IB/ipath: Remove duplicate stuff from ipath_verbs.h
[linux-2.6/verdex.git] / drivers / net / wireless / ipw2100.c
blobad6e4a42835598bee37d96342d546fccbbbc45b2
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
167 #include "ipw2100.h"
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
296 #endif
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
433 len -= dif_len;
434 aligned_addr += 4;
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
471 len -= dif_len;
472 aligned_addr += 4;
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
521 return -EINVAL;
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530 return 0;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
560 *len = total_length;
561 if (!total_length)
562 return 0;
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
567 return 0;
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
573 return -EINVAL;
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596 return 0;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
603 return -EINVAL;
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
609 int out, i, j, l;
610 char c;
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
631 out += snprintf(buf + out, count - out, "%c", c);
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
638 return buf;
641 static void printk_buf(int level, const u8 * data, u32 len)
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802 return 0;
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
807 return err;
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
816 u32 data1, data2;
817 u32 address;
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
845 return -EIO;
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
885 return 0;
888 udelay(50);
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 int i;
904 u32 r;
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
920 if (i == 1000)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946 return 0;
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 u32 address;
963 int err;
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1047 #ifndef CONFIG_PM
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1076 return 0;
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 u32 reg = 0;
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 u32 addr, len;
1164 u32 val;
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200 return 0;
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 int i;
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1270 } while (i--);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1306 return 0;
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1312 return;
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 u32 reg;
1323 int i;
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1344 priv->status &= ~STATUS_RESET_PENDING;
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1362 return 0;
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1383 int err, i;
1384 u32 val1, val2;
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1404 return -EIO;
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1414 int err = 0;
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1460 int err, i;
1461 u32 reg;
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554 return 0;
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1564 int err = 0;
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1609 int err;
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1631 return err;
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1641 int err;
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1672 return err;
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1724 } else
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1774 deferred = 1;
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1805 exit:
1806 return rc;
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1823 int associated = priv->status & STATUS_ASSOCIATED;
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1866 #endif
1868 /* We have to signal any supplicant if we are disassociating */
1869 if (associated)
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1879 struct ipw2100_priv *priv =
1880 container_of(work, struct ipw2100_priv, reset_work.work);
1881 unsigned long flags;
1882 union iwreq_data wrqu = {
