[PATCH] Driver Core: remove driver model detach_state
[linux-2.6/verdex.git] / mm / page_alloc.c
blobb1061b1962f86497a0deb83c2409b0e571fbf9d3
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
38 #include <asm/tlbflush.h>
39 #include "internal.h"
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
71 struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72 EXPORT_SYMBOL(zone_table);
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
81 * Temporary debugging check for pages not lying within a given zone.
83 static int bad_range(struct zone *zone, struct page *page)
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 return 1;
87 if (page_to_pfn(page) < zone->zone_start_pfn)
88 return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
91 return 1;
92 #endif
93 if (zone != page_zone(page))
94 return 1;
95 return 0;
98 static void bad_page(const char *function, struct page *page)
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
106 dump_stack();
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_private |
109 1 << PG_locked |
110 1 << PG_lru |
111 1 << PG_active |
112 1 << PG_dirty |
113 1 << PG_swapcache |
114 1 << PG_writeback);
115 set_page_count(page, 0);
116 reset_page_mapcount(page);
117 page->mapping = NULL;
118 tainted |= TAINT_BAD_PAGE;
121 #ifndef CONFIG_HUGETLB_PAGE
122 #define prep_compound_page(page, order) do { } while (0)
123 #define destroy_compound_page(page, order) do { } while (0)
124 #else
126 * Higher-order pages are called "compound pages". They are structured thusly:
128 * The first PAGE_SIZE page is called the "head page".
130 * The remaining PAGE_SIZE pages are called "tail pages".
132 * All pages have PG_compound set. All pages have their ->private pointing at
133 * the head page (even the head page has this).
135 * The first tail page's ->mapping, if non-zero, holds the address of the
136 * compound page's put_page() function.
138 * The order of the allocation is stored in the first tail page's ->index
139 * This is only for debug at present. This usage means that zero-order pages
140 * may not be compound.
142 static void prep_compound_page(struct page *page, unsigned long order)
144 int i;
145 int nr_pages = 1 << order;
147 page[1].mapping = NULL;
148 page[1].index = order;
149 for (i = 0; i < nr_pages; i++) {
150 struct page *p = page + i;
152 SetPageCompound(p);
153 p->private = (unsigned long)page;
157 static void destroy_compound_page(struct page *page, unsigned long order)
159 int i;
160 int nr_pages = 1 << order;
162 if (!PageCompound(page))
163 return;
165 if (page[1].index != order)
166 bad_page(__FUNCTION__, page);
168 for (i = 0; i < nr_pages; i++) {
169 struct page *p = page + i;
171 if (!PageCompound(p))
172 bad_page(__FUNCTION__, page);
173 if (p->private != (unsigned long)page)
174 bad_page(__FUNCTION__, page);
175 ClearPageCompound(p);
178 #endif /* CONFIG_HUGETLB_PAGE */
181 * function for dealing with page's order in buddy system.
182 * zone->lock is already acquired when we use these.
183 * So, we don't need atomic page->flags operations here.
185 static inline unsigned long page_order(struct page *page) {
186 return page->private;
189 static inline void set_page_order(struct page *page, int order) {
190 page->private = order;
191 __SetPagePrivate(page);
194 static inline void rmv_page_order(struct page *page)
196 __ClearPagePrivate(page);
197 page->private = 0;
201 * Locate the struct page for both the matching buddy in our
202 * pair (buddy1) and the combined O(n+1) page they form (page).
204 * 1) Any buddy B1 will have an order O twin B2 which satisfies
205 * the following equation:
206 * B2 = B1 ^ (1 << O)
207 * For example, if the starting buddy (buddy2) is #8 its order
208 * 1 buddy is #10:
209 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
211 * 2) Any buddy B will have an order O+1 parent P which
212 * satisfies the following equation:
213 * P = B & ~(1 << O)
215 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
217 static inline struct page *
218 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
220 unsigned long buddy_idx = page_idx ^ (1 << order);
222 return page + (buddy_idx - page_idx);
225 static inline unsigned long
226 __find_combined_index(unsigned long page_idx, unsigned int order)
228 return (page_idx & ~(1 << order));
232 * This function checks whether a page is free && is the buddy
233 * we can do coalesce a page and its buddy if
234 * (a) the buddy is free &&
235 * (b) the buddy is on the buddy system &&
236 * (c) a page and its buddy have the same order.
237 * for recording page's order, we use page->private and PG_private.
240 static inline int page_is_buddy(struct page *page, int order)
242 if (PagePrivate(page) &&
243 (page_order(page) == order) &&
244 !PageReserved(page) &&
245 page_count(page) == 0)
246 return 1;
247 return 0;
251 * Freeing function for a buddy system allocator.
253 * The concept of a buddy system is to maintain direct-mapped table
254 * (containing bit values) for memory blocks of various "orders".
255 * The bottom level table contains the map for the smallest allocatable
256 * units of memory (here, pages), and each level above it describes
257 * pairs of units from the levels below, hence, "buddies".
258 * At a high level, all that happens here is marking the table entry
259 * at the bottom level available, and propagating the changes upward
260 * as necessary, plus some accounting needed to play nicely with other
261 * parts of the VM system.
262 * At each level, we keep a list of pages, which are heads of continuous
263 * free pages of length of (1 << order) and marked with PG_Private.Page's
264 * order is recorded in page->private field.
265 * So when we are allocating or freeing one, we can derive the state of the
266 * other. That is, if we allocate a small block, and both were
267 * free, the remainder of the region must be split into blocks.
268 * If a block is freed, and its buddy is also free, then this
269 * triggers coalescing into a block of larger size.
271 * -- wli
274 static inline void __free_pages_bulk (struct page *page,
275 struct zone *zone, unsigned int order)
277 unsigned long page_idx;
278 int order_size = 1 << order;
280 if (unlikely(order))
281 destroy_compound_page(page, order);
283 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
285 BUG_ON(page_idx & (order_size - 1));
286 BUG_ON(bad_range(zone, page));
288 zone->free_pages += order_size;
289 while (order < MAX_ORDER-1) {
290 unsigned long combined_idx;
291 struct free_area *area;
292 struct page *buddy;
294 combined_idx = __find_combined_index(page_idx, order);
295 buddy = __page_find_buddy(page, page_idx, order);
297 if (bad_range(zone, buddy))
298 break;
299 if (!page_is_buddy(buddy, order))
300 break; /* Move the buddy up one level. */
301 list_del(&buddy->lru);
302 area = zone->free_area + order;
303 area->nr_free--;
304 rmv_page_order(buddy);
305 page = page + (combined_idx - page_idx);
306 page_idx = combined_idx;
307 order++;
309 set_page_order(page, order);
310 list_add(&page->lru, &zone->free_area[order].free_list);
311 zone->free_area[order].nr_free++;
314 static inline void free_pages_check(const char *function, struct page *page)
316 if ( page_mapcount(page) ||
317 page->mapping != NULL ||
318 page_count(page) != 0 ||
319 (page->flags & (
320 1 << PG_lru |
321 1 << PG_private |
322 1 << PG_locked |
323 1 << PG_active |
324 1 << PG_reclaim |
325 1 << PG_slab |
326 1 << PG_swapcache |
327 1 << PG_writeback )))
328 bad_page(function, page);
329 if (PageDirty(page))
330 ClearPageDirty(page);
334 * Frees a list of pages.
335 * Assumes all pages on list are in same zone, and of same order.
