libata-core: blacklist HITACHI HDS drives using wildcard blacklist matching
[linux-2.6/verdex.git] / drivers / ata / libata-core.c
blobd2880b013c88391cc609b1f8b5cf9ee597230f73
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
72 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int atapi_passthru16 = 1;
89 module_param(atapi_passthru16, int, 0444);
90 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92 int libata_fua = 0;
93 module_param_named(fua, libata_fua, int, 0444);
94 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96 static int ata_ignore_hpa = 0;
97 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
101 module_param(ata_probe_timeout, int, 0444);
102 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
104 int libata_noacpi = 1;
105 module_param_named(noacpi, libata_noacpi, int, 0444);
106 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
108 MODULE_AUTHOR("Jeff Garzik");
109 MODULE_DESCRIPTION("Library module for ATA devices");
110 MODULE_LICENSE("GPL");
111 MODULE_VERSION(DRV_VERSION);
115 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
116 * @tf: Taskfile to convert
117 * @pmp: Port multiplier port
118 * @is_cmd: This FIS is for command
119 * @fis: Buffer into which data will output
121 * Converts a standard ATA taskfile to a Serial ATA
122 * FIS structure (Register - Host to Device).
124 * LOCKING:
125 * Inherited from caller.
127 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
129 fis[0] = 0x27; /* Register - Host to Device FIS */
130 fis[1] = pmp & 0xf; /* Port multiplier number*/
131 if (is_cmd)
132 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
134 fis[2] = tf->command;
135 fis[3] = tf->feature;
137 fis[4] = tf->lbal;
138 fis[5] = tf->lbam;
139 fis[6] = tf->lbah;
140 fis[7] = tf->device;
142 fis[8] = tf->hob_lbal;
143 fis[9] = tf->hob_lbam;
144 fis[10] = tf->hob_lbah;
145 fis[11] = tf->hob_feature;
147 fis[12] = tf->nsect;
148 fis[13] = tf->hob_nsect;
149 fis[14] = 0;
150 fis[15] = tf->ctl;
152 fis[16] = 0;
153 fis[17] = 0;
154 fis[18] = 0;
155 fis[19] = 0;
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
165 * LOCKING:
166 * Inherited from caller.
169 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
171 tf->command = fis[2]; /* status */
172 tf->feature = fis[3]; /* error */
174 tf->lbal = fis[4];
175 tf->lbam = fis[5];
176 tf->lbah = fis[6];
177 tf->device = fis[7];
179 tf->hob_lbal = fis[8];
180 tf->hob_lbam = fis[9];
181 tf->hob_lbah = fis[10];
183 tf->nsect = fis[12];
184 tf->hob_nsect = fis[13];
187 static const u8 ata_rw_cmds[] = {
188 /* pio multi */
189 ATA_CMD_READ_MULTI,
190 ATA_CMD_WRITE_MULTI,
191 ATA_CMD_READ_MULTI_EXT,
192 ATA_CMD_WRITE_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 /* pio */
198 ATA_CMD_PIO_READ,
199 ATA_CMD_PIO_WRITE,
200 ATA_CMD_PIO_READ_EXT,
201 ATA_CMD_PIO_WRITE_EXT,
206 /* dma */
207 ATA_CMD_READ,
208 ATA_CMD_WRITE,
209 ATA_CMD_READ_EXT,
210 ATA_CMD_WRITE_EXT,
214 ATA_CMD_WRITE_FUA_EXT
218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
222 * Examine the device configuration and tf->flags to calculate
223 * the proper read/write commands and protocol to use.
225 * LOCKING:
226 * caller.
228 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
230 u8 cmd;
232 int index, fua, lba48, write;
234 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
235 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
236 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
238 if (dev->flags & ATA_DFLAG_PIO) {
239 tf->protocol = ATA_PROT_PIO;
240 index = dev->multi_count ? 0 : 8;
241 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
242 /* Unable to use DMA due to host limitation */
243 tf->protocol = ATA_PROT_PIO;
244 index = dev->multi_count ? 0 : 8;
245 } else {
246 tf->protocol = ATA_PROT_DMA;
247 index = 16;
250 cmd = ata_rw_cmds[index + fua + lba48 + write];
251 if (cmd) {
252 tf->command = cmd;
253 return 0;
255 return -1;
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
263 * LOCKING:
264 * None.
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
270 * RETURNS:
271 * Block address read from @tf.
273 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
275 u64 block = 0;
277 if (tf->flags & ATA_TFLAG_LBA) {
278 if (tf->flags & ATA_TFLAG_LBA48) {
279 block |= (u64)tf->hob_lbah << 40;
280 block |= (u64)tf->hob_lbam << 32;
281 block |= tf->hob_lbal << 24;
282 } else
283 block |= (tf->device & 0xf) << 24;
285 block |= tf->lbah << 16;
286 block |= tf->lbam << 8;
287 block |= tf->lbal;
288 } else {
289 u32 cyl, head, sect;
291 cyl = tf->lbam | (tf->lbah << 8);
292 head = tf->device & 0xf;
293 sect = tf->lbal;
295 block = (cyl * dev->heads + head) * dev->sectors + sect;
298 return block;
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
308 * @tag: tag
310 * LOCKING:
311 * None.
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
316 * RETURNS:
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
321 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
322 u64 block, u32 n_block, unsigned int tf_flags,
323 unsigned int tag)
325 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
326 tf->flags |= tf_flags;
328 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
329 /* yay, NCQ */
330 if (!lba_48_ok(block, n_block))
331 return -ERANGE;
333 tf->protocol = ATA_PROT_NCQ;
334 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
336 if (tf->flags & ATA_TFLAG_WRITE)
337 tf->command = ATA_CMD_FPDMA_WRITE;
338 else
339 tf->command = ATA_CMD_FPDMA_READ;
341 tf->nsect = tag << 3;
342 tf->hob_feature = (n_block >> 8) & 0xff;
343 tf->feature = n_block & 0xff;
345 tf->hob_lbah = (block >> 40) & 0xff;
346 tf->hob_lbam = (block >> 32) & 0xff;
347 tf->hob_lbal = (block >> 24) & 0xff;
348 tf->lbah = (block >> 16) & 0xff;
349 tf->lbam = (block >> 8) & 0xff;
350 tf->lbal = block & 0xff;
352 tf->device = 1 << 6;
353 if (tf->flags & ATA_TFLAG_FUA)
354 tf->device |= 1 << 7;
355 } else if (dev->flags & ATA_DFLAG_LBA) {
356 tf->flags |= ATA_TFLAG_LBA;
358 if (lba_28_ok(block, n_block)) {
359 /* use LBA28 */
360 tf->device |= (block >> 24) & 0xf;
361 } else if (lba_48_ok(block, n_block)) {
362 if (!(dev->flags & ATA_DFLAG_LBA48))
363 return -ERANGE;
365 /* use LBA48 */
366 tf->flags |= ATA_TFLAG_LBA48;
368 tf->hob_nsect = (n_block >> 8) & 0xff;
370 tf->hob_lbah = (block >> 40) & 0xff;
371 tf->hob_lbam = (block >> 32) & 0xff;
372 tf->hob_lbal = (block >> 24) & 0xff;
373 } else
374 /* request too large even for LBA48 */
375 return -ERANGE;
377 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
378 return -EINVAL;
380 tf->nsect = n_block & 0xff;
382 tf->lbah = (block >> 16) & 0xff;
383 tf->lbam = (block >> 8) & 0xff;
384 tf->lbal = block & 0xff;
386 tf->device |= ATA_LBA;
387 } else {
388 /* CHS */
389 u32 sect, head, cyl, track;
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block, n_block))
393 return -ERANGE;
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
398 /* Convert LBA to CHS */
399 track = (u32)block / dev->sectors;
400 cyl = track / dev->heads;
401 head = track % dev->heads;
402 sect = (u32)block % dev->sectors + 1;
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32)block, track, cyl, head, sect);
407 /* Check whether the converted CHS can fit.
408 Cylinder: 0-65535
409 Head: 0-15
410 Sector: 1-255*/
411 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
412 return -ERANGE;
414 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 tf->lbal = sect;
416 tf->lbam = cyl;
417 tf->lbah = cyl >> 8;
418 tf->device |= head;
421 return 0;
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
433 * LOCKING:
434 * None.
436 * RETURNS:
437 * Packed xfer_mask.
439 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
440 unsigned int mwdma_mask,
441 unsigned int udma_mask)
443 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
444 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
445 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
458 static void ata_unpack_xfermask(unsigned int xfer_mask,
459 unsigned int *pio_mask,
460 unsigned int *mwdma_mask,
461 unsigned int *udma_mask)
463 if (pio_mask)
464 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
465 if (mwdma_mask)
466 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
467 if (udma_mask)
468 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
471 static const struct ata_xfer_ent {
472 int shift, bits;
473 u8 base;
474 } ata_xfer_tbl[] = {
475 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
476 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
477 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
478 { -1, },
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
488 * LOCKING:
489 * None.
491 * RETURNS:
492 * Matching XFER_* value, 0 if no match found.
494 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
496 int highbit = fls(xfer_mask) - 1;
497 const struct ata_xfer_ent *ent;
499 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
500 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
501 return ent->base + highbit - ent->shift;
502 return 0;
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
509 * Return matching xfer_mask for @xfer_mode.
511 * LOCKING:
512 * None.
514 * RETURNS:
515 * Matching xfer_mask, 0 if no match found.
517 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
519 const struct ata_xfer_ent *ent;
521 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
522 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
523 return 1 << (ent->shift + xfer_mode - ent->base);
524 return 0;
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
531 * Return matching xfer_shift for @xfer_mode.
533 * LOCKING:
534 * None.
536 * RETURNS:
537 * Matching xfer_shift, -1 if no match found.
539 static int ata_xfer_mode2shift(unsigned int xfer_mode)
541 const struct ata_xfer_ent *ent;
543 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
544 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 return ent->shift;
546 return -1;
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
553 * Determine string which represents the highest speed
554 * (highest bit in @modemask).
556 * LOCKING:
557 * None.
559 * RETURNS:
560 * Constant C string representing highest speed listed in
561 * @mode_mask, or the constant C string "<n/a>".
563 static const char *ata_mode_string(unsigned int xfer_mask)
565 static const char * const xfer_mode_str[] = {
566 "PIO0",
567 "PIO1",
568 "PIO2",
569 "PIO3",
570 "PIO4",
571 "PIO5",
572 "PIO6",
573 "MWDMA0",
574 "MWDMA1",
575 "MWDMA2",
576 "MWDMA3",
577 "MWDMA4",
578 "UDMA/16",
579 "UDMA/25",
580 "UDMA/33",
581 "UDMA/44",
582 "UDMA/66",
583 "UDMA/100",
584 "UDMA/133",
585 "UDMA7",
587 int highbit;
589 highbit = fls(xfer_mask) - 1;
590 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
591 return xfer_mode_str[highbit];
592 return "<n/a>";
595 static const char *sata_spd_string(unsigned int spd)
597 static const char * const spd_str[] = {
598 "1.5 Gbps",
599 "3.0 Gbps",
602 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
603 return "<unknown>";
604 return spd_str[spd - 1];
607 void ata_dev_disable(struct ata_device *dev)
609 if (ata_dev_enabled(dev)) {
610 if (ata_msg_drv(dev->link->ap))
611 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
612 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
613 ATA_DNXFER_QUIET);
614 dev->class++;
619 * ata_devchk - PATA device presence detection
620 * @ap: ATA channel to examine
621 * @device: Device to examine (starting at zero)
623 * This technique was originally described in
624 * Hale Landis's ATADRVR (www.ata-atapi.com), and
625 * later found its way into the ATA/ATAPI spec.
627 * Write a pattern to the ATA shadow registers,
628 * and if a device is present, it will respond by
629 * correctly storing and echoing back the
630 * ATA shadow register contents.
632 * LOCKING:
633 * caller.
636 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
638 struct ata_ioports *ioaddr = &ap->ioaddr;
639 u8 nsect, lbal;
641 ap->ops->dev_select(ap, device);
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
646 iowrite8(0xaa, ioaddr->nsect_addr);
647 iowrite8(0x55, ioaddr->lbal_addr);
649 iowrite8(0x55, ioaddr->nsect_addr);
650 iowrite8(0xaa, ioaddr->lbal_addr);
652 nsect = ioread8(ioaddr->nsect_addr);
653 lbal = ioread8(ioaddr->lbal_addr);
655 if ((nsect == 0x55) && (lbal == 0xaa))
656 return 1; /* we found a device */
658 return 0; /* nothing found */
662 * ata_dev_classify - determine device type based on ATA-spec signature
663 * @tf: ATA taskfile register set for device to be identified
665 * Determine from taskfile register contents whether a device is
666 * ATA or ATAPI, as per "Signature and persistence" section
667 * of ATA/PI spec (volume 1, sect 5.14).
669 * LOCKING:
670 * None.
672 * RETURNS:
673 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
674 * the event of failure.
677 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
679 /* Apple's open source Darwin code hints that some devices only
680 * put a proper signature into the LBA mid/high registers,
681 * So, we only check those. It's sufficient for uniqueness.
684 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
685 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
686 DPRINTK("found ATA device by sig\n");
687 return ATA_DEV_ATA;
690 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
691 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
692 DPRINTK("found ATAPI device by sig\n");
693 return ATA_DEV_ATAPI;
696 DPRINTK("unknown device\n");
697 return ATA_DEV_UNKNOWN;
701 * ata_dev_try_classify - Parse returned ATA device signature
702 * @dev: ATA device to classify (starting at zero)
703 * @present: device seems present
704 * @r_err: Value of error register on completion
706 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
707 * an ATA/ATAPI-defined set of values is placed in the ATA
708 * shadow registers, indicating the results of device detection
709 * and diagnostics.
711 * Select the ATA device, and read the values from the ATA shadow
712 * registers. Then parse according to the Error register value,
713 * and the spec-defined values examined by ata_dev_classify().
715 * LOCKING:
716 * caller.
718 * RETURNS:
719 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
721 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
722 u8 *r_err)
724 struct ata_port *ap = dev->link->ap;
725 struct ata_taskfile tf;
726 unsigned int class;
727 u8 err;
729 ap->ops->dev_select(ap, dev->devno);
731 memset(&tf, 0, sizeof(tf));
733 ap->ops->tf_read(ap, &tf);
734 err = tf.feature;
735 if (r_err)
736 *r_err = err;
738 /* see if device passed diags: if master then continue and warn later */
739 if (err == 0 && dev->devno == 0)
740 /* diagnostic fail : do nothing _YET_ */
741 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
742 else if (err == 1)
743 /* do nothing */ ;
744 else if ((dev->devno == 0) && (err == 0x81))
745 /* do nothing */ ;
746 else
747 return ATA_DEV_NONE;
749 /* determine if device is ATA or ATAPI */
750 class = ata_dev_classify(&tf);
752 if (class == ATA_DEV_UNKNOWN) {
753 /* If the device failed diagnostic, it's likely to
754 * have reported incorrect device signature too.
755 * Assume ATA device if the device seems present but
756 * device signature is invalid with diagnostic
757 * failure.
759 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
760 class = ATA_DEV_ATA;
761 else
762 class = ATA_DEV_NONE;
763 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
764 class = ATA_DEV_NONE;
766 return class;
770 * ata_id_string - Convert IDENTIFY DEVICE page into string
771 * @id: IDENTIFY DEVICE results we will examine
772 * @s: string into which data is output
773 * @ofs: offset into identify device page
774 * @len: length of string to return. must be an even number.
776 * The strings in the IDENTIFY DEVICE page are broken up into
777 * 16-bit chunks. Run through the string, and output each
778 * 8-bit chunk linearly, regardless of platform.
780 * LOCKING:
781 * caller.
784 void ata_id_string(const u16 *id, unsigned char *s,
785 unsigned int ofs, unsigned int len)
787 unsigned int c;
789 while (len > 0) {
790 c = id[ofs] >> 8;
791 *s = c;
792 s++;
794 c = id[ofs] & 0xff;
795 *s = c;
796 s++;
798 ofs++;
799 len -= 2;
804 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
805 * @id: IDENTIFY DEVICE results we will examine
806 * @s: string into which data is output
807 * @ofs: offset into identify device page
808 * @len: length of string to return. must be an odd number.
810 * This function is identical to ata_id_string except that it
811 * trims trailing spaces and terminates the resulting string with
812 * null. @len must be actual maximum length (even number) + 1.
814 * LOCKING:
815 * caller.
817 void ata_id_c_string(const u16 *id, unsigned char *s,
818 unsigned int ofs, unsigned int len)
820 unsigned char *p;
822 WARN_ON(!(len & 1));
824 ata_id_string(id, s, ofs, len - 1);
826 p = s + strnlen(s, len - 1);
827 while (p > s && p[-1] == ' ')
828 p--;
829 *p = '\0';
832 static u64 ata_id_n_sectors(const u16 *id)
834 if (ata_id_has_lba(id)) {
835 if (ata_id_has_lba48(id))
836 return ata_id_u64(id, 100);
837 else
838 return ata_id_u32(id, 60);
839 } else {
840 if (ata_id_current_chs_valid(id))
841 return ata_id_u32(id, 57);
842 else
843 return id[1] * id[3] * id[6];
847 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
849 u64 sectors = 0;
851 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
852 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
853 sectors |= (tf->hob_lbal & 0xff) << 24;
854 sectors |= (tf->lbah & 0xff) << 16;
855 sectors |= (tf->lbam & 0xff) << 8;
856 sectors |= (tf->lbal & 0xff);
858 return ++sectors;
861 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
863 u64 sectors = 0;
865 sectors |= (tf->device & 0x0f) << 24;
866 sectors |= (tf->lbah & 0xff) << 16;
867 sectors |= (tf->lbam & 0xff) << 8;
868 sectors |= (tf->lbal & 0xff);
870 return ++sectors;
874 * ata_read_native_max_address - Read native max address
875 * @dev: target device
876 * @max_sectors: out parameter for the result native max address
878 * Perform an LBA48 or LBA28 native size query upon the device in
879 * question.
881 * RETURNS:
882 * 0 on success, -EACCES if command is aborted by the drive.
883 * -EIO on other errors.
885 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
887 unsigned int err_mask;
888 struct ata_taskfile tf;
889 int lba48 = ata_id_has_lba48(dev->id);
891 ata_tf_init(dev, &tf);
893 /* always clear all address registers */
894 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
896 if (lba48) {
897 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
898 tf.flags |= ATA_TFLAG_LBA48;
899 } else
900 tf.command = ATA_CMD_READ_NATIVE_MAX;
902 tf.protocol |= ATA_PROT_NODATA;
903 tf.device |= ATA_LBA;
905 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
906 if (err_mask) {
907 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
908 "max address (err_mask=0x%x)\n", err_mask);
909 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
910 return -EACCES;
911 return -EIO;
914 if (lba48)
915 *max_sectors = ata_tf_to_lba48(&tf);
916 else
917 *max_sectors = ata_tf_to_lba(&tf);
919 return 0;
923 * ata_set_max_sectors - Set max sectors
924 * @dev: target device
925 * @new_sectors: new max sectors value to set for the device
927 * Set max sectors of @dev to @new_sectors.
929 * RETURNS:
930 * 0 on success, -EACCES if command is aborted or denied (due to
931 * previous non-volatile SET_MAX) by the drive. -EIO on other
932 * errors.
934 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
936 unsigned int err_mask;
937 struct ata_taskfile tf;
938 int lba48 = ata_id_has_lba48(dev->id);
940 new_sectors--;
942 ata_tf_init(dev, &tf);
944 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
946 if (lba48) {
947 tf.command = ATA_CMD_SET_MAX_EXT;
948 tf.flags |= ATA_TFLAG_LBA48;
950 tf.hob_lbal = (new_sectors >> 24) & 0xff;
951 tf.hob_lbam = (new_sectors >> 32) & 0xff;
952 tf.hob_lbah = (new_sectors >> 40) & 0xff;
953 } else {
954 tf.command = ATA_CMD_SET_MAX;
956 tf.device |= (new_sectors >> 24) & 0xf;
959 tf.protocol |= ATA_PROT_NODATA;
960 tf.device |= ATA_LBA;
962 tf.lbal = (new_sectors >> 0) & 0xff;
963 tf.lbam = (new_sectors >> 8) & 0xff;
964 tf.lbah = (new_sectors >> 16) & 0xff;
966 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
967 if (err_mask) {
968 ata_dev_printk(dev, KERN_WARNING, "failed to set "
969 "max address (err_mask=0x%x)\n", err_mask);
970 if (err_mask == AC_ERR_DEV &&
971 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
972 return -EACCES;
973 return -EIO;
976 return 0;
980 * ata_hpa_resize - Resize a device with an HPA set
981 * @dev: Device to resize
983 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
984 * it if required to the full size of the media. The caller must check
985 * the drive has the HPA feature set enabled.
987 * RETURNS:
988 * 0 on success, -errno on failure.
990 static int ata_hpa_resize(struct ata_device *dev)
992 struct ata_eh_context *ehc = &dev->link->eh_context;
993 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
994 u64 sectors = ata_id_n_sectors(dev->id);
995 u64 native_sectors;
996 int rc;
998 /* do we need to do it? */
999 if (dev->class != ATA_DEV_ATA ||
1000 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1001 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1002 return 0;
1004 /* read native max address */
1005 rc = ata_read_native_max_address(dev, &native_sectors);
1006 if (rc) {
1007 /* If HPA isn't going to be unlocked, skip HPA
1008 * resizing from the next try.
1010 if (!ata_ignore_hpa) {
1011 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1012 "broken, will skip HPA handling\n");
1013 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1015 /* we can continue if device aborted the command */
1016 if (rc == -EACCES)
1017 rc = 0;
1020 return rc;
1023 /* nothing to do? */
1024 if (native_sectors <= sectors || !ata_ignore_hpa) {
1025 if (!print_info || native_sectors == sectors)
1026 return 0;
1028 if (native_sectors > sectors)
1029 ata_dev_printk(dev, KERN_INFO,
1030 "HPA detected: current %llu, native %llu\n",
1031 (unsigned long long)sectors,
1032 (unsigned long long)native_sectors);
1033 else if (native_sectors < sectors)
1034 ata_dev_printk(dev, KERN_WARNING,
1035 "native sectors (%llu) is smaller than "
1036 "sectors (%llu)\n",
1037 (unsigned long long)native_sectors,
1038 (unsigned long long)sectors);
1039 return 0;
1042 /* let's unlock HPA */
1043 rc = ata_set_max_sectors(dev, native_sectors);
1044 if (rc == -EACCES) {
1045 /* if device aborted the command, skip HPA resizing */
1046 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1047 "(%llu -> %llu), skipping HPA handling\n",
1048 (unsigned long long)sectors,
1049 (unsigned long long)native_sectors);
1050 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1051 return 0;
1052 } else if (rc)
1053 return rc;
1055 /* re-read IDENTIFY data */
1056 rc = ata_dev_reread_id(dev, 0);
1057 if (rc) {
1058 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1059 "data after HPA resizing\n");
1060 return rc;
1063 if (print_info) {
1064 u64 new_sectors = ata_id_n_sectors(dev->id);
1065 ata_dev_printk(dev, KERN_INFO,
1066 "HPA unlocked: %llu -> %llu, native %llu\n",
1067 (unsigned long long)sectors,
1068 (unsigned long long)new_sectors,
1069 (unsigned long long)native_sectors);
1072 return 0;
1076 * ata_id_to_dma_mode - Identify DMA mode from id block
1077 * @dev: device to identify
1078 * @unknown: mode to assume if we cannot tell
1080 * Set up the timing values for the device based upon the identify
1081 * reported values for the DMA mode. This function is used by drivers
1082 * which rely upon firmware configured modes, but wish to report the
1083 * mode correctly when possible.
