Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / drivers / video / asiliantfb.c
blobf4729f4df8cec0f28aa8157e35c68051dc924df3
1 /*
2 * drivers/video/asiliantfb.c
3 * frame buffer driver for Asiliant 69000 chip
4 * Copyright (C) 2001-2003 Saito.K & Jeanne
6 * from driver/video/chipsfb.c and,
8 * drivers/video/asiliantfb.c -- frame buffer device for
9 * Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
10 * Author: apc@agelectronics.co.uk
11 * Copyright (C) 2000 AG Electronics
12 * Note: the data sheets don't seem to be available from Asiliant.
13 * They are available by searching developer.intel.com, but are not otherwise
14 * linked to.
16 * This driver should be portable with minimal effort to the 69000 display
17 * chip, and to the twin-display mode of the 69030.
18 * Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
20 * Derived from the CT65550 driver chipsfb.c:
21 * Copyright (C) 1998 Paul Mackerras
22 * ...which was derived from the Powermac "chips" driver:
23 * Copyright (C) 1997 Fabio Riccardi.
24 * And from the frame buffer device for Open Firmware-initialized devices:
25 * Copyright (C) 1997 Geert Uytterhoeven.
27 * This file is subject to the terms and conditions of the GNU General Public
28 * License. See the file COPYING in the main directory of this archive for
29 * more details.
32 #include <linux/config.h>
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/tty.h>
39 #include <linux/slab.h>
40 #include <linux/vmalloc.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/fb.h>
44 #include <linux/init.h>
45 #include <linux/pci.h>
46 #include <asm/io.h>
48 /* Built in clock of the 69030 */
49 static const unsigned Fref = 14318180;
51 #define mmio_base (p->screen_base + 0x400000)
53 #define mm_write_ind(num, val, ap, dp) do { \
54 writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
55 } while (0)
57 static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
59 mm_write_ind(reg, data, 0x7ac, 0x7ad);
61 #define write_xr(num, val) mm_write_xr(p, num, val)
63 static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
65 mm_write_ind(reg, data, 0x7a0, 0x7a1);
67 #define write_fr(num, val) mm_write_fr(p, num, val)
69 static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
71 mm_write_ind(reg, data, 0x7a8, 0x7a9);
73 #define write_cr(num, val) mm_write_cr(p, num, val)
75 static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
77 mm_write_ind(reg, data, 0x79c, 0x79d);
79 #define write_gr(num, val) mm_write_gr(p, num, val)
81 static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
83 mm_write_ind(reg, data, 0x788, 0x789);
85 #define write_sr(num, val) mm_write_sr(p, num, val)
87 static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
89 readb(mmio_base + 0x7b4);
90 mm_write_ind(reg, data, 0x780, 0x780);
92 #define write_ar(num, val) mm_write_ar(p, num, val)
94 static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
95 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
96 struct fb_info *info);
97 static int asiliantfb_set_par(struct fb_info *info);
98 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
99 u_int transp, struct fb_info *info);
101 static struct fb_ops asiliantfb_ops = {
102 .owner = THIS_MODULE,
103 .fb_check_var = asiliantfb_check_var,
104 .fb_set_par = asiliantfb_set_par,
105 .fb_setcolreg = asiliantfb_setcolreg,
106 .fb_fillrect = cfb_fillrect,
107 .fb_copyarea = cfb_copyarea,
108 .fb_imageblit = cfb_imageblit,
109 .fb_cursor = soft_cursor,
112 /* Calculate the ratios for the dot clocks without using a single long long
113 * value */
114 static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
116 unsigned pixclock = *ppixclock;
117 unsigned Ftarget = 1000000 * (1000000 / pixclock);
118 unsigned n;
119 unsigned best_error = 0xffffffff;
120 unsigned best_m = 0xffffffff,
121 best_n = 0xffffffff;
122 unsigned ratio;
123 unsigned remainder;
124 unsigned char divisor = 0;
126 /* Calculate the frequency required. This is hard enough. */
127 ratio = 1000000 / pixclock;
128 remainder = 1000000 % pixclock;
129 Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
131 while (Ftarget < 100000000) {
132 divisor += 0x10;
133 Ftarget <<= 1;
136 ratio = Ftarget / Fref;
137 remainder = Ftarget % Fref;
139 /* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
140 * together with 3 <= n <= 257. */
141 for (n = 3; n <= 257; n++) {
142 unsigned m = n * ratio + (n * remainder) / Fref;
144 /* 3 <= m <= 257 */
145 if (m >= 3 && m <= 257) {
146 unsigned new_error = ((Ftarget * n) - (Fref * m)) >= 0 ?