336 * count is the number of pages to free, or 0 for all on the list.
338 * If the zone was previously in an "all pages pinned" state then look to
339 * see if this freeing clears that state.
341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
342 * pinned" detection logic.
344 static int
345 free_pages_bulk(struct zone *zone, int count,
346 struct list_head *list, unsigned int order)
348 unsigned long flags;
349 struct page *page = NULL;
350 int ret = 0;
352 spin_lock_irqsave(&zone->lock, flags);
353 zone->all_unreclaimable = 0;
354 zone->pages_scanned = 0;
355 while (!list_empty(list) && count--) {
356 page = list_entry(list->prev, struct page, lru);
357 /* have to delete it as __free_pages_bulk list manipulates */
358 list_del(&page->lru);
359 __free_pages_bulk(page, zone, order);
360 ret++;
362 spin_unlock_irqrestore(&zone->lock, flags);
363 return ret;
366 void __free_pages_ok(struct page *page, unsigned int order)
368 LIST_HEAD(list);
369 int i;
371 arch_free_page(page, order);
373 mod_page_state(pgfree, 1 << order);
375 #ifndef CONFIG_MMU
376 if (order > 0)
377 for (i = 1 ; i < (1 << order) ; ++i)
378 __put_page(page + i);
379 #endif
381 for (i = 0 ; i < (1 << order) ; ++i)
382 free_pages_check(__FUNCTION__, page + i);
383 list_add(&page->lru, &list);
384 kernel_map_pages(page, 1<<order, 0);
385 free_pages_bulk(page_zone(page), 1, &list, order);
390 * The order of subdivision here is critical for the IO subsystem.
391 * Please do not alter this order without good reasons and regression
392 * testing. Specifically, as large blocks of memory are subdivided,
393 * the order in which smaller blocks are delivered depends on the order
394 * they're subdivided in this function. This is the primary factor
395 * influencing the order in which pages are delivered to the IO
396 * subsystem according to empirical testing, and this is also justified
397 * by considering the behavior of a buddy system containing a single
398 * large block of memory acted on by a series of small allocations.
399 * This behavior is a critical factor in sglist merging's success.
401 * -- wli
403 static inline struct page *
404 expand(struct zone *zone, struct page *page,
405 int low, int high, struct free_area *area)
407 unsigned long size = 1 << high;
409 while (high > low) {
410 area--;
411 high--;
412 size >>= 1;
413 BUG_ON(bad_range(zone, &page[size]));
414 list_add(&page[size].lru, &area->free_list);
415 area->nr_free++;
416 set_page_order(&page[size], high);
418 return page;
421 void set_page_refs(struct page *page, int order)
423 #ifdef CONFIG_MMU
424 set_page_count(page, 1);
425 #else
426 int i;
429 * We need to reference all the pages for this order, otherwise if
430 * anyone accesses one of the pages with (get/put) it will be freed.
431 * - eg: access_process_vm()
433 for (i = 0; i < (1 << order); i++)
434 set_page_count(page + i, 1);
435 #endif /* CONFIG_MMU */
439 * This page is about to be returned from the page allocator
441 static void prep_new_page(struct page *page, int order)
443 if (page->mapping || page_mapcount(page) ||
444 (page->flags & (
445 1 << PG_private |
446 1 << PG_locked |
447 1 << PG_lru |
448 1 << PG_active |
449 1 << PG_dirty |
450 1 << PG_reclaim |
451 1 << PG_swapcache |
452 1 << PG_writeback )))
453 bad_page(__FUNCTION__, page);
455 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
456 1 << PG_referenced | 1 << PG_arch_1 |
457 1 << PG_checked | 1 << PG_mappedtodisk);
458 page->private = 0;
459 set_page_refs(page, order);
460 kernel_map_pages(page, 1 << order, 1);
464 * Do the hard work of removing an element from the buddy allocator.
465 * Call me with the zone->lock already held.
467 static struct page *__rmqueue(struct zone *zone, unsigned int order)
469 struct free_area * area;
470 unsigned int current_order;
471 struct page *page;
473 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
474 area = zone->free_area + current_order;
475 if (list_empty(&area->free_list))
476 continue;
478 page = list_entry(area->free_list.next, struct page, lru);
479 list_del(&page->lru);
480 rmv_page_order(page);
481 area->nr_free--;
482 zone->free_pages -= 1UL << order;
483 return expand(zone, page, order, current_order, area);
486 return NULL;
490 * Obtain a specified number of elements from the buddy allocator, all under
491 * a single hold of the lock, for efficiency. Add them to the supplied list.
492 * Returns the number of new pages which were placed at *list.
494 static int rmqueue_bulk(struct zone *zone, unsigned int order,
495 unsigned long count, struct list_head *list)
497 unsigned long flags;
498 int i;
499 int allocated = 0;
500 struct page *page;
502 spin_lock_irqsave(&zone->lock, flags);
503 for (i = 0; i < count; ++i) {
504 page = __rmqueue(zone, order);
505 if (page == NULL)
506 break;
507 allocated++;
508 list_add_tail(&page->lru, list);
510 spin_unlock_irqrestore(&zone->lock, flags);
511 return allocated;
514 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515 static void __drain_pages(unsigned int cpu)
517 struct zone *zone;
518 int i;
520 for_each_zone(zone) {
521 struct per_cpu_pageset *pset;
523 pset = &zone->pageset[cpu];
524 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
525 struct per_cpu_pages *pcp;
527 pcp = &pset->pcp[i];
528 pcp->count -= free_pages_bulk(zone, pcp->count,
529 &pcp->list, 0);
533 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
535 #ifdef CONFIG_PM
537 void mark_free_pages(struct zone *zone)
539 unsigned long zone_pfn, flags;
540 int order;
541 struct list_head *curr;
543 if (!zone->spanned_pages)
544 return;
546 spin_lock_irqsave(&zone->lock, flags);
547 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
548 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
550 for (order = MAX_ORDER - 1; order >= 0; --order)
551 list_for_each(curr, &zone->free_area[order].free_list) {
552 unsigned long start_pfn, i;
554 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
556 for (i=0; i < (1<<order); i++)
557 SetPageNosaveFree(pfn_to_page(start_pfn+i));
559 spin_unlock_irqrestore(&zone->lock, flags);
563 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
565 void drain_local_pages(void)
567 unsigned long flags;
569 local_irq_save(flags);
570 __drain_pages(smp_processor_id());
571 local_irq_restore(flags);
573 #endif /* CONFIG_PM */
575 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
577 #ifdef CONFIG_NUMA
578 unsigned long flags;
579 int cpu;
580 pg_data_t *pg = z->zone_pgdat;
581 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
582 struct per_cpu_pageset *p;
584 local_irq_save(flags);
585 cpu = smp_processor_id();
586 p = &z->pageset[cpu];
587 if (pg == orig) {
588 z->pageset[cpu].numa_hit++;
589 } else {
590 p->numa_miss++;
591 zonelist->zones[0]->pageset[cpu].numa_foreign++;
593 if (pg == NODE_DATA(numa_node_id()))
594 p->local_node++;
595 else
596 p->other_node++;
597 local_irq_restore(flags);
598 #endif
602 * Free a 0-order page
604 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
605 static void fastcall free_hot_cold_page(struct page *page, int cold)
607 struct zone *zone = page_zone(page);
608 struct per_cpu_pages *pcp;
609 unsigned long flags;
611 arch_free_page(page, 0);
613 kernel_map_pages(page, 1, 0);
614 inc_page_state(pgfree);
615 if (PageAnon(page))
616 page->mapping = NULL;
617 free_pages_check(__FUNCTION__, page);
618 pcp = &zone->pageset[get_cpu()].pcp[cold];
619 local_irq_save(flags);
620 if (pcp->count >= pcp->high)
621 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
622 list_add(&page->lru, &pcp->list);
623 pcp->count++;
624 local_irq_restore(flags);
625 put_cpu();
628 void fastcall free_hot_page(struct page *page)
630 free_hot_cold_page(page, 0);
633 void fastcall free_cold_page(struct page *page)
635 free_hot_cold_page(page, 1);
638 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
640 int i;
642 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
643 for(i = 0; i < (1 << order); i++)
644 clear_highpage(page + i);
648 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
649 * we cheat by calling it from here, in the order > 0 path. Saves a branch
650 * or two.
