if (np->use_dac) {
1870 np->dmap_bah[0] = 0; /* ??? */
1871 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1872 OUTL(np, nc_drs, np->dmap_bah[0]);
1874 #endif
1877 * If phase mismatch handled by scripts (895A/896/1010),
1878 * set PM jump addresses.
1880 if (np->features & FE_NOPM) {
1881 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1882 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1886 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1887 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1889 if (np->features & FE_LED0)
1890 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1891 else if (np->features & FE_LEDC)
1892 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1895 * enable ints
1897 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1898 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1901 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1902 * Try to eat the spurious SBMC interrupt that may occur when
1903 * we reset the chip but not the SCSI BUS (at initialization).
1905 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1906 OUTONW(np, nc_sien, SBMC);
1907 if (reason == 0) {
1908 mdelay(100);
1909 INW(np, nc_sist);
1911 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1915 * Fill in target structure.
1916 * Reinitialize usrsync.
1917 * Reinitialize usrwide.
1918 * Prepare sync negotiation according to actual SCSI bus mode.
1920 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1921 struct sym_tcb *tp = &np->target[i];
1923 tp->to_reset = 0;
1924 tp->head.sval = 0;
1925 tp->head.wval = np->rv_scntl3;
1926 tp->head.uval = 0;
1930 * Download SCSI SCRIPTS to on-chip RAM if present,
1931 * and start script processor.
1932 * We do the download preferently from the CPU.
1933 * For platforms that may not support PCI memory mapping,
1934 * we use simple SCRIPTS that performs MEMORY MOVEs.
1936 phys = SCRIPTA_BA(np, init);
1937 if (np->ram_ba) {
1938 if (sym_verbose >= 2)
1939 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1940 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1941 if (np->ram_ws == 8192) {
1942 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1943 phys = scr_to_cpu(np->scr_ram_seg);
1944 OUTL(np, nc_mmws, phys);
1945 OUTL(np, nc_mmrs, phys);
1946 OUTL(np, nc_sfs, phys);
1947 phys = SCRIPTB_BA(np, start64);
1951 np->istat_sem = 0;
1953 OUTL(np, nc_dsa, np->hcb_ba);
1954 OUTL_DSP(np, phys);
1957 * Notify the XPT about the RESET condition.
1959 if (reason != 0)
1960 sym_xpt_async_bus_reset(np);
1964 * Switch trans mode for current job and its target.
1966 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1967 u_char per, u_char wide, u_char div, u_char fak)
1969 SYM_QUEHEAD *qp;
1970 u_char sval, wval, uval;
1971 struct sym_tcb *tp = &np->target[target];
1973 assert(target == (INB(np, nc_sdid) & 0x0f));
1975 sval = tp->head.sval;
1976 wval = tp->head.wval;
1977 uval = tp->head.uval;
1979 #if 0
1980 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1981 sval, wval, uval, np->rv_scntl3);
1982 #endif
1984 * Set the offset.
1986 if (!(np->features & FE_C10))
1987 sval = (sval & ~0x1f) | ofs;
1988 else
1989 sval = (sval & ~0x3f) | ofs;
1992 * Set the sync divisor and extra clock factor.
1994 if (ofs != 0) {
1995 wval = (wval & ~0x70) | ((div+1) << 4);
1996 if (!(np->features & FE_C10))
1997 sval = (sval & ~0xe0) | (fak << 5);
1998 else {
1999 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2000 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2001 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2006 * Set the bus width.
2008 wval = wval & ~EWS;
2009 if (wide != 0)
2010 wval |= EWS;
2013 * Set misc. ultra enable bits.
2015 if (np->features & FE_C10) {
2016 uval = uval & ~(U3EN|AIPCKEN);
2017 if (opts) {
2018 assert(np->features & FE_U3EN);
2019 uval |= U3EN;
2021 } else {
2022 wval = wval & ~ULTRA;
2023 if (per <= 12) wval |= ULTRA;
2027 * Stop there if sync parameters are unchanged.
2029 if (tp->head.sval == sval &&
2030 tp->head.wval == wval &&
2031 tp->head.uval == uval)
2032 return;
2033 tp->head.sval = sval;
2034 tp->head.wval = wval;
2035 tp->head.uval = uval;
2038 * Disable extended Sreq/Sack filtering if per < 50.
2039 * Not supported on the C1010.
2041 if (per < 50 && !(np->features & FE_C10))
2042 OUTOFFB(np, nc_stest2, EXT);
2045 * set actual value and sync_status
2047 OUTB(np, nc_sxfer, tp->head.sval);
2048 OUTB(np, nc_scntl3, tp->head.wval);
2050 if (np->features & FE_C10) {
2051 OUTB(np, nc_scntl4, tp->head.uval);
2055 * patch ALL busy ccbs of this target.
2057 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2058 struct sym_ccb *cp;
2059 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2060 if (cp->target != target)
2061 continue;
2062 cp->phys.select.sel_scntl3 = tp->head.wval;
2063 cp->phys.select.sel_sxfer = tp->head.sval;
2064 if (np->features & FE_C10) {
2065 cp->phys.select.sel_scntl4 = tp->head.uval;
2071 * We received a WDTR.
2072 * Let everything be aware of the changes.
2074 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2076 struct sym_tcb *tp = &np->target[target];
2077 struct scsi_target *starget = tp->sdev->sdev_target;
2079 if (spi_width(starget) == wide)
2080 return;
2082 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2084 tp->tgoal.width = wide;
2085 spi_offset(starget) = 0;
2086 spi_period(starget) = 0;
2087 spi_width(starget) = wide;
2088 spi_iu(starget) = 0;
2089 spi_dt(starget) = 0;
2090 spi_qas(starget) = 0;
2092 if (sym_verbose >= 3)
2093 spi_display_xfer_agreement(starget);
2097 * We received a SDTR.
2098 * Let everything be aware of the changes.
2100 static void
2101 sym_setsync(struct sym_hcb *np, int target,
2102 u_char ofs, u_char per, u_char div, u_char fak)
2104 struct sym_tcb *tp = &np->target[target];
2105 struct scsi_target *starget = tp->sdev->sdev_target;
2106 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2108 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2110 spi_period(starget) = per;
2111 spi_offset(starget) = ofs;
2112 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2114 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2115 tp->tgoal.period = per;
2116 tp->tgoal.offset = ofs;
2117 tp->tgoal.check_nego = 0;
2120 spi_display_xfer_agreement(starget);
2124 * We received a PPR.
2125 * Let everything be aware of the changes.
2127 static void
2128 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2129 u_char per, u_char wide, u_char div, u_char fak)
2131 struct sym_tcb *tp = &np->target[target];
2132 struct scsi_target *starget = tp->sdev->sdev_target;
2134 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2136 spi_width(starget) = tp->tgoal.width = wide;
2137 spi_period(starget) = tp->tgoal.period = per;
2138 spi_offset(starget) = tp->tgoal.offset = ofs;
2139 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142 tp->tgoal.check_nego = 0;
2144 spi_display_xfer_agreement(starget);
2148 * generic recovery from scsi interrupt
2150 * The doc says that when the chip gets an SCSI interrupt,
2151 * it tries to stop in an orderly fashion, by completing
2152 * an instruction fetch that had started or by flushing
2153 * the DMA fifo for a write to memory that was executing.
2154 * Such a fashion is not enough to know if the instruction
2155 * that was just before the current DSP value has been
2156 * executed or not.
2158 * There are some small SCRIPTS sections that deal with
2159 * the start queue and the done queue that may break any
2160 * assomption from the C code if we are interrupted
2161 * inside, so we reset if this happens. Btw, since these
2162 * SCRIPTS sections are executed while the SCRIPTS hasn't
2163 * started SCSI operations, it is very unlikely to happen.
2165 * All the driver data structures are supposed to be
2166 * allocated from the same 4 GB memory window, so there
2167 * is a 1 to 1 relationship between DSA and driver data
2168 * structures. Since we are careful :) to invalidate the
2169 * DSA when we complete a command or when the SCRIPTS
2170 * pushes a DSA into a queue, we can trust it when it
2171 * points to a CCB.
2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2175 u32 dsp = INL(np, nc_dsp);
2176 u32 dsa = INL(np, nc_dsa);
2177 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2180 * If we haven't been interrupted inside the SCRIPTS
2181 * critical pathes, we can safely restart the SCRIPTS
2182 * and trust the DSA value if it matches a CCB.
2184 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190 (!(dsp > SCRIPTA_BA(np, done) &&
2191 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2193 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2195 * If we have a CCB, let the SCRIPTS call us back for
2196 * the handling of the error with SCRATCHA filled with
2197 * STARTPOS. This way, we will be able to freeze the
2198 * device queue and requeue awaiting IOs.
2200 if (cp) {
2201 cp->host_status = hsts;
2202 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2205 * Otherwise just restart the SCRIPTS.
2207 else {
2208 OUTL(np, nc_dsa, 0xffffff);
2209 OUTL_DSP(np, SCRIPTA_BA(np, start));
2212 else
2213 goto reset_all;
2215 return;
2217 reset_all:
2218 sym_start_reset(np);
2222 * chip exception handler for selection timeout
2224 static void sym_int_sto (struct sym_hcb *np)
2226 u32 dsp = INL(np, nc_dsp);
2228 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2230 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232 else
2233 sym_start_reset(np);
2237 * chip exception handler for unexpected disconnect
2239 static void sym_int_udc (struct sym_hcb *np)
2241 printf ("%s: unexpected disconnect\n", sym_name(np));
2242 sym_recover_scsi_int(np, HS_UNEXPECTED);
2246 * chip exception handler for SCSI bus mode change
2248 * spi2-r12 11.2.3 says a transceiver mode change must
2249 * generate a reset event and a device that detects a reset
2250 * event shall initiate a hard reset. It says also that a
2251 * device that detects a mode change shall set data transfer
2252 * mode to eight bit asynchronous, etc...
2253 * So, just reinitializing all except chip should be enough.
2255 static void sym_int_sbmc (struct sym_hcb *np)
2257 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2260 * Notify user.
2262 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2263 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2266 * Should suspend command processing for a few seconds and
2267 * reinitialize all except the chip.
2269 sym_start_up (np, 2);
2273 * chip exception handler for SCSI parity error.
2275 * When the chip detects a SCSI parity error and is
2276 * currently executing a (CH)MOV instruction, it does
2277 * not interrupt immediately, but tries to finish the
2278 * transfer of the current scatter entry before
2279 * interrupting. The following situations may occur:
2281 * - The complete scatter entry has been transferred
2282 * without the device having changed phase.
2283 * The chip will then interrupt with the DSP pointing
2284 * to the instruction that follows the MOV.
2286 * - A phase mismatch occurs before the MOV finished
2287 * and phase errors are to be handled by the C code.
2288 * The chip will then interrupt with both PAR and MA
2289 * conditions set.
2291 * - A phase mismatch occurs before the MOV finished and
2292 * phase errors are to be handled by SCRIPTS.
2293 * The chip will load the DSP with the phase mismatch
2294 * JUMP address and interrupt the host processor.
2296 static void sym_int_par (struct sym_hcb *np, u_short sist)
2298 u_char hsts = INB(np, HS_PRT);
2299 u32 dsp = INL(np, nc_dsp);
2300 u32 dbc = INL(np, nc_dbc);
2301 u32 dsa = INL(np, nc_dsa);
2302 u_char sbcl = INB(np, nc_sbcl);
2303 u_char cmd = dbc >> 24;
2304 int phase = cmd & 7;
2305 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2307 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2308 sym_name(np), hsts, dbc, sbcl);
2311 * Check that the chip is connected to the SCSI BUS.
2313 if (!(INB(np, nc_scntl1) & ISCON)) {
2314 sym_recover_scsi_int(np, HS_UNEXPECTED);
2315 return;
2319 * If the nexus is not clearly identified, reset the bus.
2320 * We will try to do better later.
2322 if (!cp)
2323 goto reset_all;
2326 * Check instruction was a MOV, direction was INPUT and
2327 * ATN is asserted.
2329 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2330 goto reset_all;
2333 * Keep track of the parity error.
2335 OUTONB(np, HF_PRT, HF_EXT_ERR);
2336 cp->xerr_status |= XE_PARITY_ERR;
2339 * Prepare the message to send to the device.
2341 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2344 * If the old phase was DATA IN phase, we have to deal with
2345 * the 3 situations described above.
2346 * For other input phases (MSG IN and STATUS), the device
2347 * must resend the whole thing that failed parity checking
2348 * or signal error. So, jumping to dispatcher should be OK.