1883 .ap_addr = {
1884 .sa_family = ARPHRD_ETHER}
1886 int associated = priv->status & STATUS_ASSOCIATED;
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890 priv->resets++;
1891 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892 priv->status |= STATUS_SECURITY_UPDATED;
1894 /* Force a power cycle even if interface hasn't been opened
1895 * yet */
1896 cancel_delayed_work(&priv->reset_work);
1897 priv->status |= STATUS_RESET_PENDING;
1898 spin_unlock_irqrestore(&priv->low_lock, flags);
1900 mutex_lock(&priv->action_mutex);
1901 /* stop timed checks so that they don't interfere with reset */
1902 priv->stop_hang_check = 1;
1903 cancel_delayed_work(&priv->hang_check);
1905 /* We have to signal any supplicant if we are disassociating */
1906 if (associated)
1907 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909 ipw2100_up(priv, 0);
1910 mutex_unlock(&priv->action_mutex);
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918 int ret, len, essid_len;
1919 char essid[IW_ESSID_MAX_SIZE];
1920 u32 txrate;
1921 u32 chan;
1922 char *txratename;
1923 u8 bssid[ETH_ALEN];
1926 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927 * an actual MAC of the AP. Seems like FW sets this
1928 * address too late. Read it later and expose through
1929 * /proc or schedule a later task to query and update
1932 essid_len = IW_ESSID_MAX_SIZE;
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934 essid, &essid_len);
1935 if (ret) {
1936 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937 __LINE__);
1938 return;
1941 len = sizeof(u32);
1942 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943 if (ret) {
1944 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945 __LINE__);
1946 return;
1949 len = sizeof(u32);
1950 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1956 len = ETH_ALEN;
1957 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958 if (ret) {
1959 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960 __LINE__);
1961 return;
1963 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1965 switch (txrate) {
1966 case TX_RATE_1_MBIT:
1967 txratename = "1Mbps";
1968 break;
1969 case TX_RATE_2_MBIT:
1970 txratename = "2Mbsp";
1971 break;
1972 case TX_RATE_5_5_MBIT:
1973 txratename = "5.5Mbps";
1974 break;
1975 case TX_RATE_11_MBIT:
1976 txratename = "11Mbps";
1977 break;
1978 default:
1979 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980 txratename = "unknown rate";
1981 break;
1984 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985 MAC_FMT ")\n",
1986 priv->net_dev->name, escape_essid(essid, essid_len),
1987 txratename, chan, MAC_ARG(bssid));
1989 /* now we copy read ssid into dev */
1990 if (!(priv->config & CFG_STATIC_ESSID)) {
1991 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992 memcpy(priv->essid, essid, priv->essid_len);
1994 priv->channel = chan;
1995 memcpy(priv->bssid, bssid, ETH_ALEN);
1997 priv->status |= STATUS_ASSOCIATING;
1998 priv->connect_start = get_seconds();
2000 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004 int length, int batch_mode)
2006 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007 struct host_command cmd = {
2008 .host_command = SSID,
2009 .host_command_sequence = 0,
2010 .host_command_length = ssid_len
2012 int err;
2014 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2016 if (ssid_len)
2017 memcpy(cmd.host_command_parameters, essid, ssid_len);
2019 if (!batch_mode) {
2020 err = ipw2100_disable_adapter(priv);
2021 if (err)
2022 return err;
2025 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026 * disable auto association -- so we cheat by setting a bogus SSID */
2027 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028 int i;
2029 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031 bogus[i] = 0x18 + i;
2032 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035 /* NOTE: We always send the SSID command even if the provided ESSID is
2036 * the same as what we currently think is set. */
2038 err = ipw2100_hw_send_command(priv, &cmd);
2039 if (!err) {
2040 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041 memcpy(priv->essid, essid, ssid_len);
2042 priv->essid_len = ssid_len;
2045 if (!batch_mode) {
2046 if (ipw2100_enable_adapter(priv))
2047 err = -EIO;
2050 return err;