652 static struct page *
653 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
655 unsigned long flags;
656 struct page *page = NULL;
657 int cold = !!(gfp_flags & __GFP_COLD);
659 if (order == 0) {
660 struct per_cpu_pages *pcp;
662 pcp = &zone->pageset[get_cpu()].pcp[cold];
663 local_irq_save(flags);
664 if (pcp->count <= pcp->low)
665 pcp->count += rmqueue_bulk(zone, 0,
666 pcp->batch, &pcp->list);
667 if (pcp->count) {
668 page = list_entry(pcp->list.next, struct page, lru);
669 list_del(&page->lru);
670 pcp->count--;
672 local_irq_restore(flags);
673 put_cpu();
676 if (page == NULL) {
677 spin_lock_irqsave(&zone->lock, flags);
678 page = __rmqueue(zone, order);
679 spin_unlock_irqrestore(&zone->lock, flags);
682 if (page != NULL) {
683 BUG_ON(bad_range(zone, page));
684 mod_page_state_zone(zone, pgalloc, 1 << order);
685 prep_new_page(page, order);
687 if (gfp_flags & __GFP_ZERO)
688 prep_zero_page(page, order, gfp_flags);
690 if (order && (gfp_flags & __GFP_COMP))
691 prep_compound_page(page, order);
693 return page;
697 * Return 1 if free pages are above 'mark'. This takes into account the order
698 * of the allocation.
700 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
701 int classzone_idx, int can_try_harder, int gfp_high)
703 /* free_pages my go negative - that's OK */
704 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
705 int o;
707 if (gfp_high)
708 min -= min / 2;
709 if (can_try_harder)
710 min -= min / 4;
712 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
713 return 0;
714 for (o = 0; o < order; o++) {
715 /* At the next order, this order's pages become unavailable */
716 free_pages -= z->free_area[o].nr_free << o;
718 /* Require fewer higher order pages to be free */
719 min >>= 1;
721 if (free_pages <= min)
722 return 0;
724 return 1;
728 * This is the 'heart' of the zoned buddy allocator.
730 struct page * fastcall
731 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
732 struct zonelist *zonelist)
734 const int wait = gfp_mask & __GFP_WAIT;
735 struct zone **zones, *z;
736 struct page *page;
737 struct reclaim_state reclaim_state;
738 struct task_struct *p = current;
739 int i;
740 int classzone_idx;
741 int do_retry;
742 int can_try_harder;
743 int did_some_progress;
745 might_sleep_if(wait);
748 * The caller may dip into page reserves a bit more if the caller
749 * cannot run direct reclaim, or is the caller has realtime scheduling
750 * policy
752 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
754 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
756 if (unlikely(zones[0] == NULL)) {
757 /* Should this ever happen?? */
758 return NULL;
761 classzone_idx = zone_idx(zones[0]);
763 restart:
764 /* Go through the zonelist once, looking for a zone with enough free */
765 for (i = 0; (z = zones[i]) != NULL; i++) {
767 if (!zone_watermark_ok(z, order, z->pages_low,
768 classzone_idx, 0, 0))
769 continue;
771 if (!cpuset_zone_allowed(z))
772 continue;
774 page = buffered_rmqueue(z, order, gfp_mask);
775 if (page)
776 goto got_pg;
779 for (i = 0; (z = zones[i]) != NULL; i++)
780 wakeup_kswapd(z, order);
783 * Go through the zonelist again. Let __GFP_HIGH and allocations
784 * coming from realtime tasks to go deeper into reserves
786 * This is the last chance, in general, before the goto nopage.
787 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
789 for (i = 0; (z = zones[i]) != NULL; i++) {
790 if (!zone_watermark_ok(z, order, z->pages_min,
791 classzone_idx, can_try_harder,
792 gfp_mask & __GFP_HIGH))
793 continue;
795 if (wait && !cpuset_zone_allowed(z))
796 continue;
798 page = buffered_rmqueue(z, order, gfp_mask);
799 if (page)
800 goto got_pg;
803 /* This allocation should allow future memory freeing. */
805 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
806 && !in_interrupt()) {
807 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
808 /* go through the zonelist yet again, ignoring mins */
809 for (i = 0; (z = zones[i]) != NULL; i++) {
810 if (!cpuset_zone_allowed(z))
811 continue;
812 page = buffered_rmqueue(z, order, gfp_mask);
813 if (page)
814 goto got_pg;
817 goto nopage;
820 /* Atomic allocations - we can't balance anything */
821 if (!wait)
822 goto nopage;
824 rebalance:
825 cond_resched();
827 /* We now go into synchronous reclaim */
828 p->flags |= PF_MEMALLOC;
829 reclaim_state.reclaimed_slab = 0;
830 p->reclaim_state = &reclaim_state;
832 did_some_progress = try_to_free_pages(zones, gfp_mask, order);
834 p->reclaim_state = NULL;
835 p->flags &= ~PF_MEMALLOC;
837 cond_resched();
839 if (likely(did_some_progress)) {
841 * Go through the zonelist yet one more time, keep
842 * very high watermark here, this is only to catch
843 * a parallel oom killing, we must fail if we're still
844 * under heavy pressure.
846 for (i = 0; (z = zones[i]) != NULL; i++) {
847 if (!zone_watermark_ok(z, order, z->pages_min,
848 classzone_idx, can_try_harder,
849 gfp_mask & __GFP_HIGH))
850 continue;
852 if (!cpuset_zone_allowed(z))
853 continue;
855 page = buffered_rmqueue(z, order, gfp_mask);
856 if (page)
857 goto got_pg;
859 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
861 * Go through the zonelist yet one more time, keep
862 * very high watermark here, this is only to catch
863 * a parallel oom killing, we must fail if we're still
864 * under heavy pressure.
866 for (i = 0; (z = zones[i]) != NULL; i++) {
867 if (!zone_watermark_ok(z, order, z->pages_high,
868 classzone_idx, 0, 0))
869 continue;
871 if (!cpuset_zone_allowed(z))
872 continue;
874 page = buffered_rmqueue(z, order, gfp_mask);
875 if (page)
876 goto got_pg;
879 out_of_memory(gfp_mask);
880 goto restart;
884 * Don't let big-order allocations loop unless the caller explicitly
885 * requests that. Wait for some write requests to complete then retry.
887 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
888 * <= 3, but that may not be true in other implementations.