2350 if (phase == 1 || phase == 5) {
2351 /* Phase mismatch handled by SCRIPTS */
2352 if (dsp == SCRIPTB_BA(np, pm_handle))
2353 OUTL_DSP(np, dsp);
2354 /* Phase mismatch handled by the C code */
2355 else if (sist & MA)
2356 sym_int_ma (np);
2357 /* No phase mismatch occurred */
2358 else {
2359 sym_set_script_dp (np, cp, dsp);
2360 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2363 else if (phase == 7) /* We definitely cannot handle parity errors */
2364 #if 1 /* in message-in phase due to the relection */
2365 goto reset_all; /* path and various message anticipations. */
2366 #else
2367 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2368 #endif
2369 else
2370 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2371 return;
2373 reset_all:
2374 sym_start_reset(np);
2375 return;
2379 * chip exception handler for phase errors.
2381 * We have to construct a new transfer descriptor,
2382 * to transfer the rest of the current block.
2384 static void sym_int_ma (struct sym_hcb *np)
2386 u32 dbc;
2387 u32 rest;
2388 u32 dsp;
2389 u32 dsa;
2390 u32 nxtdsp;
2391 u32 *vdsp;
2392 u32 oadr, olen;
2393 u32 *tblp;
2394 u32 newcmd;
2395 u_int delta;
2396 u_char cmd;
2397 u_char hflags, hflags0;
2398 struct sym_pmc *pm;
2399 struct sym_ccb *cp;
2401 dsp = INL(np, nc_dsp);
2402 dbc = INL(np, nc_dbc);
2403 dsa = INL(np, nc_dsa);
2405 cmd = dbc >> 24;
2406 rest = dbc & 0xffffff;
2407 delta = 0;
2410 * locate matching cp if any.
2412 cp = sym_ccb_from_dsa(np, dsa);
2415 * Donnot take into account dma fifo and various buffers in
2416 * INPUT phase since the chip flushes everything before
2417 * raising the MA interrupt for interrupted INPUT phases.
2418 * For DATA IN phase, we will check for the SWIDE later.
2420 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2421 u_char ss0, ss2;
2423 if (np->features & FE_DFBC)
2424 delta = INW(np, nc_dfbc);
2425 else {
2426 u32 dfifo;
2429 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2431 dfifo = INL(np, nc_dfifo);
2434 * Calculate remaining bytes in DMA fifo.
2435 * (CTEST5 = dfifo >> 16)
2437 if (dfifo & (DFS << 16))
2438 delta = ((((dfifo >> 8) & 0x300) |
2439 (dfifo & 0xff)) - rest) & 0x3ff;
2440 else
2441 delta = ((dfifo & 0xff) - rest) & 0x7f;
2445 * The data in the dma fifo has not been transfered to
2446 * the target -> add the amount to the rest
2447 * and clear the data.
2448 * Check the sstat2 register in case of wide transfer.
2450 rest += delta;
2451 ss0 = INB(np, nc_sstat0);
2452 if (ss0 & OLF) rest++;
2453 if (!(np->features & FE_C10))
2454 if (ss0 & ORF) rest++;
2455 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2456 ss2 = INB(np, nc_sstat2);
2457 if (ss2 & OLF1) rest++;
2458 if (!(np->features & FE_C10))
2459 if (ss2 & ORF1) rest++;
2463 * Clear fifos.
2465 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2466 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2470 * log the information
2472 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2473 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2474 (unsigned) rest, (unsigned) delta);
2477 * try to find the interrupted script command,
2478 * and the address at which to continue.
2480 vdsp = NULL;
2481 nxtdsp = 0;
2482 if (dsp > np->scripta_ba &&
2483 dsp <= np->scripta_ba + np->scripta_sz) {
2484 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2485 nxtdsp = dsp;
2487 else if (dsp > np->scriptb_ba &&
2488 dsp <= np->scriptb_ba + np->scriptb_sz) {
2489 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2490 nxtdsp = dsp;
2494 * log the information
2496 if (DEBUG_FLAGS & DEBUG_PHASE) {
2497 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2498 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2501 if (!vdsp) {
2502 printf ("%s: interrupted SCRIPT address not found.\n",
2503 sym_name (np));
2504 goto reset_all;
2507 if (!cp) {
2508 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2509 sym_name (np));
2510 goto reset_all;
2514 * get old startaddress and old length.
2516 oadr = scr_to_cpu(vdsp[1]);
2518 if (cmd & 0x10) { /* Table indirect */
2519 tblp = (u32 *) ((char*) &cp->phys + oadr);
2520 olen = scr_to_cpu(tblp[0]);
2521 oadr = scr_to_cpu(tblp[1]);
2522 } else {
2523 tblp = (u32 *) 0;
2524 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2527 if (DEBUG_FLAGS & DEBUG_PHASE) {
2528 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2529 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2530 tblp,
2531 (unsigned) olen,
2532 (unsigned) oadr);
2536 * check cmd against assumed interrupted script command.
2537 * If dt data phase, the MOVE instruction hasn't bit 4 of
2538 * the phase.
2540 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2541 sym_print_addr(cp->cmd,
2542 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2543 cmd, scr_to_cpu(vdsp[0]) >> 24);
2545 goto reset_all;
2549 * if old phase not dataphase, leave here.
2551 if (cmd & 2) {
2552 sym_print_addr(cp->cmd,
2553 "phase change %x-%x %d@%08x resid=%d.\n",
2554 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2555 (unsigned)oadr, (unsigned)rest);
2556 goto unexpected_phase;
2560 * Choose the correct PM save area.
2562 * Look at the PM_SAVE SCRIPT if you want to understand
2563 * this stuff. The equivalent code is implemented in
2564 * SCRIPTS for the 895A, 896 and 1010 that are able to
2565 * handle PM from the SCRIPTS processor.
2567 hflags0 = INB(np, HF_PRT);
2568 hflags = hflags0;
2570 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2571 if (hflags & HF_IN_PM0)
2572 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2573 else if (hflags & HF_IN_PM1)
2574 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2576 if (hflags & HF_DP_SAVED)
2577 hflags ^= HF_ACT_PM;
2580 if (!(hflags & HF_ACT_PM)) {
2581 pm = &cp->phys.pm0;
2582 newcmd = SCRIPTA_BA(np, pm0_data);
2584 else {
2585 pm = &cp->phys.pm1;
2586 newcmd = SCRIPTA_BA(np, pm1_data);
2589 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2590 if (hflags != hflags0)
2591 OUTB(np, HF_PRT, hflags);
2594 * fillin the phase mismatch context
2596 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2597 pm->sg.size = cpu_to_scr(rest);
2598 pm->ret = cpu_to_scr(nxtdsp);
2601 * If we have a SWIDE,
2602 * - prepare the address to write the SWIDE from SCRIPTS,
2603 * - compute the SCRIPTS address to restart from,
2604 * - move current data pointer context by one byte.
2606 nxtdsp = SCRIPTA_BA(np, dispatch);
2607 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2608 (INB(np, nc_scntl2) & WSR)) {
2609 u32 tmp;
2612 * Set up the table indirect for the MOVE
2613 * of the residual byte and adjust the data
2614 * pointer context.
2616 tmp = scr_to_cpu(pm->sg.addr);
2617 cp->phys.wresid.addr = cpu_to_scr(tmp);
2618 pm->sg.addr = cpu_to_scr(tmp + 1);
2619 tmp = scr_to_cpu(pm->sg.size);
2620 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2621 pm->sg.size = cpu_to_scr(tmp - 1);
2624 * If only the residual byte is to be moved,
2625 * no PM context is needed.
2627 if ((tmp&0xffffff) == 1)
2628 newcmd = pm->ret;
2631 * Prepare the address of SCRIPTS that will
2632 * move the residual byte to memory.
2634 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2637 if (DEBUG_FLAGS & DEBUG_PHASE) {
2638 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2639 hflags0, hflags, newcmd,
2640 (unsigned)scr_to_cpu(pm->sg.addr),
2641 (unsigned)scr_to_cpu(pm->sg.size),
2642 (unsigned)scr_to_cpu(pm->ret));
2646 * Restart the SCRIPTS processor.
2648 sym_set_script_dp (np, cp, newcmd);
2649 OUTL_DSP(np, nxtdsp);
2650 return;
2653 * Unexpected phase changes that occurs when the current phase
2654 * is not a DATA IN or DATA OUT phase are due to error conditions.
2655 * Such event may only happen when the SCRIPTS is using a
2656 * multibyte SCSI MOVE.
2658 * Phase change Some possible cause
2660 * COMMAND --> MSG IN SCSI parity error detected by target.
2661 * COMMAND --> STATUS Bad command or refused by target.
2662 * MSG OUT --> MSG IN Message rejected by target.
2663 * MSG OUT --> COMMAND Bogus target that discards extended
2664 * negotiation messages.
2666 * The code below does not care of the new phase and so
2667 * trusts the target. Why to annoy it ?
2668 * If the interrupted phase is COMMAND phase, we restart at
2669 * dispatcher.
2670 * If a target does not get all the messages after selection,
2671 * the code assumes blindly that the target discards extended
2672 * messages and clears the negotiation status.
2673 * If the target does not want all our response to negotiation,
2674 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2675 * bloat for such a should_not_happen situation).
2676 * In all other situation, we reset the BUS.
2677 * Are these assumptions reasonnable ? (Wait and see ...)
2679 unexpected_phase:
2680 dsp -= 8;
2681 nxtdsp = 0;
2683 switch (cmd & 7) {
2684 case 2: /* COMMAND phase */
2685 nxtdsp = SCRIPTA_BA(np, dispatch);
2686 break;
2687 #if 0
2688 case 3: /* STATUS phase */
2689 nxtdsp = SCRIPTA_BA(np, dispatch);
2690 break;
2691 #endif
2692 case 6: /* MSG OUT phase */
2694 * If the device may want to use untagged when we want
2695 * tagged, we prepare an IDENTIFY without disc. granted,
2696 * since we will not be able to handle reselect.
2697 * Otherwise, we just don't care.
2699 if (dsp == SCRIPTA_BA(np, send_ident)) {
2700 if (cp->tag != NO_TAG && olen - rest <= 3) {
2701 cp->host_status = HS_BUSY;
2702 np->msgout[0] = IDENTIFY(0, cp->lun);
2703 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2705 else
2706 nxtdsp = SCRIPTB_BA(np, ident_break);
2708 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2709 dsp == SCRIPTB_BA(np, send_sdtr) ||
2710 dsp == SCRIPTB_BA(np, send_ppr)) {
2711 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2712 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2713 struct scsi_device *dev = cp->cmd->device;
2714 dev->ppr = 0;
2717 break;
2718 #if 0
2719 case 7: /* MSG IN phase */
2720 nxtdsp = SCRIPTA_BA(np, clrack);
2721 break;
2722 #endif
2725 if (nxtdsp) {
2726 OUTL_DSP(np, nxtdsp);
2727 return;
2730 reset_all:
2731 sym_start_reset(np);
2735 * chip interrupt handler
2737 * In normal situations, interrupt conditions occur one at
2738 * a time. But when something bad happens on the SCSI BUS,
2739 * the chip may raise several interrupt flags before
2740 * stopping and interrupting the CPU. The additionnal
2741 * interrupt flags are stacked in some extra registers
2742 * after the SIP and/or DIP flag has been raised in the
2743 * ISTAT. After the CPU has read the interrupt condition
2744 * flag from SIST or DSTAT, the chip unstacks the other
2745 * interrupt flags and sets the corresponding bits in
2746 * SIST or DSTAT. Since the chip starts stacking once the
2747 * SIP or DIP flag is set, there is a small window of time
2748 * where the stacking does not occur.
2750 * Typically, multiple interrupt conditions may happen in
2751 * the following situations:
2753 * - SCSI parity error + Phase mismatch (PAR|MA)
2754 * When an parity error is detected in input phase
2755 * and the device switches to msg-in phase inside a
2756 * block MOV.
2757 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2758 * When a stupid device does not want to handle the
2759 * recovery of an SCSI parity error.
2760 * - Some combinations of STO, PAR, UDC, ...
2761 * When using non compliant SCSI stuff, when user is
2762 * doing non compliant hot tampering on the BUS, when
2763 * something really bad happens to a device, etc ...
2765 * The heuristic suggested by SYMBIOS to handle
2766 * multiple interrupts is to try unstacking all
2767 * interrupts conditions and to handle them on some
2768 * priority based on error severity.
2769 * This will work when the unstacking has been
2770 * successful, but we cannot be 100 % sure of that,
2771 * since the CPU may have been faster to unstack than
2772 * the chip is able to stack. Hmmm ... But it seems that
2773 * such a situation is very unlikely to happen.
2775 * If this happen, for example STO caught by the CPU
2776 * then UDC happenning before the CPU have restarted
2777 * the SCRIPTS, the driver may wrongly complete the
2778 * same command on UDC, since the SCRIPTS didn't restart
2779 * and the DSA still points to the same command.