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2055 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056 "disassociated: '%s' " MAC_FMT " \n",
2057 escape_essid(priv->essid, priv->essid_len),
2058 MAC_ARG(priv->bssid));
2060 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2062 if (priv->status & STATUS_STOPPING) {
2063 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064 return;
2067 memset(priv->bssid, 0, ETH_ALEN);
2068 memset(priv->ieee->bssid, 0, ETH_ALEN);
2070 netif_carrier_off(priv->net_dev);
2071 netif_stop_queue(priv->net_dev);
2073 if (!(priv->status & STATUS_RUNNING))
2074 return;
2076 if (priv->status & STATUS_SECURITY_UPDATED)
2077 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2079 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2084 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085 priv->net_dev->name);
2087 /* RF_KILL is now enabled (else we wouldn't be here) */
2088 priv->status |= STATUS_RF_KILL_HW;
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091 if (priv->config & CFG_C3_DISABLED) {
2092 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093 acpi_set_cstate_limit(priv->cstate_limit);
2094 priv->config &= ~CFG_C3_DISABLED;
2096 #endif
2098 /* Make sure the RF Kill check timer is running */
2099 priv->stop_rf_kill = 0;
2100 cancel_delayed_work(&priv->rf_kill);
2101 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2106 IPW_DEBUG_SCAN("scan complete\n");
2107 /* Age the scan results... */
2108 priv->ieee->scans++;
2109 priv->status &= ~STATUS_SCANNING;
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115 int status;
2116 void (*cb) (struct ipw2100_priv * priv, u32 status);
2117 char *name;
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122 int status;
2123 void (*cb) (struct ipw2100_priv * priv, u32 status);
2125 #endif /* CONFIG_IPW2100_DEBUG */
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2129 IPW_DEBUG_SCAN("Scanning...\n");
2130 priv->status |= STATUS_SCANNING;
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146 IPW2100_HANDLER(-1, NULL)
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2151 int i;
2153 if (status == IPW_STATE_SCANNING &&
2154 priv->status & STATUS_ASSOCIATED &&
2155 !(priv->status & STATUS_SCANNING)) {
2156 IPW_DEBUG_INFO("Scan detected while associated, with "
2157 "no scan request. Restarting firmware.\n");
2159 /* Wake up any sleeping jobs */
2160 schedule_reset(priv);
2163 for (i = 0; status_handlers[i].status != -1; i++) {
2164 if (status == status_handlers[i].status) {
2165 IPW_DEBUG_NOTIF("Status change: %s\n",
2166 status_handlers[i].name);
2167 if (status_handlers[i].cb)
2168 status_handlers[i].cb(priv, status);
2169 priv->wstats.status = status;
2170 return;
2174 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178 struct ipw2100_cmd_header *cmd)
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183 command_types[cmd->host_command_reg],
2184 cmd->host_command_reg);
2186 #endif
2187 if (cmd->host_command_reg == HOST_COMPLETE)
2188 priv->status |= STATUS_ENABLED;
2190 if (cmd->host_command_reg == CARD_DISABLE)
2191 priv->status &= ~STATUS_ENABLED;
2193 priv->status &= ~STATUS_CMD_ACTIVE;
2195 wake_up_interruptible(&priv->wait_command_queue);
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200 "COMMAND_STATUS_VAL",
2201 "STATUS_CHANGE_VAL",
2202 "P80211_DATA_VAL",
2203 "P8023_DATA_VAL",
2204 "HOST_NOTIFICATION_VAL"
2206 #endif
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209 struct ipw2100_rx_packet *packet)
2211 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212 if (!packet->skb)
2213 return -ENOMEM;
2215 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217 sizeof(struct ipw2100_rx),
2218 PCI_DMA_FROMDEVICE);
2219 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220 * dma_addr */
2222 return 0;
2225 #define SEARCH_ERROR 0xffffffff
2226 #define SEARCH_FAIL 0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2234 int i;
2235 if (!priv->snapshot[0])
2236 return;
2237 for (i = 0; i < 0x30; i++)
2238 kfree(priv->snapshot[i]);
2239 priv->snapshot[0] = NULL;
2242 #ifdef IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2245 int i;
2246 if (priv->snapshot[0])
2247 return 1;
2248 for (i = 0; i < 0x30; i++) {
2249 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250 if (!priv->snapshot[i]) {
2251 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252 "buffer %d\n", priv->net_dev->name, i);
