[PATCH] Driver Core: remove driver model detach_state
[linux-2.6/verdex.git] / arch / alpha / mm / numa.c
blobba81c4422aaf5fcfd4da8d731c23eae8820e988c
1 /*
2 * linux/arch/alpha/mm/numa.c
4 * DISCONTIGMEM NUMA alpha support.
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
9 #include <linux/config.h>
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/bootmem.h>
14 #include <linux/swap.h>
15 #include <linux/initrd.h>
17 #include <asm/hwrpb.h>
18 #include <asm/pgalloc.h>
20 pg_data_t node_data[MAX_NUMNODES];
21 bootmem_data_t node_bdata[MAX_NUMNODES];
23 #undef DEBUG_DISCONTIG
24 #ifdef DEBUG_DISCONTIG
25 #define DBGDCONT(args...) printk(args)
26 #else
27 #define DBGDCONT(args...)
28 #endif
30 #define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
31 #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
32 #define PFN_PHYS(x) ((x) << PAGE_SHIFT)
33 #define for_each_mem_cluster(memdesc, cluster, i) \
34 for ((cluster) = (memdesc)->cluster, (i) = 0; \
35 (i) < (memdesc)->numclusters; (i)++, (cluster)++)
37 static void __init show_mem_layout(void)
39 struct memclust_struct * cluster;
40 struct memdesc_struct * memdesc;
41 int i;
43 /* Find free clusters, and init and free the bootmem accordingly. */
44 memdesc = (struct memdesc_struct *)
45 (hwrpb->mddt_offset + (unsigned long) hwrpb);
47 printk("Raw memory layout:\n");
48 for_each_mem_cluster(memdesc, cluster, i) {
49 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
50 i, cluster->usage, cluster->start_pfn,
51 cluster->start_pfn + cluster->numpages);
55 static void __init
56 setup_memory_node(int nid, void *kernel_end)
58 extern unsigned long mem_size_limit;
59 struct memclust_struct * cluster;
60 struct memdesc_struct * memdesc;
61 unsigned long start_kernel_pfn, end_kernel_pfn;
62 unsigned long bootmap_size, bootmap_pages, bootmap_start;
63 unsigned long start, end;
64 unsigned long node_pfn_start, node_pfn_end;
65 unsigned long node_min_pfn, node_max_pfn;
66 int i;
67 unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
68 int show_init = 0;
70 /* Find the bounds of current node */
71 node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
72 node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
74 /* Find free clusters, and init and free the bootmem accordingly. */
75 memdesc = (struct memdesc_struct *)
76 (hwrpb->mddt_offset + (unsigned long) hwrpb);
78 /* find the bounds of this node (node_min_pfn/node_max_pfn) */
79 node_min_pfn = ~0UL;
80 node_max_pfn = 0UL;
81 for_each_mem_cluster(memdesc, cluster, i) {
82 /* Bit 0 is console/PALcode reserved. Bit 1 is
83 non-volatile memory -- we might want to mark
84 this for later. */
85 if (cluster->usage & 3)
86 continue;
88 start = cluster->start_pfn;
89 end = start + cluster->numpages;
91 if (start >= node_pfn_end || end <= node_pfn_start)
92 continue;
94 if (!show_init) {
95 show_init = 1;
96 printk("Initializing bootmem allocator on Node ID %d\n", nid);
98 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
99 i, cluster->usage, cluster->start_pfn,
100 cluster->start_pfn + cluster->numpages);
102 if (start < node_pfn_start)
103 start = node_pfn_start;
104 if (end > node_pfn_end)
105 end = node_pfn_end;
107 if (start < node_min_pfn)
108 node_min_pfn = start;
109 if (end > node_max_pfn)
110 node_max_pfn = end;
113 if (mem_size_limit && node_max_pfn > mem_size_limit) {
114 static int msg_shown = 0;
115 if (!msg_shown) {
116 msg_shown = 1;
117 printk("setup: forcing memory size to %ldK (from %ldK).\n",
118 mem_size_limit << (PAGE_SHIFT - 10),
119 node_max_pfn << (PAGE_SHIFT - 10));
121 node_max_pfn = mem_size_limit;
124 if (node_min_pfn >= node_max_pfn)
125 return;
127 /* Update global {min,max}_low_pfn from node information. */
128 if (node_min_pfn < min_low_pfn)
129 min_low_pfn = node_min_pfn;
130 if (node_max_pfn > max_low_pfn)