2780 * We avoid this situation by setting the DSA to an
2781 * invalid value when the CCB is completed and before
2782 * restarting the SCRIPTS.
2784 * Another issue is that we need some section of our
2785 * recovery procedures to be somehow uninterruptible but
2786 * the SCRIPTS processor does not provides such a
2787 * feature. For this reason, we handle recovery preferently
2788 * from the C code and check against some SCRIPTS critical
2789 * sections from the C code.
2791 * Hopefully, the interrupt handling of the driver is now
2792 * able to resist to weird BUS error conditions, but donnot
2793 * ask me for any guarantee that it will never fail. :-)
2794 * Use at your own decision and risk.
2797 void sym_interrupt (struct sym_hcb *np)
2799 u_char istat, istatc;
2800 u_char dstat;
2801 u_short sist;
2804 * interrupt on the fly ?
2805 * (SCRIPTS may still be running)
2807 * A `dummy read' is needed to ensure that the
2808 * clear of the INTF flag reaches the device
2809 * and that posted writes are flushed to memory
2810 * before the scanning of the DONE queue.
2811 * Note that SCRIPTS also (dummy) read to memory
2812 * prior to deliver the INTF interrupt condition.
2814 istat = INB(np, nc_istat);
2815 if (istat & INTF) {
2816 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2817 istat = INB(np, nc_istat); /* DUMMY READ */
2818 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2819 sym_wakeup_done(np);
2822 if (!(istat & (SIP|DIP)))
2823 return;
2825 #if 0 /* We should never get this one */
2826 if (istat & CABRT)
2827 OUTB(np, nc_istat, CABRT);
2828 #endif
2831 * PAR and MA interrupts may occur at the same time,
2832 * and we need to know of both in order to handle
2833 * this situation properly. We try to unstack SCSI
2834 * interrupts for that reason. BTW, I dislike a LOT
2835 * such a loop inside the interrupt routine.
2836 * Even if DMA interrupt stacking is very unlikely to
2837 * happen, we also try unstacking these ones, since
2838 * this has no performance impact.
2840 sist = 0;
2841 dstat = 0;
2842 istatc = istat;
2843 do {
2844 if (istatc & SIP)
2845 sist |= INW(np, nc_sist);
2846 if (istatc & DIP)
2847 dstat |= INB(np, nc_dstat);
2848 istatc = INB(np, nc_istat);
2849 istat |= istatc;
2850 } while (istatc & (SIP|DIP));
2852 if (DEBUG_FLAGS & DEBUG_TINY)
2853 printf ("<%d|%x:%x|%x:%x>",
2854 (int)INB(np, nc_scr0),
2855 dstat,sist,
2856 (unsigned)INL(np, nc_dsp),
2857 (unsigned)INL(np, nc_dbc));
2859 * On paper, a memory read barrier may be needed here to
2860 * prevent out of order LOADs by the CPU from having
2861 * prefetched stale data prior to DMA having occurred.
2862 * And since we are paranoid ... :)
2864 MEMORY_READ_BARRIER();
2867 * First, interrupts we want to service cleanly.
2869 * Phase mismatch (MA) is the most frequent interrupt
2870 * for chip earlier than the 896 and so we have to service
2871 * it as quickly as possible.
2872 * A SCSI parity error (PAR) may be combined with a phase
2873 * mismatch condition (MA).
2874 * Programmed interrupts (SIR) are used to call the C code
2875 * from SCRIPTS.
2876 * The single step interrupt (SSI) is not used in this
2877 * driver.
2879 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2880 !(dstat & (MDPE|BF|ABRT|IID))) {
2881 if (sist & PAR) sym_int_par (np, sist);
2882 else if (sist & MA) sym_int_ma (np);
2883 else if (dstat & SIR) sym_int_sir (np);
2884 else if (dstat & SSI) OUTONB_STD();
2885 else goto unknown_int;
2886 return;
2890 * Now, interrupts that donnot happen in normal
2891 * situations and that we may need to recover from.
2893 * On SCSI RESET (RST), we reset everything.
2894 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2895 * active CCBs with RESET status, prepare all devices
2896 * for negotiating again and restart the SCRIPTS.
2897 * On STO and UDC, we complete the CCB with the corres-
2898 * ponding status and restart the SCRIPTS.
2900 if (sist & RST) {
2901 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2902 sym_start_up (np, 1);
2903 return;
2906 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2907 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2909 if (!(sist & (GEN|HTH|SGE)) &&
2910 !(dstat & (MDPE|BF|ABRT|IID))) {
2911 if (sist & SBMC) sym_int_sbmc (np);
2912 else if (sist & STO) sym_int_sto (np);
2913 else if (sist & UDC) sym_int_udc (np);
2914 else goto unknown_int;
2915 return;
2919 * Now, interrupts we are not able to recover cleanly.
2921 * Log message for hard errors.
2922 * Reset everything.
2925 sym_log_hard_error(np, sist, dstat);
2927 if ((sist & (GEN|HTH|SGE)) ||
2928 (dstat & (MDPE|BF|ABRT|IID))) {
2929 sym_start_reset(np);
2930 return;
2933 unknown_int:
2935 * We just miss the cause of the interrupt. :(
2936 * Print a message. The timeout will do the real work.
2938 printf( "%s: unknown interrupt(s) ignored, "
2939 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2940 sym_name(np), istat, dstat, sist);
2944 * Dequeue from the START queue all CCBs that match
2945 * a given target/lun/task condition (-1 means all),
2946 * and move them from the BUSY queue to the COMP queue
2947 * with CAM_REQUEUE_REQ status condition.
2948 * This function is used during error handling/recovery.
2949 * It is called with SCRIPTS not running.
2951 static int
2952 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2954 int j;
2955 struct sym_ccb *cp;
2958 * Make sure the starting index is within range.
2960 assert((i >= 0) && (i < 2*MAX_QUEUE));
2963 * Walk until end of START queue and dequeue every job
2964 * that matches the target/lun/task condition.
2966 j = i;
2967 while (i != np->squeueput) {
2968 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2969 assert(cp);
2970 #ifdef SYM_CONF_IARB_SUPPORT
2971 /* Forget hints for IARB, they may be no longer relevant */
2972 cp->host_flags &= ~HF_HINT_IARB;
2973 #endif
2974 if ((target == -1 || cp->target == target) &&
2975 (lun == -1 || cp->lun == lun) &&
2976 (task == -1 || cp->tag == task)) {
2977 sym_set_cam_status(cp->cmd, CAM_REQUEUE_REQ);
2978 sym_remque(&cp->link_ccbq);
2979 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2981 else {
2982 if (i != j)
2983 np->squeue[j] = np->squeue[i];
2984 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2986 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2988 if (i != j) /* Copy back the idle task if needed */
2989 np->squeue[j] = np->squeue[i];
2990 np->squeueput = j; /* Update our current start queue pointer */
2992 return (i - j) / 2;
2996 * chip handler for bad SCSI status condition
2998 * In case of bad SCSI status, we unqueue all the tasks
2999 * currently queued to the controller but not yet started
3000 * and then restart the SCRIPTS processor immediately.
3002 * QUEUE FULL and BUSY conditions are handled the same way.
3003 * Basically all the not yet started tasks are requeued in
3004 * device queue and the queue is frozen until a completion.
3006 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3007 * the CCB of the failed command to prepare a REQUEST SENSE
3008 * SCSI command and queue it to the controller queue.
3010 * SCRATCHA is assumed to have been loaded with STARTPOS
3011 * before the SCRIPTS called the C code.
3013 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3015 u32 startp;
3016 u_char s_status = cp->ssss_status;
3017 u_char h_flags = cp->host_flags;
3018 int msglen;
3019 int i;
3022 * Compute the index of the next job to start from SCRIPTS.
3024 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3027 * The last CCB queued used for IARB hint may be
3028 * no longer relevant. Forget it.
3030 #ifdef SYM_CONF_IARB_SUPPORT
3031 if (np->last_cp)
3032 np->last_cp = 0;
3033 #endif
3036 * Now deal with the SCSI status.
3038 switch(s_status) {
3039 case S_BUSY:
3040 case S_QUEUE_FULL:
3041 if (sym_verbose >= 2) {
3042 sym_print_addr(cp->cmd, "%s\n",
3043 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3045 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3046 sym_complete_error (np, cp);
3047 break;
3048 case S_TERMINATED:
3049 case S_CHECK_COND:
3051 * If we get an SCSI error when requesting sense, give up.
3053 if (h_flags & HF_SENSE) {
3054 sym_complete_error (np, cp);
3055 break;
3059 * Dequeue all queued CCBs for that device not yet started,
3060 * and restart the SCRIPTS processor immediately.
3062 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3063 OUTL_DSP(np, SCRIPTA_BA(np, start));
3066 * Save some info of the actual IO.
3067 * Compute the data residual.
3069 cp->sv_scsi_status = cp->ssss_status;
3070 cp->sv_xerr_status = cp->xerr_status;
3071 cp->sv_resid = sym_compute_residual(np, cp);
3074 * Prepare all needed data structures for
3075 * requesting sense data.
3078 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3079 msglen = 1;
3082 * If we are currently using anything different from
3083 * async. 8 bit data transfers with that target,
3084 * start a negotiation, since the device may want
3085 * to report us a UNIT ATTENTION condition due to
3086 * a cause we currently ignore, and we donnot want
3087 * to be stuck with WIDE and/or SYNC data transfer.
3089 * cp->nego_status is filled by sym_prepare_nego().
3091 cp->nego_status = 0;
3092 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3094 * Message table indirect structure.
3096 cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg2));
3097 cp->phys.smsg.size = cpu_to_scr(msglen);
3100 * sense command
3102 cp->phys.cmd.addr = cpu_to_scr(CCB_BA(cp, sensecmd));
3103 cp->phys.cmd.size = cpu_to_scr(6);
3106 * patch requested size into sense command
3108 cp->sensecmd[0] = REQUEST_SENSE;
3109 cp->sensecmd[1] = 0;
3110 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3111 cp->sensecmd[1] = cp->lun << 5;
3112 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3113 cp->data_len = SYM_SNS_BBUF_LEN;
3116 * sense data
3118 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3119 cp->phys.sense.addr = cpu_to_scr(CCB_BA(cp, sns_bbuf));
3120 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3123 * requeue the command.
3125 startp = SCRIPTB_BA(np, sdata_in);
3127 cp->phys.head.savep = cpu_to_scr(startp);
3128 cp->phys.head.lastp = cpu_to_scr(startp);
3129 cp->startp = cpu_to_scr(startp);
3130 cp->goalp = cpu_to_scr(startp + 16);
3132 cp->host_xflags = 0;
3133 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3134 cp->ssss_status = S_ILLEGAL;
3135 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3136 cp->xerr_status = 0;
3137 cp->extra_bytes = 0;
3139 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3142 * Requeue the command.
3144 sym_put_start_queue(np, cp);
3147 * Give back to upper layer everything we have dequeued.
3149 sym_flush_comp_queue(np, 0);
3150 break;
3155 * After a device has accepted some management message
3156 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3157 * a device signals a UNIT ATTENTION condition, some
3158 * tasks are thrown away by the device. We are required
3159 * to reflect that on our tasks list since the device
3160 * will never complete these tasks.
3162 * This function move from the BUSY queue to the COMP
3163 * queue all disconnected CCBs for a given target that
3164 * match the following criteria:
3165 * - lun=-1 means any logical UNIT otherwise a given one.
3166 * - task=-1 means any task, otherwise a given one.
3168 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3170 SYM_QUEHEAD qtmp, *qp;
3171 int i = 0;
3172 struct sym_ccb *cp;
3175 * Move the entire BUSY queue to our temporary queue.
3177 sym_que_init(&qtmp);
3178 sym_que_splice(&np->busy_ccbq, &qtmp);
3179 sym_que_init(&np->busy_ccbq);
3182 * Put all CCBs that matches our criteria into
3183 * the COMP queue and put back other ones into
3184 * the BUSY queue.
3186 while ((qp = sym_remque_head(&qtmp)) != 0) {
3187 struct scsi_cmnd *cmd;
3188 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3189 cmd = cp->cmd;
3190 if (cp->host_status != HS_DISCONNECT ||
3191 cp->target != target ||
3192 (lun != -1 && cp->lun != lun) ||
3193 (task != -1 &&
3194 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3195 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3196 continue;
3198 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3200 /* Preserve the software timeout condition */
3201 if (sym_get_cam_status(cmd) != CAM_CMD_TIMEOUT)
3202 sym_set_cam_status(cmd, cam_status);
3203 ++i;
3204 #if 0
3205 printf("XXXX TASK @%p CLEARED\n", cp);
3206 #endif
3208 return i;
3212 * chip handler for TASKS recovery
3214 * We cannot safely abort a command, while the SCRIPTS
3215 * processor is running, since we just would be in race
3216 * with it.
