Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/gregkh/driver...
[linux-2.6/verdex.git] / include / asm-ia64 / sn / sn_sal.h
blob56d74ca76b5d0b9f4fc809c4f05c6152655b1311
1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
4 /*
5 * System Abstraction Layer definitions for IA64
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
11 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
15 #include <linux/config.h>
16 #include <asm/sal.h>
17 #include <asm/sn/sn_cpuid.h>
18 #include <asm/sn/arch.h>
19 #include <asm/sn/geo.h>
20 #include <asm/sn/nodepda.h>
21 #include <asm/sn/shub_mmr.h>
23 // SGI Specific Calls
24 #define SN_SAL_POD_MODE 0x02000001
25 #define SN_SAL_SYSTEM_RESET 0x02000002
26 #define SN_SAL_PROBE 0x02000003
27 #define SN_SAL_GET_MASTER_NASID 0x02000004
28 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
29 #define SN_SAL_LOG_CE 0x02000006
30 #define SN_SAL_REGISTER_CE 0x02000007
31 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
32 #define SN_SAL_XP_ADDR_REGION 0x0200000f
33 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
34 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
35 #define SN_SAL_PRINT_ERROR 0x02000012
36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
39 #define SN_SAL_GET_SN_INFO 0x0200001e
40 #define SN_SAL_CONSOLE_PUTC 0x02000021
41 #define SN_SAL_CONSOLE_GETC 0x02000022
42 #define SN_SAL_CONSOLE_PUTS 0x02000023
43 #define SN_SAL_CONSOLE_GETS 0x02000024
44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45 #define SN_SAL_CONSOLE_POLL 0x02000026
46 #define SN_SAL_CONSOLE_INTR 0x02000027
47 #define SN_SAL_CONSOLE_PUTB 0x02000028
48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49 #define SN_SAL_CONSOLE_READC 0x0200002b
50 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
51 #define SN_SAL_SYSCTL_GET 0x02000032
52 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
53 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
54 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
55 #define SN_SAL_BUS_CONFIG 0x02000037
56 #define SN_SAL_SYS_SERIAL_GET 0x02000038
57 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
58 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
59 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
60 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
61 #define SN_SAL_COHERENCE 0x0200003d
62 #define SN_SAL_MEMPROTECT 0x0200003e
63 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
65 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
66 #define SN_SAL_IROUTER_OP 0x02000043
67 #define SN_SAL_SYSCTL_EVENT 0x02000044
68 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
69 #define SN_SAL_HWPERF_OP 0x02000050 // lock
70 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
72 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
73 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
74 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
75 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
76 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
77 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058
79 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
80 #define SN_SAL_BTE_RECOVER 0x02000061
81 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000062
84 * Service-specific constants
87 /* Console interrupt manipulation */
88 /* action codes */
89 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
90 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
91 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
92 /* interrupt specification & status return codes */
93 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
94 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
96 /* interrupt handling */
97 #define SAL_INTR_ALLOC 1
98 #define SAL_INTR_FREE 2
101 * IRouter (i.e. generalized system controller) operations
103 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
104 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
105 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
106 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
107 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
108 * an open subchannel
110 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
111 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
112 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
114 /* IRouter interrupt mask bits */
115 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
116 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
120 * SAL Error Codes
122 #define SALRET_MORE_PASSES 1
123 #define SALRET_OK 0
124 #define SALRET_NOT_IMPLEMENTED (-1)
125 #define SALRET_INVALID_ARG (-2)
126 #define SALRET_ERROR (-3)
130 * sn_sal_rev_major - get the major SGI SAL revision number
132 * The SGI PROM stores its version in sal_[ab]_rev_(major|minor).
133 * This routine simply extracts the major value from the
134 * @ia64_sal_systab structure constructed by ia64_sal_init().
136 static inline int
137 sn_sal_rev_major(void)
139 struct ia64_sal_systab *systab = efi.sal_systab;
141 return (int)systab->sal_b_rev_major;
145 * sn_sal_rev_minor - get the minor SGI SAL revision number
147 * The SGI PROM stores its version in sal_[ab]_rev_(major|minor).