147 ((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
148 if (new_error < best_error) {
149 best_n = n;
150 best_m = m;
151 best_error = new_error;
154 /* But if VLD = 4, then 4m <= 1028 */
155 else if (m <= 1028) {
156 /* remember there are still only 8-bits of precision in m, so
157 * avoid over-optimistic error calculations */
158 unsigned new_error = ((Ftarget * n) - (Fref * (m & ~3))) >= 0 ?
159 ((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
160 if (new_error < best_error) {
161 best_n = n;
162 best_m = m;
163 best_error = new_error;
167 if (best_m > 257)
168 best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
169 else
170 divisor |= 4; /* or set VCO loop divide to 1 */
171 *dclk2_m = best_m - 2;
172 *dclk2_n = best_n - 2;
173 *dclk2_div = divisor;
174 *ppixclock = pixclock;
175 return;
178 static void asiliant_set_timing(struct fb_info *p)
180 unsigned hd = p->var.xres / 8;
181 unsigned hs = (p->var.xres + p->var.right_margin) / 8;
182 unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
183 unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
184 unsigned vd = p->var.yres;
185 unsigned vs = p->var.yres + p->var.lower_margin;
186 unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
187 unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
188 unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
190 if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
191 write_fr(0x01, 0x02); /* LCD */
192 } else {
193 write_fr(0x01, 0x01); /* CRT */
196 write_cr(0x11, (ve - 1) & 0x0f);
197 write_cr(0x00, (ht - 5) & 0xff);
198 write_cr(0x01, hd - 1);
199 write_cr(0x02, hd);
200 write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
201 write_cr(0x04, hs);
202 write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
203 write_cr(0x3c, (ht - 1) & 0xc0);
204 write_cr(0x06, (vt - 2) & 0xff);
205 write_cr(0x30, (vt - 2) >> 8);
206 write_cr(0x07, 0x00);
207 write_cr(0x08, 0x00);
208 write_cr(0x09, 0x00);
209 write_cr(0x10, (vs - 1) & 0xff);
210 write_cr(0x32, ((vs - 1) >> 8) & 0xf);
211 write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
212 write_cr(0x12, (vd - 1) & 0xff);
213 write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
214 write_cr(0x13, wd & 0xff);
215 write_cr(0x41, (wd & 0xf00) >> 8);
216 write_cr(0x15, (vs - 1) & 0xff);
217 write_cr(0x33, ((vs - 1) >> 8) & 0xf);
218 write_cr(0x38, ((ht - 5) & 0x100) >> 8);
219 write_cr(0x16, (vt - 1) & 0xff);
220 write_cr(0x18, 0x00);
222 if (p->var.xres == 640) {
223 writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
224 } else {
225 writeb(0x07, mmio_base + 0x784); /* set misc output reg */
229 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
230 struct fb_info *p)
232 unsigned long Ftarget, ratio, remainder;
234 ratio = 1000000 / var->pixclock;
235 remainder = 1000000 % var->pixclock;
236 Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
238 /* First check the constraint that the maximum post-VCO divisor is 32,
239 * and the maximum Fvco is 220MHz */
240 if (Ftarget > 220000000 || Ftarget < 3125000) {
241 printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
242 return -ENXIO;
244 var->xres_virtual = var->xres;