890 do_retry = 0;
891 if (!(gfp_mask & __GFP_NORETRY)) {
892 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
893 do_retry = 1;
894 if (gfp_mask & __GFP_NOFAIL)
895 do_retry = 1;
897 if (do_retry) {
898 blk_congestion_wait(WRITE, HZ/50);
899 goto rebalance;
902 nopage:
903 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
904 printk(KERN_WARNING "%s: page allocation failure."
905 " order:%d, mode:0x%x\n",
906 p->comm, order, gfp_mask);
907 dump_stack();
909 return NULL;
910 got_pg:
911 zone_statistics(zonelist, z);
912 return page;
915 EXPORT_SYMBOL(__alloc_pages);
918 * Common helper functions.
920 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
922 struct page * page;
923 page = alloc_pages(gfp_mask, order);
924 if (!page)
925 return 0;
926 return (unsigned long) page_address(page);
929 EXPORT_SYMBOL(__get_free_pages);
931 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
933 struct page * page;
936 * get_zeroed_page() returns a 32-bit address, which cannot represent
937 * a highmem page
939 BUG_ON(gfp_mask & __GFP_HIGHMEM);
941 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
942 if (page)
943 return (unsigned long) page_address(page);
944 return 0;
947 EXPORT_SYMBOL(get_zeroed_page);
949 void __pagevec_free(struct pagevec *pvec)
951 int i = pagevec_count(pvec);
953 while (--i >= 0)
954 free_hot_cold_page(pvec->pages[i], pvec->cold);
957 fastcall void __free_pages(struct page *page, unsigned int order)
959 if (!PageReserved(page) && put_page_testzero(page)) {
960 if (order == 0)
961 free_hot_page(page);
962 else
963 __free_pages_ok(page, order);
967 EXPORT_SYMBOL(__free_pages);
969 fastcall void free_pages(unsigned long addr, unsigned int order)
971 if (addr != 0) {
972 BUG_ON(!virt_addr_valid((void *)addr));
973 __free_pages(virt_to_page((void *)addr), order);
977 EXPORT_SYMBOL(free_pages);
980 * Total amount of free (allocatable) RAM:
982 unsigned int nr_free_pages(void)
984 unsigned int sum = 0;
985 struct zone *zone;
987 for_each_zone(zone)
988 sum += zone->free_pages;
990 return sum;
993 EXPORT_SYMBOL(nr_free_pages);
995 #ifdef CONFIG_NUMA
996 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
998 unsigned int i, sum = 0;
1000 for (i = 0; i < MAX_NR_ZONES; i++)
1001 sum += pgdat->node_zones[i].free_pages;
1003 return sum;
1005 #endif
1007 static unsigned int nr_free_zone_pages(int offset)
1009 pg_data_t *pgdat;
1010 unsigned int sum = 0;
1012 for_each_pgdat(pgdat) {
1013 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1014 struct zone **zonep = zonelist->zones;
1015 struct zone *zone;
1017 for (zone = *zonep++; zone; zone = *zonep++) {
1018 unsigned long size = zone->present_pages;
1019 unsigned long high = zone->pages_high;
1020 if (size > high)
1021 sum += size - high;
1025 return sum;
1029 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1031 unsigned int nr_free_buffer_pages(void)
1033 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1037 * Amount of free RAM allocatable within all zones
1039 unsigned int nr_free_pagecache_pages(void)
1041 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1044 #ifdef CONFIG_HIGHMEM
1045 unsigned int nr_free_highpages (void)
1047 pg_data_t *pgdat;
1048 unsigned int pages = 0;
1050 for_each_pgdat(pgdat)
1051 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1053 return pages;
1055 #endif
1057 #ifdef CONFIG_NUMA
1058 static void show_node(struct zone *zone)
1060 printk("Node %d ", zone->zone_pgdat->node_id);
1062 #else
1063 #define show_node(zone) do { } while (0)
1064 #endif
1067 * Accumulate the page_state information across all CPUs.
1068 * The result is unavoidably approximate - it can change
1069 * during and after execution of this function.
1071 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1073 atomic_t nr_pagecache = ATOMIC_INIT(0);
1074 EXPORT_SYMBOL(nr_pagecache);
1075 #ifdef CONFIG_SMP
1076 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1077 #endif
1079 void __get_page_state(struct page_state *ret, int nr)
1081 int cpu = 0;
1083 memset(ret, 0, sizeof(*ret));
1085 cpu = first_cpu(cpu_online_map);
1086 while (cpu < NR_CPUS) {
1087 unsigned long *in, *out, off;
1089 in = (unsigned long *)&per_cpu(page_states, cpu);
1091 cpu = next_cpu(cpu, cpu_online_map);
1093 if (cpu < NR_CPUS)
1094 prefetch(&per_cpu(page_states, cpu));
1096 out = (unsigned long *)ret;
1097 for (off = 0; off < nr; off++)
1098 *out++ += *in++;
1102 void get_page_state(struct page_state *ret)
1104 int nr;
1106 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1107 nr /= sizeof(unsigned long);
1109 __get_page_state(ret, nr + 1);
1112 void get_full_page_state(struct page_state *ret)
1114 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1117 unsigned long __read_page_state(unsigned offset)
1119 unsigned long ret = 0;
1120 int cpu;
1122 for_each_online_cpu(cpu) {
1123 unsigned long in;
1125 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1126 ret += *((unsigned long *)in);
1128 return ret;
1131 void __mod_page_state(unsigned offset, unsigned long delta)
1133 unsigned long flags;
1134 void* ptr;
1136 local_irq_save(flags);
1137 ptr = &__get_cpu_var(page_states);
1138 *(unsigned long*)(ptr + offset) += delta;
1139 local_irq_restore(flags);
1142 EXPORT_SYMBOL(__mod_page_state);
1144 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1145 unsigned long *free, struct pglist_data *pgdat)
1147 struct zone *zones = pgdat->node_zones;
1148 int i;
1150 *active = 0;
1151 *inactive = 0;
1152 *free = 0;
1153 for (i = 0; i < MAX_NR_ZONES; i++) {
1154 *active += zones[i].nr_active;
1155 *inactive += zones[i].nr_inactive;
1156 *free += zones[i].free_pages;
1160 void get_zone_counts(unsigned long *active,
1161 unsigned long *inactive, unsigned long *free)
1163 struct pglist_data *pgdat;
1165 *active = 0;
1166 *inactive = 0;
1167 *free = 0;
1168 for_each_pgdat(pgdat) {
1169 unsigned long l, m, n;
1170 __get_zone_counts(&l, &m, &n, pgdat);
1171 *active += l;
1172 *inactive += m;
1173 *free += n;
1177 void si_meminfo(struct sysinfo *val)
1179 val->totalram = totalram_pages;
1180 val->sharedram = 0;
1181 val->freeram = nr_free_pages();
1182 val->bufferram = nr_blockdev_pages();
1183 #ifdef CONFIG_HIGHMEM
1184 val->totalhigh = totalhigh_pages;
1185 val->freehigh = nr_free_highpages();
1186 #else
1187 val->totalhigh = 0;
1188 val->freehigh = 0;
1189 #endif
1190 val->mem_unit = PAGE_SIZE;
1193 EXPORT_SYMBOL(si_meminfo);
1195 #ifdef CONFIG_NUMA
1196 void si_meminfo_node(struct sysinfo *val, int nid)
1198 pg_data_t *pgdat = NODE_DATA(nid);
1200 val->totalram = pgdat->node_present_pages;
1201 val->freeram = nr_free_pages_pgdat(pgdat);
1202 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1203 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1204 val->mem_unit = PAGE_SIZE;
1206 #endif
1208 #define K(x) ((x) << (PAGE_SHIFT-10))
1211 * Show free area list (used inside shift_scroll-lock stuff)
1212 * We also calculate the percentage fragmentation. We do this by counting the
1213 * memory on each free list with the exception of the first item on the list.