3218 * As long as we have tasks to abort, we keep the SEM
3219 * bit set in the ISTAT. When this bit is set, the
3220 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3221 * each time it enters the scheduler.
3223 * If we have to reset a target, clear tasks of a unit,
3224 * or to perform the abort of a disconnected job, we
3225 * restart the SCRIPTS for selecting the target. Once
3226 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3227 * If it loses arbitration, the SCRIPTS will interrupt again
3228 * the next time it will enter its scheduler, and so on ...
3230 * On SIR_TARGET_SELECTED, we scan for the more
3231 * appropriate thing to do:
3233 * - If nothing, we just sent a M_ABORT message to the
3234 * target to get rid of the useless SCSI bus ownership.
3235 * According to the specs, no tasks shall be affected.
3236 * - If the target is to be reset, we send it a M_RESET
3237 * message.
3238 * - If a logical UNIT is to be cleared , we send the
3239 * IDENTIFY(lun) + M_ABORT.
3240 * - If an untagged task is to be aborted, we send the
3241 * IDENTIFY(lun) + M_ABORT.
3242 * - If a tagged task is to be aborted, we send the
3243 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3245 * Once our 'kiss of death' :) message has been accepted
3246 * by the target, the SCRIPTS interrupts again
3247 * (SIR_ABORT_SENT). On this interrupt, we complete
3248 * all the CCBs that should have been aborted by the
3249 * target according to our message.
3251 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3253 SYM_QUEHEAD *qp;
3254 struct sym_ccb *cp;
3255 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3256 struct scsi_target *starget;
3257 int target=-1, lun=-1, task;
3258 int i, k;
3260 switch(num) {
3262 * The SCRIPTS processor stopped before starting
3263 * the next command in order to allow us to perform
3264 * some task recovery.
3266 case SIR_SCRIPT_STOPPED:
3268 * Do we have any target to reset or unit to clear ?
3270 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3271 tp = &np->target[i];
3272 if (tp->to_reset ||
3273 (tp->lun0p && tp->lun0p->to_clear)) {
3274 target = i;
3275 break;
3277 if (!tp->lunmp)
3278 continue;
3279 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3280 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3281 target = i;
3282 break;
3285 if (target != -1)
3286 break;
3290 * If not, walk the busy queue for any
3291 * disconnected CCB to be aborted.
3293 if (target == -1) {
3294 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3295 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3296 if (cp->host_status != HS_DISCONNECT)
3297 continue;
3298 if (cp->to_abort) {
3299 target = cp->target;
3300 break;
3306 * If some target is to be selected,
3307 * prepare and start the selection.
3309 if (target != -1) {
3310 tp = &np->target[target];
3311 np->abrt_sel.sel_id = target;
3312 np->abrt_sel.sel_scntl3 = tp->head.wval;
3313 np->abrt_sel.sel_sxfer = tp->head.sval;
3314 OUTL(np, nc_dsa, np->hcb_ba);
3315 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3316 return;
3320 * Now look for a CCB to abort that haven't started yet.
3321 * Btw, the SCRIPTS processor is still stopped, so
3322 * we are not in race.
3324 i = 0;
3325 cp = NULL;
3326 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3327 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3328 if (cp->host_status != HS_BUSY &&
3329 cp->host_status != HS_NEGOTIATE)
3330 continue;
3331 if (!cp->to_abort)
3332 continue;
3333 #ifdef SYM_CONF_IARB_SUPPORT
3335 * If we are using IMMEDIATE ARBITRATION, we donnot
3336 * want to cancel the last queued CCB, since the
3337 * SCRIPTS may have anticipated the selection.
3339 if (cp == np->last_cp) {
3340 cp->to_abort = 0;
3341 continue;
3343 #endif
3344 i = 1; /* Means we have found some */
3345 break;
3347 if (!i) {
3349 * We are done, so we donnot need
3350 * to synchronize with the SCRIPTS anylonger.
3351 * Remove the SEM flag from the ISTAT.
3353 np->istat_sem = 0;
3354 OUTB(np, nc_istat, SIGP);
3355 break;
3358 * Compute index of next position in the start
3359 * queue the SCRIPTS intends to start and dequeue
3360 * all CCBs for that device that haven't been started.
3362 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3363 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3366 * Make sure at least our IO to abort has been dequeued.
3368 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3369 assert(i && sym_get_cam_status(cp->cmd) == CAM_REQUEUE_REQ);
3370 #else
3371 sym_remque(&cp->link_ccbq);
3372 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3373 #endif
3375 * Keep track in cam status of the reason of the abort.
3377 if (cp->to_abort == 2)
3378 sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
3379 else
3380 sym_set_cam_status(cp->cmd, CAM_REQ_ABORTED);
3383 * Complete with error everything that we have dequeued.
3385 sym_flush_comp_queue(np, 0);
3386 break;
3388 * The SCRIPTS processor has selected a target
3389 * we may have some manual recovery to perform for.
3391 case SIR_TARGET_SELECTED:
3392 target = INB(np, nc_sdid) & 0xf;
3393 tp = &np->target[target];
3395 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3398 * If the target is to be reset, prepare a
3399 * M_RESET message and clear the to_reset flag
3400 * since we donnot expect this operation to fail.
3402 if (tp->to_reset) {
3403 np->abrt_msg[0] = M_RESET;
3404 np->abrt_tbl.size = 1;
3405 tp->to_reset = 0;
3406 break;
3410 * Otherwise, look for some logical unit to be cleared.
3412 if (tp->lun0p && tp->lun0p->to_clear)
3413 lun = 0;
3414 else if (tp->lunmp) {
3415 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3416 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3417 lun = k;
3418 break;
3424 * If a logical unit is to be cleared, prepare
3425 * an IDENTIFY(lun) + ABORT MESSAGE.
3427 if (lun != -1) {
3428 struct sym_lcb *lp = sym_lp(tp, lun);
3429 lp->to_clear = 0; /* We don't expect to fail here */
3430 np->abrt_msg[0] = IDENTIFY(0, lun);
3431 np->abrt_msg[1] = M_ABORT;
3432 np->abrt_tbl.size = 2;
3433 break;
3437 * Otherwise, look for some disconnected job to
3438 * abort for this target.
3440 i = 0;
3441 cp = NULL;
3442 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3443 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3444 if (cp->host_status != HS_DISCONNECT)
3445 continue;
3446 if (cp->target != target)
3447 continue;
3448 if (!cp->to_abort)
3449 continue;
3450 i = 1; /* Means we have some */
3451 break;
3455 * If we have none, probably since the device has
3456 * completed the command before we won abitration,
3457 * send a M_ABORT message without IDENTIFY.
3458 * According to the specs, the device must just
3459 * disconnect the BUS and not abort any task.
3461 if (!i) {
3462 np->abrt_msg[0] = M_ABORT;
3463 np->abrt_tbl.size = 1;
3464 break;
3468 * We have some task to abort.
3469 * Set the IDENTIFY(lun)
3471 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3474 * If we want to abort an untagged command, we
3475 * will send a IDENTIFY + M_ABORT.
3476 * Otherwise (tagged command), we will send
3477 * a IDENTITFY + task attributes + ABORT TAG.
3479 if (cp->tag == NO_TAG) {
3480 np->abrt_msg[1] = M_ABORT;
3481 np->abrt_tbl.size = 2;
3482 } else {
3483 np->abrt_msg[1] = cp->scsi_smsg[1];
3484 np->abrt_msg[2] = cp->scsi_smsg[2];
3485 np->abrt_msg[3] = M_ABORT_TAG;
3486 np->abrt_tbl.size = 4;
3489 * Keep track of software timeout condition, since the
3490 * peripheral driver may not count retries on abort
3491 * conditions not due to timeout.
3493 if (cp->to_abort == 2)
3494 sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
3495 cp->to_abort = 0; /* We donnot expect to fail here */
3496 break;
3499 * The target has accepted our message and switched
3500 * to BUS FREE phase as we expected.
3502 case SIR_ABORT_SENT:
3503 target = INB(np, nc_sdid) & 0xf;
3504 tp = &np->target[target];
3505 starget = tp->sdev->sdev_target;
3508 ** If we didn't abort anything, leave here.
3510 if (np->abrt_msg[0] == M_ABORT)
3511 break;
3514 * If we sent a M_RESET, then a hardware reset has
3515 * been performed by the target.
3516 * - Reset everything to async 8 bit
3517 * - Tell ourself to negotiate next time :-)
3518 * - Prepare to clear all disconnected CCBs for
3519 * this target from our task list (lun=task=-1)
3521 lun = -1;
3522 task = -1;
3523 if (np->abrt_msg[0] == M_RESET) {
3524 tp->head.sval = 0;
3525 tp->head.wval = np->rv_scntl3;
3526 tp->head.uval = 0;
3527 spi_period(starget) = 0;
3528 spi_offset(starget) = 0;
3529 spi_width(starget) = 0;
3530 spi_iu(starget) = 0;
3531 spi_dt(starget) = 0;
3532 spi_qas(starget) = 0;
3533 tp->tgoal.check_nego = 1;
3537 * Otherwise, check for the LUN and TASK(s)
3538 * concerned by the cancelation.
3539 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3540 * or an ABORT message :-)
3542 else {
3543 lun = np->abrt_msg[0] & 0x3f;
3544 if (np->abrt_msg[1] == M_ABORT_TAG)
3545 task = np->abrt_msg[2];
3549 * Complete all the CCBs the device should have
3550 * aborted due to our 'kiss of death' message.
3552 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3553 sym_dequeue_from_squeue(np, i, target, lun, -1);
3554 sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
3555 sym_flush_comp_queue(np, 0);
3558 * If we sent a BDR, make upper layer aware of that.
3560 if (np->abrt_msg[0] == M_RESET)
3561 sym_xpt_async_sent_bdr(np, target);
3562 break;
3566 * Print to the log the message we intend to send.
3568 if (num == SIR_TARGET_SELECTED) {
3569 dev_info(&tp->sdev->sdev_target->dev, "control msgout:");
3570 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3571 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3575 * Let the SCRIPTS processor continue.
3577 OUTONB_STD();
3581 * Gerard's alchemy:) that deals with with the data
3582 * pointer for both MDP and the residual calculation.
3584 * I didn't want to bloat the code by more than 200
3585 * lines for the handling of both MDP and the residual.
3586 * This has been achieved by using a data pointer
3587 * representation consisting in an index in the data
3588 * array (dp_sg) and a negative offset (dp_ofs) that
3589 * have the following meaning:
3591 * - dp_sg = SYM_CONF_MAX_SG
3592 * we are at the end of the data script.
3593 * - dp_sg < SYM_CONF_MAX_SG
3594 * dp_sg points to the next entry of the scatter array
3595 * we want to transfer.
3596 * - dp_ofs < 0
3597 * dp_ofs represents the residual of bytes of the
3598 * previous entry scatter entry we will send first.
3599 * - dp_ofs = 0
3600 * no residual to send first.
3602 * The function sym_evaluate_dp() accepts an arbitray
3603 * offset (basically from the MDP message) and returns
3604 * the corresponding values of dp_sg and dp_ofs.
3607 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3609 u32 dp_scr;
3610 int dp_ofs, dp_sg, dp_sgmin;
3611 int tmp;
3612 struct sym_pmc *pm;
3615 * Compute the resulted data pointer in term of a script
3616 * address within some DATA script and a signed byte offset.
3618 dp_scr = scr;
3619 dp_ofs = *ofs;
3620 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3621 pm = &cp->phys.pm0;
3622 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3623 pm = &cp->phys.pm1;
3624 else
3625 pm = NULL;
3627 if (pm) {
3628 dp_scr = scr_to_cpu(pm->ret);
3629 dp_ofs -= scr_to_cpu(pm->sg.size);
3633 * If we are auto-sensing, then we are done.
3635 if (cp->host_flags & HF_SENSE) {
3636 *ofs = dp_ofs;
3637 return 0;
3641 * Deduce the index of the sg entry.
3642 * Keep track of the index of the first valid entry.
3643 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3644 * end of the data.
3646 tmp = scr_to_cpu(sym_goalp(cp));
3647 dp_sg = SYM_CONF_MAX_SG;
3648 if (dp_scr != tmp)
3649 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3650 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3653 * Move to the sg entry the data pointer belongs to.
3655 * If we are inside the data area, we expect result to be:
3657 * Either,
3658 * dp_ofs = 0 and dp_sg is the index of the sg entry
3659 * the data pointer belongs to (or the end of the data)
3660 * Or,
3661 * dp_ofs < 0 and dp_sg is the index of the sg entry
3662 * the data pointer belongs to + 1.