148 * This routine simply extracts the minor value from the
149 * @ia64_sal_systab structure constructed by ia64_sal_init().
151 static inline int
152 sn_sal_rev_minor(void)
154 struct ia64_sal_systab *systab = efi.sal_systab;
156 return (int)systab->sal_b_rev_minor;
160 * Specify the minimum PROM revsion required for this kernel.
161 * Note that they're stored in hex format...
163 #define SN_SAL_MIN_MAJOR 0x4 /* SN2 kernels need at least PROM 4.0 */
164 #define SN_SAL_MIN_MINOR 0x0
167 * Returns the master console nasid, if the call fails, return an illegal
168 * value.
170 static inline u64
171 ia64_sn_get_console_nasid(void)
173 struct ia64_sal_retval ret_stuff;
175 ret_stuff.status = 0;
176 ret_stuff.v0 = 0;
177 ret_stuff.v1 = 0;
178 ret_stuff.v2 = 0;
179 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
181 if (ret_stuff.status < 0)
182 return ret_stuff.status;
184 /* Master console nasid is in 'v0' */
185 return ret_stuff.v0;
189 * Returns the master baseio nasid, if the call fails, return an illegal
190 * value.
192 static inline u64
193 ia64_sn_get_master_baseio_nasid(void)
195 struct ia64_sal_retval ret_stuff;
197 ret_stuff.status = 0;
198 ret_stuff.v0 = 0;
199 ret_stuff.v1 = 0;
200 ret_stuff.v2 = 0;
201 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
203 if (ret_stuff.status < 0)
204 return ret_stuff.status;
206 /* Master baseio nasid is in 'v0' */
207 return ret_stuff.v0;
210 static inline char *
211 ia64_sn_get_klconfig_addr(nasid_t nasid)
213 struct ia64_sal_retval ret_stuff;
214 int cnodeid;
216 cnodeid = nasid_to_cnodeid(nasid);
217 ret_stuff.status = 0;
218 ret_stuff.v0 = 0;
219 ret_stuff.v1 = 0;
220 ret_stuff.v2 = 0;
221 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
224 * We should panic if a valid cnode nasid does not produce
225 * a klconfig address.
227 if (ret_stuff.status != 0) {
228 panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status);
230 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
234 * Returns the next console character.
236 static inline u64
237 ia64_sn_console_getc(int *ch)
239 struct ia64_sal_retval ret_stuff;
241 ret_stuff.status = 0;
242 ret_stuff.v0 = 0;
243 ret_stuff.v1 = 0;
244 ret_stuff.v2 = 0;
245 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
247 /* character is in 'v0' */
248 *ch = (int)ret_stuff.v0;
250 return ret_stuff.status;
254 * Read a character from the SAL console device, after a previous interrupt
255 * or poll operation has given us to know that a character is available
256 * to be read.
258 static inline u64
259 ia64_sn_console_readc(void)
261 struct ia64_sal_retval ret_stuff;
263 ret_stuff.status = 0;
264 ret_stuff.v0 = 0;
265 ret_stuff.v1 = 0;
266 ret_stuff.v2 = 0;
267 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
269 /* character is in 'v0' */
270 return ret_stuff.v0;
274 * Sends the given character to the console.
276 static inline u64
277 ia64_sn_console_putc(char ch)
279 struct ia64_sal_retval ret_stuff;
281 ret_stuff.status = 0;
282 ret_stuff.v0 = 0;
283 ret_stuff.v1 = 0;
284 ret_stuff.v2 = 0;
285 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0);
287 return ret_stuff.status;
291 * Sends the given buffer to the console.