2253 while (i > 0)
2254 kfree(priv->snapshot[--i]);
2255 priv->snapshot[0] = NULL;
2256 return 0;
2260 return 1;
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264 size_t len, int mode)
2266 u32 i, j;
2267 u32 tmp;
2268 u8 *s, *d;
2269 u32 ret;
2271 s = in_buf;
2272 if (mode == SEARCH_SNAPSHOT) {
2273 if (!ipw2100_snapshot_alloc(priv))
2274 mode = SEARCH_DISCARD;
2277 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278 read_nic_dword(priv->net_dev, i, &tmp);
2279 if (mode == SEARCH_SNAPSHOT)
2280 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281 if (ret == SEARCH_FAIL) {
2282 d = (u8 *) & tmp;
2283 for (j = 0; j < 4; j++) {
2284 if (*s != *d) {
2285 s = in_buf;
2286 continue;
2289 s++;
2290 d++;
2292 if ((s - in_buf) == len)
2293 ret = (i + j) - len + 1;
2295 } else if (mode == SEARCH_DISCARD)
2296 return ret;
2299 return ret;
2301 #endif
2305 * 0) Disconnect the SKB from the firmware (just unmap)
2306 * 1) Pack the ETH header into the SKB
2307 * 2) Pass the SKB to the network stack
2309 * When packet is provided by the firmware, it contains the following:
2311 * . ieee80211_hdr
2312 * . ieee80211_snap_hdr
2314 * The size of the constructed ethernet
2317 #ifdef IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2323 #ifdef IPW2100_DEBUG_C3
2324 struct ipw2100_status *status = &priv->status_queue.drv[i];
2325 u32 match, reg;
2326 int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329 int limit;
2330 #endif
2332 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333 i * sizeof(struct ipw2100_status));
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337 limit = acpi_get_cstate_limit();
2338 if (limit > 2) {
2339 priv->cstate_limit = limit;
2340 acpi_set_cstate_limit(2);
2341 priv->config |= CFG_C3_DISABLED;
2343 #endif
2345 #ifdef IPW2100_DEBUG_C3
2346 /* Halt the fimrware so we can get a good image */
2347 write_register(priv->net_dev, IPW_REG_RESET_REG,
2348 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349 j = 5;
2350 do {
2351 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2354 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355 break;
2356 } while (j--);
2358 match = ipw2100_match_buf(priv, (u8 *) status,
2359 sizeof(struct ipw2100_status),
2360 SEARCH_SNAPSHOT);
2361 if (match < SEARCH_SUCCESS)
2362 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363 "offset 0x%06X, length %d:\n",
2364 priv->net_dev->name, match,
2365 sizeof(struct ipw2100_status));
2366 else
2367 IPW_DEBUG_INFO("%s: No DMA status match in "
2368 "Firmware.\n", priv->net_dev->name);
2370 printk_buf((u8 *) priv->status_queue.drv,
2371 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2374 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375 priv->ieee->stats.rx_errors++;
2376 schedule_reset(priv);
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380 struct ieee80211_rx_stats *stats)
2382 struct ipw2100_status *status = &priv->status_queue.drv[i];
2383 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2385 IPW_DEBUG_RX("Handler...\n");
2387 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389 " Dropping.\n",
2390 priv->net_dev->name,
2391 status->frame_size, skb_tailroom(packet->skb));
2392 priv->ieee->stats.rx_errors++;
2393 return;
2396 if (unlikely(!netif_running(priv->net_dev))) {
2397 priv->ieee->stats.rx_errors++;
2398 priv->wstats.discard.misc++;
2399 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400 return;
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2407 return;
2410 pci_unmap_single(priv->pci_dev,
2411 packet->dma_addr,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2414 skb_put(packet->skb, status->frame_size);
2416 #ifdef IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 memcpy(packet_data, packet->skb->data,
2420 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2423 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef IPW2100_RX_DEBUG
2425 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426 priv->net_dev->name);
2427 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429 priv->ieee->stats.rx_errors++;
2431 /* ieee80211_rx failed, so it didn't free the SKB */
2432 dev_kfree_skb_any(packet->skb);
2433 packet->skb = NULL;
2436 /* We need to allocate a new SKB and attach it to the RDB. */