131 max_pfn = max_low_pfn = node_max_pfn;
133 num_physpages += node_max_pfn - node_min_pfn;
135 #if 0 /* we'll try this one again in a little while */
136 /* Cute trick to make sure our local node data is on local memory */
137 node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
138 #endif
139 /* Quasi-mark the pg_data_t as in-use */
140 node_min_pfn += node_datasz;
141 if (node_min_pfn >= node_max_pfn) {
142 printk(" not enough mem to reserve NODE_DATA");
143 return;
145 NODE_DATA(nid)->bdata = &node_bdata[nid];
147 printk(" Detected node memory: start %8lu, end %8lu\n",
148 node_min_pfn, node_max_pfn);
150 DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
151 DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
153 /* Find the bounds of kernel memory. */
154 start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
155 end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
156 bootmap_start = -1;
158 if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
159 panic("kernel loaded out of ram");
161 /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
162 Note that we round this down, not up - node memory
163 has much larger alignment than 8Mb, so it's safe. */
164 node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
166 /* We need to know how many physically contiguous pages
167 we'll need for the bootmap. */
168 bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
170 /* Now find a good region where to allocate the bootmap. */
171 for_each_mem_cluster(memdesc, cluster, i) {
172 if (cluster->usage & 3)
173 continue;
175 start = cluster->start_pfn;
176 end = start + cluster->numpages;
178 if (start >= node_max_pfn || end <= node_min_pfn)
179 continue;
181 if (end > node_max_pfn)
182 end = node_max_pfn;
183 if (start < node_min_pfn)
184 start = node_min_pfn;
186 if (start < start_kernel_pfn) {
187 if (end > end_kernel_pfn
188 && end - end_kernel_pfn >= bootmap_pages) {
189 bootmap_start = end_kernel_pfn;
190 break;
191 } else if (end > start_kernel_pfn)
192 end = start_kernel_pfn;
193 } else if (start < end_kernel_pfn)
194 start = end_kernel_pfn;
195 if (end - start >= bootmap_pages) {
196 bootmap_start = start;
197 break;
201 if (bootmap_start == -1)
202 panic("couldn't find a contigous place for the bootmap");
204 /* Allocate the bootmap and mark the whole MM as reserved. */
205 bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
206 node_min_pfn, node_max_pfn);
207 DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
208 bootmap_start, bootmap_size, bootmap_pages);
210 /* Mark the free regions. */
211 for_each_mem_cluster(memdesc, cluster, i) {
212 if (cluster->usage & 3)
213 continue;
215 start = cluster->start_pfn;
216 end = cluster->start_pfn + cluster->numpages;
218 if (start >= node_max_pfn || end <= node_min_pfn)
219 continue;
221 if (end > node_max_pfn)
222 end = node_max_pfn;
223 if (start < node_min_pfn)
224 start = node_min_pfn;
226 if (start < start_kernel_pfn) {
227 if (end > end_kernel_pfn) {
228 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
229 (PFN_PHYS(start_kernel_pfn)
230 - PFN_PHYS(start)));
231 printk(" freeing pages %ld:%ld\n",
232 start, start_kernel_pfn);
233 start = end_kernel_pfn;
234 } else if (end > start_kernel_pfn)
235 end = start_kernel_pfn;
236 } else if (start < end_kernel_pfn)
237 start = end_kernel_pfn;
238 if (start >= end)
239 continue;
241 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
242 printk(" freeing pages %ld:%ld\n", start, end);
245 /* Reserve the bootmap memory. */
246 reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
247 printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
249 node_set_online(nid);
252 void __init
253 setup_memory(void *kernel_end)
255 int nid;
257 show_mem_layout();
259 nodes_clear(node_online_map);
261 min_low_pfn = ~0UL;
262 max_low_pfn = 0UL;