1085 * In addition we emit similarly formatted messages to the default
1086 * ata_dev_set_mode handler, in order to provide consistency of
1087 * presentation.
1090 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1092 unsigned int mask;
1093 u8 mode;
1095 /* Pack the DMA modes */
1096 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1097 if (dev->id[53] & 0x04)
1098 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1100 /* Select the mode in use */
1101 mode = ata_xfer_mask2mode(mask);
1103 if (mode != 0) {
1104 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1105 ata_mode_string(mask));
1106 } else {
1107 /* SWDMA perhaps ? */
1108 mode = unknown;
1109 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1112 /* Configure the device reporting */
1113 dev->xfer_mode = mode;
1114 dev->xfer_shift = ata_xfer_mode2shift(mode);
1118 * ata_noop_dev_select - Select device 0/1 on ATA bus
1119 * @ap: ATA channel to manipulate
1120 * @device: ATA device (numbered from zero) to select
1122 * This function performs no actual function.
1124 * May be used as the dev_select() entry in ata_port_operations.
1126 * LOCKING:
1127 * caller.
1129 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1135 * ata_std_dev_select - Select device 0/1 on ATA bus
1136 * @ap: ATA channel to manipulate
1137 * @device: ATA device (numbered from zero) to select
1139 * Use the method defined in the ATA specification to
1140 * make either device 0, or device 1, active on the
1141 * ATA channel. Works with both PIO and MMIO.
1143 * May be used as the dev_select() entry in ata_port_operations.
1145 * LOCKING:
1146 * caller.
1149 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1151 u8 tmp;
1153 if (device == 0)
1154 tmp = ATA_DEVICE_OBS;
1155 else
1156 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1158 iowrite8(tmp, ap->ioaddr.device_addr);
1159 ata_pause(ap); /* needed; also flushes, for mmio */
1163 * ata_dev_select - Select device 0/1 on ATA bus
1164 * @ap: ATA channel to manipulate
1165 * @device: ATA device (numbered from zero) to select
1166 * @wait: non-zero to wait for Status register BSY bit to clear
1167 * @can_sleep: non-zero if context allows sleeping
1169 * Use the method defined in the ATA specification to
1170 * make either device 0, or device 1, active on the
1171 * ATA channel.
1173 * This is a high-level version of ata_std_dev_select(),
1174 * which additionally provides the services of inserting
1175 * the proper pauses and status polling, where needed.
1177 * LOCKING:
1178 * caller.
1181 void ata_dev_select(struct ata_port *ap, unsigned int device,
1182 unsigned int wait, unsigned int can_sleep)
1184 if (ata_msg_probe(ap))
1185 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1186 "device %u, wait %u\n", device, wait);
1188 if (wait)
1189 ata_wait_idle(ap);
1191 ap->ops->dev_select(ap, device);
1193 if (wait) {
1194 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1195 msleep(150);
1196 ata_wait_idle(ap);
1201 * ata_dump_id - IDENTIFY DEVICE info debugging output
1202 * @id: IDENTIFY DEVICE page to dump
1204 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1205 * page.
1207 * LOCKING:
1208 * caller.
1211 static inline void ata_dump_id(const u16 *id)
1213 DPRINTK("49==0x%04x "
1214 "53==0x%04x "
1215 "63==0x%04x "
1216 "64==0x%04x "
1217 "75==0x%04x \n",
1218 id[49],
1219 id[53],
1220 id[63],
1221 id[64],
1222 id[75]);
1223 DPRINTK("80==0x%04x "
1224 "81==0x%04x "
1225 "82==0x%04x "
1226 "83==0x%04x "
1227 "84==0x%04x \n",
1228 id[80],
1229 id[81],
1230 id[82],
1231 id[83],
1232 id[84]);
1233 DPRINTK("88==0x%04x "
1234 "93==0x%04x\n",
1235 id[88],
1236 id[93]);
1240 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1241 * @id: IDENTIFY data to compute xfer mask from
1243 * Compute the xfermask for this device. This is not as trivial
1244 * as it seems if we must consider early devices correctly.
1246 * FIXME: pre IDE drive timing (do we care ?).
1248 * LOCKING:
1249 * None.
1251 * RETURNS:
1252 * Computed xfermask
1254 static unsigned int ata_id_xfermask(const u16 *id)
1256 unsigned int pio_mask, mwdma_mask, udma_mask;
1258 /* Usual case. Word 53 indicates word 64 is valid */
1259 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1260 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1261 pio_mask <<= 3;
1262 pio_mask |= 0x7;
1263 } else {
1264 /* If word 64 isn't valid then Word 51 high byte holds
1265 * the PIO timing number for the maximum. Turn it into
1266 * a mask.
1268 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1269 if (mode < 5) /* Valid PIO range */
1270 pio_mask = (2 << mode) - 1;
1271 else
1272 pio_mask = 1;
1274 /* But wait.. there's more. Design your standards by
1275 * committee and you too can get a free iordy field to
1276 * process. However its the speeds not the modes that
1277 * are supported... Note drivers using the timing API
1278 * will get this right anyway
1282 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1284 if (ata_id_is_cfa(id)) {
1286 * Process compact flash extended modes
1288 int pio = id[163] & 0x7;
1289 int dma = (id[163] >> 3) & 7;
1291 if (pio)
1292 pio_mask |= (1 << 5);
1293 if (pio > 1)
1294 pio_mask |= (1 << 6);
1295 if (dma)
1296 mwdma_mask |= (1 << 3);
1297 if (dma > 1)
1298 mwdma_mask |= (1 << 4);
1301 udma_mask = 0;
1302 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1303 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1305 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1309 * ata_port_queue_task - Queue port_task
1310 * @ap: The ata_port to queue port_task for
1311 * @fn: workqueue function to be scheduled
1312 * @data: data for @fn to use
1313 * @delay: delay time for workqueue function
1315 * Schedule @fn(@data) for execution after @delay jiffies using
1316 * port_task. There is one port_task per port and it's the
1317 * user(low level driver)'s responsibility to make sure that only
1318 * one task is active at any given time.
1320 * libata core layer takes care of synchronization between
1321 * port_task and EH. ata_port_queue_task() may be ignored for EH
1322 * synchronization.
1324 * LOCKING:
1325 * Inherited from caller.
1327 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1328 unsigned long delay)
1330 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1331 ap->port_task_data = data;
1333 /* may fail if ata_port_flush_task() in progress */
1334 queue_delayed_work(ata_wq, &ap->port_task, delay);
1338 * ata_port_flush_task - Flush port_task
1339 * @ap: The ata_port to flush port_task for
1341 * After this function completes, port_task is guranteed not to
1342 * be running or scheduled.
1344 * LOCKING:
1345 * Kernel thread context (may sleep)
1347 void ata_port_flush_task(struct ata_port *ap)
1349 DPRINTK("ENTER\n");
1351 cancel_rearming_delayed_work(&ap->port_task);
1353 if (ata_msg_ctl(ap))
1354 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1357 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1359 struct completion *waiting = qc->private_data;
1361 complete(waiting);
1365 * ata_exec_internal_sg - execute libata internal command
1366 * @dev: Device to which the command is sent
1367 * @tf: Taskfile registers for the command and the result
1368 * @cdb: CDB for packet command
1369 * @dma_dir: Data tranfer direction of the command
1370 * @sg: sg list for the data buffer of the command
1371 * @n_elem: Number of sg entries
1373 * Executes libata internal command with timeout. @tf contains
1374 * command on entry and result on return. Timeout and error
1375 * conditions are reported via return value. No recovery action
1376 * is taken after a command times out. It's caller's duty to
1377 * clean up after timeout.
1379 * LOCKING:
1380 * None. Should be called with kernel context, might sleep.
1382 * RETURNS:
1383 * Zero on success, AC_ERR_* mask on failure
1385 unsigned ata_exec_internal_sg(struct ata_device *dev,
1386 struct ata_taskfile *tf, const u8 *cdb,
1387 int dma_dir, struct scatterlist *sg,
1388 unsigned int n_elem)
1390 struct ata_link *link = dev->link;
1391 struct ata_port *ap = link->ap;
1392 u8 command = tf->command;
1393 struct ata_queued_cmd *qc;
1394 unsigned int tag, preempted_tag;
1395 u32 preempted_sactive, preempted_qc_active;
1396 int preempted_nr_active_links;
1397 DECLARE_COMPLETION_ONSTACK(wait);
1398 unsigned long flags;
1399 unsigned int err_mask;
1400 int rc;
1402 spin_lock_irqsave(ap->lock, flags);
1404 /* no internal command while frozen */
1405 if (ap->pflags & ATA_PFLAG_FROZEN) {
1406 spin_unlock_irqrestore(ap->lock, flags);
1407 return AC_ERR_SYSTEM;
1410 /* initialize internal qc */
1412 /* XXX: Tag 0 is used for drivers with legacy EH as some
1413 * drivers choke if any other tag is given. This breaks
1414 * ata_tag_internal() test for those drivers. Don't use new
1415 * EH stuff without converting to it.
1417 if (ap->ops->error_handler)
1418 tag = ATA_TAG_INTERNAL;
1419 else
1420 tag = 0;
1422 if (test_and_set_bit(tag, &ap->qc_allocated))
1423 BUG();
1424 qc = __ata_qc_from_tag(ap, tag);
1426 qc->tag = tag;
1427 qc->scsicmd = NULL;
1428 qc->ap = ap;
1429 qc->dev = dev;
1430 ata_qc_reinit(qc);
1432 preempted_tag = link->active_tag;
1433 preempted_sactive = link->sactive;
1434 preempted_qc_active = ap->qc_active;
1435 preempted_nr_active_links = ap->nr_active_links;
1436 link->active_tag = ATA_TAG_POISON;
1437 link->sactive = 0;
1438 ap->qc_active = 0;
1439 ap->nr_active_links = 0;
1441 /* prepare & issue qc */
1442 qc->tf = *tf;
1443 if (cdb)
1444 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1445 qc->flags |= ATA_QCFLAG_RESULT_TF;
1446 qc->dma_dir = dma_dir;
1447 if (dma_dir != DMA_NONE) {
1448 unsigned int i, buflen = 0;
1450 for (i = 0; i < n_elem; i++)
1451 buflen += sg[i].length;
1453 ata_sg_init(qc, sg, n_elem);
1454 qc->nbytes = buflen;
1457 qc->private_data = &wait;
1458 qc->complete_fn = ata_qc_complete_internal;
1460 ata_qc_issue(qc);
1462 spin_unlock_irqrestore(ap->lock, flags);
1464 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1466 ata_port_flush_task(ap);
1468 if (!rc) {
1469 spin_lock_irqsave(ap->lock, flags);
1471 /* We're racing with irq here. If we lose, the
1472 * following test prevents us from completing the qc
1473 * twice. If we win, the port is frozen and will be
1474 * cleaned up by ->post_internal_cmd().
1476 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1477 qc->err_mask |= AC_ERR_TIMEOUT;
1479 if (ap->ops->error_handler)
1480 ata_port_freeze(ap);
1481 else
1482 ata_qc_complete(qc);
1484 if (ata_msg_warn(ap))
1485 ata_dev_printk(dev, KERN_WARNING,
1486 "qc timeout (cmd 0x%x)\n", command);
1489 spin_unlock_irqrestore(ap->lock, flags);
1492 /* do post_internal_cmd */
1493 if (ap->ops->post_internal_cmd)
1494 ap->ops->post_internal_cmd(qc);
1496 /* perform minimal error analysis */
1497 if (qc->flags & ATA_QCFLAG_FAILED) {
1498 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1499 qc->err_mask |= AC_ERR_DEV;
1501 if (!qc->err_mask)
1502 qc->err_mask |= AC_ERR_OTHER;
1504 if (qc->err_mask & ~AC_ERR_OTHER)
1505 qc->err_mask &= ~AC_ERR_OTHER;
1508 /* finish up */
1509 spin_lock_irqsave(ap->lock, flags);
1511 *tf = qc->result_tf;
1512 err_mask = qc->err_mask;
1514 ata_qc_free(qc);
1515 link->active_tag = preempted_tag;
1516 link->sactive = preempted_sactive;
1517 ap->qc_active = preempted_qc_active;
1518 ap->nr_active_links = preempted_nr_active_links;
1520 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1521 * Until those drivers are fixed, we detect the condition
1522 * here, fail the command with AC_ERR_SYSTEM and reenable the
1523 * port.
1525 * Note that this doesn't change any behavior as internal
1526 * command failure results in disabling the device in the
1527 * higher layer for LLDDs without new reset/EH callbacks.
1529 * Kill the following code as soon as those drivers are fixed.
1531 if (ap->flags & ATA_FLAG_DISABLED) {
1532 err_mask |= AC_ERR_SYSTEM;
1533 ata_port_probe(ap);
1536 spin_unlock_irqrestore(ap->lock, flags);
1538 return err_mask;
1542 * ata_exec_internal - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data tranfer direction of the command
1547 * @buf: Data buffer of the command
1548 * @buflen: Length of data buffer
1550 * Wrapper around ata_exec_internal_sg() which takes simple
1551 * buffer instead of sg list.
1553 * LOCKING:
1554 * None. Should be called with kernel context, might sleep.
1556 * RETURNS:
1557 * Zero on success, AC_ERR_* mask on failure
1559 unsigned ata_exec_internal(struct ata_device *dev,
1560 struct ata_taskfile *tf, const u8 *cdb,
1561 int dma_dir, void *buf, unsigned int buflen)
1563 struct scatterlist *psg = NULL, sg;
1564 unsigned int n_elem = 0;
1566 if (dma_dir != DMA_NONE) {
1567 WARN_ON(!buf);
1568 sg_init_one(&sg, buf, buflen);
1569 psg = &sg;
1570 n_elem++;
1573 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1577 * ata_do_simple_cmd - execute simple internal command
1578 * @dev: Device to which the command is sent
1579 * @cmd: Opcode to execute
1581 * Execute a 'simple' command, that only consists of the opcode
1582 * 'cmd' itself, without filling any other registers
1584 * LOCKING:
1585 * Kernel thread context (may sleep).
1587 * RETURNS:
1588 * Zero on success, AC_ERR_* mask on failure
1590 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1592 struct ata_taskfile tf;
1594 ata_tf_init(dev, &tf);
1596 tf.command = cmd;
1597 tf.flags |= ATA_TFLAG_DEVICE;
1598 tf.protocol = ATA_PROT_NODATA;
1600 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1604 * ata_pio_need_iordy - check if iordy needed
1605 * @adev: ATA device
1607 * Check if the current speed of the device requires IORDY. Used
1608 * by various controllers for chip configuration.
1611 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1613 /* Controller doesn't support IORDY. Probably a pointless check
1614 as the caller should know this */
1615 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1616 return 0;
1617 /* PIO3 and higher it is mandatory */
1618 if (adev->pio_mode > XFER_PIO_2)
1619 return 1;
1620 /* We turn it on when possible */
1621 if (ata_id_has_iordy(adev->id))
1622 return 1;
1623 return 0;
1627 * ata_pio_mask_no_iordy - Return the non IORDY mask
1628 * @adev: ATA device
1630 * Compute the highest mode possible if we are not using iordy. Return
1631 * -1 if no iordy mode is available.
1634 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1636 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1637 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1638 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1639 /* Is the speed faster than the drive allows non IORDY ? */
1640 if (pio) {
1641 /* This is cycle times not frequency - watch the logic! */
1642 if (pio > 240) /* PIO2 is 240nS per cycle */
1643 return 3 << ATA_SHIFT_PIO;
1644 return 7 << ATA_SHIFT_PIO;
1647 return 3 << ATA_SHIFT_PIO;
1651 * ata_dev_read_id - Read ID data from the specified device
1652 * @dev: target device
1653 * @p_class: pointer to class of the target device (may be changed)
1654 * @flags: ATA_READID_* flags
1655 * @id: buffer to read IDENTIFY data into
1657 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1658 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1659 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1660 * for pre-ATA4 drives.
1662 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1663 * now we abort if we hit that case.
1665 * LOCKING:
1666 * Kernel thread context (may sleep)
1668 * RETURNS:
1669 * 0 on success, -errno otherwise.
1671 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1672 unsigned int flags, u16 *id)
1674 struct ata_port *ap = dev->link->ap;
1675 unsigned int class = *p_class;
1676 struct ata_taskfile tf;
1677 unsigned int err_mask = 0;
1678 const char *reason;
1679 int may_fallback = 1, tried_spinup = 0;
1680 int rc;
1682 if (ata_msg_ctl(ap))
1683 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1685 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1686 retry:
1687 ata_tf_init(dev, &tf);
1689 switch (class) {
1690 case ATA_DEV_ATA:
1691 tf.command = ATA_CMD_ID_ATA;
1692 break;
1693 case ATA_DEV_ATAPI:
1694 tf.command = ATA_CMD_ID_ATAPI;
1695 break;
1696 default:
1697 rc = -ENODEV;
1698 reason = "unsupported class";
1699 goto err_out;
1702 tf.protocol = ATA_PROT_PIO;
1704 /* Some devices choke if TF registers contain garbage. Make
1705 * sure those are properly initialized.
1707 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1709 /* Device presence detection is unreliable on some
1710 * controllers. Always poll IDENTIFY if available.
1712 tf.flags |= ATA_TFLAG_POLLING;
1714 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1715 id, sizeof(id[0]) * ATA_ID_WORDS);
1716 if (err_mask) {
1717 if (err_mask & AC_ERR_NODEV_HINT) {
1718 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1719 ap->print_id, dev->devno);
1720 return -ENOENT;
1723 /* Device or controller might have reported the wrong
1724 * device class. Give a shot at the other IDENTIFY if
1725 * the current one is aborted by the device.
1727 if (may_fallback &&
1728 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1729 may_fallback = 0;
1731 if (class == ATA_DEV_ATA)
1732 class = ATA_DEV_ATAPI;
1733 else
1734 class = ATA_DEV_ATA;
1735 goto retry;
1738 rc = -EIO;
1739 reason = "I/O error";
1740 goto err_out;
1743 /* Falling back doesn't make sense if ID data was read
1744 * successfully at least once.
1746 may_fallback = 0;
1748 swap_buf_le16(id, ATA_ID_WORDS);
1750 /* sanity check */
1751 rc = -EINVAL;
1752 reason = "device reports invalid type";
1754 if (class == ATA_DEV_ATA) {
1755 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1756 goto err_out;
1757 } else {
1758 if (ata_id_is_ata(id))
1759 goto err_out;
1762 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1763 tried_spinup = 1;
1765 * Drive powered-up in standby mode, and requires a specific
1766 * SET_FEATURES spin-up subcommand before it will accept
1767 * anything other than the original IDENTIFY command.
1769 ata_tf_init(dev, &tf);
1770 tf.command = ATA_CMD_SET_FEATURES;
1771 tf.feature = SETFEATURES_SPINUP;
1772 tf.protocol = ATA_PROT_NODATA;
1773 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1774 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1775 if (err_mask && id[2] != 0x738c) {
1776 rc = -EIO;
1777 reason = "SPINUP failed";
1778 goto err_out;
1781 * If the drive initially returned incomplete IDENTIFY info,
1782 * we now must reissue the IDENTIFY command.
1784 if (id[2] == 0x37c8)
1785 goto retry;
1788 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1790 * The exact sequence expected by certain pre-ATA4 drives is:
1791 * SRST RESET
1792 * IDENTIFY (optional in early ATA)
1793 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1794 * anything else..
1795 * Some drives were very specific about that exact sequence.
1797 * Note that ATA4 says lba is mandatory so the second check
1798 * shoud never trigger.
1800 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1801 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1802 if (err_mask) {
1803 rc = -EIO;
1804 reason = "INIT_DEV_PARAMS failed";
1805 goto err_out;
1808 /* current CHS translation info (id[53-58]) might be
1809 * changed. reread the identify device info.
1811 flags &= ~ATA_READID_POSTRESET;
1812 goto retry;
1816 *p_class = class;
1818 return 0;
1820 err_out:
1821 if (ata_msg_warn(ap))
1822 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1823 "(%s, err_mask=0x%x)\n", reason, err_mask);
1824 return rc;
1827 static inline u8 ata_dev_knobble(struct ata_device *dev)
1829 struct ata_port *ap = dev->link->ap;
1830 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1833 static void ata_dev_config_ncq(struct ata_device *dev,
1834 char *desc, size_t desc_sz)
1836 struct ata_port *ap = dev->link->ap;
1837 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1839 if (!ata_id_has_ncq(dev->id)) {
1840 desc[0] = '\0';
1841 return;
1843 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1844 snprintf(desc, desc_sz, "NCQ (not used)");
1845 return;
1847 if (ap->flags & ATA_FLAG_NCQ) {
1848 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1849 dev->flags |= ATA_DFLAG_NCQ;
1852 if (hdepth >= ddepth)
1853 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1854 else
1855 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1859 * ata_dev_configure - Configure the specified ATA/ATAPI device
1860 * @dev: Target device to configure
1862 * Configure @dev according to @dev->id. Generic and low-level
1863 * driver specific fixups are also applied.