1215 void show_free_areas(void)
1217 struct page_state ps;
1218 int cpu, temperature;
1219 unsigned long active;
1220 unsigned long inactive;
1221 unsigned long free;
1222 struct zone *zone;
1224 for_each_zone(zone) {
1225 show_node(zone);
1226 printk("%s per-cpu:", zone->name);
1228 if (!zone->present_pages) {
1229 printk(" empty\n");
1230 continue;
1231 } else
1232 printk("\n");
1234 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1235 struct per_cpu_pageset *pageset;
1237 if (!cpu_possible(cpu))
1238 continue;
1240 pageset = zone->pageset + cpu;
1242 for (temperature = 0; temperature < 2; temperature++)
1243 printk("cpu %d %s: low %d, high %d, batch %d\n",
1244 cpu,
1245 temperature ? "cold" : "hot",
1246 pageset->pcp[temperature].low,
1247 pageset->pcp[temperature].high,
1248 pageset->pcp[temperature].batch);
1252 get_page_state(&ps);
1253 get_zone_counts(&active, &inactive, &free);
1255 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1256 K(nr_free_pages()),
1257 K(nr_free_highpages()));
1259 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1260 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1261 active,
1262 inactive,
1263 ps.nr_dirty,
1264 ps.nr_writeback,
1265 ps.nr_unstable,
1266 nr_free_pages(),
1267 ps.nr_slab,
1268 ps.nr_mapped,
1269 ps.nr_page_table_pages);
1271 for_each_zone(zone) {
1272 int i;
1274 show_node(zone);
1275 printk("%s"
1276 " free:%lukB"
1277 " min:%lukB"
1278 " low:%lukB"
1279 " high:%lukB"
1280 " active:%lukB"
1281 " inactive:%lukB"
1282 " present:%lukB"
1283 " pages_scanned:%lu"
1284 " all_unreclaimable? %s"
1285 "\n",
1286 zone->name,
1287 K(zone->free_pages),
1288 K(zone->pages_min),
1289 K(zone->pages_low),
1290 K(zone->pages_high),
1291 K(zone->nr_active),
1292 K(zone->nr_inactive),
1293 K(zone->present_pages),
1294 zone->pages_scanned,
1295 (zone->all_unreclaimable ? "yes" : "no")
1297 printk("lowmem_reserve[]:");
1298 for (i = 0; i < MAX_NR_ZONES; i++)
1299 printk(" %lu", zone->lowmem_reserve[i]);
1300 printk("\n");
1303 for_each_zone(zone) {
1304 unsigned long nr, flags, order, total = 0;
1306 show_node(zone);
1307 printk("%s: ", zone->name);
1308 if (!zone->present_pages) {
1309 printk("empty\n");
1310 continue;
1313 spin_lock_irqsave(&zone->lock, flags);
1314 for (order = 0; order < MAX_ORDER; order++) {
1315 nr = zone->free_area[order].nr_free;
1316 total += nr << order;
1317 printk("%lu*%lukB ", nr, K(1UL) << order);
1319 spin_unlock_irqrestore(&zone->lock, flags);
1320 printk("= %lukB\n", K(total));
1323 show_swap_cache_info();
1327 * Builds allocation fallback zone lists.
1329 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1331 switch (k) {
1332 struct zone *zone;
1333 default:
1334 BUG();
1335 case ZONE_HIGHMEM:
1336 zone = pgdat->node_zones + ZONE_HIGHMEM;
1337 if (zone->present_pages) {
1338 #ifndef CONFIG_HIGHMEM
1339 BUG();
1340 #endif
1341 zonelist->zones[j++] = zone;
1343 case ZONE_NORMAL:
1344 zone = pgdat->node_zones + ZONE_NORMAL;
1345 if (zone->present_pages)
1346 zonelist->zones[j++] = zone;
1347 case ZONE_DMA:
1348 zone = pgdat->node_zones + ZONE_DMA;
1349 if (zone->present_pages)
1350 zonelist->zones[j++] = zone;
1353 return j;
1356 #ifdef CONFIG_NUMA
1357 #define MAX_NODE_LOAD (num_online_nodes())
1358 static int __initdata node_load[MAX_NUMNODES];
1360 * find_next_best_node - find the next node that should appear in a given node's fallback list
1361 * @node: node whose fallback list we're appending
1362 * @used_node_mask: nodemask_t of already used nodes
1364 * We use a number of factors to determine which is the next node that should
1365 * appear on a given node's fallback list. The node should not have appeared
1366 * already in @node's fallback list, and it should be the next closest node
1367 * according to the distance array (which contains arbitrary distance values
1368 * from each node to each node in the system), and should also prefer nodes
1369 * with no CPUs, since presumably they'll have very little allocation pressure
1370 * on them otherwise.
1371 * It returns -1 if no node is found.
1373 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1375 int i, n, val;
1376 int min_val = INT_MAX;
1377 int best_node = -1;
1379 for_each_online_node(i) {
1380 cpumask_t tmp;
1382 /* Start from local node */
1383 n = (node+i) % num_online_nodes();
1385 /* Don't want a node to appear more than once */
1386 if (node_isset(n, *used_node_mask))
1387 continue;
1389 /* Use the local node if we haven't already */
1390 if (!node_isset(node, *used_node_mask)) {
1391 best_node = node;
1392 break;
1395 /* Use the distance array to find the distance */
1396 val = node_distance(node, n);
1398 /* Give preference to headless and unused nodes */
1399 tmp = node_to_cpumask(n);
1400 if (!cpus_empty(tmp))
1401 val += PENALTY_FOR_NODE_WITH_CPUS;
1403 /* Slight preference for less loaded node */
1404 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1405 val += node_load[n];
1407 if (val < min_val) {
1408 min_val = val;
1409 best_node = n;
1413 if (best_node >= 0)
1414 node_set(best_node, *used_node_mask);
1416 return best_node;
1419 static void __init build_zonelists(pg_data_t *pgdat)
1421 int i, j, k, node, local_node;
1422 int prev_node, load;
1423 struct zonelist *zonelist;
1424 nodemask_t used_mask;
1426 /* initialize zonelists */
1427 for (i = 0; i < GFP_ZONETYPES; i++) {
1428 zonelist = pgdat->node_zonelists + i;
1429 zonelist->zones[0] = NULL;
1432 /* NUMA-aware ordering of nodes */
1433 local_node = pgdat->node_id;
1434 load = num_online_nodes();
1435 prev_node = local_node;
1436 nodes_clear(used_mask);
1437 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1439 * We don't want to pressure a particular node.
1440 * So adding penalty to the first node in same
1441 * distance group to make it round-robin.