293 static inline u64
294 ia64_sn_console_putb(const char *buf, int len)
296 struct ia64_sal_retval ret_stuff;
298 ret_stuff.status = 0;
299 ret_stuff.v0 = 0;
300 ret_stuff.v1 = 0;
301 ret_stuff.v2 = 0;
302 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0);
304 if ( ret_stuff.status == 0 ) {
305 return ret_stuff.v0;
307 return (u64)0;
311 * Print a platform error record
313 static inline u64
314 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
316 struct ia64_sal_retval ret_stuff;
318 ret_stuff.status = 0;
319 ret_stuff.v0 = 0;
320 ret_stuff.v1 = 0;
321 ret_stuff.v2 = 0;
322 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0);
324 return ret_stuff.status;
328 * Check for Platform errors
330 static inline u64
331 ia64_sn_plat_cpei_handler(void)
333 struct ia64_sal_retval ret_stuff;
335 ret_stuff.status = 0;
336 ret_stuff.v0 = 0;
337 ret_stuff.v1 = 0;
338 ret_stuff.v2 = 0;
339 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
341 return ret_stuff.status;
345 * Checks for console input.
347 static inline u64
348 ia64_sn_console_check(int *result)
350 struct ia64_sal_retval ret_stuff;
352 ret_stuff.status = 0;
353 ret_stuff.v0 = 0;
354 ret_stuff.v1 = 0;
355 ret_stuff.v2 = 0;
356 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
358 /* result is in 'v0' */
359 *result = (int)ret_stuff.v0;
361 return ret_stuff.status;
365 * Checks console interrupt status
367 static inline u64
368 ia64_sn_console_intr_status(void)
370 struct ia64_sal_retval ret_stuff;
372 ret_stuff.status = 0;
373 ret_stuff.v0 = 0;
374 ret_stuff.v1 = 0;
375 ret_stuff.v2 = 0;
376 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
377 0, SAL_CONSOLE_INTR_STATUS,
378 0, 0, 0, 0, 0);
380 if (ret_stuff.status == 0) {
381 return ret_stuff.v0;
384 return 0;
388 * Enable an interrupt on the SAL console device.
390 static inline void
391 ia64_sn_console_intr_enable(uint64_t intr)
393 struct ia64_sal_retval ret_stuff;
395 ret_stuff.status = 0;
396 ret_stuff.v0 = 0;
397 ret_stuff.v1 = 0;
398 ret_stuff.v2 = 0;
399 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
400 intr, SAL_CONSOLE_INTR_ON,
401 0, 0, 0, 0, 0);
405 * Disable an interrupt on the SAL console device.
407 static inline void
408 ia64_sn_console_intr_disable(uint64_t intr)
410 struct ia64_sal_retval ret_stuff;
412 ret_stuff.status = 0;
413 ret_stuff.v0 = 0;
414 ret_stuff.v1 = 0;
415 ret_stuff.v2 = 0;
416 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
417 intr, SAL_CONSOLE_INTR_OFF,
418 0, 0, 0, 0, 0);
422 * Sends a character buffer to the console asynchronously.
424 static inline u64
425 ia64_sn_console_xmit_chars(char *buf, int len)
427 struct ia64_sal_retval ret_stuff;
429 ret_stuff.status = 0;
430 ret_stuff.v0 = 0;
431 ret_stuff.v1 = 0;
432 ret_stuff.v2 = 0;
433 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
434 (uint64_t)buf, (uint64_t)len,
435 0, 0, 0, 0, 0);
437 if (ret_stuff.status == 0) {
438 return ret_stuff.v0;
441 return 0;
445 * Returns the iobrick module Id
447 static inline u64
448 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
450 struct ia64_sal_retval ret_stuff;
452 ret_stuff.status = 0;
453 ret_stuff.v0 = 0;
454 ret_stuff.v1 = 0;
455 ret_stuff.v2 = 0;
456 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
458 /* result is in 'v0' */
459 *result = (int)ret_stuff.v0;
461 return ret_stuff.status;
465 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
467 * SN_SAL_POD_MODE actually takes an argument, but it's always
468 * 0 when we call it from the kernel, so we don't have to expose
469 * it to the caller.