1865 * LOCKING:
1866 * Kernel thread context (may sleep)
1868 * RETURNS:
1869 * 0 on success, -errno otherwise
1871 int ata_dev_configure(struct ata_device *dev)
1873 struct ata_port *ap = dev->link->ap;
1874 struct ata_eh_context *ehc = &dev->link->eh_context;
1875 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1876 const u16 *id = dev->id;
1877 unsigned int xfer_mask;
1878 char revbuf[7]; /* XYZ-99\0 */
1879 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1880 char modelbuf[ATA_ID_PROD_LEN+1];
1881 int rc;
1883 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1884 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1885 __FUNCTION__);
1886 return 0;
1889 if (ata_msg_probe(ap))
1890 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1892 /* set horkage */
1893 dev->horkage |= ata_dev_blacklisted(dev);
1895 /* let ACPI work its magic */
1896 rc = ata_acpi_on_devcfg(dev);
1897 if (rc)
1898 return rc;
1900 /* massage HPA, do it early as it might change IDENTIFY data */
1901 rc = ata_hpa_resize(dev);
1902 if (rc)
1903 return rc;
1905 /* print device capabilities */
1906 if (ata_msg_probe(ap))
1907 ata_dev_printk(dev, KERN_DEBUG,
1908 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1909 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1910 __FUNCTION__,
1911 id[49], id[82], id[83], id[84],
1912 id[85], id[86], id[87], id[88]);
1914 /* initialize to-be-configured parameters */
1915 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1916 dev->max_sectors = 0;
1917 dev->cdb_len = 0;
1918 dev->n_sectors = 0;
1919 dev->cylinders = 0;
1920 dev->heads = 0;
1921 dev->sectors = 0;
1924 * common ATA, ATAPI feature tests
1927 /* find max transfer mode; for printk only */
1928 xfer_mask = ata_id_xfermask(id);
1930 if (ata_msg_probe(ap))
1931 ata_dump_id(id);
1933 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1934 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1935 sizeof(fwrevbuf));
1937 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1938 sizeof(modelbuf));
1940 /* ATA-specific feature tests */
1941 if (dev->class == ATA_DEV_ATA) {
1942 if (ata_id_is_cfa(id)) {
1943 if (id[162] & 1) /* CPRM may make this media unusable */
1944 ata_dev_printk(dev, KERN_WARNING,
1945 "supports DRM functions and may "
1946 "not be fully accessable.\n");
1947 snprintf(revbuf, 7, "CFA");
1949 else
1950 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1952 dev->n_sectors = ata_id_n_sectors(id);
1954 if (dev->id[59] & 0x100)
1955 dev->multi_count = dev->id[59] & 0xff;
1957 if (ata_id_has_lba(id)) {
1958 const char *lba_desc;
1959 char ncq_desc[20];
1961 lba_desc = "LBA";
1962 dev->flags |= ATA_DFLAG_LBA;
1963 if (ata_id_has_lba48(id)) {
1964 dev->flags |= ATA_DFLAG_LBA48;
1965 lba_desc = "LBA48";
1967 if (dev->n_sectors >= (1UL << 28) &&
1968 ata_id_has_flush_ext(id))
1969 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1972 /* config NCQ */
1973 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1975 /* print device info to dmesg */
1976 if (ata_msg_drv(ap) && print_info) {
1977 ata_dev_printk(dev, KERN_INFO,
1978 "%s: %s, %s, max %s\n",
1979 revbuf, modelbuf, fwrevbuf,
1980 ata_mode_string(xfer_mask));
1981 ata_dev_printk(dev, KERN_INFO,
1982 "%Lu sectors, multi %u: %s %s\n",
1983 (unsigned long long)dev->n_sectors,
1984 dev->multi_count, lba_desc, ncq_desc);
1986 } else {
1987 /* CHS */
1989 /* Default translation */
1990 dev->cylinders = id[1];
1991 dev->heads = id[3];
1992 dev->sectors = id[6];
1994 if (ata_id_current_chs_valid(id)) {
1995 /* Current CHS translation is valid. */
1996 dev->cylinders = id[54];
1997 dev->heads = id[55];
1998 dev->sectors = id[56];
2001 /* print device info to dmesg */
2002 if (ata_msg_drv(ap) && print_info) {
2003 ata_dev_printk(dev, KERN_INFO,
2004 "%s: %s, %s, max %s\n",
2005 revbuf, modelbuf, fwrevbuf,
2006 ata_mode_string(xfer_mask));
2007 ata_dev_printk(dev, KERN_INFO,
2008 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2009 (unsigned long long)dev->n_sectors,
2010 dev->multi_count, dev->cylinders,
2011 dev->heads, dev->sectors);
2015 dev->cdb_len = 16;
2018 /* ATAPI-specific feature tests */
2019 else if (dev->class == ATA_DEV_ATAPI) {
2020 const char *cdb_intr_string = "";
2021 const char *atapi_an_string = "";
2022 u32 sntf;
2024 rc = atapi_cdb_len(id);
2025 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2026 if (ata_msg_warn(ap))
2027 ata_dev_printk(dev, KERN_WARNING,
2028 "unsupported CDB len\n");
2029 rc = -EINVAL;
2030 goto err_out_nosup;
2032 dev->cdb_len = (unsigned int) rc;
2034 /* Enable ATAPI AN if both the host and device have
2035 * the support. If PMP is attached, SNTF is required
2036 * to enable ATAPI AN to discern between PHY status
2037 * changed notifications and ATAPI ANs.
2039 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2040 (!ap->nr_pmp_links ||
2041 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2042 unsigned int err_mask;
2044 /* issue SET feature command to turn this on */
2045 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2046 if (err_mask)
2047 ata_dev_printk(dev, KERN_ERR,
2048 "failed to enable ATAPI AN "
2049 "(err_mask=0x%x)\n", err_mask);
2050 else {
2051 dev->flags |= ATA_DFLAG_AN;
2052 atapi_an_string = ", ATAPI AN";
2056 if (ata_id_cdb_intr(dev->id)) {
2057 dev->flags |= ATA_DFLAG_CDB_INTR;
2058 cdb_intr_string = ", CDB intr";
2061 /* print device info to dmesg */
2062 if (ata_msg_drv(ap) && print_info)
2063 ata_dev_printk(dev, KERN_INFO,
2064 "ATAPI: %s, %s, max %s%s%s\n",
2065 modelbuf, fwrevbuf,
2066 ata_mode_string(xfer_mask),
2067 cdb_intr_string, atapi_an_string);
2070 /* determine max_sectors */
2071 dev->max_sectors = ATA_MAX_SECTORS;
2072 if (dev->flags & ATA_DFLAG_LBA48)
2073 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2075 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2076 /* Let the user know. We don't want to disallow opens for
2077 rescue purposes, or in case the vendor is just a blithering
2078 idiot */
2079 if (print_info) {
2080 ata_dev_printk(dev, KERN_WARNING,
2081 "Drive reports diagnostics failure. This may indicate a drive\n");
2082 ata_dev_printk(dev, KERN_WARNING,
2083 "fault or invalid emulation. Contact drive vendor for information.\n");
2087 /* limit bridge transfers to udma5, 200 sectors */
2088 if (ata_dev_knobble(dev)) {
2089 if (ata_msg_drv(ap) && print_info)
2090 ata_dev_printk(dev, KERN_INFO,
2091 "applying bridge limits\n");
2092 dev->udma_mask &= ATA_UDMA5;
2093 dev->max_sectors = ATA_MAX_SECTORS;
2096 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2097 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2098 dev->max_sectors);
2100 if (ap->ops->dev_config)
2101 ap->ops->dev_config(dev);
2103 if (ata_msg_probe(ap))
2104 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2105 __FUNCTION__, ata_chk_status(ap));
2106 return 0;
2108 err_out_nosup:
2109 if (ata_msg_probe(ap))
2110 ata_dev_printk(dev, KERN_DEBUG,
2111 "%s: EXIT, err\n", __FUNCTION__);
2112 return rc;
2116 * ata_cable_40wire - return 40 wire cable type
2117 * @ap: port
2119 * Helper method for drivers which want to hardwire 40 wire cable
2120 * detection.
2123 int ata_cable_40wire(struct ata_port *ap)
2125 return ATA_CBL_PATA40;
2129 * ata_cable_80wire - return 80 wire cable type
2130 * @ap: port
2132 * Helper method for drivers which want to hardwire 80 wire cable
2133 * detection.
2136 int ata_cable_80wire(struct ata_port *ap)
2138 return ATA_CBL_PATA80;
2142 * ata_cable_unknown - return unknown PATA cable.
2143 * @ap: port
2145 * Helper method for drivers which have no PATA cable detection.
2148 int ata_cable_unknown(struct ata_port *ap)
2150 return ATA_CBL_PATA_UNK;
2154 * ata_cable_sata - return SATA cable type
2155 * @ap: port
2157 * Helper method for drivers which have SATA cables
2160 int ata_cable_sata(struct ata_port *ap)
2162 return ATA_CBL_SATA;
2166 * ata_bus_probe - Reset and probe ATA bus
2167 * @ap: Bus to probe
2169 * Master ATA bus probing function. Initiates a hardware-dependent
2170 * bus reset, then attempts to identify any devices found on
2171 * the bus.
2173 * LOCKING:
2174 * PCI/etc. bus probe sem.
2176 * RETURNS:
2177 * Zero on success, negative errno otherwise.
2180 int ata_bus_probe(struct ata_port *ap)
2182 unsigned int classes[ATA_MAX_DEVICES];
2183 int tries[ATA_MAX_DEVICES];
2184 int rc;
2185 struct ata_device *dev;
2187 ata_port_probe(ap);
2189 ata_link_for_each_dev(dev, &ap->link)
2190 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2192 retry:
2193 /* reset and determine device classes */
2194 ap->ops->phy_reset(ap);
2196 ata_link_for_each_dev(dev, &ap->link) {
2197 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2198 dev->class != ATA_DEV_UNKNOWN)
2199 classes[dev->devno] = dev->class;
2200 else
2201 classes[dev->devno] = ATA_DEV_NONE;
2203 dev->class = ATA_DEV_UNKNOWN;
2206 ata_port_probe(ap);
2208 /* after the reset the device state is PIO 0 and the controller
2209 state is undefined. Record the mode */
2211 ata_link_for_each_dev(dev, &ap->link)
2212 dev->pio_mode = XFER_PIO_0;
2214 /* read IDENTIFY page and configure devices. We have to do the identify
2215 specific sequence bass-ackwards so that PDIAG- is released by
2216 the slave device */
2218 ata_link_for_each_dev(dev, &ap->link) {
2219 if (tries[dev->devno])
2220 dev->class = classes[dev->devno];
2222 if (!ata_dev_enabled(dev))
2223 continue;
2225 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2226 dev->id);
2227 if (rc)
2228 goto fail;
2231 /* Now ask for the cable type as PDIAG- should have been released */
2232 if (ap->ops->cable_detect)
2233 ap->cbl = ap->ops->cable_detect(ap);
2235 /* We may have SATA bridge glue hiding here irrespective of the
2236 reported cable types and sensed types */
2237 ata_link_for_each_dev(dev, &ap->link) {
2238 if (!ata_dev_enabled(dev))
2239 continue;
2240 /* SATA drives indicate we have a bridge. We don't know which
2241 end of the link the bridge is which is a problem */
2242 if (ata_id_is_sata(dev->id))
2243 ap->cbl = ATA_CBL_SATA;
2246 /* After the identify sequence we can now set up the devices. We do
2247 this in the normal order so that the user doesn't get confused */
2249 ata_link_for_each_dev(dev, &ap->link) {
2250 if (!ata_dev_enabled(dev))
2251 continue;
2253 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2254 rc = ata_dev_configure(dev);
2255 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2256 if (rc)
2257 goto fail;
2260 /* configure transfer mode */
2261 rc = ata_set_mode(&ap->link, &dev);
2262 if (rc)
2263 goto fail;
2265 ata_link_for_each_dev(dev, &ap->link)
2266 if (ata_dev_enabled(dev))
2267 return 0;
2269 /* no device present, disable port */
2270 ata_port_disable(ap);
2271 return -ENODEV;
2273 fail:
2274 tries[dev->devno]--;
2276 switch (rc) {
2277 case -EINVAL:
2278 /* eeek, something went very wrong, give up */
2279 tries[dev->devno] = 0;
2280 break;
2282 case -ENODEV:
2283 /* give it just one more chance */
2284 tries[dev->devno] = min(tries[dev->devno], 1);
2285 case -EIO:
2286 if (tries[dev->devno] == 1) {
2287 /* This is the last chance, better to slow
2288 * down than lose it.
2290 sata_down_spd_limit(&ap->link);
2291 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2295 if (!tries[dev->devno])
2296 ata_dev_disable(dev);
2298 goto retry;
2302 * ata_port_probe - Mark port as enabled
2303 * @ap: Port for which we indicate enablement
2305 * Modify @ap data structure such that the system
2306 * thinks that the entire port is enabled.
2308 * LOCKING: host lock, or some other form of
2309 * serialization.
2312 void ata_port_probe(struct ata_port *ap)
2314 ap->flags &= ~ATA_FLAG_DISABLED;
2318 * sata_print_link_status - Print SATA link status
2319 * @link: SATA link to printk link status about
2321 * This function prints link speed and status of a SATA link.
2323 * LOCKING:
2324 * None.
2326 void sata_print_link_status(struct ata_link *link)
2328 u32 sstatus, scontrol, tmp;
2330 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2331 return;
2332 sata_scr_read(link, SCR_CONTROL, &scontrol);
2334 if (ata_link_online(link)) {
2335 tmp = (sstatus >> 4) & 0xf;
2336 ata_link_printk(link, KERN_INFO,
2337 "SATA link up %s (SStatus %X SControl %X)\n",
2338 sata_spd_string(tmp), sstatus, scontrol);
2339 } else {
2340 ata_link_printk(link, KERN_INFO,
2341 "SATA link down (SStatus %X SControl %X)\n",
2342 sstatus, scontrol);
2347 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2348 * @ap: SATA port associated with target SATA PHY.
2350 * This function issues commands to standard SATA Sxxx
2351 * PHY registers, to wake up the phy (and device), and
2352 * clear any reset condition.
2354 * LOCKING:
2355 * PCI/etc. bus probe sem.
2358 void __sata_phy_reset(struct ata_port *ap)
2360 struct ata_link *link = &ap->link;
2361 unsigned long timeout = jiffies + (HZ * 5);
2362 u32 sstatus;
2364 if (ap->flags & ATA_FLAG_SATA_RESET) {
2365 /* issue phy wake/reset */
2366 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2367 /* Couldn't find anything in SATA I/II specs, but
2368 * AHCI-1.1 10.4.2 says at least 1 ms. */
2369 mdelay(1);
2371 /* phy wake/clear reset */
2372 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2374 /* wait for phy to become ready, if necessary */
2375 do {
2376 msleep(200);
2377 sata_scr_read(link, SCR_STATUS, &sstatus);
2378 if ((sstatus & 0xf) != 1)
2379 break;
2380 } while (time_before(jiffies, timeout));
2382 /* print link status */
2383 sata_print_link_status(link);
2385 /* TODO: phy layer with polling, timeouts, etc. */
2386 if (!ata_link_offline(link))
2387 ata_port_probe(ap);
2388 else
2389 ata_port_disable(ap);
2391 if (ap->flags & ATA_FLAG_DISABLED)
2392 return;
2394 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2395 ata_port_disable(ap);
2396 return;
2399 ap->cbl = ATA_CBL_SATA;
2403 * sata_phy_reset - Reset SATA bus.
2404 * @ap: SATA port associated with target SATA PHY.
2406 * This function resets the SATA bus, and then probes
2407 * the bus for devices.
2409 * LOCKING:
2410 * PCI/etc. bus probe sem.
2413 void sata_phy_reset(struct ata_port *ap)
2415 __sata_phy_reset(ap);
2416 if (ap->flags & ATA_FLAG_DISABLED)
2417 return;
2418 ata_bus_reset(ap);
2422 * ata_dev_pair - return other device on cable
2423 * @adev: device
2425 * Obtain the other device on the same cable, or if none is
2426 * present NULL is returned
2429 struct ata_device *ata_dev_pair(struct ata_device *adev)
2431 struct ata_link *link = adev->link;
2432 struct ata_device *pair = &link->device[1 - adev->devno];
2433 if (!ata_dev_enabled(pair))
2434 return NULL;
2435 return pair;
2439 * ata_port_disable - Disable port.
2440 * @ap: Port to be disabled.
2442 * Modify @ap data structure such that the system
2443 * thinks that the entire port is disabled, and should
2444 * never attempt to probe or communicate with devices
2445 * on this port.
2447 * LOCKING: host lock, or some other form of
2448 * serialization.
2451 void ata_port_disable(struct ata_port *ap)
2453 ap->link.device[0].class = ATA_DEV_NONE;
2454 ap->link.device[1].class = ATA_DEV_NONE;
2455 ap->flags |= ATA_FLAG_DISABLED;
2459 * sata_down_spd_limit - adjust SATA spd limit downward
2460 * @link: Link to adjust SATA spd limit for
2462 * Adjust SATA spd limit of @link downward. Note that this
2463 * function only adjusts the limit. The change must be applied
2464 * using sata_set_spd().
2466 * LOCKING:
2467 * Inherited from caller.
2469 * RETURNS:
2470 * 0 on success, negative errno on failure
2472 int sata_down_spd_limit(struct ata_link *link)
2474 u32 sstatus, spd, mask;
2475 int rc, highbit;
2477 if (!sata_scr_valid(link))
2478 return -EOPNOTSUPP;
2480 /* If SCR can be read, use it to determine the current SPD.
2481 * If not, use cached value in link->sata_spd.
2483 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2484 if (rc == 0)
2485 spd = (sstatus >> 4) & 0xf;
2486 else
2487 spd = link->sata_spd;
2489 mask = link->sata_spd_limit;
2490 if (mask <= 1)
2491 return -EINVAL;
2493 /* unconditionally mask off the highest bit */
2494 highbit = fls(mask) - 1;
2495 mask &= ~(1 << highbit);
2497 /* Mask off all speeds higher than or equal to the current
2498 * one. Force 1.5Gbps if current SPD is not available.
2500 if (spd > 1)
2501 mask &= (1 << (spd - 1)) - 1;
2502 else
2503 mask &= 1;
2505 /* were we already at the bottom? */
2506 if (!mask)
2507 return -EINVAL;
2509 link->sata_spd_limit = mask;
2511 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2512 sata_spd_string(fls(mask)));
2514 return 0;
2517 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2519 u32 spd, limit;
2521 if (link->sata_spd_limit == UINT_MAX)
2522 limit = 0;
2523 else
2524 limit = fls(link->sata_spd_limit);
2526 spd = (*scontrol >> 4) & 0xf;
2527 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2529 return spd != limit;
2533 * sata_set_spd_needed - is SATA spd configuration needed
2534 * @link: Link in question
2536 * Test whether the spd limit in SControl matches
2537 * @link->sata_spd_limit. This function is used to determine
2538 * whether hardreset is necessary to apply SATA spd
2539 * configuration.
2541 * LOCKING:
2542 * Inherited from caller.
2544 * RETURNS:
2545 * 1 if SATA spd configuration is needed, 0 otherwise.
2547 int sata_set_spd_needed(struct ata_link *link)
2549 u32 scontrol;
2551 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2552 return 0;
2554 return __sata_set_spd_needed(link, &scontrol);
2558 * sata_set_spd - set SATA spd according to spd limit
2559 * @link: Link to set SATA spd for
2561 * Set SATA spd of @link according to sata_spd_limit.
2563 * LOCKING:
2564 * Inherited from caller.
2566 * RETURNS:
2567 * 0 if spd doesn't need to be changed, 1 if spd has been
2568 * changed. Negative errno if SCR registers are inaccessible.
2570 int sata_set_spd(struct ata_link *link)
2572 u32 scontrol;
2573 int rc;
2575 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2576 return rc;
2578 if (!__sata_set_spd_needed(link, &scontrol))
2579 return 0;
2581 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2582 return rc;
2584 return 1;
2588 * This mode timing computation functionality is ported over from
2589 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2592 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2593 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2594 * for UDMA6, which is currently supported only by Maxtor drives.
2596 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2599 static const struct ata_timing ata_timing[] = {
2601 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2602 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2603 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2604 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2606 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2607 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2608 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2609 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2610 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2612 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2614 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2615 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2616 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2618 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2619 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2620 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2622 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2623 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2624 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2625 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2627 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2628 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2629 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2631 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2633 { 0xFF }
2636 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2637 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2639 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2641 q->setup = EZ(t->setup * 1000, T);
2642 q->act8b = EZ(t->act8b * 1000, T);
2643 q->rec8b = EZ(t->rec8b * 1000, T);
2644 q->cyc8b = EZ(t->cyc8b * 1000, T);
2645 q->active = EZ(t->active * 1000, T);
2646 q->recover = EZ(t->recover * 1000, T);
2647 q->cycle = EZ(t->cycle * 1000, T);
2648 q->udma = EZ(t->udma * 1000, UT);
2651 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2652 struct ata_timing *m, unsigned int what)
2654 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2655 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2656 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2657 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2658 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2659 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2660 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2661 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2664 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2666 const struct ata_timing *t;
2668 for (t = ata_timing; t->mode != speed; t++)
2669 if (t->mode == 0xFF)
2670 return NULL;
2671 return t;
2674 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2675 struct ata_timing *t, int T, int UT)
2677 const struct ata_timing *s;
2678 struct ata_timing p;
2681 * Find the mode.
2684 if (!(s = ata_timing_find_mode(speed)))
2685 return -EINVAL;
2687 memcpy(t, s, sizeof(*s));
2690 * If the drive is an EIDE drive, it can tell us it needs extended
2691 * PIO/MW_DMA cycle timing.
2694 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2695 memset(&p, 0, sizeof(p));
2696 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2697 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2698 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2699 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2700 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2702 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2706 * Convert the timing to bus clock counts.
2709 ata_timing_quantize(t, t, T, UT);
2712 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2713 * S.M.A.R.T * and some other commands. We have to ensure that the
2714 * DMA cycle timing is slower/equal than the fastest PIO timing.
2717 if (speed > XFER_PIO_6) {
2718 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2719 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2723 * Lengthen active & recovery time so that cycle time is correct.
2726 if (t->act8b + t->rec8b < t->cyc8b) {
2727 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2728 t->rec8b = t->cyc8b - t->act8b;
2731 if (t->active + t->recover < t->cycle) {
2732 t->active += (t->cycle - (t->active + t->recover)) / 2;
2733 t->recover = t->cycle - t->active;
2736 /* In a few cases quantisation may produce enough errors to
2737 leave t->cycle too low for the sum of active and recovery
2738 if so we must correct this */
2739 if (t->active + t->recover > t->cycle)
2740 t->cycle = t->active + t->recover;
2742 return 0;
2746 * ata_down_xfermask_limit - adjust dev xfer masks downward
2747 * @dev: Device to adjust xfer masks
2748 * @sel: ATA_DNXFER_* selector
2750 * Adjust xfer masks of @dev downward. Note that this function
2751 * does not apply the change. Invoking ata_set_mode() afterwards
2752 * will apply the limit.
2754 * LOCKING:
2755 * Inherited from caller.
2757 * RETURNS:
2758 * 0 on success, negative errno on failure
2760 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2762 char buf[32];
2763 unsigned int orig_mask, xfer_mask;
2764 unsigned int pio_mask, mwdma_mask, udma_mask;
2765 int quiet, highbit;
2767 quiet = !!(sel & ATA_DNXFER_QUIET);
2768 sel &= ~ATA_DNXFER_QUIET;
2770 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2771 dev->mwdma_mask,
2772 dev->udma_mask);
2773 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2775 switch (sel) {
2776 case ATA_DNXFER_PIO:
2777 highbit = fls(pio_mask) - 1;
2778 pio_mask &= ~(1 << highbit);
2779 break;
2781 case ATA_DNXFER_DMA:
2782 if (udma_mask) {
2783 highbit = fls(udma_mask) - 1;
2784 udma_mask &= ~(1 << highbit);
2785 if (!udma_mask)
2786 return -ENOENT;
2787 } else if (mwdma_mask) {
2788 highbit = fls(mwdma_mask) - 1;
2789 mwdma_mask &= ~(1 << highbit);
2790 if (!mwdma_mask)
2791 return -ENOENT;
2793 break;
2795 case ATA_DNXFER_40C:
2796 udma_mask &= ATA_UDMA_MASK_40C;
2797 break;
2799 case ATA_DNXFER_FORCE_PIO0:
2800 pio_mask &= 1;
2801 case ATA_DNXFER_FORCE_PIO:
2802 mwdma_mask = 0;
2803 udma_mask = 0;
2804 break;
2806 default:
2807 BUG();
2810 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2812 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2813 return -ENOENT;
2815 if (!quiet) {
2816 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2817 snprintf(buf, sizeof(buf), "%s:%s",
2818 ata_mode_string(xfer_mask),
2819 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2820 else
2821 snprintf(buf, sizeof(buf), "%s",
2822 ata_mode_string(xfer_mask));
2824 ata_dev_printk(dev, KERN_WARNING,
2825 "limiting speed to %s\n", buf);
2828 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2829 &dev->udma_mask);
2831 return 0;
2834 static int ata_dev_set_mode(struct ata_device *dev)
2836 struct ata_eh_context *ehc = &dev->link->eh_context;
2837 unsigned int err_mask;
2838 int rc;
2840 dev->flags &= ~ATA_DFLAG_PIO;
2841 if (dev->xfer_shift == ATA_SHIFT_PIO)
2842 dev->flags |= ATA_DFLAG_PIO;
2844 err_mask = ata_dev_set_xfermode(dev);
2845 /* Old CFA may refuse this command, which is just fine */
2846 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2847 err_mask &= ~AC_ERR_DEV;
2848 /* Some very old devices and some bad newer ones fail any kind of
2849 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2850 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2851 dev->pio_mode <= XFER_PIO_2)
2852 err_mask &= ~AC_ERR_DEV;
2853 if (err_mask) {
2854 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2855 "(err_mask=0x%x)\n", err_mask);
2856 return -EIO;
2859 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2860 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2861 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2862 if (rc)
2863 return rc;
2865 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2866 dev->xfer_shift, (int)dev->xfer_mode);
2868 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2869 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2870 return 0;
2874 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2875 * @link: link on which timings will be programmed
2876 * @r_failed_dev: out paramter for failed device
2878 * Standard implementation of the function used to tune and set
2879 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2880 * ata_dev_set_mode() fails, pointer to the failing device is
2881 * returned in @r_failed_dev.