3664 if (dp_ofs < 0) {
3665 int n;
3666 while (dp_sg > dp_sgmin) {
3667 --dp_sg;
3668 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3669 n = dp_ofs + (tmp & 0xffffff);
3670 if (n > 0) {
3671 ++dp_sg;
3672 break;
3674 dp_ofs = n;
3677 else if (dp_ofs > 0) {
3678 while (dp_sg < SYM_CONF_MAX_SG) {
3679 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3680 dp_ofs -= (tmp & 0xffffff);
3681 ++dp_sg;
3682 if (dp_ofs <= 0)
3683 break;
3688 * Make sure the data pointer is inside the data area.
3689 * If not, return some error.
3691 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3692 goto out_err;
3693 else if (dp_sg > SYM_CONF_MAX_SG ||
3694 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3695 goto out_err;
3698 * Save the extreme pointer if needed.
3700 if (dp_sg > cp->ext_sg ||
3701 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3702 cp->ext_sg = dp_sg;
3703 cp->ext_ofs = dp_ofs;
3707 * Return data.
3709 *ofs = dp_ofs;
3710 return dp_sg;
3712 out_err:
3713 return -1;
3717 * chip handler for MODIFY DATA POINTER MESSAGE
3719 * We also call this function on IGNORE WIDE RESIDUE
3720 * messages that do not match a SWIDE full condition.
3721 * Btw, we assume in that situation that such a message
3722 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3725 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3727 int dp_ofs = ofs;
3728 u32 dp_scr = sym_get_script_dp (np, cp);
3729 u32 dp_ret;
3730 u32 tmp;
3731 u_char hflags;
3732 int dp_sg;
3733 struct sym_pmc *pm;
3736 * Not supported for auto-sense.
3738 if (cp->host_flags & HF_SENSE)
3739 goto out_reject;
3742 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3743 * to the resulted data pointer.
3745 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3746 if (dp_sg < 0)
3747 goto out_reject;
3750 * And our alchemy:) allows to easily calculate the data
3751 * script address we want to return for the next data phase.
3753 dp_ret = cpu_to_scr(sym_goalp(cp));
3754 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3757 * If offset / scatter entry is zero we donnot need
3758 * a context for the new current data pointer.
3760 if (dp_ofs == 0) {
3761 dp_scr = dp_ret;
3762 goto out_ok;
3766 * Get a context for the new current data pointer.
3768 hflags = INB(np, HF_PRT);
3770 if (hflags & HF_DP_SAVED)
3771 hflags ^= HF_ACT_PM;
3773 if (!(hflags & HF_ACT_PM)) {
3774 pm = &cp->phys.pm0;
3775 dp_scr = SCRIPTA_BA(np, pm0_data);
3777 else {
3778 pm = &cp->phys.pm1;
3779 dp_scr = SCRIPTA_BA(np, pm1_data);
3782 hflags &= ~(HF_DP_SAVED);
3784 OUTB(np, HF_PRT, hflags);
3787 * Set up the new current data pointer.
3788 * ofs < 0 there, and for the next data phase, we
3789 * want to transfer part of the data of the sg entry
3790 * corresponding to index dp_sg-1 prior to returning
3791 * to the main data script.
3793 pm->ret = cpu_to_scr(dp_ret);
3794 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3795 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3796 pm->sg.addr = cpu_to_scr(tmp);
3797 pm->sg.size = cpu_to_scr(-dp_ofs);
3799 out_ok:
3800 sym_set_script_dp (np, cp, dp_scr);
3801 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3802 return;
3804 out_reject:
3805 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3810 * chip calculation of the data residual.
3812 * As I used to say, the requirement of data residual
3813 * in SCSI is broken, useless and cannot be achieved
3814 * without huge complexity.
3815 * But most OSes and even the official CAM require it.
3816 * When stupidity happens to be so widely spread inside
3817 * a community, it gets hard to convince.
3819 * Anyway, I don't care, since I am not going to use
3820 * any software that considers this data residual as
3821 * a relevant information. :)
3824 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3826 int dp_sg, dp_sgmin, resid = 0;
3827 int dp_ofs = 0;
3830 * Check for some data lost or just thrown away.
3831 * We are not required to be quite accurate in this
3832 * situation. Btw, if we are odd for output and the
3833 * device claims some more data, it may well happen
3834 * than our residual be zero. :-)
3836 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3837 if (cp->xerr_status & XE_EXTRA_DATA)
3838 resid -= cp->extra_bytes;
3839 if (cp->xerr_status & XE_SODL_UNRUN)
3840 ++resid;
3841 if (cp->xerr_status & XE_SWIDE_OVRUN)
3842 --resid;
3846 * If all data has been transferred,
3847 * there is no residual.
3849 if (cp->phys.head.lastp == sym_goalp(cp))
3850 return resid;
3853 * If no data transfer occurs, or if the data
3854 * pointer is weird, return full residual.
3856 if (cp->startp == cp->phys.head.lastp ||
3857 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3858 &dp_ofs) < 0) {
3859 return cp->data_len;
3863 * If we were auto-sensing, then we are done.
3865 if (cp->host_flags & HF_SENSE) {
3866 return -dp_ofs;
3870 * We are now full comfortable in the computation
3871 * of the data residual (2's complement).
3873 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3874 resid = -cp->ext_ofs;
3875 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3876 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3877 resid += (tmp & 0xffffff);
3881 * Hopefully, the result is not too wrong.
3883 return resid;
3887 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3889 * When we try to negotiate, we append the negotiation message
3890 * to the identify and (maybe) simple tag message.
3891 * The host status field is set to HS_NEGOTIATE to mark this
3892 * situation.
3894 * If the target doesn't answer this message immediately
3895 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3896 * will be raised eventually.
3897 * The handler removes the HS_NEGOTIATE status, and sets the
3898 * negotiated value to the default (async / nowide).
3900 * If we receive a matching answer immediately, we check it
3901 * for validity, and set the values.
3903 * If we receive a Reject message immediately, we assume the
3904 * negotiation has failed, and fall back to standard values.
3906 * If we receive a negotiation message while not in HS_NEGOTIATE
3907 * state, it's a target initiated negotiation. We prepare a
3908 * (hopefully) valid answer, set our parameters, and send back
3909 * this answer to the target.
3911 * If the target doesn't fetch the answer (no message out phase),
3912 * we assume the negotiation has failed, and fall back to default
3913 * settings (SIR_NEGO_PROTO interrupt).
3915 * When we set the values, we adjust them in all ccbs belonging
3916 * to this target, in the controller's register, and in the "phys"
3917 * field of the controller's struct sym_hcb.
3921 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3923 static int
3924 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3926 int target = cp->target;
3927 u_char chg, ofs, per, fak, div;
3929 if (DEBUG_FLAGS & DEBUG_NEGO) {
3930 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3934 * Get requested values.
3936 chg = 0;
3937 per = np->msgin[3];
3938 ofs = np->msgin[4];
3941 * Check values against our limits.
3943 if (ofs) {
3944 if (ofs > np->maxoffs)
3945 {chg = 1; ofs = np->maxoffs;}
3948 if (ofs) {
3949 if (per < np->minsync)
3950 {chg = 1; per = np->minsync;}
3954 * Get new chip synchronous parameters value.
3956 div = fak = 0;
3957 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3958 goto reject_it;
3960 if (DEBUG_FLAGS & DEBUG_NEGO) {
3961 sym_print_addr(cp->cmd,
3962 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3963 ofs, per, div, fak, chg);
3967 * If it was an answer we want to change,
3968 * then it isn't acceptable. Reject it.
3970 if (!req && chg)
3971 goto reject_it;
3974 * Apply new values.
3976 sym_setsync (np, target, ofs, per, div, fak);
3979 * It was an answer. We are done.
3981 if (!req)
3982 return 0;
3985 * It was a request. Prepare an answer message.
3987 np->msgout[0] = M_EXTENDED;
3988 np->msgout[1] = 3;
3989 np->msgout[2] = M_X_SYNC_REQ;
3990 np->msgout[3] = per;
3991 np->msgout[4] = ofs;
3993 if (DEBUG_FLAGS & DEBUG_NEGO) {
3994 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3997 np->msgin [0] = M_NOOP;
3999 return 0;
4001 reject_it:
4002 sym_setsync (np, target, 0, 0, 0, 0);
4003 return -1;
4006 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4008 int req = 1;
4009 int result;
4012 * Request or answer ?
4014 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4015 OUTB(np, HS_PRT, HS_BUSY);
4016 if (cp->nego_status && cp->nego_status != NS_SYNC)
4017 goto reject_it;
4018 req = 0;
4022 * Check and apply new values.
4024 result = sym_sync_nego_check(np, req, cp);
4025 if (result) /* Not acceptable, reject it */
4026 goto reject_it;
4027 if (req) { /* Was a request, send response. */
4028 cp->nego_status = NS_SYNC;
4029 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4031 else /* Was a response, we are done. */
4032 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4033 return;
4035 reject_it:
4036 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4040 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4042 static int
4043 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4045 struct sym_tcb *tp = &np->target[target];
4046 unsigned char fak, div;
4047 int dt, chg = 0;
4049 unsigned char per = np->msgin[3];
4050 unsigned char ofs = np->msgin[5];
4051 unsigned char wide = np->msgin[6];
4052 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4054 if (DEBUG_FLAGS & DEBUG_NEGO) {
4055 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4059 * Check values against our limits.
4061 if (wide > np->maxwide) {
4062 chg = 1;
4063 wide = np->maxwide;
4065 if (!wide || !(np->features & FE_U3EN))
4066 opts = 0;
4068 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4069 chg = 1;
4071 dt = opts & PPR_OPT_DT;
4073 if (ofs) {
4074 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4075 if (ofs > maxoffs) {
4076 chg = 1;
4077 ofs = maxoffs;
4081 if (ofs) {
4082 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4083 if (per < minsync) {
4084 chg = 1;
4085 per = minsync;
4090 * Get new chip synchronous parameters value.
4092 div = fak = 0;
4093 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4094 goto reject_it;
4097 * If it was an answer we want to change,
4098 * then it isn't acceptable. Reject it.
4100 if (!req && chg)
4101 goto reject_it;
4104 * Apply new values.
4106 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4109 * It was an answer. We are done.
4111 if (!req)
4112 return 0;
4115 * It was a request. Prepare an answer message.
4117 np->msgout[0] = M_EXTENDED;
4118 np->msgout[1] = 6;
4119 np->msgout[2] = M_X_PPR_REQ;
4120 np->msgout[3] = per;
4121 np->msgout[4] = 0;
4122 np->msgout[5] = ofs;
4123 np->msgout[6] = wide;
4124 np->msgout[7] = opts;
4126 if (DEBUG_FLAGS & DEBUG_NEGO) {
4127 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4130 np->msgin [0] = M_NOOP;
4132 return 0;
4134 reject_it:
4135 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4137 * If it is a device response that should result in
4138 * ST, we may want to try a legacy negotiation later.
4140 if (!req && !opts) {
4141 tp->tgoal.period = per;
4142 tp->tgoal.offset = ofs;
4143 tp->tgoal.width = wide;
4144 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4145 tp->tgoal.check_nego = 1;
4147 return -1;
4150 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4152 int req = 1;
4153 int result;
4156 * Request or answer ?
4158 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4159 OUTB(np, HS_PRT, HS_BUSY);
4160 if (cp->nego_status && cp->nego_status != NS_PPR)
4161 goto reject_it;
4162 req = 0;
4166 * Check and apply new values.
4168 result = sym_ppr_nego_check(np, req, cp->target);
4169 if (result) /* Not acceptable, reject it */
4170 goto reject_it;
4171 if (req) { /* Was a request, send response. */
4172 cp->nego_status = NS_PPR;
4173 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4175 else /* Was a response, we are done. */
4176 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4177 return;
4179 reject_it:
4180 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4184 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4186 static int
4187 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4189 int target = cp->target;
4190 u_char chg, wide;
4192 if (DEBUG_FLAGS & DEBUG_NEGO) {
4193 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4197 * Get requested values.
4199 chg = 0;
4200 wide = np->msgin[3];
4203 * Check values against our limits.
4205 if (wide > np->maxwide) {
4206 chg = 1;
4207 wide = np->maxwide;
4210 if (DEBUG_FLAGS & DEBUG_NEGO) {
4211 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4212 wide, chg);
4216 * If it was an answer we want to change,
4217 * then it isn't acceptable. Reject it.
4219 if (!req && chg)
4220 goto reject_it;
4223 * Apply new values.
4225 sym_setwide (np, target, wide);
4228 * It was an answer. We are done.
4230 if (!req)
4231 return 0;
4234 * It was a request. Prepare an answer message.