471 static inline u64
472 ia64_sn_pod_mode(void)
474 struct ia64_sal_retval isrv;
475 SAL_CALL(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
476 if (isrv.status)
477 return 0;
478 return isrv.v0;
482 * ia64_sn_probe_mem - read from memory safely
483 * @addr: address to probe
484 * @size: number bytes to read (1,2,4,8)
485 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
487 * Call into the SAL to do a memory read. If the read generates a machine
488 * check, this routine will recover gracefully and return -1 to the caller.
489 * @addr is usually a kernel virtual address in uncached space (i.e. the
490 * address starts with 0xc), but if called in physical mode, @addr should
491 * be a physical address.
493 * Return values:
494 * 0 - probe successful
495 * 1 - probe failed (generated MCA)
496 * 2 - Bad arg
497 * <0 - PAL error
499 static inline u64
500 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
502 struct ia64_sal_retval isrv;
504 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
506 if (data_ptr) {
507 switch (size) {
508 case 1:
509 *((u8*)data_ptr) = (u8)isrv.v0;
510 break;
511 case 2:
512 *((u16*)data_ptr) = (u16)isrv.v0;
513 break;
514 case 4:
515 *((u32*)data_ptr) = (u32)isrv.v0;
516 break;
517 case 8:
518 *((u64*)data_ptr) = (u64)isrv.v0;
519 break;
520 default:
521 isrv.status = 2;
524 return isrv.status;
528 * Retrieve the system serial number as an ASCII string.
530 static inline u64
531 ia64_sn_sys_serial_get(char *buf)
533 struct ia64_sal_retval ret_stuff;
534 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
535 return ret_stuff.status;
538 extern char sn_system_serial_number_string[];
539 extern u64 sn_partition_serial_number;
541 static inline char *
542 sn_system_serial_number(void) {
543 if (sn_system_serial_number_string[0]) {
544 return(sn_system_serial_number_string);
545 } else {
546 ia64_sn_sys_serial_get(sn_system_serial_number_string);
547 return(sn_system_serial_number_string);
553 * Returns a unique id number for this system and partition (suitable for
554 * use with license managers), based in part on the system serial number.
556 static inline u64
557 ia64_sn_partition_serial_get(void)
559 struct ia64_sal_retval ret_stuff;
560 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
561 0, 0, 0, 0, 0, 0);
562 if (ret_stuff.status != 0)
563 return 0;
564 return ret_stuff.v0;
567 static inline u64
568 sn_partition_serial_number_val(void) {
569 if (unlikely(sn_partition_serial_number == 0)) {
570 sn_partition_serial_number = ia64_sn_partition_serial_get();
572 return sn_partition_serial_number;
576 * Returns the partition id of the nasid passed in as an argument,
577 * or INVALID_PARTID if the partition id cannot be retrieved.
579 static inline partid_t
580 ia64_sn_sysctl_partition_get(nasid_t nasid)
582 struct ia64_sal_retval ret_stuff;
583 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
584 0, 0, 0, 0, 0, 0);
585 if (ret_stuff.status != 0)
586 return INVALID_PARTID;
587 return ((partid_t)ret_stuff.v0);
591 * Returns the partition id of the current processor.
594 extern partid_t sn_partid;
596 static inline partid_t
597 sn_local_partid(void) {
598 if (unlikely(sn_partid < 0)) {
599 sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()));
601 return sn_partid;
605 * Returns the physical address of the partition's reserved page through
606 * an iterative number of calls.
608 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
609 * set to the nasid of the partition whose reserved page's address is
610 * being sought.
611 * On subsequent calls, pass the values, that were passed back on the
612 * previous call.
614 * While the return status equals SALRET_MORE_PASSES, keep calling
615 * this function after first copying 'len' bytes starting at 'addr'
616 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
617 * be the physical address of the partition's reserved page. If the
618 * return status equals neither of these, an error as occurred.
620 static inline s64
621 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
623 struct ia64_sal_retval rv;
624 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
625 *addr, buf, *len, 0, 0, 0);
626 *cookie = rv.v0;
627 *addr = rv.v1;
628 *len = rv.v2;
629 return rv.status;
633 * Register or unregister a physical address range being referenced across
634 * a partition boundary for which certain SAL errors should be scanned for,
635 * cleaned up and ignored. This is of value for kernel partitioning code only.