2437 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438 printk(KERN_WARNING DRV_NAME ": "
2439 "%s: Unable to allocate SKB onto RBD ring - disabling "
2440 "adapter.\n", priv->net_dev->name);
2441 /* TODO: schedule adapter shutdown */
2442 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2445 /* Update the RDB entry */
2446 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2449 #ifdef CONFIG_IPW2100_MONITOR
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452 struct ieee80211_rx_stats *stats)
2454 struct ipw2100_status *status = &priv->status_queue.drv[i];
2455 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457 /* Magic struct that slots into the radiotap header -- no reason
2458 * to build this manually element by element, we can write it much
2459 * more efficiently than we can parse it. ORDER MATTERS HERE */
2460 struct ipw_rt_hdr {
2461 struct ieee80211_radiotap_header rt_hdr;
2462 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463 } *ipw_rt;
2465 IPW_DEBUG_RX("Handler...\n");
2467 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468 sizeof(struct ipw_rt_hdr))) {
2469 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470 " Dropping.\n",
2471 priv->net_dev->name,
2472 status->frame_size,
2473 skb_tailroom(packet->skb));
2474 priv->ieee->stats.rx_errors++;
2475 return;
2478 if (unlikely(!netif_running(priv->net_dev))) {
2479 priv->ieee->stats.rx_errors++;
2480 priv->wstats.discard.misc++;
2481 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482 return;
2485 if (unlikely(priv->config & CFG_CRC_CHECK &&
2486 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2488 priv->ieee->stats.rx_errors++;
2489 return;
2492 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495 packet->skb->data, status->frame_size);
2497 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2499 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2503 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2505 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2507 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2509 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510 priv->ieee->stats.rx_errors++;
2512 /* ieee80211_rx failed, so it didn't free the SKB */
2513 dev_kfree_skb_any(packet->skb);
2514 packet->skb = NULL;
2517 /* We need to allocate a new SKB and attach it to the RDB. */
2518 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519 IPW_DEBUG_WARNING(
2520 "%s: Unable to allocate SKB onto RBD ring - disabling "
2521 "adapter.\n", priv->net_dev->name);
2522 /* TODO: schedule adapter shutdown */
2523 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2526 /* Update the RDB entry */
2527 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2530 #endif
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2534 struct ipw2100_status *status = &priv->status_queue.drv[i];
2535 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2538 switch (frame_type) {
2539 case COMMAND_STATUS_VAL:
2540 return (status->frame_size != sizeof(u->rx_data.command));
2541 case STATUS_CHANGE_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.status));
2543 case HOST_NOTIFICATION_VAL:
2544 return (status->frame_size < sizeof(u->rx_data.notification));
2545 case P80211_DATA_VAL:
2546 case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548 return 0;
2549 #else
2550 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551 case IEEE80211_FTYPE_MGMT:
2552 case IEEE80211_FTYPE_CTL:
2553 return 0;
2554 case IEEE80211_FTYPE_DATA:
2555 return (status->frame_size >
2556 IPW_MAX_802_11_PAYLOAD_LENGTH);
2558 #endif
2561 return 1;
2565 * ipw2100 interrupts are disabled at this point, and the ISR
2566 * is the only code that calls this method. So, we do not need
2567 * to play with any locks.
2569 * RX Queue works as follows:
2571 * Read index - firmware places packet in entry identified by the
2572 * Read index and advances Read index. In this manner,
2573 * Read index will always point to the next packet to
2574 * be filled--but not yet valid.
2576 * Write index - driver fills this entry with an unused RBD entry.
2577 * This entry has not filled by the firmware yet.
2579 * In between the W and R indexes are the RBDs that have been received
2580 * but not yet processed.
2582 * The process of handling packets will start at WRITE + 1 and advance
2583 * until it reaches the READ index.