2883 * LOCKING:
2884 * PCI/etc. bus probe sem.
2886 * RETURNS:
2887 * 0 on success, negative errno otherwise
2890 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2892 struct ata_port *ap = link->ap;
2893 struct ata_device *dev;
2894 int rc = 0, used_dma = 0, found = 0;
2896 /* step 1: calculate xfer_mask */
2897 ata_link_for_each_dev(dev, link) {
2898 unsigned int pio_mask, dma_mask;
2900 if (!ata_dev_enabled(dev))
2901 continue;
2903 ata_dev_xfermask(dev);
2905 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2906 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2907 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2908 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2910 found = 1;
2911 if (dev->dma_mode)
2912 used_dma = 1;
2914 if (!found)
2915 goto out;
2917 /* step 2: always set host PIO timings */
2918 ata_link_for_each_dev(dev, link) {
2919 if (!ata_dev_enabled(dev))
2920 continue;
2922 if (!dev->pio_mode) {
2923 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2924 rc = -EINVAL;
2925 goto out;
2928 dev->xfer_mode = dev->pio_mode;
2929 dev->xfer_shift = ATA_SHIFT_PIO;
2930 if (ap->ops->set_piomode)
2931 ap->ops->set_piomode(ap, dev);
2934 /* step 3: set host DMA timings */
2935 ata_link_for_each_dev(dev, link) {
2936 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2937 continue;
2939 dev->xfer_mode = dev->dma_mode;
2940 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2941 if (ap->ops->set_dmamode)
2942 ap->ops->set_dmamode(ap, dev);
2945 /* step 4: update devices' xfer mode */
2946 ata_link_for_each_dev(dev, link) {
2947 /* don't update suspended devices' xfer mode */
2948 if (!ata_dev_enabled(dev))
2949 continue;
2951 rc = ata_dev_set_mode(dev);
2952 if (rc)
2953 goto out;
2956 /* Record simplex status. If we selected DMA then the other
2957 * host channels are not permitted to do so.
2959 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2960 ap->host->simplex_claimed = ap;
2962 out:
2963 if (rc)
2964 *r_failed_dev = dev;
2965 return rc;
2969 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2970 * @link: link on which timings will be programmed
2971 * @r_failed_dev: out paramter for failed device
2973 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2974 * ata_set_mode() fails, pointer to the failing device is
2975 * returned in @r_failed_dev.
2977 * LOCKING:
2978 * PCI/etc. bus probe sem.
2980 * RETURNS:
2981 * 0 on success, negative errno otherwise
2983 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2985 struct ata_port *ap = link->ap;
2987 /* has private set_mode? */
2988 if (ap->ops->set_mode)
2989 return ap->ops->set_mode(link, r_failed_dev);
2990 return ata_do_set_mode(link, r_failed_dev);
2994 * ata_tf_to_host - issue ATA taskfile to host controller
2995 * @ap: port to which command is being issued
2996 * @tf: ATA taskfile register set
2998 * Issues ATA taskfile register set to ATA host controller,
2999 * with proper synchronization with interrupt handler and
3000 * other threads.
3002 * LOCKING:
3003 * spin_lock_irqsave(host lock)
3006 static inline void ata_tf_to_host(struct ata_port *ap,
3007 const struct ata_taskfile *tf)
3009 ap->ops->tf_load(ap, tf);
3010 ap->ops->exec_command(ap, tf);
3014 * ata_busy_sleep - sleep until BSY clears, or timeout
3015 * @ap: port containing status register to be polled
3016 * @tmout_pat: impatience timeout
3017 * @tmout: overall timeout
3019 * Sleep until ATA Status register bit BSY clears,
3020 * or a timeout occurs.
3022 * LOCKING:
3023 * Kernel thread context (may sleep).
3025 * RETURNS:
3026 * 0 on success, -errno otherwise.
3028 int ata_busy_sleep(struct ata_port *ap,
3029 unsigned long tmout_pat, unsigned long tmout)
3031 unsigned long timer_start, timeout;
3032 u8 status;
3034 status = ata_busy_wait(ap, ATA_BUSY, 300);
3035 timer_start = jiffies;
3036 timeout = timer_start + tmout_pat;
3037 while (status != 0xff && (status & ATA_BUSY) &&
3038 time_before(jiffies, timeout)) {
3039 msleep(50);
3040 status = ata_busy_wait(ap, ATA_BUSY, 3);
3043 if (status != 0xff && (status & ATA_BUSY))
3044 ata_port_printk(ap, KERN_WARNING,
3045 "port is slow to respond, please be patient "
3046 "(Status 0x%x)\n", status);
3048 timeout = timer_start + tmout;
3049 while (status != 0xff && (status & ATA_BUSY) &&
3050 time_before(jiffies, timeout)) {
3051 msleep(50);
3052 status = ata_chk_status(ap);
3055 if (status == 0xff)
3056 return -ENODEV;
3058 if (status & ATA_BUSY) {
3059 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3060 "(%lu secs, Status 0x%x)\n",
3061 tmout / HZ, status);
3062 return -EBUSY;
3065 return 0;
3069 * ata_wait_ready - sleep until BSY clears, or timeout
3070 * @ap: port containing status register to be polled
3071 * @deadline: deadline jiffies for the operation
3073 * Sleep until ATA Status register bit BSY clears, or timeout
3074 * occurs.
3076 * LOCKING:
3077 * Kernel thread context (may sleep).
3079 * RETURNS:
3080 * 0 on success, -errno otherwise.
3082 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3084 unsigned long start = jiffies;
3085 int warned = 0;
3087 while (1) {
3088 u8 status = ata_chk_status(ap);
3089 unsigned long now = jiffies;
3091 if (!(status & ATA_BUSY))
3092 return 0;
3093 if (!ata_link_online(&ap->link) && status == 0xff)
3094 return -ENODEV;
3095 if (time_after(now, deadline))
3096 return -EBUSY;
3098 if (!warned && time_after(now, start + 5 * HZ) &&
3099 (deadline - now > 3 * HZ)) {
3100 ata_port_printk(ap, KERN_WARNING,
3101 "port is slow to respond, please be patient "
3102 "(Status 0x%x)\n", status);
3103 warned = 1;
3106 msleep(50);
3110 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3111 unsigned long deadline)
3113 struct ata_ioports *ioaddr = &ap->ioaddr;
3114 unsigned int dev0 = devmask & (1 << 0);
3115 unsigned int dev1 = devmask & (1 << 1);
3116 int rc, ret = 0;
3118 /* if device 0 was found in ata_devchk, wait for its
3119 * BSY bit to clear
3121 if (dev0) {
3122 rc = ata_wait_ready(ap, deadline);
3123 if (rc) {
3124 if (rc != -ENODEV)
3125 return rc;
3126 ret = rc;
3130 /* if device 1 was found in ata_devchk, wait for register
3131 * access briefly, then wait for BSY to clear.
3133 if (dev1) {
3134 int i;
3136 ap->ops->dev_select(ap, 1);
3138 /* Wait for register access. Some ATAPI devices fail
3139 * to set nsect/lbal after reset, so don't waste too
3140 * much time on it. We're gonna wait for !BSY anyway.
3142 for (i = 0; i < 2; i++) {
3143 u8 nsect, lbal;
3145 nsect = ioread8(ioaddr->nsect_addr);
3146 lbal = ioread8(ioaddr->lbal_addr);
3147 if ((nsect == 1) && (lbal == 1))
3148 break;
3149 msleep(50); /* give drive a breather */
3152 rc = ata_wait_ready(ap, deadline);
3153 if (rc) {
3154 if (rc != -ENODEV)
3155 return rc;
3156 ret = rc;
3160 /* is all this really necessary? */
3161 ap->ops->dev_select(ap, 0);
3162 if (dev1)
3163 ap->ops->dev_select(ap, 1);
3164 if (dev0)
3165 ap->ops->dev_select(ap, 0);
3167 return ret;
3170 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3171 unsigned long deadline)
3173 struct ata_ioports *ioaddr = &ap->ioaddr;
3175 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3177 /* software reset. causes dev0 to be selected */
3178 iowrite8(ap->ctl, ioaddr->ctl_addr);
3179 udelay(20); /* FIXME: flush */
3180 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3181 udelay(20); /* FIXME: flush */
3182 iowrite8(ap->ctl, ioaddr->ctl_addr);
3184 /* spec mandates ">= 2ms" before checking status.
3185 * We wait 150ms, because that was the magic delay used for
3186 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3187 * between when the ATA command register is written, and then
3188 * status is checked. Because waiting for "a while" before
3189 * checking status is fine, post SRST, we perform this magic
3190 * delay here as well.
3192 * Old drivers/ide uses the 2mS rule and then waits for ready
3194 msleep(150);
3196 /* Before we perform post reset processing we want to see if
3197 * the bus shows 0xFF because the odd clown forgets the D7
3198 * pulldown resistor.
3200 if (ata_check_status(ap) == 0xFF)
3201 return -ENODEV;
3203 return ata_bus_post_reset(ap, devmask, deadline);
3207 * ata_bus_reset - reset host port and associated ATA channel
3208 * @ap: port to reset
3210 * This is typically the first time we actually start issuing
3211 * commands to the ATA channel. We wait for BSY to clear, then
3212 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3213 * result. Determine what devices, if any, are on the channel
3214 * by looking at the device 0/1 error register. Look at the signature
3215 * stored in each device's taskfile registers, to determine if
3216 * the device is ATA or ATAPI.
3218 * LOCKING:
3219 * PCI/etc. bus probe sem.
3220 * Obtains host lock.
3222 * SIDE EFFECTS:
3223 * Sets ATA_FLAG_DISABLED if bus reset fails.
3226 void ata_bus_reset(struct ata_port *ap)
3228 struct ata_device *device = ap->link.device;
3229 struct ata_ioports *ioaddr = &ap->ioaddr;
3230 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3231 u8 err;
3232 unsigned int dev0, dev1 = 0, devmask = 0;
3233 int rc;
3235 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3237 /* determine if device 0/1 are present */
3238 if (ap->flags & ATA_FLAG_SATA_RESET)
3239 dev0 = 1;
3240 else {
3241 dev0 = ata_devchk(ap, 0);
3242 if (slave_possible)
3243 dev1 = ata_devchk(ap, 1);
3246 if (dev0)
3247 devmask |= (1 << 0);
3248 if (dev1)
3249 devmask |= (1 << 1);
3251 /* select device 0 again */
3252 ap->ops->dev_select(ap, 0);
3254 /* issue bus reset */
3255 if (ap->flags & ATA_FLAG_SRST) {
3256 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3257 if (rc && rc != -ENODEV)
3258 goto err_out;
3262 * determine by signature whether we have ATA or ATAPI devices
3264 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3265 if ((slave_possible) && (err != 0x81))
3266 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3268 /* is double-select really necessary? */
3269 if (device[1].class != ATA_DEV_NONE)
3270 ap->ops->dev_select(ap, 1);
3271 if (device[0].class != ATA_DEV_NONE)
3272 ap->ops->dev_select(ap, 0);
3274 /* if no devices were detected, disable this port */
3275 if ((device[0].class == ATA_DEV_NONE) &&
3276 (device[1].class == ATA_DEV_NONE))
3277 goto err_out;
3279 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3280 /* set up device control for ATA_FLAG_SATA_RESET */
3281 iowrite8(ap->ctl, ioaddr->ctl_addr);
3284 DPRINTK("EXIT\n");
3285 return;
3287 err_out:
3288 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3289 ata_port_disable(ap);
3291 DPRINTK("EXIT\n");
3295 * sata_link_debounce - debounce SATA phy status
3296 * @link: ATA link to debounce SATA phy status for
3297 * @params: timing parameters { interval, duratinon, timeout } in msec
3298 * @deadline: deadline jiffies for the operation
3300 * Make sure SStatus of @link reaches stable state, determined by
3301 * holding the same value where DET is not 1 for @duration polled
3302 * every @interval, before @timeout. Timeout constraints the
3303 * beginning of the stable state. Because DET gets stuck at 1 on
3304 * some controllers after hot unplugging, this functions waits
3305 * until timeout then returns 0 if DET is stable at 1.
3307 * @timeout is further limited by @deadline. The sooner of the
3308 * two is used.
3310 * LOCKING:
3311 * Kernel thread context (may sleep)
3313 * RETURNS:
3314 * 0 on success, -errno on failure.
3316 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3317 unsigned long deadline)
3319 unsigned long interval_msec = params[0];
3320 unsigned long duration = msecs_to_jiffies(params[1]);
3321 unsigned long last_jiffies, t;
3322 u32 last, cur;
3323 int rc;
3325 t = jiffies + msecs_to_jiffies(params[2]);
3326 if (time_before(t, deadline))
3327 deadline = t;
3329 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3330 return rc;
3331 cur &= 0xf;
3333 last = cur;
3334 last_jiffies = jiffies;
3336 while (1) {
3337 msleep(interval_msec);
3338 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3339 return rc;
3340 cur &= 0xf;
3342 /* DET stable? */
3343 if (cur == last) {
3344 if (cur == 1 && time_before(jiffies, deadline))
3345 continue;
3346 if (time_after(jiffies, last_jiffies + duration))
3347 return 0;
3348 continue;
3351 /* unstable, start over */
3352 last = cur;
3353 last_jiffies = jiffies;
3355 /* Check deadline. If debouncing failed, return
3356 * -EPIPE to tell upper layer to lower link speed.
3358 if (time_after(jiffies, deadline))
3359 return -EPIPE;
3364 * sata_link_resume - resume SATA link
3365 * @link: ATA link to resume SATA
3366 * @params: timing parameters { interval, duratinon, timeout } in msec
3367 * @deadline: deadline jiffies for the operation
3369 * Resume SATA phy @link and debounce it.
3371 * LOCKING:
3372 * Kernel thread context (may sleep)
3374 * RETURNS:
3375 * 0 on success, -errno on failure.
3377 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3378 unsigned long deadline)
3380 u32 scontrol;
3381 int rc;
3383 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3384 return rc;
3386 scontrol = (scontrol & 0x0f0) | 0x300;
3388 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3389 return rc;
3391 /* Some PHYs react badly if SStatus is pounded immediately
3392 * after resuming. Delay 200ms before debouncing.
3394 msleep(200);
3396 return sata_link_debounce(link, params, deadline);
3400 * ata_std_prereset - prepare for reset
3401 * @link: ATA link to be reset
3402 * @deadline: deadline jiffies for the operation
3404 * @link is about to be reset. Initialize it. Failure from
3405 * prereset makes libata abort whole reset sequence and give up
3406 * that port, so prereset should be best-effort. It does its
3407 * best to prepare for reset sequence but if things go wrong, it
3408 * should just whine, not fail.
3410 * LOCKING:
3411 * Kernel thread context (may sleep)
3413 * RETURNS:
3414 * 0 on success, -errno otherwise.
3416 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3418 struct ata_port *ap = link->ap;
3419 struct ata_eh_context *ehc = &link->eh_context;
3420 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3421 int rc;
3423 /* handle link resume */
3424 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3425 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3426 ehc->i.action |= ATA_EH_HARDRESET;
3428 /* if we're about to do hardreset, nothing more to do */
3429 if (ehc->i.action & ATA_EH_HARDRESET)
3430 return 0;
3432 /* if SATA, resume link */
3433 if (ap->flags & ATA_FLAG_SATA) {
3434 rc = sata_link_resume(link, timing, deadline);
3435 /* whine about phy resume failure but proceed */
3436 if (rc && rc != -EOPNOTSUPP)
3437 ata_link_printk(link, KERN_WARNING, "failed to resume "
3438 "link for reset (errno=%d)\n", rc);
3441 /* Wait for !BSY if the controller can wait for the first D2H
3442 * Reg FIS and we don't know that no device is attached.
3444 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3445 rc = ata_wait_ready(ap, deadline);
3446 if (rc && rc != -ENODEV) {
3447 ata_link_printk(link, KERN_WARNING, "device not ready "
3448 "(errno=%d), forcing hardreset\n", rc);
3449 ehc->i.action |= ATA_EH_HARDRESET;
3453 return 0;
3457 * ata_std_softreset - reset host port via ATA SRST
3458 * @link: ATA link to reset
3459 * @classes: resulting classes of attached devices
3460 * @deadline: deadline jiffies for the operation
3462 * Reset host port using ATA SRST.
3464 * LOCKING:
3465 * Kernel thread context (may sleep)
3467 * RETURNS:
3468 * 0 on success, -errno otherwise.
3470 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3471 unsigned long deadline)
3473 struct ata_port *ap = link->ap;
3474 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3475 unsigned int devmask = 0;
3476 int rc;
3477 u8 err;
3479 DPRINTK("ENTER\n");
3481 if (ata_link_offline(link)) {
3482 classes[0] = ATA_DEV_NONE;
3483 goto out;
3486 /* determine if device 0/1 are present */
3487 if (ata_devchk(ap, 0))
3488 devmask |= (1 << 0);
3489 if (slave_possible && ata_devchk(ap, 1))
3490 devmask |= (1 << 1);
3492 /* select device 0 again */
3493 ap->ops->dev_select(ap, 0);
3495 /* issue bus reset */
3496 DPRINTK("about to softreset, devmask=%x\n", devmask);
3497 rc = ata_bus_softreset(ap, devmask, deadline);
3498 /* if link is occupied, -ENODEV too is an error */
3499 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3500 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3501 return rc;
3504 /* determine by signature whether we have ATA or ATAPI devices */
3505 classes[0] = ata_dev_try_classify(&link->device[0],
3506 devmask & (1 << 0), &err);
3507 if (slave_possible && err != 0x81)
3508 classes[1] = ata_dev_try_classify(&link->device[1],
3509 devmask & (1 << 1), &err);
3511 out:
3512 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3513 return 0;
3517 * sata_link_hardreset - reset link via SATA phy reset
3518 * @link: link to reset
3519 * @timing: timing parameters { interval, duratinon, timeout } in msec
3520 * @deadline: deadline jiffies for the operation
3522 * SATA phy-reset @link using DET bits of SControl register.
3524 * LOCKING:
3525 * Kernel thread context (may sleep)
3527 * RETURNS:
3528 * 0 on success, -errno otherwise.
3530 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3531 unsigned long deadline)
3533 u32 scontrol;
3534 int rc;
3536 DPRINTK("ENTER\n");
3538 if (sata_set_spd_needed(link)) {
3539 /* SATA spec says nothing about how to reconfigure
3540 * spd. To be on the safe side, turn off phy during
3541 * reconfiguration. This works for at least ICH7 AHCI
3542 * and Sil3124.
3544 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3545 goto out;
3547 scontrol = (scontrol & 0x0f0) | 0x304;
3549 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3550 goto out;
3552 sata_set_spd(link);
3555 /* issue phy wake/reset */
3556 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3557 goto out;
3559 scontrol = (scontrol & 0x0f0) | 0x301;
3561 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3562 goto out;
3564 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3565 * 10.4.2 says at least 1 ms.
3567 msleep(1);
3569 /* bring link back */
3570 rc = sata_link_resume(link, timing, deadline);
3571 out:
3572 DPRINTK("EXIT, rc=%d\n", rc);
3573 return rc;
3577 * sata_std_hardreset - reset host port via SATA phy reset
3578 * @link: link to reset
3579 * @class: resulting class of attached device
3580 * @deadline: deadline jiffies for the operation
3582 * SATA phy-reset host port using DET bits of SControl register,
3583 * wait for !BSY and classify the attached device.
3585 * LOCKING:
3586 * Kernel thread context (may sleep)
3588 * RETURNS:
3589 * 0 on success, -errno otherwise.
3591 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3592 unsigned long deadline)
3594 struct ata_port *ap = link->ap;
3595 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3596 int rc;
3598 DPRINTK("ENTER\n");
3600 /* do hardreset */
3601 rc = sata_link_hardreset(link, timing, deadline);
3602 if (rc) {
3603 ata_link_printk(link, KERN_ERR,
3604 "COMRESET failed (errno=%d)\n", rc);
3605 return rc;
3608 /* TODO: phy layer with polling, timeouts, etc. */
3609 if (ata_link_offline(link)) {
3610 *class = ATA_DEV_NONE;
3611 DPRINTK("EXIT, link offline\n");
3612 return 0;
3615 /* wait a while before checking status, see SRST for more info */
3616 msleep(150);
3618 rc = ata_wait_ready(ap, deadline);
3619 /* link occupied, -ENODEV too is an error */
3620 if (rc) {
3621 ata_link_printk(link, KERN_ERR,
3622 "COMRESET failed (errno=%d)\n", rc);
3623 return rc;
3626 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3628 *class = ata_dev_try_classify(link->device, 1, NULL);
3630 DPRINTK("EXIT, class=%u\n", *class);
3631 return 0;
3635 * ata_std_postreset - standard postreset callback
3636 * @link: the target ata_link
3637 * @classes: classes of attached devices
3639 * This function is invoked after a successful reset. Note that
3640 * the device might have been reset more than once using
3641 * different reset methods before postreset is invoked.
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3646 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3648 struct ata_port *ap = link->ap;
3649 u32 serror;
3651 DPRINTK("ENTER\n");
3653 /* print link status */
3654 sata_print_link_status(link);
3656 /* clear SError */
3657 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3658 sata_scr_write(link, SCR_ERROR, serror);
3660 /* is double-select really necessary? */
3661 if (classes[0] != ATA_DEV_NONE)
3662 ap->ops->dev_select(ap, 1);
3663 if (classes[1] != ATA_DEV_NONE)
3664 ap->ops->dev_select(ap, 0);
3666 /* bail out if no device is present */
3667 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3668 DPRINTK("EXIT, no device\n");
3669 return;
3672 /* set up device control */
3673 if (ap->ioaddr.ctl_addr)
3674 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3676 DPRINTK("EXIT\n");
3680 * ata_dev_same_device - Determine whether new ID matches configured device
3681 * @dev: device to compare against
3682 * @new_class: class of the new device
3683 * @new_id: IDENTIFY page of the new device
3685 * Compare @new_class and @new_id against @dev and determine
3686 * whether @dev is the device indicated by @new_class and
3687 * @new_id.
3689 * LOCKING:
3690 * None.