636 * Values for the operation argument:
637 * 1 = register this address range with SAL
638 * 0 = unregister this address range with SAL
640 * SAL maintains a reference count on an address range in case it is registered
641 * multiple times.
643 * On success, returns the reference count of the address range after the SAL
644 * call has performed the current registration/unregistration. Returns a
645 * negative value if an error occurred.
647 static inline int
648 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
650 struct ia64_sal_retval ret_stuff;
651 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
652 (u64)operation, 0, 0, 0, 0);
653 return ret_stuff.status;
657 * Register or unregister an instruction range for which SAL errors should
658 * be ignored. If an error occurs while in the registered range, SAL jumps
659 * to return_addr after ignoring the error. Values for the operation argument:
660 * 1 = register this instruction range with SAL
661 * 0 = unregister this instruction range with SAL
663 * Returns 0 on success, or a negative value if an error occurred.
665 static inline int
666 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
667 int virtual, int operation)
669 struct ia64_sal_retval ret_stuff;
670 u64 call;
671 if (virtual) {
672 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
673 } else {
674 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
676 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
677 (u64)1, 0, 0, 0);
678 return ret_stuff.status;
682 * Change or query the coherence domain for this partition. Each cpu-based
683 * nasid is represented by a bit in an array of 64-bit words:
684 * 0 = not in this partition's coherency domain
685 * 1 = in this partition's coherency domain
687 * It is not possible for the local system's nasids to be removed from
688 * the coherency domain. Purpose of the domain arguments:
689 * new_domain = set the coherence domain to the given nasids
690 * old_domain = return the current coherence domain
692 * Returns 0 on success, or a negative value if an error occurred.
694 static inline int
695 sn_change_coherence(u64 *new_domain, u64 *old_domain)
697 struct ia64_sal_retval ret_stuff;
698 ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
699 (u64)old_domain, 0, 0, 0, 0, 0);
700 return ret_stuff.status;
704 * Change memory access protections for a physical address range.
705 * nasid_array is not used on Altix, but may be in future architectures.
706 * Available memory protection access classes are defined after the function.
708 static inline int
709 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
711 struct ia64_sal_retval ret_stuff;
712 int cnodeid;
713 unsigned long irq_flags;
715 cnodeid = nasid_to_cnodeid(get_node_number(paddr));
716 // spin_lock(&NODEPDA(cnodeid)->bist_lock);
717 local_irq_save(irq_flags);
718 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
719 (u64)nasid_array, perms, 0, 0, 0);
720 local_irq_restore(irq_flags);
721 // spin_unlock(&NODEPDA(cnodeid)->bist_lock);
722 return ret_stuff.status;
724 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
725 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
726 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
727 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
728 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
729 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
732 * Turns off system power.
734 static inline void
735 ia64_sn_power_down(void)
737 struct ia64_sal_retval ret_stuff;
738 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
739 while(1);
740 /* never returns */
744 * ia64_sn_fru_capture - tell the system controller to capture hw state
746 * This routine will call the SAL which will tell the system controller(s)
747 * to capture hw mmr information from each SHub in the system.
749 static inline u64
750 ia64_sn_fru_capture(void)
752 struct ia64_sal_retval isrv;
753 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
754 if (isrv.status)
755 return 0;
756 return isrv.v0;
760 * Performs an operation on a PCI bus or slot -- power up, power down
761 * or reset.
763 static inline u64
764 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
765 u64 bus, char slot,
766 u64 action)
768 struct ia64_sal_retval rv = {0, 0, 0, 0};
770 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
771 bus, (u64) slot, 0, 0);
772 if (rv.status)
773 return rv.v0;
774 return 0;
779 * Open a subchannel for sending arbitrary data to the system
780 * controller network via the system controller device associated with
781 * 'nasid'. Return the subchannel number or a negative error code.