245 var->yres_virtual = var->yres;
247 if (var->bits_per_pixel == 24) {
248 var->red.offset = 16;
249 var->green.offset = 8;
250 var->blue.offset = 0;
251 var->red.length = var->blue.length = var->green.length = 8;
252 } else if (var->bits_per_pixel == 16) {
253 switch (var->red.offset) {
254 case 11:
255 var->green.length = 6;
256 break;
257 case 10:
258 var->green.length = 5;
259 break;
260 default:
261 return -EINVAL;
263 var->green.offset = 5;
264 var->blue.offset = 0;
265 var->red.length = var->blue.length = 5;
266 } else if (var->bits_per_pixel == 8) {
267 var->red.offset = var->green.offset = var->blue.offset = 0;
268 var->red.length = var->green.length = var->blue.length = 8;
270 return 0;
273 static int asiliantfb_set_par(struct fb_info *p)
275 u8 dclk2_m; /* Holds m-2 value for register */
276 u8 dclk2_n; /* Holds n-2 value for register */
277 u8 dclk2_div; /* Holds divisor bitmask */
279 /* Set pixclock */
280 asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
282 /* Set color depth */
283 if (p->var.bits_per_pixel == 24) {
284 write_xr(0x81, 0x16); /* 24 bit packed color mode */
285 write_xr(0x82, 0x00); /* Disable palettes */
286 write_xr(0x20, 0x20); /* 24 bit blitter mode */
287 } else if (p->var.bits_per_pixel == 16) {
288 if (p->var.red.offset == 11)
289 write_xr(0x81, 0x15); /* 16 bit color mode */
290 else
291 write_xr(0x81, 0x14); /* 15 bit color mode */
292 write_xr(0x82, 0x00); /* Disable palettes */
293 write_xr(0x20, 0x10); /* 16 bit blitter mode */
294 } else if (p->var.bits_per_pixel == 8) {
295 write_xr(0x0a, 0x02); /* Linear */
296 write_xr(0x81, 0x12); /* 8 bit color mode */
297 write_xr(0x82, 0x00); /* Graphics gamma enable */
298 write_xr(0x20, 0x00); /* 8 bit blitter mode */
300 p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
301 p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
302 write_xr(0xc4, dclk2_m);
303 write_xr(0xc5, dclk2_n);
304 write_xr(0xc7, dclk2_div);
305 /* Set up the CR registers */
306 asiliant_set_timing(p);
307 return 0;
310 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
311 u_int transp, struct fb_info *p)
313 if (regno > 255)
314 return 1;
315 red >>= 8;
316 green >>= 8;
317 blue >>= 8;
319 /* Set hardware palete */
320 writeb(regno, mmio_base + 0x790);
321 udelay(1);
322 writeb(red, mmio_base + 0x791);
323 writeb(green, mmio_base + 0x791);
324 writeb(blue, mmio_base + 0x791);
326 switch(p->var.bits_per_pixel) {
327 case 15:
328 if (regno < 16) {
329 ((u32 *)(p->pseudo_palette))[regno] =
330 ((red & 0xf8) << 7) |
331 ((green & 0xf8) << 2) |
332 ((blue & 0xf8) >> 3);
334 break;
335 case 16:
336 if (regno < 16) {
337 ((u32 *)(p->pseudo_palette))[regno] =
338 ((red & 0xf8) << 8) |
339 ((green & 0xfc) << 3) |
340 ((blue & 0xf8) >> 3);
342 break;
343 case 24:
344 if (regno < 24) {
345 ((u32 *)(p->pseudo_palette))[regno] =
346 (red << 16) |
347 (green << 8) |
348 (blue);
350 break;
352 return 0;
355 struct chips_init_reg {
356 unsigned char addr;
357 unsigned char data;
360 #define N_ELTS(x) (sizeof(x) / sizeof(x[0]))
362 static struct chips_init_reg chips_init_sr[] =
364 {0x00, 0x03}, /* Reset register */
365 {0x01, 0x01}, /* Clocking mode */