3692 * RETURNS:
3693 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3695 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3696 const u16 *new_id)
3698 const u16 *old_id = dev->id;
3699 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3700 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3702 if (dev->class != new_class) {
3703 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3704 dev->class, new_class);
3705 return 0;
3708 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3709 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3710 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3711 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3713 if (strcmp(model[0], model[1])) {
3714 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3715 "'%s' != '%s'\n", model[0], model[1]);
3716 return 0;
3719 if (strcmp(serial[0], serial[1])) {
3720 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3721 "'%s' != '%s'\n", serial[0], serial[1]);
3722 return 0;
3725 return 1;
3729 * ata_dev_reread_id - Re-read IDENTIFY data
3730 * @dev: target ATA device
3731 * @readid_flags: read ID flags
3733 * Re-read IDENTIFY page and make sure @dev is still attached to
3734 * the port.
3736 * LOCKING:
3737 * Kernel thread context (may sleep)
3739 * RETURNS:
3740 * 0 on success, negative errno otherwise
3742 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3744 unsigned int class = dev->class;
3745 u16 *id = (void *)dev->link->ap->sector_buf;
3746 int rc;
3748 /* read ID data */
3749 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3750 if (rc)
3751 return rc;
3753 /* is the device still there? */
3754 if (!ata_dev_same_device(dev, class, id))
3755 return -ENODEV;
3757 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3758 return 0;
3762 * ata_dev_revalidate - Revalidate ATA device
3763 * @dev: device to revalidate
3764 * @new_class: new class code
3765 * @readid_flags: read ID flags
3767 * Re-read IDENTIFY page, make sure @dev is still attached to the
3768 * port and reconfigure it according to the new IDENTIFY page.
3770 * LOCKING:
3771 * Kernel thread context (may sleep)
3773 * RETURNS:
3774 * 0 on success, negative errno otherwise
3776 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3777 unsigned int readid_flags)
3779 u64 n_sectors = dev->n_sectors;
3780 int rc;
3782 if (!ata_dev_enabled(dev))
3783 return -ENODEV;
3785 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3786 if (ata_class_enabled(new_class) &&
3787 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3788 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3789 dev->class, new_class);
3790 rc = -ENODEV;
3791 goto fail;
3794 /* re-read ID */
3795 rc = ata_dev_reread_id(dev, readid_flags);
3796 if (rc)
3797 goto fail;
3799 /* configure device according to the new ID */
3800 rc = ata_dev_configure(dev);
3801 if (rc)
3802 goto fail;
3804 /* verify n_sectors hasn't changed */
3805 if (dev->class == ATA_DEV_ATA && n_sectors &&
3806 dev->n_sectors != n_sectors) {
3807 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3808 "%llu != %llu\n",
3809 (unsigned long long)n_sectors,
3810 (unsigned long long)dev->n_sectors);
3812 /* restore original n_sectors */
3813 dev->n_sectors = n_sectors;
3815 rc = -ENODEV;
3816 goto fail;
3819 return 0;
3821 fail:
3822 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3823 return rc;
3826 struct ata_blacklist_entry {
3827 const char *model_num;
3828 const char *model_rev;
3829 unsigned long horkage;
3832 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3833 /* Devices with DMA related problems under Linux */
3834 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3835 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3836 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3837 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3838 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3839 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3840 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3841 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3842 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3843 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3844 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3845 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3846 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3847 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3848 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3849 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3850 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3851 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3852 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3853 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3854 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3855 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3856 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3857 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3858 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3859 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3860 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3861 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3862 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3863 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3864 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3865 { "IOMEGA ZIP 250 ATAPI Floppy",
3866 NULL, ATA_HORKAGE_NODMA },
3868 /* Weird ATAPI devices */
3869 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3871 /* Devices we expect to fail diagnostics */
3873 /* Devices where NCQ should be avoided */
3874 /* NCQ is slow */
3875 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3876 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3877 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3878 /* NCQ is broken */
3879 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3880 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3881 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3882 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
3884 /* Blacklist entries taken from Silicon Image 3124/3132
3885 Windows driver .inf file - also several Linux problem reports */
3886 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3887 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3888 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3889 /* Drives which do spurious command completion */
3890 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3891 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3892 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3893 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3894 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
3895 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3896 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3897 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3898 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3899 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
3900 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3902 /* devices which puke on READ_NATIVE_MAX */
3903 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3904 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3905 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3906 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3908 /* End Marker */
3912 int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3914 const char *p;
3915 int len;
3918 * check for trailing wildcard: *\0
3920 p = strchr(patt, wildchar);
3921 if (p && ((*(p + 1)) == 0))
3922 len = p - patt;
3923 else
3924 len = strlen(name);
3926 return strncmp(patt, name, len);
3929 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3931 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3932 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3933 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3935 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3936 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3938 while (ad->model_num) {
3939 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3940 if (ad->model_rev == NULL)
3941 return ad->horkage;
3942 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3943 return ad->horkage;
3945 ad++;
3947 return 0;
3950 static int ata_dma_blacklisted(const struct ata_device *dev)
3952 /* We don't support polling DMA.
3953 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3954 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3956 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3957 (dev->flags & ATA_DFLAG_CDB_INTR))
3958 return 1;
3959 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3963 * ata_dev_xfermask - Compute supported xfermask of the given device
3964 * @dev: Device to compute xfermask for
3966 * Compute supported xfermask of @dev and store it in
3967 * dev->*_mask. This function is responsible for applying all
3968 * known limits including host controller limits, device
3969 * blacklist, etc...
3971 * LOCKING:
3972 * None.
3974 static void ata_dev_xfermask(struct ata_device *dev)
3976 struct ata_link *link = dev->link;
3977 struct ata_port *ap = link->ap;
3978 struct ata_host *host = ap->host;
3979 unsigned long xfer_mask;
3981 /* controller modes available */
3982 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3983 ap->mwdma_mask, ap->udma_mask);
3985 /* drive modes available */
3986 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3987 dev->mwdma_mask, dev->udma_mask);
3988 xfer_mask &= ata_id_xfermask(dev->id);
3991 * CFA Advanced TrueIDE timings are not allowed on a shared
3992 * cable
3994 if (ata_dev_pair(dev)) {
3995 /* No PIO5 or PIO6 */
3996 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3997 /* No MWDMA3 or MWDMA 4 */
3998 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4001 if (ata_dma_blacklisted(dev)) {
4002 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4003 ata_dev_printk(dev, KERN_WARNING,
4004 "device is on DMA blacklist, disabling DMA\n");
4007 if ((host->flags & ATA_HOST_SIMPLEX) &&
4008 host->simplex_claimed && host->simplex_claimed != ap) {
4009 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4010 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4011 "other device, disabling DMA\n");
4014 if (ap->flags & ATA_FLAG_NO_IORDY)
4015 xfer_mask &= ata_pio_mask_no_iordy(dev);
4017 if (ap->ops->mode_filter)
4018 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4020 /* Apply cable rule here. Don't apply it early because when
4021 * we handle hot plug the cable type can itself change.
4022 * Check this last so that we know if the transfer rate was
4023 * solely limited by the cable.
4024 * Unknown or 80 wire cables reported host side are checked
4025 * drive side as well. Cases where we know a 40wire cable
4026 * is used safely for 80 are not checked here.
4028 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4029 /* UDMA/44 or higher would be available */
4030 if((ap->cbl == ATA_CBL_PATA40) ||
4031 (ata_drive_40wire(dev->id) &&
4032 (ap->cbl == ATA_CBL_PATA_UNK ||
4033 ap->cbl == ATA_CBL_PATA80))) {
4034 ata_dev_printk(dev, KERN_WARNING,
4035 "limited to UDMA/33 due to 40-wire cable\n");
4036 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4039 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4040 &dev->mwdma_mask, &dev->udma_mask);
4044 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4045 * @dev: Device to which command will be sent
4047 * Issue SET FEATURES - XFER MODE command to device @dev
4048 * on port @ap.
4050 * LOCKING:
4051 * PCI/etc. bus probe sem.
4053 * RETURNS:
4054 * 0 on success, AC_ERR_* mask otherwise.
4057 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4059 struct ata_taskfile tf;
4060 unsigned int err_mask;
4062 /* set up set-features taskfile */
4063 DPRINTK("set features - xfer mode\n");
4065 /* Some controllers and ATAPI devices show flaky interrupt
4066 * behavior after setting xfer mode. Use polling instead.
4068 ata_tf_init(dev, &tf);
4069 tf.command = ATA_CMD_SET_FEATURES;
4070 tf.feature = SETFEATURES_XFER;
4071 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4072 tf.protocol = ATA_PROT_NODATA;
4073 tf.nsect = dev->xfer_mode;
4075 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4077 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4078 return err_mask;
4082 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4083 * @dev: Device to which command will be sent
4084 * @enable: Whether to enable or disable the feature
4086 * Issue SET FEATURES - SATA FEATURES command to device @dev
4087 * on port @ap with sector count set to indicate Asynchronous
4088 * Notification feature
4090 * LOCKING:
4091 * PCI/etc. bus probe sem.
4093 * RETURNS:
4094 * 0 on success, AC_ERR_* mask otherwise.
4096 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4098 struct ata_taskfile tf;
4099 unsigned int err_mask;
4101 /* set up set-features taskfile */
4102 DPRINTK("set features - SATA features\n");
4104 ata_tf_init(dev, &tf);
4105 tf.command = ATA_CMD_SET_FEATURES;
4106 tf.feature = enable;
4107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4108 tf.protocol = ATA_PROT_NODATA;
4109 tf.nsect = SATA_AN;
4111 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4113 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4114 return err_mask;
4118 * ata_dev_init_params - Issue INIT DEV PARAMS command
4119 * @dev: Device to which command will be sent
4120 * @heads: Number of heads (taskfile parameter)
4121 * @sectors: Number of sectors (taskfile parameter)
4123 * LOCKING:
4124 * Kernel thread context (may sleep)
4126 * RETURNS:
4127 * 0 on success, AC_ERR_* mask otherwise.
4129 static unsigned int ata_dev_init_params(struct ata_device *dev,
4130 u16 heads, u16 sectors)
4132 struct ata_taskfile tf;
4133 unsigned int err_mask;
4135 /* Number of sectors per track 1-255. Number of heads 1-16 */
4136 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4137 return AC_ERR_INVALID;
4139 /* set up init dev params taskfile */
4140 DPRINTK("init dev params \n");
4142 ata_tf_init(dev, &tf);
4143 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4144 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4145 tf.protocol = ATA_PROT_NODATA;
4146 tf.nsect = sectors;
4147 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4149 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4150 /* A clean abort indicates an original or just out of spec drive
4151 and we should continue as we issue the setup based on the
4152 drive reported working geometry */
4153 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4154 err_mask = 0;
4156 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4157 return err_mask;
4161 * ata_sg_clean - Unmap DMA memory associated with command
4162 * @qc: Command containing DMA memory to be released
4164 * Unmap all mapped DMA memory associated with this command.
4166 * LOCKING:
4167 * spin_lock_irqsave(host lock)
4169 void ata_sg_clean(struct ata_queued_cmd *qc)
4171 struct ata_port *ap = qc->ap;
4172 struct scatterlist *sg = qc->__sg;
4173 int dir = qc->dma_dir;
4174 void *pad_buf = NULL;
4176 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4177 WARN_ON(sg == NULL);
4179 if (qc->flags & ATA_QCFLAG_SINGLE)
4180 WARN_ON(qc->n_elem > 1);
4182 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4184 /* if we padded the buffer out to 32-bit bound, and data
4185 * xfer direction is from-device, we must copy from the
4186 * pad buffer back into the supplied buffer
4188 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4189 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4191 if (qc->flags & ATA_QCFLAG_SG) {
4192 if (qc->n_elem)
4193 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4194 /* restore last sg */
4195 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4196 if (pad_buf) {
4197 struct scatterlist *psg = &qc->pad_sgent;
4198 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4199 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4200 kunmap_atomic(addr, KM_IRQ0);
4202 } else {
4203 if (qc->n_elem)
4204 dma_unmap_single(ap->dev,
4205 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4206 dir);
4207 /* restore sg */
4208 sg->length += qc->pad_len;
4209 if (pad_buf)
4210 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4211 pad_buf, qc->pad_len);
4214 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4215 qc->__sg = NULL;
4219 * ata_fill_sg - Fill PCI IDE PRD table
4220 * @qc: Metadata associated with taskfile to be transferred
4222 * Fill PCI IDE PRD (scatter-gather) table with segments
4223 * associated with the current disk command.
4225 * LOCKING:
4226 * spin_lock_irqsave(host lock)
4229 static void ata_fill_sg(struct ata_queued_cmd *qc)
4231 struct ata_port *ap = qc->ap;
4232 struct scatterlist *sg;
4233 unsigned int idx;
4235 WARN_ON(qc->__sg == NULL);
4236 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4238 idx = 0;
4239 ata_for_each_sg(sg, qc) {
4240 u32 addr, offset;
4241 u32 sg_len, len;
4243 /* determine if physical DMA addr spans 64K boundary.
4244 * Note h/w doesn't support 64-bit, so we unconditionally
4245 * truncate dma_addr_t to u32.
4247 addr = (u32) sg_dma_address(sg);
4248 sg_len = sg_dma_len(sg);
4250 while (sg_len) {
4251 offset = addr & 0xffff;
4252 len = sg_len;
4253 if ((offset + sg_len) > 0x10000)
4254 len = 0x10000 - offset;
4256 ap->prd[idx].addr = cpu_to_le32(addr);
4257 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4258 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4260 idx++;
4261 sg_len -= len;
4262 addr += len;
4266 if (idx)
4267 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4271 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4272 * @qc: Metadata associated with taskfile to be transferred
4274 * Fill PCI IDE PRD (scatter-gather) table with segments
4275 * associated with the current disk command. Perform the fill
4276 * so that we avoid writing any length 64K records for
4277 * controllers that don't follow the spec.
4279 * LOCKING:
4280 * spin_lock_irqsave(host lock)
4283 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4285 struct ata_port *ap = qc->ap;
4286 struct scatterlist *sg;
4287 unsigned int idx;
4289 WARN_ON(qc->__sg == NULL);
4290 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4292 idx = 0;
4293 ata_for_each_sg(sg, qc) {
4294 u32 addr, offset;
4295 u32 sg_len, len, blen;
4297 /* determine if physical DMA addr spans 64K boundary.
4298 * Note h/w doesn't support 64-bit, so we unconditionally
4299 * truncate dma_addr_t to u32.
4301 addr = (u32) sg_dma_address(sg);
4302 sg_len = sg_dma_len(sg);
4304 while (sg_len) {
4305 offset = addr & 0xffff;
4306 len = sg_len;
4307 if ((offset + sg_len) > 0x10000)
4308 len = 0x10000 - offset;
4310 blen = len & 0xffff;
4311 ap->prd[idx].addr = cpu_to_le32(addr);
4312 if (blen == 0) {
4313 /* Some PATA chipsets like the CS5530 can't
4314 cope with 0x0000 meaning 64K as the spec says */
4315 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4316 blen = 0x8000;
4317 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4319 ap->prd[idx].flags_len = cpu_to_le32(blen);
4320 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4322 idx++;
4323 sg_len -= len;
4324 addr += len;
4328 if (idx)
4329 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4333 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4334 * @qc: Metadata associated with taskfile to check
4336 * Allow low-level driver to filter ATA PACKET commands, returning
4337 * a status indicating whether or not it is OK to use DMA for the
4338 * supplied PACKET command.
4340 * LOCKING:
4341 * spin_lock_irqsave(host lock)
4343 * RETURNS: 0 when ATAPI DMA can be used
4344 * nonzero otherwise
4346 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4348 struct ata_port *ap = qc->ap;
4350 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4351 * few ATAPI devices choke on such DMA requests.
4353 if (unlikely(qc->nbytes & 15))
4354 return 1;
4356 if (ap->ops->check_atapi_dma)
4357 return ap->ops->check_atapi_dma(qc);
4359 return 0;
4363 * ata_std_qc_defer - Check whether a qc needs to be deferred
4364 * @qc: ATA command in question
4366 * Non-NCQ commands cannot run with any other command, NCQ or
4367 * not. As upper layer only knows the queue depth, we are
4368 * responsible for maintaining exclusion. This function checks
4369 * whether a new command @qc can be issued.
4371 * LOCKING:
4372 * spin_lock_irqsave(host lock)
4374 * RETURNS:
4375 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4377 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4379 struct ata_link *link = qc->dev->link;
4381 if (qc->tf.protocol == ATA_PROT_NCQ) {
4382 if (!ata_tag_valid(link->active_tag))
4383 return 0;
4384 } else {
4385 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4386 return 0;
4389 return ATA_DEFER_LINK;
4393 * ata_qc_prep - Prepare taskfile for submission
4394 * @qc: Metadata associated with taskfile to be prepared
4396 * Prepare ATA taskfile for submission.
4398 * LOCKING:
4399 * spin_lock_irqsave(host lock)
4401 void ata_qc_prep(struct ata_queued_cmd *qc)
4403 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4404 return;
4406 ata_fill_sg(qc);
4410 * ata_dumb_qc_prep - Prepare taskfile for submission
4411 * @qc: Metadata associated with taskfile to be prepared
4413 * Prepare ATA taskfile for submission.
4415 * LOCKING:
4416 * spin_lock_irqsave(host lock)
4418 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4420 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4421 return;
4423 ata_fill_sg_dumb(qc);
4426 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4429 * ata_sg_init_one - Associate command with memory buffer
4430 * @qc: Command to be associated
4431 * @buf: Memory buffer
4432 * @buflen: Length of memory buffer, in bytes.
4434 * Initialize the data-related elements of queued_cmd @qc
4435 * to point to a single memory buffer, @buf of byte length @buflen.
4437 * LOCKING:
4438 * spin_lock_irqsave(host lock)
4441 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4443 qc->flags |= ATA_QCFLAG_SINGLE;
4445 qc->__sg = &qc->sgent;
4446 qc->n_elem = 1;
4447 qc->orig_n_elem = 1;
4448 qc->buf_virt = buf;
4449 qc->nbytes = buflen;
4451 sg_init_one(&qc->sgent, buf, buflen);
4455 * ata_sg_init - Associate command with scatter-gather table.
4456 * @qc: Command to be associated
4457 * @sg: Scatter-gather table.
4458 * @n_elem: Number of elements in s/g table.
4460 * Initialize the data-related elements of queued_cmd @qc
4461 * to point to a scatter-gather table @sg, containing @n_elem
4462 * elements.
4464 * LOCKING:
4465 * spin_lock_irqsave(host lock)
4468 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4469 unsigned int n_elem)
4471 qc->flags |= ATA_QCFLAG_SG;
4472 qc->__sg = sg;
4473 qc->n_elem = n_elem;
4474 qc->orig_n_elem = n_elem;
4478 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4479 * @qc: Command with memory buffer to be mapped.
4481 * DMA-map the memory buffer associated with queued_cmd @qc.
4483 * LOCKING:
4484 * spin_lock_irqsave(host lock)
4486 * RETURNS:
4487 * Zero on success, negative on error.
4490 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4492 struct ata_port *ap = qc->ap;
4493 int dir = qc->dma_dir;
4494 struct scatterlist *sg = qc->__sg;
4495 dma_addr_t dma_address;
4496 int trim_sg = 0;
4498 /* we must lengthen transfers to end on a 32-bit boundary */
4499 qc->pad_len = sg->length & 3;
4500 if (qc->pad_len) {
4501 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4502 struct scatterlist *psg = &qc->pad_sgent;
4504 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4506 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4508 if (qc->tf.flags & ATA_TFLAG_WRITE)
4509 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4510 qc->pad_len);
4512 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4513 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4514 /* trim sg */
4515 sg->length -= qc->pad_len;
4516 if (sg->length == 0)
4517 trim_sg = 1;
4519 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4520 sg->length, qc->pad_len);
4523 if (trim_sg) {
4524 qc->n_elem--;
4525 goto skip_map;
4528 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4529 sg->length, dir);
4530 if (dma_mapping_error(dma_address)) {
4531 /* restore sg */
4532 sg->length += qc->pad_len;
4533 return -1;
4536 sg_dma_address(sg) = dma_address;
4537 sg_dma_len(sg) = sg->length;
4539 skip_map:
4540 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4541 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4543 return 0;
4547 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4548 * @qc: Command with scatter-gather table to be mapped.
4550 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4552 * LOCKING:
4553 * spin_lock_irqsave(host lock)
4555 * RETURNS:
4556 * Zero on success, negative on error.
4560 static int ata_sg_setup(struct ata_queued_cmd *qc)
4562 struct ata_port *ap = qc->ap;
4563 struct scatterlist *sg = qc->__sg;
4564 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4565 int n_elem, pre_n_elem, dir, trim_sg = 0;
4567 VPRINTK("ENTER, ata%u\n", ap->print_id);
4568 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4570 /* we must lengthen transfers to end on a 32-bit boundary */
4571 qc->pad_len = lsg->length & 3;
4572 if (qc->pad_len) {
4573 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4574 struct scatterlist *psg = &qc->pad_sgent;
4575 unsigned int offset;
4577 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4579 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4582 * psg->page/offset are used to copy to-be-written
4583 * data in this function or read data in ata_sg_clean.
4585 offset = lsg->offset + lsg->length - qc->pad_len;
4586 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4587 psg->offset = offset_in_page(offset);
4589 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4590 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4591 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4592 kunmap_atomic(addr, KM_IRQ0);
4595 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4596 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4597 /* trim last sg */
4598 lsg->length -= qc->pad_len;
4599 if (lsg->length == 0)
4600 trim_sg = 1;
4602 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4603 qc->n_elem - 1, lsg->length, qc->pad_len);
4606 pre_n_elem = qc->n_elem;
4607 if (trim_sg && pre_n_elem)
4608 pre_n_elem--;
4610 if (!pre_n_elem) {
4611 n_elem = 0;
4612 goto skip_map;
4615 dir = qc->dma_dir;
4616 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4617 if (n_elem < 1) {
4618 /* restore last sg */
4619 lsg->length += qc->pad_len;
4620 return -1;
4623 DPRINTK("%d sg elements mapped\n", n_elem);
4625 skip_map:
4626 qc->n_elem = n_elem;
4628 return 0;
4632 * swap_buf_le16 - swap halves of 16-bit words in place
4633 * @buf: Buffer to swap
4634 * @buf_words: Number of 16-bit words in buffer.
4636 * Swap halves of 16-bit words if needed to convert from
4637 * little-endian byte order to native cpu byte order, or
4638 * vice-versa.
4640 * LOCKING:
4641 * Inherited from caller.
4643 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4645 #ifdef __BIG_ENDIAN
4646 unsigned int i;
4648 for (i = 0; i < buf_words; i++)
4649 buf[i] = le16_to_cpu(buf[i]);
4650 #endif /* __BIG_ENDIAN */
4654 * ata_data_xfer - Transfer data by PIO
4655 * @adev: device to target
4656 * @buf: data buffer
4657 * @buflen: buffer length
4658 * @write_data: read/write
4660 * Transfer data from/to the device data register by PIO.
4662 * LOCKING:
4663 * Inherited from caller.