783 static inline int
784 ia64_sn_irtr_open(nasid_t nasid)
786 struct ia64_sal_retval rv;
787 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
788 0, 0, 0, 0, 0);
789 return (int) rv.v0;
793 * Close system controller subchannel 'subch' previously opened on 'nasid'.
795 static inline int
796 ia64_sn_irtr_close(nasid_t nasid, int subch)
798 struct ia64_sal_retval rv;
799 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
800 (u64) nasid, (u64) subch, 0, 0, 0, 0);
801 return (int) rv.status;
805 * Read data from system controller associated with 'nasid' on
806 * subchannel 'subch'. The buffer to be filled is pointed to by
807 * 'buf', and its capacity is in the integer pointed to by 'len'. The
808 * referent of 'len' is set to the number of bytes read by the SAL
809 * call. The return value is either SALRET_OK (for bytes read) or
810 * SALRET_ERROR (for error or "no data available").
812 static inline int
813 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
815 struct ia64_sal_retval rv;
816 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
817 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
818 0, 0);
819 return (int) rv.status;
823 * Write data to the system controller network via the system
824 * controller associated with 'nasid' on suchannel 'subch'. The
825 * buffer to be written out is pointed to by 'buf', and 'len' is the
826 * number of bytes to be written. The return value is either the
827 * number of bytes written (which could be zero) or a negative error
828 * code.
830 static inline int
831 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
833 struct ia64_sal_retval rv;
834 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
835 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
836 0, 0);
837 return (int) rv.v0;
841 * Check whether any interrupts are pending for the system controller
842 * associated with 'nasid' and its subchannel 'subch'. The return
843 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
844 * SAL_IROUTER_INTR_RECV).
846 static inline int
847 ia64_sn_irtr_intr(nasid_t nasid, int subch)
849 struct ia64_sal_retval rv;
850 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
851 (u64) nasid, (u64) subch, 0, 0, 0, 0);
852 return (int) rv.v0;
856 * Enable the interrupt indicated by the intr parameter (either
857 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
859 static inline int
860 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
862 struct ia64_sal_retval rv;
863 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
864 (u64) nasid, (u64) subch, intr, 0, 0, 0);
865 return (int) rv.v0;
869 * Disable the interrupt indicated by the intr parameter (either
870 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
872 static inline int
873 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
875 struct ia64_sal_retval rv;
876 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
877 (u64) nasid, (u64) subch, intr, 0, 0, 0);
878 return (int) rv.v0;
882 * Set up a node as the point of contact for system controller
883 * environmental event delivery.
885 static inline int
886 ia64_sn_sysctl_event_init(nasid_t nasid)
888 struct ia64_sal_retval rv;
889 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
890 0, 0, 0, 0, 0, 0);
891 return (int) rv.v0;
895 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
896 * @nasid: NASID of node to read
897 * @index: FIT entry index to be retrieved (0..n)
898 * @fitentry: 16 byte buffer where FIT entry will be stored.
899 * @banbuf: optional buffer for retrieving banner
900 * @banlen: length of banner buffer
902 * Access to the physical PROM chips needs to be serialized since reads and
903 * writes can't occur at the same time, so we need to call into the SAL when
904 * we want to look at the FIT entries on the chips.
906 * Returns:
907 * %SALRET_OK if ok
908 * %SALRET_INVALID_ARG if index too big
909 * %SALRET_NOT_IMPLEMENTED if running on older PROM
910 * ??? if nasid invalid OR banner buffer not large enough
912 static inline int
913 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
914 u64 banlen)
916 struct ia64_sal_retval rv;
917 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
918 banbuf, banlen, 0, 0);
919 return (int) rv.status;
923 * Initialize the SAL components of the system controller
924 * communication driver; specifically pass in a sizable buffer that
925 * can be used for allocation of subchannel queues as new subchannels
926 * are opened. "buf" points to the buffer, and "len" specifies its
927 * length.