1443 if (node_distance(local_node, node) !=
1444 node_distance(local_node, prev_node))
1445 node_load[node] += load;
1446 prev_node = node;
1447 load--;
1448 for (i = 0; i < GFP_ZONETYPES; i++) {
1449 zonelist = pgdat->node_zonelists + i;
1450 for (j = 0; zonelist->zones[j] != NULL; j++);
1452 k = ZONE_NORMAL;
1453 if (i & __GFP_HIGHMEM)
1454 k = ZONE_HIGHMEM;
1455 if (i & __GFP_DMA)
1456 k = ZONE_DMA;
1458 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1459 zonelist->zones[j] = NULL;
1464 #else /* CONFIG_NUMA */
1466 static void __init build_zonelists(pg_data_t *pgdat)
1468 int i, j, k, node, local_node;
1470 local_node = pgdat->node_id;
1471 for (i = 0; i < GFP_ZONETYPES; i++) {
1472 struct zonelist *zonelist;
1474 zonelist = pgdat->node_zonelists + i;
1476 j = 0;
1477 k = ZONE_NORMAL;
1478 if (i & __GFP_HIGHMEM)
1479 k = ZONE_HIGHMEM;
1480 if (i & __GFP_DMA)
1481 k = ZONE_DMA;
1483 j = build_zonelists_node(pgdat, zonelist, j, k);
1485 * Now we build the zonelist so that it contains the zones
1486 * of all the other nodes.
1487 * We don't want to pressure a particular node, so when
1488 * building the zones for node N, we make sure that the
1489 * zones coming right after the local ones are those from
1490 * node N+1 (modulo N)
1492 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1493 if (!node_online(node))
1494 continue;
1495 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1497 for (node = 0; node < local_node; node++) {
1498 if (!node_online(node))
1499 continue;
1500 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1503 zonelist->zones[j] = NULL;
1507 #endif /* CONFIG_NUMA */
1509 void __init build_all_zonelists(void)
1511 int i;
1513 for_each_online_node(i)
1514 build_zonelists(NODE_DATA(i));
1515 printk("Built %i zonelists\n", num_online_nodes());
1516 cpuset_init_current_mems_allowed();
1520 * Helper functions to size the waitqueue hash table.
1521 * Essentially these want to choose hash table sizes sufficiently
1522 * large so that collisions trying to wait on pages are rare.
1523 * But in fact, the number of active page waitqueues on typical
1524 * systems is ridiculously low, less than 200. So this is even
1525 * conservative, even though it seems large.
1527 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1528 * waitqueues, i.e. the size of the waitq table given the number of pages.
1530 #define PAGES_PER_WAITQUEUE 256
1532 static inline unsigned long wait_table_size(unsigned long pages)
1534 unsigned long size = 1;
1536 pages /= PAGES_PER_WAITQUEUE;
1538 while (size < pages)
1539 size <<= 1;
1542 * Once we have dozens or even hundreds of threads sleeping
1543 * on IO we've got bigger problems than wait queue collision.
1544 * Limit the size of the wait table to a reasonable size.
1546 size = min(size, 4096UL);
1548 return max(size, 4UL);
1552 * This is an integer logarithm so that shifts can be used later
1553 * to extract the more random high bits from the multiplicative
1554 * hash function before the remainder is taken.
1556 static inline unsigned long wait_table_bits(unsigned long size)
1558 return ffz(~size);
1561 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1563 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1564 unsigned long *zones_size, unsigned long *zholes_size)
1566 unsigned long realtotalpages, totalpages = 0;
1567 int i;
1569 for (i = 0; i < MAX_NR_ZONES; i++)
1570 totalpages += zones_size[i];
1571 pgdat->node_spanned_pages = totalpages;
1573 realtotalpages = totalpages;
1574 if (zholes_size)
1575 for (i = 0; i < MAX_NR_ZONES; i++)
1576 realtotalpages -= zholes_size[i];
1577 pgdat->node_present_pages = realtotalpages;
1578 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1583 * Initially all pages are reserved - free ones are freed
1584 * up by free_all_bootmem() once the early boot process is
1585 * done. Non-atomic initialization, single-pass.
1587 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1588 unsigned long start_pfn)
1590 struct page *start = pfn_to_page(start_pfn);
1591 struct page *page;
1593 for (page = start; page < (start + size); page++) {
1594 set_page_zone(page, NODEZONE(nid, zone));
1595 set_page_count(page, 0);
1596 reset_page_mapcount(page);
1597 SetPageReserved(page);
1598 INIT_LIST_HEAD(&page->lru);
1599 #ifdef WANT_PAGE_VIRTUAL
1600 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1601 if (!is_highmem_idx(zone))
1602 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1603 #endif
1604 start_pfn++;
1608 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1609 unsigned long size)
1611 int order;
1612 for (order = 0; order < MAX_ORDER ; order++) {
1613 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1614 zone->free_area[order].nr_free = 0;
1618 #ifndef __HAVE_ARCH_MEMMAP_INIT
1619 #define memmap_init(size, nid, zone, start_pfn) \
1620 memmap_init_zone((size), (nid), (zone), (start_pfn))
1621 #endif
1624 * Set up the zone data structures:
1625 * - mark all pages reserved
1626 * - mark all memory queues empty
1627 * - clear the memory bitmaps
1629 static void __init free_area_init_core(struct pglist_data *pgdat,
1630 unsigned long *zones_size, unsigned long *zholes_size)
1632 unsigned long i, j;
1633 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1634 int cpu, nid = pgdat->node_id;
1635 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1637 pgdat->nr_zones = 0;
1638 init_waitqueue_head(&pgdat->kswapd_wait);
1639 pgdat->kswapd_max_order = 0;
1641 for (j = 0; j < MAX_NR_ZONES; j++) {
1642 struct zone *zone = pgdat->node_zones + j;
1643 unsigned long size, realsize;
1644 unsigned long batch;
1646 zone_table[NODEZONE(nid, j)] = zone;
1647 realsize = size = zones_size[j];
1648 if (zholes_size)
1649 realsize -= zholes_size[j];
1651 if (j == ZONE_DMA || j == ZONE_NORMAL)
1652 nr_kernel_pages += realsize;
1653 nr_all_pages += realsize;
1655 zone->spanned_pages = size;
1656 zone->present_pages = realsize;
1657 zone->name = zone_names[j];
1658 spin_lock_init(&zone->lock);
1659 spin_lock_init(&zone->lru_lock);
1660 zone->zone_pgdat = pgdat;
1661 zone->free_pages = 0;
1663 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1666 * The per-cpu-pages pools are set to around 1000th of the
1667 * size of the zone. But no more than 1/4 of a meg - there's
1668 * no point in going beyond the size of L2 cache.
1670 * OK, so we don't know how big the cache is. So guess.
1672 batch = zone->present_pages / 1024;
1673 if (batch * PAGE_SIZE > 256 * 1024)
1674 batch = (256 * 1024) / PAGE_SIZE;
1675 batch /= 4; /* We effectively *= 4 below */
1676 if (batch < 1)
1677 batch = 1;
1680 * Clamp the batch to a 2^n - 1 value. Having a power
1681 * of 2 value was found to be more likely to have
1682 * suboptimal cache aliasing properties in some cases.
1684 * For example if 2 tasks are alternately allocating
1685 * batches of pages, one task can end up with a lot
1686 * of pages of one half of the possible page colors
1687 * and the other with pages of the other colors.