4236 np->msgout[0] = M_EXTENDED;
4237 np->msgout[1] = 2;
4238 np->msgout[2] = M_X_WIDE_REQ;
4239 np->msgout[3] = wide;
4241 np->msgin [0] = M_NOOP;
4243 if (DEBUG_FLAGS & DEBUG_NEGO) {
4244 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4247 return 0;
4249 reject_it:
4250 return -1;
4253 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4255 int req = 1;
4256 int result;
4259 * Request or answer ?
4261 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4262 OUTB(np, HS_PRT, HS_BUSY);
4263 if (cp->nego_status && cp->nego_status != NS_WIDE)
4264 goto reject_it;
4265 req = 0;
4269 * Check and apply new values.
4271 result = sym_wide_nego_check(np, req, cp);
4272 if (result) /* Not acceptable, reject it */
4273 goto reject_it;
4274 if (req) { /* Was a request, send response. */
4275 cp->nego_status = NS_WIDE;
4276 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4277 } else { /* Was a response. */
4279 * Negotiate for SYNC immediately after WIDE response.
4280 * This allows to negotiate for both WIDE and SYNC on
4281 * a single SCSI command (Suggested by Justin Gibbs).
4283 if (tp->tgoal.offset) {
4284 np->msgout[0] = M_EXTENDED;
4285 np->msgout[1] = 3;
4286 np->msgout[2] = M_X_SYNC_REQ;
4287 np->msgout[3] = tp->tgoal.period;
4288 np->msgout[4] = tp->tgoal.offset;
4290 if (DEBUG_FLAGS & DEBUG_NEGO) {
4291 sym_print_nego_msg(np, cp->target,
4292 "sync msgout", np->msgout);
4295 cp->nego_status = NS_SYNC;
4296 OUTB(np, HS_PRT, HS_NEGOTIATE);
4297 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4298 return;
4299 } else
4300 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4303 return;
4305 reject_it:
4306 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4310 * Reset DT, SYNC or WIDE to default settings.
4312 * Called when a negotiation does not succeed either
4313 * on rejection or on protocol error.
4315 * A target that understands a PPR message should never
4316 * reject it, and messing with it is very unlikely.
4317 * So, if a PPR makes problems, we may just want to
4318 * try a legacy negotiation later.
4320 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4322 switch (cp->nego_status) {
4323 case NS_PPR:
4324 #if 0
4325 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4326 #else
4327 if (tp->tgoal.period < np->minsync)
4328 tp->tgoal.period = np->minsync;
4329 if (tp->tgoal.offset > np->maxoffs)
4330 tp->tgoal.offset = np->maxoffs;
4331 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4332 tp->tgoal.check_nego = 1;
4333 #endif
4334 break;
4335 case NS_SYNC:
4336 sym_setsync (np, cp->target, 0, 0, 0, 0);
4337 break;
4338 case NS_WIDE:
4339 sym_setwide (np, cp->target, 0);
4340 break;
4342 np->msgin [0] = M_NOOP;
4343 np->msgout[0] = M_NOOP;
4344 cp->nego_status = 0;
4348 * chip handler for MESSAGE REJECT received in response to
4349 * PPR, WIDE or SYNCHRONOUS negotiation.
4351 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4353 sym_nego_default(np, tp, cp);
4354 OUTB(np, HS_PRT, HS_BUSY);
4358 * chip exception handler for programmed interrupts.
4360 static void sym_int_sir (struct sym_hcb *np)
4362 u_char num = INB(np, nc_dsps);
4363 u32 dsa = INL(np, nc_dsa);
4364 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4365 u_char target = INB(np, nc_sdid) & 0x0f;
4366 struct sym_tcb *tp = &np->target[target];
4367 int tmp;
4369 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4371 switch (num) {
4372 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4374 * SCRIPTS tell us that we may have to update
4375 * 64 bit DMA segment registers.
4377 case SIR_DMAP_DIRTY:
4378 sym_update_dmap_regs(np);
4379 goto out;
4380 #endif
4382 * Command has been completed with error condition
4383 * or has been auto-sensed.
4385 case SIR_COMPLETE_ERROR:
4386 sym_complete_error(np, cp);
4387 return;
4389 * The C code is currently trying to recover from something.
4390 * Typically, user want to abort some command.
4392 case SIR_SCRIPT_STOPPED:
4393 case SIR_TARGET_SELECTED:
4394 case SIR_ABORT_SENT:
4395 sym_sir_task_recovery(np, num);
4396 return;
4398 * The device didn't go to MSG OUT phase after having
4399 * been selected with ATN. We donnot want to handle
4400 * that.
4402 case SIR_SEL_ATN_NO_MSG_OUT:
4403 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4404 sym_name (np), target);
4405 goto out_stuck;
4407 * The device didn't switch to MSG IN phase after
4408 * having reseleted the initiator.
4410 case SIR_RESEL_NO_MSG_IN:
4411 printf ("%s:%d: No MSG IN phase after reselection.\n",
4412 sym_name (np), target);
4413 goto out_stuck;
4415 * After reselection, the device sent a message that wasn't
4416 * an IDENTIFY.
4418 case SIR_RESEL_NO_IDENTIFY:
4419 printf ("%s:%d: No IDENTIFY after reselection.\n",
4420 sym_name (np), target);
4421 goto out_stuck;
4423 * The device reselected a LUN we donnot know about.
4425 case SIR_RESEL_BAD_LUN:
4426 np->msgout[0] = M_RESET;
4427 goto out;
4429 * The device reselected for an untagged nexus and we
4430 * haven't any.
4432 case SIR_RESEL_BAD_I_T_L:
4433 np->msgout[0] = M_ABORT;
4434 goto out;
4436 * The device reselected for a tagged nexus that we donnot
4437 * have.
4439 case SIR_RESEL_BAD_I_T_L_Q:
4440 np->msgout[0] = M_ABORT_TAG;
4441 goto out;
4443 * The SCRIPTS let us know that the device has grabbed
4444 * our message and will abort the job.
4446 case SIR_RESEL_ABORTED:
4447 np->lastmsg = np->msgout[0];
4448 np->msgout[0] = M_NOOP;
4449 printf ("%s:%d: message %x sent on bad reselection.\n",
4450 sym_name (np), target, np->lastmsg);
4451 goto out;
4453 * The SCRIPTS let us know that a message has been
4454 * successfully sent to the device.
4456 case SIR_MSG_OUT_DONE:
4457 np->lastmsg = np->msgout[0];
4458 np->msgout[0] = M_NOOP;
4459 /* Should we really care of that */
4460 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4461 if (cp) {
4462 cp->xerr_status &= ~XE_PARITY_ERR;
4463 if (!cp->xerr_status)
4464 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4467 goto out;
4469 * The device didn't send a GOOD SCSI status.
4470 * We may have some work to do prior to allow
4471 * the SCRIPTS processor to continue.
4473 case SIR_BAD_SCSI_STATUS:
4474 if (!cp)
4475 goto out;
4476 sym_sir_bad_scsi_status(np, num, cp);
4477 return;
4479 * We are asked by the SCRIPTS to prepare a
4480 * REJECT message.
4482 case SIR_REJECT_TO_SEND:
4483 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4484 np->msgout[0] = M_REJECT;
4485 goto out;
4487 * We have been ODD at the end of a DATA IN
4488 * transfer and the device didn't send a
4489 * IGNORE WIDE RESIDUE message.
4490 * It is a data overrun condition.
4492 case SIR_SWIDE_OVERRUN:
4493 if (cp) {
4494 OUTONB(np, HF_PRT, HF_EXT_ERR);
4495 cp->xerr_status |= XE_SWIDE_OVRUN;
4497 goto out;
4499 * We have been ODD at the end of a DATA OUT
4500 * transfer.
4501 * It is a data underrun condition.
4503 case SIR_SODL_UNDERRUN:
4504 if (cp) {
4505 OUTONB(np, HF_PRT, HF_EXT_ERR);
4506 cp->xerr_status |= XE_SODL_UNRUN;
4508 goto out;
4510 * The device wants us to tranfer more data than
4511 * expected or in the wrong direction.
4512 * The number of extra bytes is in scratcha.
4513 * It is a data overrun condition.
4515 case SIR_DATA_OVERRUN:
4516 if (cp) {
4517 OUTONB(np, HF_PRT, HF_EXT_ERR);
4518 cp->xerr_status |= XE_EXTRA_DATA;
4519 cp->extra_bytes += INL(np, nc_scratcha);
4521 goto out;
4523 * The device switched to an illegal phase (4/5).
4525 case SIR_BAD_PHASE:
4526 if (cp) {
4527 OUTONB(np, HF_PRT, HF_EXT_ERR);
4528 cp->xerr_status |= XE_BAD_PHASE;
4530 goto out;
4532 * We received a message.
4534 case SIR_MSG_RECEIVED:
4535 if (!cp)
4536 goto out_stuck;
4537 switch (np->msgin [0]) {
4539 * We received an extended message.
4540 * We handle MODIFY DATA POINTER, SDTR, WDTR
4541 * and reject all other extended messages.
4543 case M_EXTENDED:
4544 switch (np->msgin [2]) {
4545 case M_X_MODIFY_DP:
4546 if (DEBUG_FLAGS & DEBUG_POINTER)
4547 sym_print_msg(cp,"modify DP",np->msgin);
4548 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4549 (np->msgin[5]<<8) + (np->msgin[6]);
4550 sym_modify_dp(np, tp, cp, tmp);
4551 return;
4552 case M_X_SYNC_REQ:
4553 sym_sync_nego(np, tp, cp);
4554 return;
4555 case M_X_PPR_REQ:
4556 sym_ppr_nego(np, tp, cp);
4557 return;
4558 case M_X_WIDE_REQ:
4559 sym_wide_nego(np, tp, cp);
4560 return;
4561 default:
4562 goto out_reject;
4564 break;
4566 * We received a 1/2 byte message not handled from SCRIPTS.
4567 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4568 * RESIDUE messages that haven't been anticipated by
4569 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4570 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4572 case M_IGN_RESIDUE:
4573 if (DEBUG_FLAGS & DEBUG_POINTER)
4574 sym_print_msg(cp,"ign wide residue", np->msgin);
4575 if (cp->host_flags & HF_SENSE)
4576 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4577 else
4578 sym_modify_dp(np, tp, cp, -1);
4579 return;
4580 case M_REJECT:
4581 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4582 sym_nego_rejected(np, tp, cp);
4583 else {
4584 sym_print_addr(cp->cmd,
4585 "M_REJECT received (%x:%x).\n",
4586 scr_to_cpu(np->lastmsg), np->msgout[0]);
4588 goto out_clrack;
4589 break;
4590 default:
4591 goto out_reject;
4593 break;
4595 * We received an unknown message.
4596 * Ignore all MSG IN phases and reject it.
4598 case SIR_MSG_WEIRD:
4599 sym_print_msg(cp, "WEIRD message received", np->msgin);
4600 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4601 return;
4603 * Negotiation failed.
4604 * Target does not send us the reply.
4605 * Remove the HS_NEGOTIATE status.
4607 case SIR_NEGO_FAILED:
4608 OUTB(np, HS_PRT, HS_BUSY);
4610 * Negotiation failed.
4611 * Target does not want answer message.
4613 case SIR_NEGO_PROTO:
4614 sym_nego_default(np, tp, cp);
4615 goto out;
4618 out:
4619 OUTONB_STD();
4620 return;
4621 out_reject:
4622 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4623 return;
4624 out_clrack:
4625 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4626 return;
4627 out_stuck:
4628 return;
4632 * Acquire a control block
4634 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4636 u_char tn = cmd->device->id;
4637 u_char ln = cmd->device->lun;
4638 struct sym_tcb *tp = &np->target[tn];
4639 struct sym_lcb *lp = sym_lp(tp, ln);
4640 u_short tag = NO_TAG;
4641 SYM_QUEHEAD *qp;
4642 struct sym_ccb *cp = NULL;
4645 * Look for a free CCB
4647 if (sym_que_empty(&np->free_ccbq))
4648 sym_alloc_ccb(np);
4649 qp = sym_remque_head(&np->free_ccbq);
4650 if (!qp)
4651 goto out;
4652 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4654 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4656 * If the LCB is not yet available and the LUN
4657 * has been probed ok, try to allocate the LCB.
4659 if (!lp && sym_is_bit(tp->lun_map, ln)) {
4660 lp = sym_alloc_lcb(np, tn, ln);
4661 if (!lp)
4662 goto out_free;
4664 #endif
4667 * If the LCB is not available here, then the
4668 * logical unit is not yet discovered. For those
4669 * ones only accept 1 SCSI IO per logical unit,
4670 * since we cannot allow disconnections.
4672 if (!lp) {
4673 if (!sym_is_bit(tp->busy0_map, ln))
4674 sym_set_bit(tp->busy0_map, ln);
4675 else
4676 goto out_free;
4677 } else {
4679 * If we have been asked for a tagged command.