929 static inline int
930 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
932 struct ia64_sal_retval rv;
933 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
934 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
935 return (int) rv.status;
939 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
941 * In:
942 * arg0 - SN_SAL_GET_SAPIC_INFO
943 * arg1 - sapicid (lid >> 16)
944 * Out:
945 * v0 - nasid
946 * v1 - subnode
947 * v2 - slice
949 static inline u64
950 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
952 struct ia64_sal_retval ret_stuff;
954 ret_stuff.status = 0;
955 ret_stuff.v0 = 0;
956 ret_stuff.v1 = 0;
957 ret_stuff.v2 = 0;
958 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
960 /***** BEGIN HACK - temp til old proms no longer supported ********/
961 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
962 if (nasid) *nasid = sapicid & 0xfff;
963 if (subnode) *subnode = (sapicid >> 13) & 1;
964 if (slice) *slice = (sapicid >> 12) & 3;
965 return 0;
967 /***** END HACK *******/
969 if (ret_stuff.status < 0)
970 return ret_stuff.status;
972 if (nasid) *nasid = (int) ret_stuff.v0;
973 if (subnode) *subnode = (int) ret_stuff.v1;
974 if (slice) *slice = (int) ret_stuff.v2;
975 return 0;
979 * Returns information about the HUB/SHUB.
980 * In:
981 * arg0 - SN_SAL_GET_SN_INFO
982 * arg1 - 0 (other values reserved for future use)
983 * Out:
984 * v0
985 * [7:0] - shub type (0=shub1, 1=shub2)
986 * [15:8] - Log2 max number of nodes in entire system (includes
987 * C-bricks, I-bricks, etc)
988 * [23:16] - Log2 of nodes per sharing domain
989 * [31:24] - partition ID
990 * [39:32] - coherency_id
991 * [47:40] - regionsize
992 * v1
993 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
994 * [23:15] - bit position of low nasid bit
996 static inline u64
997 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
998 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1000 struct ia64_sal_retval ret_stuff;
1002 ret_stuff.status = 0;
1003 ret_stuff.v0 = 0;
1004 ret_stuff.v1 = 0;
1005 ret_stuff.v2 = 0;
1006 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1008 /***** BEGIN HACK - temp til old proms no longer supported ********/
1009 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1010 int nasid = get_sapicid() & 0xfff;;
1011 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1012 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1013 if (shubtype) *shubtype = 0;
1014 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1015 if (nasid_shift) *nasid_shift = 38;
1016 if (systemsize) *systemsize = 11;
1017 if (sharing_domain_size) *sharing_domain_size = 9;
1018 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1019 if (coher) *coher = nasid >> 9;
1020 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1021 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1022 return 0;
1024 /***** END HACK *******/
1026 if (ret_stuff.status < 0)
1027 return ret_stuff.status;
1029 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1030 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1031 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1032 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1033 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1034 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1035 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1036 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1037 return 0;
1041 * This is the access point to the Altix PROM hardware performance
1042 * and status monitoring interface. For info on using this, see
1043 * include/asm-ia64/sn/sn2/sn_hwperf.h
1045 static inline int
1046 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1047 u64 a3, u64 a4, int *v0)
1049 struct ia64_sal_retval rv;
1050 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1051 opcode, a0, a1, a2, a3, a4);
1052 if (v0)
1053 *v0 = (int) rv.v0;
1054 return (int) rv.status;
1057 static inline int
1058 ia64_sn_ioif_get_pci_topology(u64 rack, u64 bay, u64 slot, u64 slab,
1059 u64 buf, u64 len)
1061 struct ia64_sal_retval rv;
1062 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY,
1063 rack, bay, slot, slab, buf, len, 0);
1064 return (int) rv.status;
1068 * BTE error recovery is implemented in SAL
1070 static inline int
1071 ia64_sn_bte_recovery(nasid_t nasid)
1073 struct ia64_sal_retval rv;
1075 rv.status = 0;
1076 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0);
1077 if (rv.status == SALRET_NOT_IMPLEMENTED)
1078 return 0;
1079 return (int) rv.status;
1082 #endif /* _ASM_IA64_SN_SN_SAL_H */