1689 batch = (1 << fls(batch + batch/2)) - 1;
1691 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1692 struct per_cpu_pages *pcp;
1694 pcp = &zone->pageset[cpu].pcp[0]; /* hot */
1695 pcp->count = 0;
1696 pcp->low = 2 * batch;
1697 pcp->high = 6 * batch;
1698 pcp->batch = 1 * batch;
1699 INIT_LIST_HEAD(&pcp->list);
1701 pcp = &zone->pageset[cpu].pcp[1]; /* cold */
1702 pcp->count = 0;
1703 pcp->low = 0;
1704 pcp->high = 2 * batch;
1705 pcp->batch = 1 * batch;
1706 INIT_LIST_HEAD(&pcp->list);
1708 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1709 zone_names[j], realsize, batch);
1710 INIT_LIST_HEAD(&zone->active_list);
1711 INIT_LIST_HEAD(&zone->inactive_list);
1712 zone->nr_scan_active = 0;
1713 zone->nr_scan_inactive = 0;
1714 zone->nr_active = 0;
1715 zone->nr_inactive = 0;
1716 if (!size)
1717 continue;
1720 * The per-page waitqueue mechanism uses hashed waitqueues
1721 * per zone.
1723 zone->wait_table_size = wait_table_size(size);
1724 zone->wait_table_bits =
1725 wait_table_bits(zone->wait_table_size);
1726 zone->wait_table = (wait_queue_head_t *)
1727 alloc_bootmem_node(pgdat, zone->wait_table_size
1728 * sizeof(wait_queue_head_t));
1730 for(i = 0; i < zone->wait_table_size; ++i)
1731 init_waitqueue_head(zone->wait_table + i);
1733 pgdat->nr_zones = j+1;
1735 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1736 zone->zone_start_pfn = zone_start_pfn;
1738 if ((zone_start_pfn) & (zone_required_alignment-1))
1739 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1741 memmap_init(size, nid, j, zone_start_pfn);
1743 zone_start_pfn += size;
1745 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1749 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1751 unsigned long size;
1753 /* Skip empty nodes */
1754 if (!pgdat->node_spanned_pages)
1755 return;
1757 /* ia64 gets its own node_mem_map, before this, without bootmem */
1758 if (!pgdat->node_mem_map) {
1759 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1760 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1762 #ifndef CONFIG_DISCONTIGMEM
1764 * With no DISCONTIG, the global mem_map is just set as node 0's
1766 if (pgdat == NODE_DATA(0))
1767 mem_map = NODE_DATA(0)->node_mem_map;
1768 #endif
1771 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1772 unsigned long *zones_size, unsigned long node_start_pfn,
1773 unsigned long *zholes_size)
1775 pgdat->node_id = nid;
1776 pgdat->node_start_pfn = node_start_pfn;
1777 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1779 alloc_node_mem_map(pgdat);
1781 free_area_init_core(pgdat, zones_size, zholes_size);
1784 #ifndef CONFIG_DISCONTIGMEM
1785 static bootmem_data_t contig_bootmem_data;
1786 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1788 EXPORT_SYMBOL(contig_page_data);
1790 void __init free_area_init(unsigned long *zones_size)
1792 free_area_init_node(0, &contig_page_data, zones_size,
1793 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1795 #endif
1797 #ifdef CONFIG_PROC_FS
1799 #include <linux/seq_file.h>
1801 static void *frag_start(struct seq_file *m, loff_t *pos)
1803 pg_data_t *pgdat;
1804 loff_t node = *pos;
1806 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1807 --node;
1809 return pgdat;
1812 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1814 pg_data_t *pgdat = (pg_data_t *)arg;
1816 (*pos)++;
1817 return pgdat->pgdat_next;
1820 static void frag_stop(struct seq_file *m, void *arg)
1825 * This walks the free areas for each zone.
1827 static int frag_show(struct seq_file *m, void *arg)
1829 pg_data_t *pgdat = (pg_data_t *)arg;
1830 struct zone *zone;
1831 struct zone *node_zones = pgdat->node_zones;
1832 unsigned long flags;
1833 int order;
1835 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1836 if (!zone->present_pages)
1837 continue;
1839 spin_lock_irqsave(&zone->lock, flags);
1840 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1841 for (order = 0; order < MAX_ORDER; ++order)
1842 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844 seq_putc(m, '\n');
1846 return 0;
1849 struct seq_operations fragmentation_op = {
1850 .start = frag_start,
1851 .next = frag_next,
1852 .stop = frag_stop,
1853 .show = frag_show,
1856 static char *vmstat_text[] = {
1857 "nr_dirty",
1858 "nr_writeback",
1859 "nr_unstable",
1860 "nr_page_table_pages",
1861 "nr_mapped",
1862 "nr_slab",
1864 "pgpgin",
1865 "pgpgout",
1866 "pswpin",
1867 "pswpout",
1868 "pgalloc_high",
1870 "pgalloc_normal",
1871 "pgalloc_dma",
1872 "pgfree",
1873 "pgactivate",
1874 "pgdeactivate",
1876 "pgfault",
1877 "pgmajfault",
1878 "pgrefill_high",
1879 "pgrefill_normal",
1880 "pgrefill_dma",
1882 "pgsteal_high",
1883 "pgsteal_normal",
1884 "pgsteal_dma",
1885 "pgscan_kswapd_high",
1886 "pgscan_kswapd_normal",
1888 "pgscan_kswapd_dma",
1889 "pgscan_direct_high",
1890 "pgscan_direct_normal",
1891 "pgscan_direct_dma",
1892 "pginodesteal",
1894 "slabs_scanned",
1895 "kswapd_steal",
1896 "kswapd_inodesteal",
1897 "pageoutrun",
1898 "allocstall",
1900 "pgrotated",
1901 "nr_bounce",
1904 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1906 struct page_state *ps;
1908 if (*pos >= ARRAY_SIZE(vmstat_text))
1909 return NULL;
1911 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
1912 m->private = ps;
1913 if (!ps)
1914 return ERR_PTR(-ENOMEM);
1915 get_full_page_state(ps);
1916 ps->pgpgin /= 2; /* sectors -> kbytes */
1917 ps->pgpgout /= 2;
1918 return (unsigned long *)ps + *pos;
1921 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1923 (*pos)++;
1924 if (*pos >= ARRAY_SIZE(vmstat_text))
1925 return NULL;
1926 return (unsigned long *)m->private + *pos;
1929 static int vmstat_show(struct seq_file *m, void *arg)
1931 unsigned long *l = arg;
1932 unsigned long off = l - (unsigned long *)m->private;
1934 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1935 return 0;
1938 static void vmstat_stop(struct seq_file *m, void *arg)
1940 kfree(m->private);
1941 m->private = NULL;
1944 struct seq_operations vmstat_op = {
1945 .start = vmstat_start,
1946 .next = vmstat_next,
1947 .stop = vmstat_stop,
1948 .show = vmstat_show,
1951 #endif /* CONFIG_PROC_FS */
1953 #ifdef CONFIG_HOTPLUG_CPU
1954 static int page_alloc_cpu_notify(struct notifier_block *self,
1955 unsigned long action, void *hcpu)
1957 int cpu = (unsigned long)hcpu;
1958 long *count;
1959 unsigned long *src, *dest;
1961 if (action == CPU_DEAD) {
1962 int i;
1964 /* Drain local pagecache count. */
1965 count = &per_cpu(nr_pagecache_local, cpu);
1966 atomic_add(*count, &nr_pagecache);
1967 *count = 0;
1968 local_irq_disable();
1969 __drain_pages(cpu);
1971 /* Add dead cpu's page_states to our own. */
1972 dest = (unsigned long *)&__get_cpu_var(page_states);
1973 src = (unsigned long *)&per_cpu(page_states, cpu);
1975 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
1976 i++) {
1977 dest[i] += src[i];
1978 src[i] = 0;
1981 local_irq_enable();
1983 return NOTIFY_OK;
1985 #endif /* CONFIG_HOTPLUG_CPU */
1987 void __init page_alloc_init(void)
1989 hotcpu_notifier(page_alloc_cpu_notify, 0);
1993 * setup_per_zone_lowmem_reserve - called whenever
1994 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
1995 * has a correct pages reserved value, so an adequate number of
1996 * pages are left in the zone after a successful __alloc_pages().