4665 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4666 unsigned int buflen, int write_data)
4668 struct ata_port *ap = adev->link->ap;
4669 unsigned int words = buflen >> 1;
4671 /* Transfer multiple of 2 bytes */
4672 if (write_data)
4673 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4674 else
4675 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4677 /* Transfer trailing 1 byte, if any. */
4678 if (unlikely(buflen & 0x01)) {
4679 u16 align_buf[1] = { 0 };
4680 unsigned char *trailing_buf = buf + buflen - 1;
4682 if (write_data) {
4683 memcpy(align_buf, trailing_buf, 1);
4684 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4685 } else {
4686 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4687 memcpy(trailing_buf, align_buf, 1);
4693 * ata_data_xfer_noirq - Transfer data by PIO
4694 * @adev: device to target
4695 * @buf: data buffer
4696 * @buflen: buffer length
4697 * @write_data: read/write
4699 * Transfer data from/to the device data register by PIO. Do the
4700 * transfer with interrupts disabled.
4702 * LOCKING:
4703 * Inherited from caller.
4705 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4706 unsigned int buflen, int write_data)
4708 unsigned long flags;
4709 local_irq_save(flags);
4710 ata_data_xfer(adev, buf, buflen, write_data);
4711 local_irq_restore(flags);
4716 * ata_pio_sector - Transfer a sector of data.
4717 * @qc: Command on going
4719 * Transfer qc->sect_size bytes of data from/to the ATA device.
4721 * LOCKING:
4722 * Inherited from caller.
4725 static void ata_pio_sector(struct ata_queued_cmd *qc)
4727 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4728 struct scatterlist *sg = qc->__sg;
4729 struct ata_port *ap = qc->ap;
4730 struct page *page;
4731 unsigned int offset;
4732 unsigned char *buf;
4734 if (qc->curbytes == qc->nbytes - qc->sect_size)
4735 ap->hsm_task_state = HSM_ST_LAST;
4737 page = sg[qc->cursg].page;
4738 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4740 /* get the current page and offset */
4741 page = nth_page(page, (offset >> PAGE_SHIFT));
4742 offset %= PAGE_SIZE;
4744 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4746 if (PageHighMem(page)) {
4747 unsigned long flags;
4749 /* FIXME: use a bounce buffer */
4750 local_irq_save(flags);
4751 buf = kmap_atomic(page, KM_IRQ0);
4753 /* do the actual data transfer */
4754 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4756 kunmap_atomic(buf, KM_IRQ0);
4757 local_irq_restore(flags);
4758 } else {
4759 buf = page_address(page);
4760 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4763 qc->curbytes += qc->sect_size;
4764 qc->cursg_ofs += qc->sect_size;
4766 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4767 qc->cursg++;
4768 qc->cursg_ofs = 0;
4773 * ata_pio_sectors - Transfer one or many sectors.
4774 * @qc: Command on going
4776 * Transfer one or many sectors of data from/to the
4777 * ATA device for the DRQ request.
4779 * LOCKING:
4780 * Inherited from caller.
4783 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4785 if (is_multi_taskfile(&qc->tf)) {
4786 /* READ/WRITE MULTIPLE */
4787 unsigned int nsect;
4789 WARN_ON(qc->dev->multi_count == 0);
4791 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4792 qc->dev->multi_count);
4793 while (nsect--)
4794 ata_pio_sector(qc);
4795 } else
4796 ata_pio_sector(qc);
4798 ata_altstatus(qc->ap); /* flush */
4802 * atapi_send_cdb - Write CDB bytes to hardware
4803 * @ap: Port to which ATAPI device is attached.
4804 * @qc: Taskfile currently active
4806 * When device has indicated its readiness to accept
4807 * a CDB, this function is called. Send the CDB.
4809 * LOCKING:
4810 * caller.
4813 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4815 /* send SCSI cdb */
4816 DPRINTK("send cdb\n");
4817 WARN_ON(qc->dev->cdb_len < 12);
4819 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4820 ata_altstatus(ap); /* flush */
4822 switch (qc->tf.protocol) {
4823 case ATA_PROT_ATAPI:
4824 ap->hsm_task_state = HSM_ST;
4825 break;
4826 case ATA_PROT_ATAPI_NODATA:
4827 ap->hsm_task_state = HSM_ST_LAST;
4828 break;
4829 case ATA_PROT_ATAPI_DMA:
4830 ap->hsm_task_state = HSM_ST_LAST;
4831 /* initiate bmdma */
4832 ap->ops->bmdma_start(qc);
4833 break;
4838 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4839 * @qc: Command on going
4840 * @bytes: number of bytes
4842 * Transfer Transfer data from/to the ATAPI device.
4844 * LOCKING:
4845 * Inherited from caller.
4849 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4851 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4852 struct scatterlist *sg = qc->__sg;
4853 struct ata_port *ap = qc->ap;
4854 struct page *page;
4855 unsigned char *buf;
4856 unsigned int offset, count;
4858 if (qc->curbytes + bytes >= qc->nbytes)
4859 ap->hsm_task_state = HSM_ST_LAST;
4861 next_sg:
4862 if (unlikely(qc->cursg >= qc->n_elem)) {
4864 * The end of qc->sg is reached and the device expects
4865 * more data to transfer. In order not to overrun qc->sg
4866 * and fulfill length specified in the byte count register,
4867 * - for read case, discard trailing data from the device
4868 * - for write case, padding zero data to the device
4870 u16 pad_buf[1] = { 0 };
4871 unsigned int words = bytes >> 1;
4872 unsigned int i;
4874 if (words) /* warning if bytes > 1 */
4875 ata_dev_printk(qc->dev, KERN_WARNING,
4876 "%u bytes trailing data\n", bytes);
4878 for (i = 0; i < words; i++)
4879 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4881 ap->hsm_task_state = HSM_ST_LAST;
4882 return;
4885 sg = &qc->__sg[qc->cursg];
4887 page = sg->page;
4888 offset = sg->offset + qc->cursg_ofs;
4890 /* get the current page and offset */
4891 page = nth_page(page, (offset >> PAGE_SHIFT));
4892 offset %= PAGE_SIZE;
4894 /* don't overrun current sg */
4895 count = min(sg->length - qc->cursg_ofs, bytes);
4897 /* don't cross page boundaries */
4898 count = min(count, (unsigned int)PAGE_SIZE - offset);
4900 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4902 if (PageHighMem(page)) {
4903 unsigned long flags;
4905 /* FIXME: use bounce buffer */
4906 local_irq_save(flags);
4907 buf = kmap_atomic(page, KM_IRQ0);
4909 /* do the actual data transfer */
4910 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4912 kunmap_atomic(buf, KM_IRQ0);
4913 local_irq_restore(flags);
4914 } else {
4915 buf = page_address(page);
4916 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4919 bytes -= count;
4920 qc->curbytes += count;
4921 qc->cursg_ofs += count;
4923 if (qc->cursg_ofs == sg->length) {
4924 qc->cursg++;
4925 qc->cursg_ofs = 0;
4928 if (bytes)
4929 goto next_sg;
4933 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4934 * @qc: Command on going
4936 * Transfer Transfer data from/to the ATAPI device.
4938 * LOCKING:
4939 * Inherited from caller.
4942 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4944 struct ata_port *ap = qc->ap;
4945 struct ata_device *dev = qc->dev;
4946 unsigned int ireason, bc_lo, bc_hi, bytes;
4947 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4949 /* Abuse qc->result_tf for temp storage of intermediate TF
4950 * here to save some kernel stack usage.
4951 * For normal completion, qc->result_tf is not relevant. For
4952 * error, qc->result_tf is later overwritten by ata_qc_complete().
4953 * So, the correctness of qc->result_tf is not affected.
4955 ap->ops->tf_read(ap, &qc->result_tf);
4956 ireason = qc->result_tf.nsect;
4957 bc_lo = qc->result_tf.lbam;
4958 bc_hi = qc->result_tf.lbah;
4959 bytes = (bc_hi << 8) | bc_lo;
4961 /* shall be cleared to zero, indicating xfer of data */
4962 if (ireason & (1 << 0))
4963 goto err_out;
4965 /* make sure transfer direction matches expected */
4966 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4967 if (do_write != i_write)
4968 goto err_out;
4970 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4972 __atapi_pio_bytes(qc, bytes);
4973 ata_altstatus(ap); /* flush */
4975 return;
4977 err_out:
4978 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4979 qc->err_mask |= AC_ERR_HSM;
4980 ap->hsm_task_state = HSM_ST_ERR;
4984 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4985 * @ap: the target ata_port
4986 * @qc: qc on going
4988 * RETURNS:
4989 * 1 if ok in workqueue, 0 otherwise.
4992 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4994 if (qc->tf.flags & ATA_TFLAG_POLLING)
4995 return 1;
4997 if (ap->hsm_task_state == HSM_ST_FIRST) {
4998 if (qc->tf.protocol == ATA_PROT_PIO &&
4999 (qc->tf.flags & ATA_TFLAG_WRITE))
5000 return 1;
5002 if (is_atapi_taskfile(&qc->tf) &&
5003 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5004 return 1;
5007 return 0;
5011 * ata_hsm_qc_complete - finish a qc running on standard HSM
5012 * @qc: Command to complete
5013 * @in_wq: 1 if called from workqueue, 0 otherwise
5015 * Finish @qc which is running on standard HSM.
5017 * LOCKING:
5018 * If @in_wq is zero, spin_lock_irqsave(host lock).
5019 * Otherwise, none on entry and grabs host lock.
5021 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5023 struct ata_port *ap = qc->ap;
5024 unsigned long flags;
5026 if (ap->ops->error_handler) {
5027 if (in_wq) {
5028 spin_lock_irqsave(ap->lock, flags);
5030 /* EH might have kicked in while host lock is
5031 * released.
5033 qc = ata_qc_from_tag(ap, qc->tag);
5034 if (qc) {
5035 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5036 ap->ops->irq_on(ap);
5037 ata_qc_complete(qc);
5038 } else
5039 ata_port_freeze(ap);
5042 spin_unlock_irqrestore(ap->lock, flags);
5043 } else {
5044 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5045 ata_qc_complete(qc);
5046 else
5047 ata_port_freeze(ap);
5049 } else {
5050 if (in_wq) {
5051 spin_lock_irqsave(ap->lock, flags);
5052 ap->ops->irq_on(ap);
5053 ata_qc_complete(qc);
5054 spin_unlock_irqrestore(ap->lock, flags);
5055 } else
5056 ata_qc_complete(qc);
5061 * ata_hsm_move - move the HSM to the next state.
5062 * @ap: the target ata_port
5063 * @qc: qc on going
5064 * @status: current device status
5065 * @in_wq: 1 if called from workqueue, 0 otherwise
5067 * RETURNS:
5068 * 1 when poll next status needed, 0 otherwise.
5070 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5071 u8 status, int in_wq)
5073 unsigned long flags = 0;
5074 int poll_next;
5076 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5078 /* Make sure ata_qc_issue_prot() does not throw things
5079 * like DMA polling into the workqueue. Notice that
5080 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5082 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5084 fsm_start:
5085 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5086 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5088 switch (ap->hsm_task_state) {
5089 case HSM_ST_FIRST:
5090 /* Send first data block or PACKET CDB */
5092 /* If polling, we will stay in the work queue after
5093 * sending the data. Otherwise, interrupt handler
5094 * takes over after sending the data.
5096 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5098 /* check device status */
5099 if (unlikely((status & ATA_DRQ) == 0)) {
5100 /* handle BSY=0, DRQ=0 as error */
5101 if (likely(status & (ATA_ERR | ATA_DF)))
5102 /* device stops HSM for abort/error */
5103 qc->err_mask |= AC_ERR_DEV;
5104 else
5105 /* HSM violation. Let EH handle this */
5106 qc->err_mask |= AC_ERR_HSM;
5108 ap->hsm_task_state = HSM_ST_ERR;
5109 goto fsm_start;
5112 /* Device should not ask for data transfer (DRQ=1)
5113 * when it finds something wrong.
5114 * We ignore DRQ here and stop the HSM by
5115 * changing hsm_task_state to HSM_ST_ERR and
5116 * let the EH abort the command or reset the device.
5118 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5119 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5120 "error, dev_stat 0x%X\n", status);
5121 qc->err_mask |= AC_ERR_HSM;
5122 ap->hsm_task_state = HSM_ST_ERR;
5123 goto fsm_start;
5126 /* Send the CDB (atapi) or the first data block (ata pio out).
5127 * During the state transition, interrupt handler shouldn't
5128 * be invoked before the data transfer is complete and
5129 * hsm_task_state is changed. Hence, the following locking.
5131 if (in_wq)
5132 spin_lock_irqsave(ap->lock, flags);
5134 if (qc->tf.protocol == ATA_PROT_PIO) {
5135 /* PIO data out protocol.
5136 * send first data block.
5139 /* ata_pio_sectors() might change the state
5140 * to HSM_ST_LAST. so, the state is changed here
5141 * before ata_pio_sectors().
5143 ap->hsm_task_state = HSM_ST;
5144 ata_pio_sectors(qc);
5145 } else
5146 /* send CDB */
5147 atapi_send_cdb(ap, qc);
5149 if (in_wq)
5150 spin_unlock_irqrestore(ap->lock, flags);
5152 /* if polling, ata_pio_task() handles the rest.
5153 * otherwise, interrupt handler takes over from here.
5155 break;
5157 case HSM_ST:
5158 /* complete command or read/write the data register */
5159 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5160 /* ATAPI PIO protocol */
5161 if ((status & ATA_DRQ) == 0) {
5162 /* No more data to transfer or device error.
5163 * Device error will be tagged in HSM_ST_LAST.
5165 ap->hsm_task_state = HSM_ST_LAST;
5166 goto fsm_start;
5169 /* Device should not ask for data transfer (DRQ=1)
5170 * when it finds something wrong.
5171 * We ignore DRQ here and stop the HSM by
5172 * changing hsm_task_state to HSM_ST_ERR and
5173 * let the EH abort the command or reset the device.
5175 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5176 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5177 "device error, dev_stat 0x%X\n",
5178 status);
5179 qc->err_mask |= AC_ERR_HSM;
5180 ap->hsm_task_state = HSM_ST_ERR;
5181 goto fsm_start;
5184 atapi_pio_bytes(qc);
5186 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5187 /* bad ireason reported by device */
5188 goto fsm_start;
5190 } else {
5191 /* ATA PIO protocol */
5192 if (unlikely((status & ATA_DRQ) == 0)) {
5193 /* handle BSY=0, DRQ=0 as error */
5194 if (likely(status & (ATA_ERR | ATA_DF)))
5195 /* device stops HSM for abort/error */
5196 qc->err_mask |= AC_ERR_DEV;
5197 else
5198 /* HSM violation. Let EH handle this.
5199 * Phantom devices also trigger this
5200 * condition. Mark hint.
5202 qc->err_mask |= AC_ERR_HSM |
5203 AC_ERR_NODEV_HINT;
5205 ap->hsm_task_state = HSM_ST_ERR;
5206 goto fsm_start;
5209 /* For PIO reads, some devices may ask for
5210 * data transfer (DRQ=1) alone with ERR=1.
5211 * We respect DRQ here and transfer one
5212 * block of junk data before changing the
5213 * hsm_task_state to HSM_ST_ERR.
5215 * For PIO writes, ERR=1 DRQ=1 doesn't make
5216 * sense since the data block has been
5217 * transferred to the device.
5219 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5220 /* data might be corrputed */
5221 qc->err_mask |= AC_ERR_DEV;
5223 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5224 ata_pio_sectors(qc);
5225 status = ata_wait_idle(ap);
5228 if (status & (ATA_BUSY | ATA_DRQ))
5229 qc->err_mask |= AC_ERR_HSM;
5231 /* ata_pio_sectors() might change the
5232 * state to HSM_ST_LAST. so, the state
5233 * is changed after ata_pio_sectors().
5235 ap->hsm_task_state = HSM_ST_ERR;
5236 goto fsm_start;
5239 ata_pio_sectors(qc);
5241 if (ap->hsm_task_state == HSM_ST_LAST &&
5242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5243 /* all data read */
5244 status = ata_wait_idle(ap);
5245 goto fsm_start;
5249 poll_next = 1;
5250 break;
5252 case HSM_ST_LAST:
5253 if (unlikely(!ata_ok(status))) {
5254 qc->err_mask |= __ac_err_mask(status);
5255 ap->hsm_task_state = HSM_ST_ERR;
5256 goto fsm_start;
5259 /* no more data to transfer */
5260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5261 ap->print_id, qc->dev->devno, status);
5263 WARN_ON(qc->err_mask);
5265 ap->hsm_task_state = HSM_ST_IDLE;
5267 /* complete taskfile transaction */
5268 ata_hsm_qc_complete(qc, in_wq);
5270 poll_next = 0;
5271 break;
5273 case HSM_ST_ERR:
5274 /* make sure qc->err_mask is available to
5275 * know what's wrong and recover
5277 WARN_ON(qc->err_mask == 0);
5279 ap->hsm_task_state = HSM_ST_IDLE;
5281 /* complete taskfile transaction */
5282 ata_hsm_qc_complete(qc, in_wq);
5284 poll_next = 0;
5285 break;
5286 default:
5287 poll_next = 0;
5288 BUG();
5291 return poll_next;
5294 static void ata_pio_task(struct work_struct *work)
5296 struct ata_port *ap =
5297 container_of(work, struct ata_port, port_task.work);
5298 struct ata_queued_cmd *qc = ap->port_task_data;
5299 u8 status;
5300 int poll_next;
5302 fsm_start:
5303 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5306 * This is purely heuristic. This is a fast path.
5307 * Sometimes when we enter, BSY will be cleared in
5308 * a chk-status or two. If not, the drive is probably seeking
5309 * or something. Snooze for a couple msecs, then
5310 * chk-status again. If still busy, queue delayed work.
5312 status = ata_busy_wait(ap, ATA_BUSY, 5);
5313 if (status & ATA_BUSY) {
5314 msleep(2);
5315 status = ata_busy_wait(ap, ATA_BUSY, 10);
5316 if (status & ATA_BUSY) {
5317 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5318 return;
5322 /* move the HSM */
5323 poll_next = ata_hsm_move(ap, qc, status, 1);
5325 /* another command or interrupt handler
5326 * may be running at this point.
5328 if (poll_next)
5329 goto fsm_start;
5333 * ata_qc_new - Request an available ATA command, for queueing
5334 * @ap: Port associated with device @dev
5335 * @dev: Device from whom we request an available command structure
5337 * LOCKING:
5338 * None.
5341 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5343 struct ata_queued_cmd *qc = NULL;
5344 unsigned int i;
5346 /* no command while frozen */
5347 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5348 return NULL;
5350 /* the last tag is reserved for internal command. */
5351 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5352 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5353 qc = __ata_qc_from_tag(ap, i);
5354 break;
5357 if (qc)
5358 qc->tag = i;
5360 return qc;
5364 * ata_qc_new_init - Request an available ATA command, and initialize it
5365 * @dev: Device from whom we request an available command structure
5367 * LOCKING:
5368 * None.
5371 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5373 struct ata_port *ap = dev->link->ap;
5374 struct ata_queued_cmd *qc;
5376 qc = ata_qc_new(ap);
5377 if (qc) {
5378 qc->scsicmd = NULL;
5379 qc->ap = ap;
5380 qc->dev = dev;
5382 ata_qc_reinit(qc);
5385 return qc;
5389 * ata_qc_free - free unused ata_queued_cmd
5390 * @qc: Command to complete
5392 * Designed to free unused ata_queued_cmd object
5393 * in case something prevents using it.
5395 * LOCKING:
5396 * spin_lock_irqsave(host lock)
5398 void ata_qc_free(struct ata_queued_cmd *qc)
5400 struct ata_port *ap = qc->ap;
5401 unsigned int tag;
5403 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5405 qc->flags = 0;
5406 tag = qc->tag;
5407 if (likely(ata_tag_valid(tag))) {
5408 qc->tag = ATA_TAG_POISON;
5409 clear_bit(tag, &ap->qc_allocated);
5413 void __ata_qc_complete(struct ata_queued_cmd *qc)
5415 struct ata_port *ap = qc->ap;
5416 struct ata_link *link = qc->dev->link;
5418 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5419 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5421 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5422 ata_sg_clean(qc);
5424 /* command should be marked inactive atomically with qc completion */
5425 if (qc->tf.protocol == ATA_PROT_NCQ) {
5426 link->sactive &= ~(1 << qc->tag);
5427 if (!link->sactive)
5428 ap->nr_active_links--;
5429 } else {
5430 link->active_tag = ATA_TAG_POISON;
5431 ap->nr_active_links--;
5434 /* clear exclusive status */
5435 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5436 ap->excl_link == link))
5437 ap->excl_link = NULL;
5439 /* atapi: mark qc as inactive to prevent the interrupt handler
5440 * from completing the command twice later, before the error handler
5441 * is called. (when rc != 0 and atapi request sense is needed)
5443 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5444 ap->qc_active &= ~(1 << qc->tag);
5446 /* call completion callback */
5447 qc->complete_fn(qc);
5450 static void fill_result_tf(struct ata_queued_cmd *qc)
5452 struct ata_port *ap = qc->ap;
5454 qc->result_tf.flags = qc->tf.flags;
5455 ap->ops->tf_read(ap, &qc->result_tf);
5459 * ata_qc_complete - Complete an active ATA command
5460 * @qc: Command to complete
5461 * @err_mask: ATA Status register contents
5463 * Indicate to the mid and upper layers that an ATA
5464 * command has completed, with either an ok or not-ok status.
5466 * LOCKING:
5467 * spin_lock_irqsave(host lock)
5469 void ata_qc_complete(struct ata_queued_cmd *qc)
5471 struct ata_port *ap = qc->ap;
5473 /* XXX: New EH and old EH use different mechanisms to
5474 * synchronize EH with regular execution path.
5476 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5477 * Normal execution path is responsible for not accessing a
5478 * failed qc. libata core enforces the rule by returning NULL
5479 * from ata_qc_from_tag() for failed qcs.
5481 * Old EH depends on ata_qc_complete() nullifying completion
5482 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5483 * not synchronize with interrupt handler. Only PIO task is
5484 * taken care of.
5486 if (ap->ops->error_handler) {
5487 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5489 if (unlikely(qc->err_mask))
5490 qc->flags |= ATA_QCFLAG_FAILED;
5492 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5493 if (!ata_tag_internal(qc->tag)) {
5494 /* always fill result TF for failed qc */
5495 fill_result_tf(qc);
5496 ata_qc_schedule_eh(qc);
5497 return;
5501 /* read result TF if requested */
5502 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5503 fill_result_tf(qc);
5505 __ata_qc_complete(qc);
5506 } else {
5507 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5508 return;
5510 /* read result TF if failed or requested */
5511 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5512 fill_result_tf(qc);
5514 __ata_qc_complete(qc);
5519 * ata_qc_complete_multiple - Complete multiple qcs successfully
5520 * @ap: port in question
5521 * @qc_active: new qc_active mask
5522 * @finish_qc: LLDD callback invoked before completing a qc
5524 * Complete in-flight commands. This functions is meant to be
5525 * called from low-level driver's interrupt routine to complete
5526 * requests normally. ap->qc_active and @qc_active is compared
5527 * and commands are completed accordingly.
5529 * LOCKING:
5530 * spin_lock_irqsave(host lock)
5532 * RETURNS:
5533 * Number of completed commands on success, -errno otherwise.