366 {0x02, 0x0f}, /* Plane mask */
367 {0x04, 0x0e} /* Memory mode */
370 static struct chips_init_reg chips_init_gr[] =
372 {0x03, 0x00}, /* Data rotate */
373 {0x05, 0x00}, /* Graphics mode */
374 {0x06, 0x01}, /* Miscellaneous */
375 {0x08, 0x00} /* Bit mask */
378 static struct chips_init_reg chips_init_ar[] =
380 {0x10, 0x01}, /* Mode control */
381 {0x11, 0x00}, /* Overscan */
382 {0x12, 0x0f}, /* Memory plane enable */
383 {0x13, 0x00} /* Horizontal pixel panning */
386 static struct chips_init_reg chips_init_cr[] =
388 {0x0c, 0x00}, /* Start address high */
389 {0x0d, 0x00}, /* Start address low */
390 {0x40, 0x00}, /* Extended Start Address */
391 {0x41, 0x00}, /* Extended Start Address */
392 {0x14, 0x00}, /* Underline location */
393 {0x17, 0xe3}, /* CRT mode control */
394 {0x70, 0x00} /* Interlace control */
398 static struct chips_init_reg chips_init_fr[] =
400 {0x01, 0x02},
401 {0x03, 0x08},
402 {0x08, 0xcc},
403 {0x0a, 0x08},
404 {0x18, 0x00},
405 {0x1e, 0x80},
406 {0x40, 0x83},
407 {0x41, 0x00},
408 {0x48, 0x13},
409 {0x4d, 0x60},
410 {0x4e, 0x0f},
412 {0x0b, 0x01},
414 {0x21, 0x51},
415 {0x22, 0x1d},
416 {0x23, 0x5f},
417 {0x20, 0x4f},
418 {0x34, 0x00},
419 {0x24, 0x51},
420 {0x25, 0x00},
421 {0x27, 0x0b},
422 {0x26, 0x00},
423 {0x37, 0x80},
424 {0x33, 0x0b},
425 {0x35, 0x11},
426 {0x36, 0x02},
427 {0x31, 0xea},
428 {0x32, 0x0c},
429 {0x30, 0xdf},
430 {0x10, 0x0c},
431 {0x11, 0xe0},
432 {0x12, 0x50},
433 {0x13, 0x00},
434 {0x16, 0x03},
435 {0x17, 0xbd},
436 {0x1a, 0x00},
440 static struct chips_init_reg chips_init_xr[] =
442 {0xce, 0x00}, /* set default memory clock */
443 {0xcc, 200 }, /* MCLK ratio M */
444 {0xcd, 18 }, /* MCLK ratio N */
445 {0xce, 0x90}, /* MCLK divisor = 2 */
447 {0xc4, 209 },
448 {0xc5, 118 },
449 {0xc7, 32 },
450 {0xcf, 0x06},
451 {0x09, 0x01}, /* IO Control - CRT controller extensions */
452 {0x0a, 0x02}, /* Frame buffer mapping */
453 {0x0b, 0x01}, /* PCI burst write */
454 {0x40, 0x03}, /* Memory access control */
455 {0x80, 0x82}, /* Pixel pipeline configuration 0 */
456 {0x81, 0x12}, /* Pixel pipeline configuration 1 */
457 {0x82, 0x08}, /* Pixel pipeline configuration 2 */
459 {0xd0, 0x0f},
460 {0xd1, 0x01},
463 static void __devinit chips_hw_init(struct fb_info *p)
465 int i;
467 for (i = 0; i < N_ELTS(chips_init_xr); ++i)
468 write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
469 write_xr(0x81, 0x12);
470 write_xr(0x82, 0x08);
471 write_xr(0x20, 0x00);
472 for (i = 0; i < N_ELTS(chips_init_sr); ++i)
473 write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
474 for (i = 0; i < N_ELTS(chips_init_gr); ++i)
475 write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
476 for (i = 0; i < N_ELTS(chips_init_ar); ++i)
477 write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
478 /* Enable video output in attribute index register */
479 writeb(0x20, mmio_base + 0x780);
480 for (i = 0; i < N_ELTS(chips_init_cr); ++i)
481 write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
482 for (i = 0; i < N_ELTS(chips_init_fr); ++i)
483 write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
486 static struct fb_fix_screeninfo asiliantfb_fix __devinitdata = {