1998 static void setup_per_zone_lowmem_reserve(void)
2000 struct pglist_data *pgdat;
2001 int j, idx;
2003 for_each_pgdat(pgdat) {
2004 for (j = 0; j < MAX_NR_ZONES; j++) {
2005 struct zone *zone = pgdat->node_zones + j;
2006 unsigned long present_pages = zone->present_pages;
2008 zone->lowmem_reserve[j] = 0;
2010 for (idx = j-1; idx >= 0; idx--) {
2011 struct zone *lower_zone;
2013 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2014 sysctl_lowmem_reserve_ratio[idx] = 1;
2016 lower_zone = pgdat->node_zones + idx;
2017 lower_zone->lowmem_reserve[j] = present_pages /
2018 sysctl_lowmem_reserve_ratio[idx];
2019 present_pages += lower_zone->present_pages;
2026 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2027 * that the pages_{min,low,high} values for each zone are set correctly
2028 * with respect to min_free_kbytes.
2030 static void setup_per_zone_pages_min(void)
2032 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2033 unsigned long lowmem_pages = 0;
2034 struct zone *zone;
2035 unsigned long flags;
2037 /* Calculate total number of !ZONE_HIGHMEM pages */
2038 for_each_zone(zone) {
2039 if (!is_highmem(zone))
2040 lowmem_pages += zone->present_pages;
2043 for_each_zone(zone) {
2044 spin_lock_irqsave(&zone->lru_lock, flags);
2045 if (is_highmem(zone)) {
2047 * Often, highmem doesn't need to reserve any pages.
2048 * But the pages_min/low/high values are also used for
2049 * batching up page reclaim activity so we need a
2050 * decent value here.
2052 int min_pages;
2054 min_pages = zone->present_pages / 1024;
2055 if (min_pages < SWAP_CLUSTER_MAX)
2056 min_pages = SWAP_CLUSTER_MAX;
2057 if (min_pages > 128)
2058 min_pages = 128;
2059 zone->pages_min = min_pages;
2060 } else {
2061 /* if it's a lowmem zone, reserve a number of pages
2062 * proportionate to the zone's size.
2064 zone->pages_min = (pages_min * zone->present_pages) /
2065 lowmem_pages;
2069 * When interpreting these watermarks, just keep in mind that:
2070 * zone->pages_min == (zone->pages_min * 4) / 4;
2072 zone->pages_low = (zone->pages_min * 5) / 4;
2073 zone->pages_high = (zone->pages_min * 6) / 4;
2074 spin_unlock_irqrestore(&zone->lru_lock, flags);
2079 * Initialise min_free_kbytes.
2081 * For small machines we want it small (128k min). For large machines
2082 * we want it large (64MB max). But it is not linear, because network
2083 * bandwidth does not increase linearly with machine size. We use
2085 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2086 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2088 * which yields
2090 * 16MB: 512k
2091 * 32MB: 724k
2092 * 64MB: 1024k
2093 * 128MB: 1448k
2094 * 256MB: 2048k
2095 * 512MB: 2896k
2096 * 1024MB: 4096k
2097 * 2048MB: 5792k
2098 * 4096MB: 8192k
2099 * 8192MB: 11584k
2100 * 16384MB: 16384k
2102 static int __init init_per_zone_pages_min(void)
2104 unsigned long lowmem_kbytes;
2106 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2108 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2109 if (min_free_kbytes < 128)
2110 min_free_kbytes = 128;
2111 if (min_free_kbytes > 65536)
2112 min_free_kbytes = 65536;
2113 setup_per_zone_pages_min();
2114 setup_per_zone_lowmem_reserve();
2115 return 0;
2117 module_init(init_per_zone_pages_min)
2120 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2121 * that we can call two helper functions whenever min_free_kbytes
2122 * changes.
2124 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2125 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2127 proc_dointvec(table, write, file, buffer, length, ppos);
2128 setup_per_zone_pages_min();
2129 return 0;
2133 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2134 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2135 * whenever sysctl_lowmem_reserve_ratio changes.
2137 * The reserve ratio obviously has absolutely no relation with the
2138 * pages_min watermarks. The lowmem reserve ratio can only make sense
2139 * if in function of the boot time zone sizes.
2141 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2142 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2144 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2145 setup_per_zone_lowmem_reserve();
2146 return 0;
2149 __initdata int hashdist = HASHDIST_DEFAULT;
2151 #ifdef CONFIG_NUMA
2152 static int __init set_hashdist(char *str)
2154 if (!str)
2155 return 0;
2156 hashdist = simple_strtoul(str, &str, 0);
2157 return 1;
2159 __setup("hashdist=", set_hashdist);
2160 #endif
2163 * allocate a large system hash table from bootmem
2164 * - it is assumed that the hash table must contain an exact power-of-2
2165 * quantity of entries
2166 * - limit is the number of hash buckets, not the total allocation size
2168 void *__init alloc_large_system_hash(const char *tablename,
2169 unsigned long bucketsize,
2170 unsigned long numentries,
2171 int scale,
2172 int flags,
2173 unsigned int *_hash_shift,
2174 unsigned int *_hash_mask,
2175 unsigned long limit)
2177 unsigned long long max = limit;
2178 unsigned long log2qty, size;
2179 void *table = NULL;
2181 /* allow the kernel cmdline to have a say */
2182 if (!numentries) {
2183 /* round applicable memory size up to nearest megabyte */
2184 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2185 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2186 numentries >>= 20 - PAGE_SHIFT;
2187 numentries <<= 20 - PAGE_SHIFT;
2189 /* limit to 1 bucket per 2^scale bytes of low memory */
2190 if (scale > PAGE_SHIFT)
2191 numentries >>= (scale - PAGE_SHIFT);
2192 else
2193 numentries <<= (PAGE_SHIFT - scale);
2195 /* rounded up to nearest power of 2 in size */
2196 numentries = 1UL << (long_log2(numentries) + 1);
2198 /* limit allocation size to 1/16 total memory by default */
2199 if (max == 0) {
2200 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2201 do_div(max, bucketsize);
2204 if (numentries > max)
2205 numentries = max;
2207 log2qty = long_log2(numentries);
2209 do {
2210 size = bucketsize << log2qty;
2211 if (flags & HASH_EARLY)
2212 table = alloc_bootmem(size);
2213 else if (hashdist)
2214 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2215 else {
2216 unsigned long order;
2217 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2219 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2221 } while (!table && size > PAGE_SIZE && --log2qty);
2223 if (!table)
2224 panic("Failed to allocate %s hash table\n", tablename);
2226 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2227 tablename,
2228 (1U << log2qty),
2229 long_log2(size) - PAGE_SHIFT,
2230 size);
2232 if (_hash_shift)
2233 *_hash_shift = log2qty;
2234 if (_hash_mask)
2235 *_hash_mask = (1 << log2qty) - 1;
2237 return table;