5535 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5536 void (*finish_qc)(struct ata_queued_cmd *))
5538 int nr_done = 0;
5539 u32 done_mask;
5540 int i;
5542 done_mask = ap->qc_active ^ qc_active;
5544 if (unlikely(done_mask & qc_active)) {
5545 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5546 "(%08x->%08x)\n", ap->qc_active, qc_active);
5547 return -EINVAL;
5550 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5551 struct ata_queued_cmd *qc;
5553 if (!(done_mask & (1 << i)))
5554 continue;
5556 if ((qc = ata_qc_from_tag(ap, i))) {
5557 if (finish_qc)
5558 finish_qc(qc);
5559 ata_qc_complete(qc);
5560 nr_done++;
5564 return nr_done;
5567 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5569 struct ata_port *ap = qc->ap;
5571 switch (qc->tf.protocol) {
5572 case ATA_PROT_NCQ:
5573 case ATA_PROT_DMA:
5574 case ATA_PROT_ATAPI_DMA:
5575 return 1;
5577 case ATA_PROT_ATAPI:
5578 case ATA_PROT_PIO:
5579 if (ap->flags & ATA_FLAG_PIO_DMA)
5580 return 1;
5582 /* fall through */
5584 default:
5585 return 0;
5588 /* never reached */
5592 * ata_qc_issue - issue taskfile to device
5593 * @qc: command to issue to device
5595 * Prepare an ATA command to submission to device.
5596 * This includes mapping the data into a DMA-able
5597 * area, filling in the S/G table, and finally
5598 * writing the taskfile to hardware, starting the command.
5600 * LOCKING:
5601 * spin_lock_irqsave(host lock)
5603 void ata_qc_issue(struct ata_queued_cmd *qc)
5605 struct ata_port *ap = qc->ap;
5606 struct ata_link *link = qc->dev->link;
5608 /* Make sure only one non-NCQ command is outstanding. The
5609 * check is skipped for old EH because it reuses active qc to
5610 * request ATAPI sense.
5612 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5614 if (qc->tf.protocol == ATA_PROT_NCQ) {
5615 WARN_ON(link->sactive & (1 << qc->tag));
5617 if (!link->sactive)
5618 ap->nr_active_links++;
5619 link->sactive |= 1 << qc->tag;
5620 } else {
5621 WARN_ON(link->sactive);
5623 ap->nr_active_links++;
5624 link->active_tag = qc->tag;
5627 qc->flags |= ATA_QCFLAG_ACTIVE;
5628 ap->qc_active |= 1 << qc->tag;
5630 if (ata_should_dma_map(qc)) {
5631 if (qc->flags & ATA_QCFLAG_SG) {
5632 if (ata_sg_setup(qc))
5633 goto sg_err;
5634 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5635 if (ata_sg_setup_one(qc))
5636 goto sg_err;
5638 } else {
5639 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5642 ap->ops->qc_prep(qc);
5644 qc->err_mask |= ap->ops->qc_issue(qc);
5645 if (unlikely(qc->err_mask))
5646 goto err;
5647 return;
5649 sg_err:
5650 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5651 qc->err_mask |= AC_ERR_SYSTEM;
5652 err:
5653 ata_qc_complete(qc);
5657 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5658 * @qc: command to issue to device
5660 * Using various libata functions and hooks, this function
5661 * starts an ATA command. ATA commands are grouped into
5662 * classes called "protocols", and issuing each type of protocol
5663 * is slightly different.
5665 * May be used as the qc_issue() entry in ata_port_operations.
5667 * LOCKING:
5668 * spin_lock_irqsave(host lock)
5670 * RETURNS:
5671 * Zero on success, AC_ERR_* mask on failure
5674 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5676 struct ata_port *ap = qc->ap;
5678 /* Use polling pio if the LLD doesn't handle
5679 * interrupt driven pio and atapi CDB interrupt.
5681 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5682 switch (qc->tf.protocol) {
5683 case ATA_PROT_PIO:
5684 case ATA_PROT_NODATA:
5685 case ATA_PROT_ATAPI:
5686 case ATA_PROT_ATAPI_NODATA:
5687 qc->tf.flags |= ATA_TFLAG_POLLING;
5688 break;
5689 case ATA_PROT_ATAPI_DMA:
5690 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5691 /* see ata_dma_blacklisted() */
5692 BUG();
5693 break;
5694 default:
5695 break;
5699 /* select the device */
5700 ata_dev_select(ap, qc->dev->devno, 1, 0);
5702 /* start the command */
5703 switch (qc->tf.protocol) {
5704 case ATA_PROT_NODATA:
5705 if (qc->tf.flags & ATA_TFLAG_POLLING)
5706 ata_qc_set_polling(qc);
5708 ata_tf_to_host(ap, &qc->tf);
5709 ap->hsm_task_state = HSM_ST_LAST;
5711 if (qc->tf.flags & ATA_TFLAG_POLLING)
5712 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5714 break;
5716 case ATA_PROT_DMA:
5717 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5719 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5720 ap->ops->bmdma_setup(qc); /* set up bmdma */
5721 ap->ops->bmdma_start(qc); /* initiate bmdma */
5722 ap->hsm_task_state = HSM_ST_LAST;
5723 break;
5725 case ATA_PROT_PIO:
5726 if (qc->tf.flags & ATA_TFLAG_POLLING)
5727 ata_qc_set_polling(qc);
5729 ata_tf_to_host(ap, &qc->tf);
5731 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5732 /* PIO data out protocol */
5733 ap->hsm_task_state = HSM_ST_FIRST;
5734 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5736 /* always send first data block using
5737 * the ata_pio_task() codepath.
5739 } else {
5740 /* PIO data in protocol */
5741 ap->hsm_task_state = HSM_ST;
5743 if (qc->tf.flags & ATA_TFLAG_POLLING)
5744 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5746 /* if polling, ata_pio_task() handles the rest.
5747 * otherwise, interrupt handler takes over from here.
5751 break;
5753 case ATA_PROT_ATAPI:
5754 case ATA_PROT_ATAPI_NODATA:
5755 if (qc->tf.flags & ATA_TFLAG_POLLING)
5756 ata_qc_set_polling(qc);
5758 ata_tf_to_host(ap, &qc->tf);
5760 ap->hsm_task_state = HSM_ST_FIRST;
5762 /* send cdb by polling if no cdb interrupt */
5763 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5764 (qc->tf.flags & ATA_TFLAG_POLLING))
5765 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5766 break;
5768 case ATA_PROT_ATAPI_DMA:
5769 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5771 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5772 ap->ops->bmdma_setup(qc); /* set up bmdma */
5773 ap->hsm_task_state = HSM_ST_FIRST;
5775 /* send cdb by polling if no cdb interrupt */
5776 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5777 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5778 break;
5780 default:
5781 WARN_ON(1);
5782 return AC_ERR_SYSTEM;
5785 return 0;
5789 * ata_host_intr - Handle host interrupt for given (port, task)
5790 * @ap: Port on which interrupt arrived (possibly...)
5791 * @qc: Taskfile currently active in engine
5793 * Handle host interrupt for given queued command. Currently,
5794 * only DMA interrupts are handled. All other commands are
5795 * handled via polling with interrupts disabled (nIEN bit).
5797 * LOCKING:
5798 * spin_lock_irqsave(host lock)
5800 * RETURNS:
5801 * One if interrupt was handled, zero if not (shared irq).
5804 inline unsigned int ata_host_intr (struct ata_port *ap,
5805 struct ata_queued_cmd *qc)
5807 struct ata_eh_info *ehi = &ap->link.eh_info;
5808 u8 status, host_stat = 0;
5810 VPRINTK("ata%u: protocol %d task_state %d\n",
5811 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5813 /* Check whether we are expecting interrupt in this state */
5814 switch (ap->hsm_task_state) {
5815 case HSM_ST_FIRST:
5816 /* Some pre-ATAPI-4 devices assert INTRQ
5817 * at this state when ready to receive CDB.
5820 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5821 * The flag was turned on only for atapi devices.
5822 * No need to check is_atapi_taskfile(&qc->tf) again.
5824 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5825 goto idle_irq;
5826 break;
5827 case HSM_ST_LAST:
5828 if (qc->tf.protocol == ATA_PROT_DMA ||
5829 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5830 /* check status of DMA engine */
5831 host_stat = ap->ops->bmdma_status(ap);
5832 VPRINTK("ata%u: host_stat 0x%X\n",
5833 ap->print_id, host_stat);
5835 /* if it's not our irq... */
5836 if (!(host_stat & ATA_DMA_INTR))
5837 goto idle_irq;
5839 /* before we do anything else, clear DMA-Start bit */
5840 ap->ops->bmdma_stop(qc);
5842 if (unlikely(host_stat & ATA_DMA_ERR)) {
5843 /* error when transfering data to/from memory */
5844 qc->err_mask |= AC_ERR_HOST_BUS;
5845 ap->hsm_task_state = HSM_ST_ERR;
5848 break;
5849 case HSM_ST:
5850 break;
5851 default:
5852 goto idle_irq;
5855 /* check altstatus */
5856 status = ata_altstatus(ap);
5857 if (status & ATA_BUSY)
5858 goto idle_irq;
5860 /* check main status, clearing INTRQ */
5861 status = ata_chk_status(ap);
5862 if (unlikely(status & ATA_BUSY))
5863 goto idle_irq;
5865 /* ack bmdma irq events */
5866 ap->ops->irq_clear(ap);
5868 ata_hsm_move(ap, qc, status, 0);
5870 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5871 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5872 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5874 return 1; /* irq handled */
5876 idle_irq:
5877 ap->stats.idle_irq++;
5879 #ifdef ATA_IRQ_TRAP
5880 if ((ap->stats.idle_irq % 1000) == 0) {
5881 ata_chk_status(ap);
5882 ap->ops->irq_clear(ap);
5883 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5884 return 1;
5886 #endif
5887 return 0; /* irq not handled */
5891 * ata_interrupt - Default ATA host interrupt handler
5892 * @irq: irq line (unused)
5893 * @dev_instance: pointer to our ata_host information structure
5895 * Default interrupt handler for PCI IDE devices. Calls
5896 * ata_host_intr() for each port that is not disabled.
5898 * LOCKING:
5899 * Obtains host lock during operation.
5901 * RETURNS:
5902 * IRQ_NONE or IRQ_HANDLED.
5905 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5907 struct ata_host *host = dev_instance;
5908 unsigned int i;
5909 unsigned int handled = 0;
5910 unsigned long flags;
5912 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5913 spin_lock_irqsave(&host->lock, flags);
5915 for (i = 0; i < host->n_ports; i++) {
5916 struct ata_port *ap;
5918 ap = host->ports[i];
5919 if (ap &&
5920 !(ap->flags & ATA_FLAG_DISABLED)) {
5921 struct ata_queued_cmd *qc;
5923 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5924 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5925 (qc->flags & ATA_QCFLAG_ACTIVE))
5926 handled |= ata_host_intr(ap, qc);
5930 spin_unlock_irqrestore(&host->lock, flags);
5932 return IRQ_RETVAL(handled);
5936 * sata_scr_valid - test whether SCRs are accessible
5937 * @link: ATA link to test SCR accessibility for
5939 * Test whether SCRs are accessible for @link.
5941 * LOCKING:
5942 * None.
5944 * RETURNS:
5945 * 1 if SCRs are accessible, 0 otherwise.
5947 int sata_scr_valid(struct ata_link *link)
5949 struct ata_port *ap = link->ap;
5951 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5955 * sata_scr_read - read SCR register of the specified port
5956 * @link: ATA link to read SCR for
5957 * @reg: SCR to read
5958 * @val: Place to store read value
5960 * Read SCR register @reg of @link into *@val. This function is
5961 * guaranteed to succeed if the cable type of the port is SATA
5962 * and the port implements ->scr_read.
5964 * LOCKING:
5965 * None.
5967 * RETURNS:
5968 * 0 on success, negative errno on failure.
5970 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5972 struct ata_port *ap = link->ap;
5974 if (sata_scr_valid(link))
5975 return ap->ops->scr_read(ap, reg, val);
5976 return -EOPNOTSUPP;
5980 * sata_scr_write - write SCR register of the specified port
5981 * @link: ATA link to write SCR for
5982 * @reg: SCR to write
5983 * @val: value to write
5985 * Write @val to SCR register @reg of @link. This function is
5986 * guaranteed to succeed if the cable type of the port is SATA
5987 * and the port implements ->scr_read.
5989 * LOCKING:
5990 * None.
5992 * RETURNS:
5993 * 0 on success, negative errno on failure.
5995 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5997 struct ata_port *ap = link->ap;
5999 if (sata_scr_valid(link))
6000 return ap->ops->scr_write(ap, reg, val);
6001 return -EOPNOTSUPP;
6005 * sata_scr_write_flush - write SCR register of the specified port and flush
6006 * @link: ATA link to write SCR for
6007 * @reg: SCR to write
6008 * @val: value to write
6010 * This function is identical to sata_scr_write() except that this
6011 * function performs flush after writing to the register.
6013 * LOCKING:
6014 * None.
6016 * RETURNS:
6017 * 0 on success, negative errno on failure.
6019 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6021 struct ata_port *ap = link->ap;
6022 int rc;
6024 if (sata_scr_valid(link)) {
6025 rc = ap->ops->scr_write(ap, reg, val);
6026 if (rc == 0)
6027 rc = ap->ops->scr_read(ap, reg, &val);
6028 return rc;
6030 return -EOPNOTSUPP;
6034 * ata_link_online - test whether the given link is online
6035 * @link: ATA link to test
6037 * Test whether @link is online. Note that this function returns
6038 * 0 if online status of @link cannot be obtained, so
6039 * ata_link_online(link) != !ata_link_offline(link).
6041 * LOCKING:
6042 * None.
6044 * RETURNS:
6045 * 1 if the port online status is available and online.
6047 int ata_link_online(struct ata_link *link)
6049 u32 sstatus;
6051 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6052 (sstatus & 0xf) == 0x3)
6053 return 1;
6054 return 0;
6058 * ata_link_offline - test whether the given link is offline
6059 * @link: ATA link to test
6061 * Test whether @link is offline. Note that this function
6062 * returns 0 if offline status of @link cannot be obtained, so
6063 * ata_link_online(link) != !ata_link_offline(link).
6065 * LOCKING:
6066 * None.
6068 * RETURNS:
6069 * 1 if the port offline status is available and offline.
6071 int ata_link_offline(struct ata_link *link)
6073 u32 sstatus;
6075 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6076 (sstatus & 0xf) != 0x3)
6077 return 1;
6078 return 0;
6081 int ata_flush_cache(struct ata_device *dev)
6083 unsigned int err_mask;
6084 u8 cmd;
6086 if (!ata_try_flush_cache(dev))
6087 return 0;
6089 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6090 cmd = ATA_CMD_FLUSH_EXT;
6091 else
6092 cmd = ATA_CMD_FLUSH;
6094 /* This is wrong. On a failed flush we get back the LBA of the lost
6095 sector and we should (assuming it wasn't aborted as unknown) issue
6096 a further flush command to continue the writeback until it
6097 does not error */
6098 err_mask = ata_do_simple_cmd(dev, cmd);
6099 if (err_mask) {
6100 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6101 return -EIO;
6104 return 0;
6107 #ifdef CONFIG_PM
6108 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6109 unsigned int action, unsigned int ehi_flags,
6110 int wait)
6112 unsigned long flags;
6113 int i, rc;
6115 for (i = 0; i < host->n_ports; i++) {
6116 struct ata_port *ap = host->ports[i];
6117 struct ata_link *link;
6119 /* Previous resume operation might still be in
6120 * progress. Wait for PM_PENDING to clear.
6122 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6123 ata_port_wait_eh(ap);
6124 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6127 /* request PM ops to EH */
6128 spin_lock_irqsave(ap->lock, flags);
6130 ap->pm_mesg = mesg;
6131 if (wait) {
6132 rc = 0;
6133 ap->pm_result = &rc;
6136 ap->pflags |= ATA_PFLAG_PM_PENDING;
6137 __ata_port_for_each_link(link, ap) {
6138 link->eh_info.action |= action;
6139 link->eh_info.flags |= ehi_flags;
6142 ata_port_schedule_eh(ap);
6144 spin_unlock_irqrestore(ap->lock, flags);
6146 /* wait and check result */
6147 if (wait) {
6148 ata_port_wait_eh(ap);
6149 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6150 if (rc)
6151 return rc;
6155 return 0;
6159 * ata_host_suspend - suspend host
6160 * @host: host to suspend
6161 * @mesg: PM message
6163 * Suspend @host. Actual operation is performed by EH. This
6164 * function requests EH to perform PM operations and waits for EH
6165 * to finish.
6167 * LOCKING:
6168 * Kernel thread context (may sleep).
6170 * RETURNS:
6171 * 0 on success, -errno on failure.
6173 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6175 int rc;
6177 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6178 if (rc == 0)
6179 host->dev->power.power_state = mesg;
6180 return rc;
6184 * ata_host_resume - resume host
6185 * @host: host to resume
6187 * Resume @host. Actual operation is performed by EH. This
6188 * function requests EH to perform PM operations and returns.
6189 * Note that all resume operations are performed parallely.
6191 * LOCKING:
6192 * Kernel thread context (may sleep).
6194 void ata_host_resume(struct ata_host *host)
6196 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6197 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6198 host->dev->power.power_state = PMSG_ON;
6200 #endif
6203 * ata_port_start - Set port up for dma.
6204 * @ap: Port to initialize
6206 * Called just after data structures for each port are
6207 * initialized. Allocates space for PRD table.
6209 * May be used as the port_start() entry in ata_port_operations.
6211 * LOCKING:
6212 * Inherited from caller.
6214 int ata_port_start(struct ata_port *ap)
6216 struct device *dev = ap->dev;
6217 int rc;
6219 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6220 GFP_KERNEL);
6221 if (!ap->prd)
6222 return -ENOMEM;
6224 rc = ata_pad_alloc(ap, dev);
6225 if (rc)
6226 return rc;
6228 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6229 (unsigned long long)ap->prd_dma);
6230 return 0;
6234 * ata_dev_init - Initialize an ata_device structure
6235 * @dev: Device structure to initialize
6237 * Initialize @dev in preparation for probing.
6239 * LOCKING:
6240 * Inherited from caller.
6242 void ata_dev_init(struct ata_device *dev)
6244 struct ata_link *link = dev->link;
6245 struct ata_port *ap = link->ap;
6246 unsigned long flags;
6248 /* SATA spd limit is bound to the first device */
6249 link->sata_spd_limit = link->hw_sata_spd_limit;
6250 link->sata_spd = 0;
6252 /* High bits of dev->flags are used to record warm plug
6253 * requests which occur asynchronously. Synchronize using
6254 * host lock.
6256 spin_lock_irqsave(ap->lock, flags);
6257 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6258 dev->horkage = 0;
6259 spin_unlock_irqrestore(ap->lock, flags);
6261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6263 dev->pio_mask = UINT_MAX;
6264 dev->mwdma_mask = UINT_MAX;
6265 dev->udma_mask = UINT_MAX;
6269 * ata_link_init - Initialize an ata_link structure
6270 * @ap: ATA port link is attached to
6271 * @link: Link structure to initialize
6272 * @pmp: Port multiplier port number
6274 * Initialize @link.
6276 * LOCKING:
6277 * Kernel thread context (may sleep)
6279 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6281 int i;
6283 /* clear everything except for devices */
6284 memset(link, 0, offsetof(struct ata_link, device[0]));
6286 link->ap = ap;
6287 link->pmp = pmp;
6288 link->active_tag = ATA_TAG_POISON;
6289 link->hw_sata_spd_limit = UINT_MAX;
6291 /* can't use iterator, ap isn't initialized yet */
6292 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6293 struct ata_device *dev = &link->device[i];
6295 dev->link = link;
6296 dev->devno = dev - link->device;
6297 ata_dev_init(dev);
6302 * sata_link_init_spd - Initialize link->sata_spd_limit
6303 * @link: Link to configure sata_spd_limit for
6305 * Initialize @link->[hw_]sata_spd_limit to the currently
6306 * configured value.
6308 * LOCKING:
6309 * Kernel thread context (may sleep).
6311 * RETURNS:
6312 * 0 on success, -errno on failure.
6314 int sata_link_init_spd(struct ata_link *link)
6316 u32 scontrol, spd;
6317 int rc;
6319 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6320 if (rc)
6321 return rc;
6323 spd = (scontrol >> 4) & 0xf;
6324 if (spd)
6325 link->hw_sata_spd_limit &= (1 << spd) - 1;
6327 link->sata_spd_limit = link->hw_sata_spd_limit;
6329 return 0;
6333 * ata_port_alloc - allocate and initialize basic ATA port resources
6334 * @host: ATA host this allocated port belongs to
6336 * Allocate and initialize basic ATA port resources.
6338 * RETURNS:
6339 * Allocate ATA port on success, NULL on failure.
6341 * LOCKING:
6342 * Inherited from calling layer (may sleep).
6344 struct ata_port *ata_port_alloc(struct ata_host *host)
6346 struct ata_port *ap;
6348 DPRINTK("ENTER\n");
6350 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6351 if (!ap)
6352 return NULL;
6354 ap->pflags |= ATA_PFLAG_INITIALIZING;
6355 ap->lock = &host->lock;
6356 ap->flags = ATA_FLAG_DISABLED;
6357 ap->print_id = -1;
6358 ap->ctl = ATA_DEVCTL_OBS;
6359 ap->host = host;
6360 ap->dev = host->dev;
6361 ap->last_ctl = 0xFF;
6363 #if defined(ATA_VERBOSE_DEBUG)
6364 /* turn on all debugging levels */
6365 ap->msg_enable = 0x00FF;
6366 #elif defined(ATA_DEBUG)
6367 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6368 #else
6369 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6370 #endif
6372 INIT_DELAYED_WORK(&ap->port_task, NULL);
6373 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6374 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6375 INIT_LIST_HEAD(&ap->eh_done_q);
6376 init_waitqueue_head(&ap->eh_wait_q);
6377 init_timer_deferrable(&ap->fastdrain_timer);
6378 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6379 ap->fastdrain_timer.data = (unsigned long)ap;
6381 ap->cbl = ATA_CBL_NONE;
6383 ata_link_init(ap, &ap->link, 0);
6385 #ifdef ATA_IRQ_TRAP
6386 ap->stats.unhandled_irq = 1;
6387 ap->stats.idle_irq = 1;
6388 #endif
6389 return ap;
6392 static void ata_host_release(struct device *gendev, void *res)
6394 struct ata_host *host = dev_get_drvdata(gendev);
6395 int i;
6397 for (i = 0; i < host->n_ports; i++) {
6398 struct ata_port *ap = host->ports[i];
6400 if (!ap)
6401 continue;
6403 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6404 ap->ops->port_stop(ap);
6407 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6408 host->ops->host_stop(host);
6410 for (i = 0; i < host->n_ports; i++) {
6411 struct ata_port *ap = host->ports[i];
6413 if (!ap)
6414 continue;
6416 if (ap->scsi_host)
6417 scsi_host_put(ap->scsi_host);
6419 kfree(ap);
6420 host->ports[i] = NULL;
6423 dev_set_drvdata(gendev, NULL);
6427 * ata_host_alloc - allocate and init basic ATA host resources
6428 * @dev: generic device this host is associated with
6429 * @max_ports: maximum number of ATA ports associated with this host
6431 * Allocate and initialize basic ATA host resources. LLD calls
6432 * this function to allocate a host, initializes it fully and
6433 * attaches it using ata_host_register().
6435 * @max_ports ports are allocated and host->n_ports is
6436 * initialized to @max_ports. The caller is allowed to decrease
6437 * host->n_ports before calling ata_host_register(). The unused
6438 * ports will be automatically freed on registration.