487 .id = "Asiliant 69000",
488 .type = FB_TYPE_PACKED_PIXELS,
489 .visual = FB_VISUAL_PSEUDOCOLOR,
490 .accel = FB_ACCEL_NONE,
491 .line_length = 640,
492 .smem_len = 0x200000, /* 2MB */
495 static struct fb_var_screeninfo asiliantfb_var __devinitdata = {
496 .xres = 640,
497 .yres = 480,
498 .xres_virtual = 640,
499 .yres_virtual = 480,
500 .bits_per_pixel = 8,
501 .red = { .length = 8 },
502 .green = { .length = 8 },
503 .blue = { .length = 8 },
504 .height = -1,
505 .width = -1,
506 .vmode = FB_VMODE_NONINTERLACED,
507 .pixclock = 39722,
508 .left_margin = 48,
509 .right_margin = 16,
510 .upper_margin = 33,
511 .lower_margin = 10,
512 .hsync_len = 96,
513 .vsync_len = 2,
516 static void __devinit init_asiliant(struct fb_info *p, unsigned long addr)
518 p->fix = asiliantfb_fix;
519 p->fix.smem_start = addr;
520 p->var = asiliantfb_var;
521 p->fbops = &asiliantfb_ops;
522 p->flags = FBINFO_DEFAULT;
524 fb_alloc_cmap(&p->cmap, 256, 0);
526 if (register_framebuffer(p) < 0) {
527 printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
528 return;
531 printk(KERN_INFO "fb%d: Asiliant 69000 frame buffer (%dK RAM detected)\n",
532 p->node, p->fix.smem_len / 1024);
534 writeb(0xff, mmio_base + 0x78c);
535 chips_hw_init(p);
538 static int __devinit
539 asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *ent)
541 unsigned long addr, size;
542 struct fb_info *p;
544 if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
545 return -ENODEV;
546 addr = pci_resource_start(dp, 0);
547 size = pci_resource_len(dp, 0);
548 if (addr == 0)
549 return -ENODEV;
550 if (!request_mem_region(addr, size, "asiliantfb"))
551 return -EBUSY;
553 p = framebuffer_alloc(sizeof(u32) * 256, &dp->dev);
554 if (!p) {
555 release_mem_region(addr, size);
556 return -ENOMEM;
558 p->pseudo_palette = p->par;
559 p->par = NULL;
561 p->screen_base = ioremap(addr, 0x800000);
562 if (p->screen_base == NULL) {
563 release_mem_region(addr, size);
564 framebuffer_release(p);
565 return -ENOMEM;
568 pci_write_config_dword(dp, 4, 0x02800083);
569 writeb(3, p->screen_base + 0x400784);
571 init_asiliant(p, addr);
573 pci_set_drvdata(dp, p);
574 return 0;
577 static void __devexit asiliantfb_remove(struct pci_dev *dp)
579 struct fb_info *p = pci_get_drvdata(dp);
581 unregister_framebuffer(p);
582 iounmap(p->screen_base);
583 release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
584 pci_set_drvdata(dp, NULL);
585 framebuffer_release(p);
588 static struct pci_device_id asiliantfb_pci_tbl[] __devinitdata = {
589 { PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
590 { 0 }
593 MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
595 static struct pci_driver asiliantfb_driver = {
596 .name = "asiliantfb",
597 .id_table = asiliantfb_pci_tbl,
598 .probe = asiliantfb_pci_init,
599 .remove = __devexit_p(asiliantfb_remove),
602 static int __init asiliantfb_init(void)
604 if (fb_get_options("asiliantfb", NULL))
605 return -ENODEV;
607 return pci_register_driver(&asiliantfb_driver);
610 module_init(asiliantfb_init);
612 static void __exit asiliantfb_exit(void)
614 pci_unregister_driver(&asiliantfb_driver);
617 MODULE_LICENSE("GPL");