2585 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2590 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591 struct ipw2100_status_queue *sq = &priv->status_queue;
2592 struct ipw2100_rx_packet *packet;
2593 u16 frame_type;
2594 u32 r, w, i, s;
2595 struct ipw2100_rx *u;
2596 struct ieee80211_rx_stats stats = {
2597 .mac_time = jiffies,
2600 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2603 if (r >= rxq->entries) {
2604 IPW_DEBUG_RX("exit - bad read index\n");
2605 return;
2608 i = (rxq->next + 1) % rxq->entries;
2609 s = i;
2610 while (i != r) {
2611 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612 r, rxq->next, i); */
2614 packet = &priv->rx_buffers[i];
2616 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617 * the correct values */
2618 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619 sq->nic +
2620 sizeof(struct ipw2100_status) * i,
2621 sizeof(struct ipw2100_status),
2622 PCI_DMA_FROMDEVICE);
2624 /* Sync the DMA for the RX buffer so CPU is sure to get
2625 * the correct values */
2626 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627 sizeof(struct ipw2100_rx),
2628 PCI_DMA_FROMDEVICE);
2630 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631 ipw2100_corruption_detected(priv, i);
2632 goto increment;
2635 u = packet->rxp;
2636 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638 stats.len = sq->drv[i].frame_size;
2640 stats.mask = 0;
2641 if (stats.rssi != 0)
2642 stats.mask |= IEEE80211_STATMASK_RSSI;
2643 stats.freq = IEEE80211_24GHZ_BAND;
2645 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646 priv->net_dev->name, frame_types[frame_type],
2647 stats.len);
2649 switch (frame_type) {
2650 case COMMAND_STATUS_VAL:
2651 /* Reset Rx watchdog */
2652 isr_rx_complete_command(priv, &u->rx_data.command);
2653 break;
2655 case STATUS_CHANGE_VAL:
2656 isr_status_change(priv, u->rx_data.status);
2657 break;
2659 case P80211_DATA_VAL:
2660 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663 isr_rx_monitor(priv, i, &stats);
2664 break;
2666 #endif
2667 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2668 break;
2669 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670 case IEEE80211_FTYPE_MGMT:
2671 ieee80211_rx_mgt(priv->ieee,
2672 &u->rx_data.header, &stats);
2673 break;
2675 case IEEE80211_FTYPE_CTL:
2676 break;
2678 case IEEE80211_FTYPE_DATA:
2679 isr_rx(priv, i, &stats);
2680 break;
2683 break;
2686 increment:
2687 /* clear status field associated with this RBD */
2688 rxq->drv[i].status.info.field = 0;
2690 i = (i + 1) % rxq->entries;
2693 if (i != s) {
2694 /* backtrack one entry, wrapping to end if at 0 */
2695 rxq->next = (i ? i : rxq->entries) - 1;
2697 write_register(priv->net_dev,
2698 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2703 * __ipw2100_tx_process
2705 * This routine will determine whether the next packet on
2706 * the fw_pend_list has been processed by the firmware yet.
2708 * If not, then it does nothing and returns.
2710 * If so, then it removes the item from the fw_pend_list, frees
2711 * any associated storage, and places the item back on the
2712 * free list of its source (either msg_free_list or tx_free_list)
2714 * TX Queue works as follows:
2716 * Read index - points to the next TBD that the firmware will
2717 * process. The firmware will read the data, and once
2718 * done processing, it will advance the Read index.
2720 * Write index - driver fills this entry with an constructed TBD
2721 * entry. The Write index is not advanced until the
2722 * packet has been configured.
2724 * In between the W and R indexes are the TBDs that have NOT been
2725 * processed. Lagging behind the R index are packets that have
2726 * been processed but have not been freed by the driver.
2728 * In order to free old storage, an internal index will be maintained
2729 * that points to the next packet to be freed. When all used
2730 * packets have been freed, the oldest index will be the same as the
2731 * firmware's read index.
2733 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2735 * Because the TBD structure can not contain arbitrary data, the
2736 * driver must keep an internal queue of cached allocations such that
2737 * it can put that data back into the tx_free_list and msg_free_list
2738 * for use by future command and data packets.