6440 * RETURNS:
6441 * Allocate ATA host on success, NULL on failure.
6443 * LOCKING:
6444 * Inherited from calling layer (may sleep).
6446 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6448 struct ata_host *host;
6449 size_t sz;
6450 int i;
6452 DPRINTK("ENTER\n");
6454 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6455 return NULL;
6457 /* alloc a container for our list of ATA ports (buses) */
6458 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6459 /* alloc a container for our list of ATA ports (buses) */
6460 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6461 if (!host)
6462 goto err_out;
6464 devres_add(dev, host);
6465 dev_set_drvdata(dev, host);
6467 spin_lock_init(&host->lock);
6468 host->dev = dev;
6469 host->n_ports = max_ports;
6471 /* allocate ports bound to this host */
6472 for (i = 0; i < max_ports; i++) {
6473 struct ata_port *ap;
6475 ap = ata_port_alloc(host);
6476 if (!ap)
6477 goto err_out;
6479 ap->port_no = i;
6480 host->ports[i] = ap;
6483 devres_remove_group(dev, NULL);
6484 return host;
6486 err_out:
6487 devres_release_group(dev, NULL);
6488 return NULL;
6492 * ata_host_alloc_pinfo - alloc host and init with port_info array
6493 * @dev: generic device this host is associated with
6494 * @ppi: array of ATA port_info to initialize host with
6495 * @n_ports: number of ATA ports attached to this host
6497 * Allocate ATA host and initialize with info from @ppi. If NULL
6498 * terminated, @ppi may contain fewer entries than @n_ports. The
6499 * last entry will be used for the remaining ports.
6501 * RETURNS:
6502 * Allocate ATA host on success, NULL on failure.
6504 * LOCKING:
6505 * Inherited from calling layer (may sleep).
6507 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6508 const struct ata_port_info * const * ppi,
6509 int n_ports)
6511 const struct ata_port_info *pi;
6512 struct ata_host *host;
6513 int i, j;
6515 host = ata_host_alloc(dev, n_ports);
6516 if (!host)
6517 return NULL;
6519 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6520 struct ata_port *ap = host->ports[i];
6522 if (ppi[j])
6523 pi = ppi[j++];
6525 ap->pio_mask = pi->pio_mask;
6526 ap->mwdma_mask = pi->mwdma_mask;
6527 ap->udma_mask = pi->udma_mask;
6528 ap->flags |= pi->flags;
6529 ap->link.flags |= pi->link_flags;
6530 ap->ops = pi->port_ops;
6532 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6533 host->ops = pi->port_ops;
6534 if (!host->private_data && pi->private_data)
6535 host->private_data = pi->private_data;
6538 return host;
6542 * ata_host_start - start and freeze ports of an ATA host
6543 * @host: ATA host to start ports for
6545 * Start and then freeze ports of @host. Started status is
6546 * recorded in host->flags, so this function can be called
6547 * multiple times. Ports are guaranteed to get started only
6548 * once. If host->ops isn't initialized yet, its set to the
6549 * first non-dummy port ops.
6551 * LOCKING:
6552 * Inherited from calling layer (may sleep).
6554 * RETURNS:
6555 * 0 if all ports are started successfully, -errno otherwise.
6557 int ata_host_start(struct ata_host *host)
6559 int i, rc;
6561 if (host->flags & ATA_HOST_STARTED)
6562 return 0;
6564 for (i = 0; i < host->n_ports; i++) {
6565 struct ata_port *ap = host->ports[i];
6567 if (!host->ops && !ata_port_is_dummy(ap))
6568 host->ops = ap->ops;
6570 if (ap->ops->port_start) {
6571 rc = ap->ops->port_start(ap);
6572 if (rc) {
6573 ata_port_printk(ap, KERN_ERR, "failed to "
6574 "start port (errno=%d)\n", rc);
6575 goto err_out;
6579 ata_eh_freeze_port(ap);
6582 host->flags |= ATA_HOST_STARTED;
6583 return 0;
6585 err_out:
6586 while (--i >= 0) {
6587 struct ata_port *ap = host->ports[i];
6589 if (ap->ops->port_stop)
6590 ap->ops->port_stop(ap);
6592 return rc;
6596 * ata_sas_host_init - Initialize a host struct
6597 * @host: host to initialize
6598 * @dev: device host is attached to
6599 * @flags: host flags
6600 * @ops: port_ops
6602 * LOCKING:
6603 * PCI/etc. bus probe sem.
6606 /* KILLME - the only user left is ipr */
6607 void ata_host_init(struct ata_host *host, struct device *dev,
6608 unsigned long flags, const struct ata_port_operations *ops)
6610 spin_lock_init(&host->lock);
6611 host->dev = dev;
6612 host->flags = flags;
6613 host->ops = ops;
6617 * ata_host_register - register initialized ATA host
6618 * @host: ATA host to register
6619 * @sht: template for SCSI host
6621 * Register initialized ATA host. @host is allocated using
6622 * ata_host_alloc() and fully initialized by LLD. This function
6623 * starts ports, registers @host with ATA and SCSI layers and
6624 * probe registered devices.
6626 * LOCKING:
6627 * Inherited from calling layer (may sleep).
6629 * RETURNS:
6630 * 0 on success, -errno otherwise.
6632 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6634 int i, rc;
6636 /* host must have been started */
6637 if (!(host->flags & ATA_HOST_STARTED)) {
6638 dev_printk(KERN_ERR, host->dev,
6639 "BUG: trying to register unstarted host\n");
6640 WARN_ON(1);
6641 return -EINVAL;
6644 /* Blow away unused ports. This happens when LLD can't
6645 * determine the exact number of ports to allocate at
6646 * allocation time.
6648 for (i = host->n_ports; host->ports[i]; i++)
6649 kfree(host->ports[i]);
6651 /* give ports names and add SCSI hosts */
6652 for (i = 0; i < host->n_ports; i++)
6653 host->ports[i]->print_id = ata_print_id++;
6655 rc = ata_scsi_add_hosts(host, sht);
6656 if (rc)
6657 return rc;
6659 /* associate with ACPI nodes */
6660 ata_acpi_associate(host);
6662 /* set cable, sata_spd_limit and report */
6663 for (i = 0; i < host->n_ports; i++) {
6664 struct ata_port *ap = host->ports[i];
6665 unsigned long xfer_mask;
6667 /* set SATA cable type if still unset */
6668 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6669 ap->cbl = ATA_CBL_SATA;
6671 /* init sata_spd_limit to the current value */
6672 sata_link_init_spd(&ap->link);
6674 /* print per-port info to dmesg */
6675 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6676 ap->udma_mask);
6678 if (!ata_port_is_dummy(ap))
6679 ata_port_printk(ap, KERN_INFO,
6680 "%cATA max %s %s\n",
6681 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6682 ata_mode_string(xfer_mask),
6683 ap->link.eh_info.desc);
6684 else
6685 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6688 /* perform each probe synchronously */
6689 DPRINTK("probe begin\n");
6690 for (i = 0; i < host->n_ports; i++) {
6691 struct ata_port *ap = host->ports[i];
6692 int rc;
6694 /* probe */
6695 if (ap->ops->error_handler) {
6696 struct ata_eh_info *ehi = &ap->link.eh_info;
6697 unsigned long flags;
6699 ata_port_probe(ap);
6701 /* kick EH for boot probing */
6702 spin_lock_irqsave(ap->lock, flags);
6704 ehi->probe_mask =
6705 (1 << ata_link_max_devices(&ap->link)) - 1;
6706 ehi->action |= ATA_EH_SOFTRESET;
6707 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6709 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6710 ap->pflags |= ATA_PFLAG_LOADING;
6711 ata_port_schedule_eh(ap);
6713 spin_unlock_irqrestore(ap->lock, flags);
6715 /* wait for EH to finish */
6716 ata_port_wait_eh(ap);
6717 } else {
6718 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6719 rc = ata_bus_probe(ap);
6720 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6722 if (rc) {
6723 /* FIXME: do something useful here?
6724 * Current libata behavior will
6725 * tear down everything when
6726 * the module is removed
6727 * or the h/w is unplugged.
6733 /* probes are done, now scan each port's disk(s) */
6734 DPRINTK("host probe begin\n");
6735 for (i = 0; i < host->n_ports; i++) {
6736 struct ata_port *ap = host->ports[i];
6738 ata_scsi_scan_host(ap, 1);
6741 return 0;
6745 * ata_host_activate - start host, request IRQ and register it
6746 * @host: target ATA host
6747 * @irq: IRQ to request
6748 * @irq_handler: irq_handler used when requesting IRQ
6749 * @irq_flags: irq_flags used when requesting IRQ
6750 * @sht: scsi_host_template to use when registering the host
6752 * After allocating an ATA host and initializing it, most libata
6753 * LLDs perform three steps to activate the host - start host,
6754 * request IRQ and register it. This helper takes necessasry
6755 * arguments and performs the three steps in one go.
6757 * LOCKING:
6758 * Inherited from calling layer (may sleep).
6760 * RETURNS:
6761 * 0 on success, -errno otherwise.
6763 int ata_host_activate(struct ata_host *host, int irq,
6764 irq_handler_t irq_handler, unsigned long irq_flags,
6765 struct scsi_host_template *sht)
6767 int i, rc;
6769 rc = ata_host_start(host);
6770 if (rc)
6771 return rc;
6773 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6774 dev_driver_string(host->dev), host);
6775 if (rc)
6776 return rc;
6778 for (i = 0; i < host->n_ports; i++)
6779 ata_port_desc(host->ports[i], "irq %d", irq);
6781 rc = ata_host_register(host, sht);
6782 /* if failed, just free the IRQ and leave ports alone */
6783 if (rc)
6784 devm_free_irq(host->dev, irq, host);
6786 return rc;
6790 * ata_port_detach - Detach ATA port in prepration of device removal
6791 * @ap: ATA port to be detached
6793 * Detach all ATA devices and the associated SCSI devices of @ap;
6794 * then, remove the associated SCSI host. @ap is guaranteed to
6795 * be quiescent on return from this function.
6797 * LOCKING:
6798 * Kernel thread context (may sleep).
6800 void ata_port_detach(struct ata_port *ap)
6802 unsigned long flags;
6803 struct ata_link *link;
6804 struct ata_device *dev;
6806 if (!ap->ops->error_handler)
6807 goto skip_eh;
6809 /* tell EH we're leaving & flush EH */
6810 spin_lock_irqsave(ap->lock, flags);
6811 ap->pflags |= ATA_PFLAG_UNLOADING;
6812 spin_unlock_irqrestore(ap->lock, flags);
6814 ata_port_wait_eh(ap);
6816 /* EH is now guaranteed to see UNLOADING, so no new device
6817 * will be attached. Disable all existing devices.
6819 spin_lock_irqsave(ap->lock, flags);
6821 ata_port_for_each_link(link, ap) {
6822 ata_link_for_each_dev(dev, link)
6823 ata_dev_disable(dev);
6826 spin_unlock_irqrestore(ap->lock, flags);
6828 /* Final freeze & EH. All in-flight commands are aborted. EH
6829 * will be skipped and retrials will be terminated with bad
6830 * target.
6832 spin_lock_irqsave(ap->lock, flags);
6833 ata_port_freeze(ap); /* won't be thawed */
6834 spin_unlock_irqrestore(ap->lock, flags);
6836 ata_port_wait_eh(ap);
6837 cancel_rearming_delayed_work(&ap->hotplug_task);
6839 skip_eh:
6840 /* remove the associated SCSI host */
6841 scsi_remove_host(ap->scsi_host);
6845 * ata_host_detach - Detach all ports of an ATA host
6846 * @host: Host to detach
6848 * Detach all ports of @host.
6850 * LOCKING:
6851 * Kernel thread context (may sleep).
6853 void ata_host_detach(struct ata_host *host)
6855 int i;
6857 for (i = 0; i < host->n_ports; i++)
6858 ata_port_detach(host->ports[i]);
6862 * ata_std_ports - initialize ioaddr with standard port offsets.
6863 * @ioaddr: IO address structure to be initialized
6865 * Utility function which initializes data_addr, error_addr,
6866 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6867 * device_addr, status_addr, and command_addr to standard offsets
6868 * relative to cmd_addr.
6870 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6873 void ata_std_ports(struct ata_ioports *ioaddr)
6875 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6876 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6877 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6878 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6879 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6880 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6881 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6882 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6883 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6884 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6888 #ifdef CONFIG_PCI
6891 * ata_pci_remove_one - PCI layer callback for device removal
6892 * @pdev: PCI device that was removed
6894 * PCI layer indicates to libata via this hook that hot-unplug or
6895 * module unload event has occurred. Detach all ports. Resource
6896 * release is handled via devres.
6898 * LOCKING:
6899 * Inherited from PCI layer (may sleep).
6901 void ata_pci_remove_one(struct pci_dev *pdev)
6903 struct device *dev = pci_dev_to_dev(pdev);
6904 struct ata_host *host = dev_get_drvdata(dev);
6906 ata_host_detach(host);
6909 /* move to PCI subsystem */
6910 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6912 unsigned long tmp = 0;
6914 switch (bits->width) {
6915 case 1: {
6916 u8 tmp8 = 0;
6917 pci_read_config_byte(pdev, bits->reg, &tmp8);
6918 tmp = tmp8;
6919 break;
6921 case 2: {
6922 u16 tmp16 = 0;
6923 pci_read_config_word(pdev, bits->reg, &tmp16);
6924 tmp = tmp16;
6925 break;
6927 case 4: {
6928 u32 tmp32 = 0;
6929 pci_read_config_dword(pdev, bits->reg, &tmp32);
6930 tmp = tmp32;
6931 break;
6934 default:
6935 return -EINVAL;
6938 tmp &= bits->mask;
6940 return (tmp == bits->val) ? 1 : 0;
6943 #ifdef CONFIG_PM
6944 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6946 pci_save_state(pdev);
6947 pci_disable_device(pdev);
6949 if (mesg.event == PM_EVENT_SUSPEND)
6950 pci_set_power_state(pdev, PCI_D3hot);
6953 int ata_pci_device_do_resume(struct pci_dev *pdev)
6955 int rc;
6957 pci_set_power_state(pdev, PCI_D0);
6958 pci_restore_state(pdev);
6960 rc = pcim_enable_device(pdev);
6961 if (rc) {
6962 dev_printk(KERN_ERR, &pdev->dev,
6963 "failed to enable device after resume (%d)\n", rc);
6964 return rc;
6967 pci_set_master(pdev);
6968 return 0;
6971 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6973 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6974 int rc = 0;
6976 rc = ata_host_suspend(host, mesg);
6977 if (rc)
6978 return rc;
6980 ata_pci_device_do_suspend(pdev, mesg);
6982 return 0;
6985 int ata_pci_device_resume(struct pci_dev *pdev)
6987 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6988 int rc;
6990 rc = ata_pci_device_do_resume(pdev);
6991 if (rc == 0)
6992 ata_host_resume(host);
6993 return rc;
6995 #endif /* CONFIG_PM */
6997 #endif /* CONFIG_PCI */
7000 static int __init ata_init(void)
7002 ata_probe_timeout *= HZ;
7003 ata_wq = create_workqueue("ata");
7004 if (!ata_wq)
7005 return -ENOMEM;
7007 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7008 if (!ata_aux_wq) {
7009 destroy_workqueue(ata_wq);
7010 return -ENOMEM;
7013 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7014 return 0;
7017 static void __exit ata_exit(void)
7019 destroy_workqueue(ata_wq);
7020 destroy_workqueue(ata_aux_wq);
7023 subsys_initcall(ata_init);
7024 module_exit(ata_exit);
7026 static unsigned long ratelimit_time;
7027 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7029 int ata_ratelimit(void)
7031 int rc;
7032 unsigned long flags;
7034 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7036 if (time_after(jiffies, ratelimit_time)) {
7037 rc = 1;
7038 ratelimit_time = jiffies + (HZ/5);
7039 } else
7040 rc = 0;
7042 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7044 return rc;
7048 * ata_wait_register - wait until register value changes
7049 * @reg: IO-mapped register
7050 * @mask: Mask to apply to read register value
7051 * @val: Wait condition
7052 * @interval_msec: polling interval in milliseconds
7053 * @timeout_msec: timeout in milliseconds
7055 * Waiting for some bits of register to change is a common
7056 * operation for ATA controllers. This function reads 32bit LE
7057 * IO-mapped register @reg and tests for the following condition.
7059 * (*@reg & mask) != val
7061 * If the condition is met, it returns; otherwise, the process is
7062 * repeated after @interval_msec until timeout.
7064 * LOCKING:
7065 * Kernel thread context (may sleep)
7067 * RETURNS:
7068 * The final register value.
7070 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7071 unsigned long interval_msec,
7072 unsigned long timeout_msec)
7074 unsigned long timeout;
7075 u32 tmp;
7077 tmp = ioread32(reg);
7079 /* Calculate timeout _after_ the first read to make sure
7080 * preceding writes reach the controller before starting to
7081 * eat away the timeout.
7083 timeout = jiffies + (timeout_msec * HZ) / 1000;
7085 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7086 msleep(interval_msec);
7087 tmp = ioread32(reg);
7090 return tmp;
7094 * Dummy port_ops
7096 static void ata_dummy_noret(struct ata_port *ap) { }
7097 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7098 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7100 static u8 ata_dummy_check_status(struct ata_port *ap)
7102 return ATA_DRDY;
7105 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7107 return AC_ERR_SYSTEM;
7110 const struct ata_port_operations ata_dummy_port_ops = {
7111 .check_status = ata_dummy_check_status,
7112 .check_altstatus = ata_dummy_check_status,
7113 .dev_select = ata_noop_dev_select,
7114 .qc_prep = ata_noop_qc_prep,
7115 .qc_issue = ata_dummy_qc_issue,
7116 .freeze = ata_dummy_noret,
7117 .thaw = ata_dummy_noret,
7118 .error_handler = ata_dummy_noret,
7119 .post_internal_cmd = ata_dummy_qc_noret,
7120 .irq_clear = ata_dummy_noret,
7121 .port_start = ata_dummy_ret0,
7122 .port_stop = ata_dummy_noret,
7125 const struct ata_port_info ata_dummy_port_info = {
7126 .port_ops = &ata_dummy_port_ops,
7130 * libata is essentially a library of internal helper functions for
7131 * low-level ATA host controller drivers. As such, the API/ABI is
7132 * likely to change as new drivers are added and updated.
7133 * Do not depend on ABI/API stability.
7136 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7137 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7138 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7139 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7140 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7141 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7142 EXPORT_SYMBOL_GPL(ata_std_ports);
7143 EXPORT_SYMBOL_GPL(ata_host_init);
7144 EXPORT_SYMBOL_GPL(ata_host_alloc);
7145 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7146 EXPORT_SYMBOL_GPL(ata_host_start);
7147 EXPORT_SYMBOL_GPL(ata_host_register);
7148 EXPORT_SYMBOL_GPL(ata_host_activate);
7149 EXPORT_SYMBOL_GPL(ata_host_detach);
7150 EXPORT_SYMBOL_GPL(ata_sg_init);
7151 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7152 EXPORT_SYMBOL_GPL(ata_hsm_move);
7153 EXPORT_SYMBOL_GPL(ata_qc_complete);
7154 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7155 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7156 EXPORT_SYMBOL_GPL(ata_tf_load);
7157 EXPORT_SYMBOL_GPL(ata_tf_read);
7158 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7159 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7160 EXPORT_SYMBOL_GPL(sata_print_link_status);
7161 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7162 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7163 EXPORT_SYMBOL_GPL(ata_check_status);
7164 EXPORT_SYMBOL_GPL(ata_altstatus);
7165 EXPORT_SYMBOL_GPL(ata_exec_command);
7166 EXPORT_SYMBOL_GPL(ata_port_start);
7167 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7168 EXPORT_SYMBOL_GPL(ata_interrupt);
7169 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7170 EXPORT_SYMBOL_GPL(ata_data_xfer);
7171 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7172 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7173 EXPORT_SYMBOL_GPL(ata_qc_prep);
7174 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7175 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7176 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7177 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7178 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7179 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7180 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7181 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7182 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7183 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7184 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7185 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7186 EXPORT_SYMBOL_GPL(ata_port_probe);
7187 EXPORT_SYMBOL_GPL(ata_dev_disable);
7188 EXPORT_SYMBOL_GPL(sata_set_spd);
7189 EXPORT_SYMBOL_GPL(sata_link_debounce);
7190 EXPORT_SYMBOL_GPL(sata_link_resume);
7191 EXPORT_SYMBOL_GPL(sata_phy_reset);
7192 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7193 EXPORT_SYMBOL_GPL(ata_bus_reset);
7194 EXPORT_SYMBOL_GPL(ata_std_prereset);
7195 EXPORT_SYMBOL_GPL(ata_std_softreset);
7196 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7197 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7198 EXPORT_SYMBOL_GPL(ata_std_postreset);
7199 EXPORT_SYMBOL_GPL(ata_dev_classify);
7200 EXPORT_SYMBOL_GPL(ata_dev_pair);
7201 EXPORT_SYMBOL_GPL(ata_port_disable);
7202 EXPORT_SYMBOL_GPL(ata_ratelimit);
7203 EXPORT_SYMBOL_GPL(ata_wait_register);
7204 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7205 EXPORT_SYMBOL_GPL(ata_wait_ready);
7206 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7207 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7208 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7209 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7210 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7211 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7212 EXPORT_SYMBOL_GPL(ata_host_intr);
7213 EXPORT_SYMBOL_GPL(sata_scr_valid);
7214 EXPORT_SYMBOL_GPL(sata_scr_read);
7215 EXPORT_SYMBOL_GPL(sata_scr_write);
7216 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7217 EXPORT_SYMBOL_GPL(ata_link_online);
7218 EXPORT_SYMBOL_GPL(ata_link_offline);
7219 #ifdef CONFIG_PM
7220 EXPORT_SYMBOL_GPL(ata_host_suspend);
7221 EXPORT_SYMBOL_GPL(ata_host_resume);
7222 #endif /* CONFIG_PM */
7223 EXPORT_SYMBOL_GPL(ata_id_string);
7224 EXPORT_SYMBOL_GPL(ata_id_c_string);
7225 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7226 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7228 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7229 EXPORT_SYMBOL_GPL(ata_timing_compute);
7230 EXPORT_SYMBOL_GPL(ata_timing_merge);
7232 #ifdef CONFIG_PCI
7233 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7234 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7235 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7236 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7237 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7238 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7239 #ifdef CONFIG_PM
7240 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7241 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7242 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7243 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7244 #endif /* CONFIG_PM */
7245 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7246 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7247 #endif /* CONFIG_PCI */
7249 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7250 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7251 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7252 EXPORT_SYMBOL_GPL(ata_port_desc);
7253 #ifdef CONFIG_PCI
7254 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7255 #endif /* CONFIG_PCI */
7256 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7257 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7258 EXPORT_SYMBOL_GPL(ata_link_abort);
7259 EXPORT_SYMBOL_GPL(ata_port_abort);
7260 EXPORT_SYMBOL_GPL(ata_port_freeze);
7261 EXPORT_SYMBOL_GPL(sata_async_notification);
7262 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7263 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7264 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7265 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7266 EXPORT_SYMBOL_GPL(ata_do_eh);
7267 EXPORT_SYMBOL_GPL(ata_irq_on);
7268 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7270 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7271 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7272 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7273 EXPORT_SYMBOL_GPL(ata_cable_sata);