4681 if (tag_order) {
4683 * Debugging purpose.
4685 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4686 assert(lp->busy_itl == 0);
4687 #endif
4689 * Allocate resources for tags if not yet.
4691 if (!lp->cb_tags) {
4692 sym_alloc_lcb_tags(np, tn, ln);
4693 if (!lp->cb_tags)
4694 goto out_free;
4697 * Get a tag for this SCSI IO and set up
4698 * the CCB bus address for reselection,
4699 * and count it for this LUN.
4700 * Toggle reselect path to tagged.
4702 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4703 tag = lp->cb_tags[lp->ia_tag];
4704 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4705 lp->ia_tag = 0;
4706 ++lp->busy_itlq;
4707 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4708 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4709 lp->head.resel_sa =
4710 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4711 #endif
4712 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4713 cp->tags_si = lp->tags_si;
4714 ++lp->tags_sum[cp->tags_si];
4715 ++lp->tags_since;
4716 #endif
4718 else
4719 goto out_free;
4722 * This command will not be tagged.
4723 * If we already have either a tagged or untagged
4724 * one, refuse to overlap this untagged one.
4726 else {
4728 * Debugging purpose.
4730 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4731 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4732 #endif
4734 * Count this nexus for this LUN.
4735 * Set up the CCB bus address for reselection.
4736 * Toggle reselect path to untagged.
4738 ++lp->busy_itl;
4739 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4740 if (lp->busy_itl == 1) {
4741 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4742 lp->head.resel_sa =
4743 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4745 else
4746 goto out_free;
4747 #endif
4751 * Put the CCB into the busy queue.
4753 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4754 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4755 if (lp) {
4756 sym_remque(&cp->link2_ccbq);
4757 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4760 #endif
4762 * Remember all informations needed to free this CCB.
4764 cp->to_abort = 0;
4765 cp->tag = tag;
4766 cp->order = tag_order;
4767 cp->target = tn;
4768 cp->lun = ln;
4770 if (DEBUG_FLAGS & DEBUG_TAGS) {
4771 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4774 out:
4775 return cp;
4776 out_free:
4777 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4778 return NULL;
4782 * Release one control block
4784 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4786 struct sym_tcb *tp = &np->target[cp->target];
4787 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4789 if (DEBUG_FLAGS & DEBUG_TAGS) {
4790 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4791 cp, cp->tag);
4795 * If LCB available,
4797 if (lp) {
4799 * If tagged, release the tag, set the relect path
4801 if (cp->tag != NO_TAG) {
4802 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4803 --lp->tags_sum[cp->tags_si];
4804 #endif
4806 * Free the tag value.
4808 lp->cb_tags[lp->if_tag] = cp->tag;
4809 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4810 lp->if_tag = 0;
4812 * Make the reselect path invalid,
4813 * and uncount this CCB.
4815 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4816 --lp->busy_itlq;
4817 } else { /* Untagged */
4819 * Make the reselect path invalid,
4820 * and uncount this CCB.
4822 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4823 --lp->busy_itl;
4826 * If no JOB active, make the LUN reselect path invalid.
4828 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4829 lp->head.resel_sa =
4830 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4833 * Otherwise, we only accept 1 IO per LUN.
4834 * Clear the bit that keeps track of this IO.
4836 else
4837 sym_clr_bit(tp->busy0_map, cp->lun);
4840 * We donnot queue more than 1 ccb per target
4841 * with negotiation at any time. If this ccb was
4842 * used for negotiation, clear this info in the tcb.
4844 if (cp == tp->nego_cp)
4845 tp->nego_cp = NULL;
4847 #ifdef SYM_CONF_IARB_SUPPORT
4849 * If we just complete the last queued CCB,
4850 * clear this info that is no longer relevant.
4852 if (cp == np->last_cp)
4853 np->last_cp = 0;
4854 #endif
4857 * Make this CCB available.
4859 cp->cmd = NULL;
4860 cp->host_status = HS_IDLE;
4861 sym_remque(&cp->link_ccbq);
4862 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4864 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4865 if (lp) {
4866 sym_remque(&cp->link2_ccbq);
4867 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4868 if (cp->started) {
4869 if (cp->tag != NO_TAG)
4870 --lp->started_tags;
4871 else
4872 --lp->started_no_tag;
4875 cp->started = 0;
4876 #endif
4880 * Allocate a CCB from memory and initialize its fixed part.
4882 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4884 struct sym_ccb *cp = NULL;
4885 int hcode;
4888 * Prevent from allocating more CCBs than we can
4889 * queue to the controller.
4891 if (np->actccbs >= SYM_CONF_MAX_START)
4892 return NULL;
4895 * Allocate memory for this CCB.
4897 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4898 if (!cp)
4899 goto out_free;
4902 * Count it.
4904 np->actccbs++;
4907 * Compute the bus address of this ccb.
4909 cp->ccb_ba = vtobus(cp);
4912 * Insert this ccb into the hashed list.
4914 hcode = CCB_HASH_CODE(cp->ccb_ba);
4915 cp->link_ccbh = np->ccbh[hcode];
4916 np->ccbh[hcode] = cp;
4919 * Initialyze the start and restart actions.
4921 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4922 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4925 * Initilialyze some other fields.
4927 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4930 * Chain into free ccb queue.
4932 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4935 * Chain into optionnal lists.
4937 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4938 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4939 #endif
4940 return cp;
4941 out_free:
4942 if (cp)
4943 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4944 return NULL;
4948 * Look up a CCB from a DSA value.
4950 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4952 int hcode;
4953 struct sym_ccb *cp;
4955 hcode = CCB_HASH_CODE(dsa);
4956 cp = np->ccbh[hcode];
4957 while (cp) {
4958 if (cp->ccb_ba == dsa)
4959 break;
4960 cp = cp->link_ccbh;
4963 return cp;
4967 * Target control block initialisation.
4968 * Nothing important to do at the moment.
4970 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4972 #if 0 /* Hmmm... this checking looks paranoid. */
4974 * Check some alignments required by the chip.
4976 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4977 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4978 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4979 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4980 #endif
4984 * Lun control block allocation and initialization.
4986 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4988 struct sym_tcb *tp = &np->target[tn];
4989 struct sym_lcb *lp = sym_lp(tp, ln);
4992 * Already done, just return.
4994 if (lp)
4995 return lp;
4998 * Donnot allow LUN control block
4999 * allocation for not probed LUNs.
5001 if (!sym_is_bit(tp->lun_map, ln))
5002 return NULL;
5005 * Initialize the target control block if not yet.
5007 sym_init_tcb (np, tn);
5010 * Allocate the LCB bus address array.
5011 * Compute the bus address of this table.
5013 if (ln && !tp->luntbl) {
5014 int i;
5016 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5017 if (!tp->luntbl)
5018 goto fail;
5019 for (i = 0 ; i < 64 ; i++)
5020 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5021 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5025 * Allocate the table of pointers for LUN(s) > 0, if needed.
5027 if (ln && !tp->lunmp) {
5028 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5029 GFP_KERNEL);
5030 if (!tp->lunmp)
5031 goto fail;
5035 * Allocate the lcb.
5036 * Make it available to the chip.
5038 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5039 if (!lp)
5040 goto fail;
5041 if (ln) {
5042 tp->lunmp[ln] = lp;
5043 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5045 else {
5046 tp->lun0p = lp;
5047 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5051 * Let the itl task point to error handling.
5053 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5056 * Set the reselect pattern to our default. :)
5058 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5061 * Set user capabilities.
5063 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5065 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5067 * Initialize device queueing.
5069 sym_que_init(&lp->waiting_ccbq);
5070 sym_que_init(&lp->started_ccbq);
5071 lp->started_max = SYM_CONF_MAX_TASK;
5072 lp->started_limit = SYM_CONF_MAX_TASK;
5073 #endif
5075 * If we are busy, count the IO.
5077 if (sym_is_bit(tp->busy0_map, ln)) {
5078 lp->busy_itl = 1;
5079 sym_clr_bit(tp->busy0_map, ln);
5081 fail:
5082 return lp;
5086 * Allocate LCB resources for tagged command queuing.
5088 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5090 struct sym_tcb *tp = &np->target[tn];
5091 struct sym_lcb *lp = sym_lp(tp, ln);
5092 int i;
5095 * If LCB not available, try to allocate it.
5097 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5098 goto fail;
5101 * Allocate the task table and and the tag allocation
5102 * circular buffer. We want both or none.
5104 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5105 if (!lp->itlq_tbl)
5106 goto fail;
5107 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_KERNEL);
5108 if (!lp->cb_tags) {
5109 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5110 lp->itlq_tbl = NULL;
5111 goto fail;
5115 * Initialize the task table with invalid entries.
5117 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5118 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5121 * Fill up the tag buffer with tag numbers.
5123 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5124 lp->cb_tags[i] = i;
5127 * Make the task table available to SCRIPTS,
5128 * And accept tagged commands now.
5130 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5132 return;
5133 fail:
5134 return;
5138 * Queue a SCSI IO to the controller.
5140 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5142 struct scsi_device *sdev = cmd->device;
5143 struct sym_tcb *tp;
5144 struct sym_lcb *lp;
5145 u_char *msgptr;
5146 u_int msglen;
5147 int can_disconnect;
5150 * Keep track of the IO in our CCB.
5152 cp->cmd = cmd;
5155 * Retrieve the target descriptor.
5157 tp = &np->target[cp->target];
5160 * Retrieve the lun descriptor.
5162 lp = sym_lp(tp, sdev->lun);
5164 can_disconnect = (cp->tag != NO_TAG) ||
5165 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5167 msgptr = cp->scsi_smsg;
5168 msglen = 0;
5169 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5172 * Build the tag message if present.
5174 if (cp->tag != NO_TAG) {
5175 u_char order = cp->order;
5177 switch(order) {
5178 case M_ORDERED_TAG:
5179 break;
5180 case M_HEAD_TAG:
5181 break;
5182 default:
5183 order = M_SIMPLE_TAG;
5185 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5187 * Avoid too much reordering of SCSI commands.
5188 * The algorithm tries to prevent completion of any
5189 * tagged command from being delayed against more
5190 * than 3 times the max number of queued commands.
5192 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5193 lp->tags_si = !(lp->tags_si);
5194 if (lp->tags_sum[lp->tags_si]) {
5195 order = M_ORDERED_TAG;
5196 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5197 sym_print_addr(cmd,
5198 "ordered tag forced.\n");
5201 lp->tags_since = 0;
5203 #endif
5204 msgptr[msglen++] = order;
5207 * For less than 128 tags, actual tags are numbered
5208 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5209 * with devices that have problems with #TAG 0 or too
5210 * great #TAG numbers. For more tags (up to 256),
5211 * we use directly our tag number.
5213 #if SYM_CONF_MAX_TASK > (512/4)
5214 msgptr[msglen++] = cp->tag;
5215 #else
5216 msgptr[msglen++] = (cp->tag << 1) + 1;
5217 #endif
5221 * Build a negotiation message if needed.
5222 * (nego_status is filled by sym_prepare_nego())
5224 cp->nego_status = 0;
5225 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5226 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5230 * Startqueue
5232 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5233 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5236 * select
5238 cp->phys.select.sel_id = cp->target;
5239 cp->phys.select.sel_scntl3 = tp->head.wval;
5240 cp->phys.select.sel_sxfer = tp->head.sval;
5241 cp->phys.select.sel_scntl4 = tp->head.uval;
5244 * message
5246 cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg));
5247 cp->phys.smsg.size = cpu_to_scr(msglen);
5250 * status
5252 cp->host_xflags = 0;
5253 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5254 cp->ssss_status = S_ILLEGAL;
5255 cp->xerr_status = 0;
5256 cp->host_flags = 0;
5257 cp->extra_bytes = 0;
5260 * extreme data pointer.
5261 * shall be positive, so -1 is lower than lowest.:)
5263 cp->ext_sg = -1;
5264 cp->ext_ofs = 0;
5267 * Build the CDB and DATA descriptor block
5268 * and start the IO.
5270 return sym_setup_data_and_start(np, cmd, cp);
5274 * Reset a SCSI target (all LUNs of this target).
5276 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5278 struct sym_tcb *tp;
5280 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5281 return -1;
5283 tp = &np->target[target];
5284 tp->to_reset = 1;
5286 np->istat_sem = SEM;
5287 OUTB(np, nc_istat, SIGP|SEM);
5289 return 0;
5293 * Abort a SCSI IO.
5295 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5298 * Check that the IO is active.
5300 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5301 return -1;
5304 * If a previous abort didn't succeed in time,
5305 * perform a BUS reset.
5307 if (cp->to_abort) {
5308 sym_reset_scsi_bus(np, 1);
5309 return 0;
5313 * Mark the CCB for abort and allow time for.