263 for (nid = 0; nid < MAX_NUMNODES; nid++)
264 setup_memory_node(nid, kernel_end);
266 #ifdef CONFIG_BLK_DEV_INITRD
267 initrd_start = INITRD_START;
268 if (initrd_start) {
269 extern void *move_initrd(unsigned long);
271 initrd_end = initrd_start+INITRD_SIZE;
272 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
273 (void *) initrd_start, INITRD_SIZE);
275 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
276 if (!move_initrd(PFN_PHYS(max_low_pfn)))
277 printk("initrd extends beyond end of memory "
278 "(0x%08lx > 0x%p)\ndisabling initrd\n",
279 initrd_end,
280 phys_to_virt(PFN_PHYS(max_low_pfn)));
281 } else {
282 nid = kvaddr_to_nid(initrd_start);
283 reserve_bootmem_node(NODE_DATA(nid),
284 virt_to_phys((void *)initrd_start),
285 INITRD_SIZE);
288 #endif /* CONFIG_BLK_DEV_INITRD */
291 void __init paging_init(void)
293 unsigned int nid;
294 unsigned long zones_size[MAX_NR_ZONES] = {0, };
295 unsigned long dma_local_pfn;
298 * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
299 * in the NUMA model, for now we convert it to a pfn and
300 * we interpret this pfn as a local per-node information.
301 * This issue isn't very important since none of these machines
302 * have legacy ISA slots anyways.
304 dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
306 for_each_online_node(nid) {
307 unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
308 unsigned long end_pfn = node_bdata[nid].node_low_pfn;
310 if (dma_local_pfn >= end_pfn - start_pfn)
311 zones_size[ZONE_DMA] = end_pfn - start_pfn;
312 else {
313 zones_size[ZONE_DMA] = dma_local_pfn;
314 zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
316 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
319 /* Initialize the kernel's ZERO_PGE. */
320 memset((void *)ZERO_PGE, 0, PAGE_SIZE);
323 void __init mem_init(void)
325 unsigned long codesize, reservedpages, datasize, initsize, pfn;
326 extern int page_is_ram(unsigned long) __init;
327 extern char _text, _etext, _data, _edata;
328 extern char __init_begin, __init_end;
329 unsigned long nid, i;
330 struct page * lmem_map;
332 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
334 reservedpages = 0;
335 for_each_online_node(nid) {
337 * This will free up the bootmem, ie, slot 0 memory
339 totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
341 lmem_map = node_mem_map(nid);
342 pfn = NODE_DATA(nid)->node_start_pfn;
343 for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
344 if (page_is_ram(pfn) && PageReserved(lmem_map+i))
345 reservedpages++;
348 codesize = (unsigned long) &_etext - (unsigned long) &_text;
349 datasize = (unsigned long) &_edata - (unsigned long) &_data;
350 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
352 printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
353 "%luk data, %luk init)\n",
354 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
355 num_physpages << (PAGE_SHIFT-10),
356 codesize >> 10,
357 reservedpages << (PAGE_SHIFT-10),
358 datasize >> 10,
359 initsize >> 10);
360 #if 0
361 mem_stress();
362 #endif
365 void
366 show_mem(void)
368 long i,free = 0,total = 0,reserved = 0;
369 long shared = 0, cached = 0;
370 int nid;
372 printk("\nMem-info:\n");
373 show_free_areas();
374 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
375 for_each_online_node(nid) {
376 struct page * lmem_map = node_mem_map(nid);
377 i = node_spanned_pages(nid);
378 while (i-- > 0) {
379 total++;
380 if (PageReserved(lmem_map+i))
381 reserved++;
382 else if (PageSwapCache(lmem_map+i))
383 cached++;
384 else if (!page_count(lmem_map+i))
385 free++;
386 else
387 shared += page_count(lmem_map + i) - 1;
390 printk("%ld pages of RAM\n",total);
391 printk("%ld free pages\n",free);
392 printk("%ld reserved pages\n",reserved);
393 printk("%ld pages shared\n",shared);
394 printk("%ld pages swap cached\n",cached);