5315 cp->to_abort = timed_out ? 2 : 1;
5318 * Tell the SCRIPTS processor to stop and synchronize with us.
5320 np->istat_sem = SEM;
5321 OUTB(np, nc_istat, SIGP|SEM);
5322 return 0;
5325 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5327 struct sym_ccb *cp;
5328 SYM_QUEHEAD *qp;
5331 * Look up our CCB control block.
5333 cp = NULL;
5334 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5335 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5336 if (cp2->cmd == cmd) {
5337 cp = cp2;
5338 break;
5342 return sym_abort_ccb(np, cp, timed_out);
5346 * Complete execution of a SCSI command with extented
5347 * error, SCSI status error, or having been auto-sensed.
5349 * The SCRIPTS processor is not running there, so we
5350 * can safely access IO registers and remove JOBs from
5351 * the START queue.
5352 * SCRATCHA is assumed to have been loaded with STARTPOS
5353 * before the SCRIPTS called the C code.
5355 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5357 struct scsi_device *sdev;
5358 struct scsi_cmnd *cmd;
5359 struct sym_tcb *tp;
5360 struct sym_lcb *lp;
5361 int resid;
5362 int i;
5365 * Paranoid check. :)
5367 if (!cp || !cp->cmd)
5368 return;
5370 cmd = cp->cmd;
5371 sdev = cmd->device;
5372 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5373 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5374 cp->host_status, cp->ssss_status, cp->host_flags);
5378 * Get target and lun pointers.
5380 tp = &np->target[cp->target];
5381 lp = sym_lp(tp, sdev->lun);
5384 * Check for extended errors.
5386 if (cp->xerr_status) {
5387 if (sym_verbose)
5388 sym_print_xerr(cmd, cp->xerr_status);
5389 if (cp->host_status == HS_COMPLETE)
5390 cp->host_status = HS_COMP_ERR;
5394 * Calculate the residual.
5396 resid = sym_compute_residual(np, cp);
5398 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5399 resid = 0; /* throw them away. :) */
5400 cp->sv_resid = 0;
5402 #ifdef DEBUG_2_0_X
5403 if (resid)
5404 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5405 #endif
5408 * Dequeue all queued CCBs for that device
5409 * not yet started by SCRIPTS.
5411 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5412 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5415 * Restart the SCRIPTS processor.
5417 OUTL_DSP(np, SCRIPTA_BA(np, start));
5419 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5420 if (cp->host_status == HS_COMPLETE &&
5421 cp->ssss_status == S_QUEUE_FULL) {
5422 if (!lp || lp->started_tags - i < 2)
5423 goto weirdness;
5425 * Decrease queue depth as needed.
5427 lp->started_max = lp->started_tags - i - 1;
5428 lp->num_sgood = 0;
5430 if (sym_verbose >= 2) {
5431 sym_print_addr(cmd, " queue depth is now %d\n",
5432 lp->started_max);
5436 * Repair the CCB.
5438 cp->host_status = HS_BUSY;
5439 cp->ssss_status = S_ILLEGAL;
5442 * Let's requeue it to device.
5444 sym_set_cam_status(cmd, CAM_REQUEUE_REQ);
5445 goto finish;
5447 weirdness:
5448 #endif
5450 * Build result in CAM ccb.
5452 sym_set_cam_result_error(np, cp, resid);
5454 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5455 finish:
5456 #endif
5458 * Add this one to the COMP queue.
5460 sym_remque(&cp->link_ccbq);
5461 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5464 * Complete all those commands with either error
5465 * or requeue condition.
5467 sym_flush_comp_queue(np, 0);
5469 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5471 * Donnot start more than 1 command after an error.
5473 if (lp)
5474 sym_start_next_ccbs(np, lp, 1);
5475 #endif
5479 * Complete execution of a successful SCSI command.
5481 * Only successful commands go to the DONE queue,
5482 * since we need to have the SCRIPTS processor
5483 * stopped on any error condition.
5484 * The SCRIPTS processor is running while we are
5485 * completing successful commands.
5487 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5489 struct sym_tcb *tp;
5490 struct sym_lcb *lp;
5491 struct scsi_cmnd *cmd;
5492 int resid;
5495 * Paranoid check. :)
5497 if (!cp || !cp->cmd)
5498 return;
5499 assert (cp->host_status == HS_COMPLETE);
5502 * Get user command.
5504 cmd = cp->cmd;
5507 * Get target and lun pointers.
5509 tp = &np->target[cp->target];
5510 lp = sym_lp(tp, cp->lun);
5513 * Assume device discovered on first success.
5515 if (!lp)
5516 sym_set_bit(tp->lun_map, cp->lun);
5519 * If all data have been transferred, given than no
5520 * extended error did occur, there is no residual.
5522 resid = 0;
5523 if (cp->phys.head.lastp != sym_goalp(cp))
5524 resid = sym_compute_residual(np, cp);
5527 * Wrong transfer residuals may be worse than just always
5528 * returning zero. User can disable this feature in
5529 * sym53c8xx.h. Residual support is enabled by default.
5531 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5532 resid = 0;
5533 #ifdef DEBUG_2_0_X
5534 if (resid)
5535 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5536 #endif
5539 * Build result in CAM ccb.
5541 sym_set_cam_result_ok(cp, cmd, resid);
5543 #ifdef SYM_OPT_SNIFF_INQUIRY
5545 * On standard INQUIRY response (EVPD and CmDt
5546 * not set), sniff out device capabilities.
5548 if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5549 sym_sniff_inquiry(np, cmd, resid);
5550 #endif
5552 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5554 * If max number of started ccbs had been reduced,
5555 * increase it if 200 good status received.
5557 if (lp && lp->started_max < lp->started_limit) {
5558 ++lp->num_sgood;
5559 if (lp->num_sgood >= 200) {
5560 lp->num_sgood = 0;
5561 ++lp->started_max;
5562 if (sym_verbose >= 2) {
5563 sym_print_addr(cmd, " queue depth is now %d\n",
5564 lp->started_max);
5568 #endif
5571 * Free our CCB.
5573 sym_free_ccb (np, cp);
5575 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5577 * Requeue a couple of awaiting scsi commands.
5579 if (lp && !sym_que_empty(&lp->waiting_ccbq))
5580 sym_start_next_ccbs(np, lp, 2);
5581 #endif
5583 * Complete the command.
5585 sym_xpt_done(np, cmd);
5589 * Soft-attach the controller.
5591 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5593 struct sym_hcb *np = sym_get_hcb(shost);
5594 int i;
5597 * Get some info about the firmware.
5599 np->scripta_sz = fw->a_size;
5600 np->scriptb_sz = fw->b_size;
5601 np->scriptz_sz = fw->z_size;
5602 np->fw_setup = fw->setup;
5603 np->fw_patch = fw->patch;
5604 np->fw_name = fw->name;
5607 * Save setting of some IO registers, so we will
5608 * be able to probe specific implementations.
5610 sym_save_initial_setting (np);
5613 * Reset the chip now, since it has been reported
5614 * that SCSI clock calibration may not work properly
5615 * if the chip is currently active.
5617 sym_chip_reset(np);
5620 * Prepare controller and devices settings, according
5621 * to chip features, user set-up and driver set-up.
5623 sym_prepare_setting(shost, np, nvram);
5626 * Check the PCI clock frequency.
5627 * Must be performed after prepare_setting since it destroys
5628 * STEST1 that is used to probe for the clock doubler.
5630 i = sym_getpciclock(np);
5631 if (i > 37000 && !(np->features & FE_66MHZ))
5632 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5633 sym_name(np), i);
5636 * Allocate the start queue.
5638 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5639 if (!np->squeue)
5640 goto attach_failed;
5641 np->squeue_ba = vtobus(np->squeue);
5644 * Allocate the done queue.
5646 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5647 if (!np->dqueue)
5648 goto attach_failed;
5649 np->dqueue_ba = vtobus(np->dqueue);
5652 * Allocate the target bus address array.
5654 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5655 if (!np->targtbl)
5656 goto attach_failed;
5657 np->targtbl_ba = vtobus(np->targtbl);
5660 * Allocate SCRIPTS areas.
5662 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5663 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5664 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5665 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5666 goto attach_failed;
5669 * Allocate the array of lists of CCBs hashed by DSA.
5671 np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5672 if (!np->ccbh)
5673 goto attach_failed;
5676 * Initialyze the CCB free and busy queues.
5678 sym_que_init(&np->free_ccbq);
5679 sym_que_init(&np->busy_ccbq);
5680 sym_que_init(&np->comp_ccbq);
5683 * Initialization for optional handling
5684 * of device queueing.
5686 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5687 sym_que_init(&np->dummy_ccbq);
5688 #endif
5690 * Allocate some CCB. We need at least ONE.
5692 if (!sym_alloc_ccb(np))
5693 goto attach_failed;
5696 * Calculate BUS addresses where we are going
5697 * to load the SCRIPTS.
5699 np->scripta_ba = vtobus(np->scripta0);
5700 np->scriptb_ba = vtobus(np->scriptb0);
5701 np->scriptz_ba = vtobus(np->scriptz0);
5703 if (np->ram_ba) {
5704 np->scripta_ba = np->ram_ba;
5705 if (np->features & FE_RAM8K) {
5706 np->ram_ws = 8192;
5707 np->scriptb_ba = np->scripta_ba + 4096;
5708 #if 0 /* May get useful for 64 BIT PCI addressing */
5709 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5710 #endif
5712 else
5713 np->ram_ws = 4096;
5717 * Copy scripts to controller instance.
5719 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5720 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5721 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5724 * Setup variable parts in scripts and compute
5725 * scripts bus addresses used from the C code.
5727 np->fw_setup(np, fw);
5730 * Bind SCRIPTS with physical addresses usable by the
5731 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5733 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5734 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5735 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5737 #ifdef SYM_CONF_IARB_SUPPORT
5739 * If user wants IARB to be set when we win arbitration
5740 * and have other jobs, compute the max number of consecutive
5741 * settings of IARB hints before we leave devices a chance to
5742 * arbitrate for reselection.
5744 #ifdef SYM_SETUP_IARB_MAX
5745 np->iarb_max = SYM_SETUP_IARB_MAX;
5746 #else
5747 np->iarb_max = 4;
5748 #endif
5749 #endif
5752 * Prepare the idle and invalid task actions.
5754 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5755 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5756 np->idletask_ba = vtobus(&np->idletask);
5758 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5759 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5760 np->notask_ba = vtobus(&np->notask);
5762 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5763 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5764 np->bad_itl_ba = vtobus(&np->bad_itl);
5766 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5767 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5768 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5771 * Allocate and prepare the lun JUMP table that is used
5772 * for a target prior the probing of devices (bad lun table).
5773 * A private table will be allocated for the target on the
5774 * first INQUIRY response received.
5776 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5777 if (!np->badluntbl)
5778 goto attach_failed;
5780 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5781 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5782 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5785 * Prepare the bus address array that contains the bus
5786 * address of each target control block.
5787 * For now, assume all logical units are wrong. :)
5789 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5790 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5791 np->target[i].head.luntbl_sa =
5792 cpu_to_scr(vtobus(np->badluntbl));
5793 np->target[i].head.lun0_sa =
5794 cpu_to_scr(vtobus(&np->badlun_sa));
5798 * Now check the cache handling of the pci chipset.
5800 if (sym_snooptest (np)) {
5801 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5802 goto attach_failed;
5806 * Sigh! we are done.
5808 return 0;
5810 attach_failed:
5811 return -ENXIO;
5815 * Free everything that has been allocated for this device.
5817 void sym_hcb_free(struct sym_hcb *np)
5819 SYM_QUEHEAD *qp;
5820 struct sym_ccb *cp;
5821 struct sym_tcb *tp;
5822 struct sym_lcb *lp;
5823 int target, lun;
5825 if (np->scriptz0)
5826 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5827 if (np->scriptb0)
5828 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5829 if (np->scripta0)
5830 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5831 if (np->squeue)
5832 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5833 if (np->dqueue)
5834 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5836 if (np->actccbs) {
5837 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5838 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5839 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5842 kfree(np->ccbh);
5844 if (np->badluntbl)
5845 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5847 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5848 tp = &np->target[target];
5849 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
5850 lp = sym_lp(tp, lun);
5851 if (!lp)
5852 continue;
5853 if (lp->itlq_tbl)
5854 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
5855 "ITLQ_TBL");
5856 kfree(lp->cb_tags);
5857 sym_mfree_dma(lp, sizeof(*lp), "LCB");
5859 #if SYM_CONF_MAX_LUN > 1
5860 kfree(tp->lunmp);
5861 #endif
5863 if (np->targtbl)
5864 sym_mfree_dma(np->targtbl, 256, "TARGTBL");