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2743 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744 struct ipw2100_bd *tbd;
2745 struct list_head *element;
2746 struct ipw2100_tx_packet *packet;
2747 int descriptors_used;
2748 int e, i;
2749 u32 r, w, frag_num = 0;
2751 if (list_empty(&priv->fw_pend_list))
2752 return 0;
2754 element = priv->fw_pend_list.next;
2756 packet = list_entry(element, struct ipw2100_tx_packet, list);
2757 tbd = &txq->drv[packet->index];
2759 /* Determine how many TBD entries must be finished... */
2760 switch (packet->type) {
2761 case COMMAND:
2762 /* COMMAND uses only one slot; don't advance */
2763 descriptors_used = 1;
2764 e = txq->oldest;
2765 break;
2767 case DATA:
2768 /* DATA uses two slots; advance and loop position. */
2769 descriptors_used = tbd->num_fragments;
2770 frag_num = tbd->num_fragments - 1;
2771 e = txq->oldest + frag_num;
2772 e %= txq->entries;
2773 break;
2775 default:
2776 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777 priv->net_dev->name);
2778 return 0;
2781 /* if the last TBD is not done by NIC yet, then packet is
2782 * not ready to be released.
2785 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786 &r);
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788 &w);
2789 if (w != txq->next)
2790 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791 priv->net_dev->name);
2794 * txq->next is the index of the last packet written txq->oldest is
2795 * the index of the r is the index of the next packet to be read by
2796 * firmware
2800 * Quick graphic to help you visualize the following
2801 * if / else statement
2803 * ===>| s---->|===============
2804 * e>|
2805 * | a | b | c | d | e | f | g | h | i | j | k | l
2806 * r---->|
2809 * w - updated by driver
2810 * r - updated by firmware
2811 * s - start of oldest BD entry (txq->oldest)
2812 * e - end of oldest BD entry
2815 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817 return 0;
2820 list_del(element);
2821 DEC_STAT(&priv->fw_pend_stat);
2823 #ifdef CONFIG_IPW2100_DEBUG
2825 int i = txq->oldest;
2826 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827 &txq->drv[i],
2828 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829 txq->drv[i].host_addr, txq->drv[i].buf_length);
2831 if (packet->type == DATA) {
2832 i = (i + 1) % txq->entries;
2834 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835 &txq->drv[i],
2836 (u32) (txq->nic + i *
2837 sizeof(struct ipw2100_bd)),
2838 (u32) txq->drv[i].host_addr,
2839 txq->drv[i].buf_length);
2842 #endif
2844 switch (packet->type) {
2845 case DATA:
2846 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2848 "Expecting DATA TBD but pulled "
2849 "something else: ids %d=%d.\n",
2850 priv->net_dev->name, txq->oldest, packet->index);
2852 /* DATA packet; we have to unmap and free the SKB */
2853 for (i = 0; i < frag_num; i++) {
2854 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2856 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857 (packet->index + 1 + i) % txq->entries,
2858 tbd->host_addr, tbd->buf_length);
2860 pci_unmap_single(priv->pci_dev,
2861 tbd->host_addr,
2862 tbd->buf_length, PCI_DMA_TODEVICE);
2865 ieee80211_txb_free(packet->info.d_struct.txb);
2866 packet->info.d_struct.txb = NULL;
2868 list_add_tail(element, &priv->tx_free_list);
2869 INC_STAT(&priv->tx_free_stat);
2871 /* We have a free slot in the Tx queue, so wake up the
2872 * transmit layer if it is stopped. */
2873 if (priv->status & STATUS_ASSOCIATED)
2874 netif_wake_queue(priv->net_dev);
2876 /* A packet was processed by the hardware, so update the
2877 * watchdog */
2878 priv->net_dev->trans_start = jiffies;
2880 break;
2882 case COMMAND:
2883 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2885 "Expecting COMMAND TBD but pulled "
2886 "something else: ids %d=%d.\n",
2887 priv->net_dev->name, txq->oldest, packet->index);
2889 #ifdef CONFIG_IPW2100_DEBUG
2890 if (packet->info.c_struct.cmd->host_command_reg <
2891 ARRAY_SIZE(command_types))
2892 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893 command_types[packet->info.c_struct.cmd->
2894 host_command_reg],
2895 packet->info.c_struct.cmd->
2896 host_command_reg,
2897 packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2900 list_add_tail(element, &priv->msg_free_list);
2901 INC_STAT(&priv->msg_free_stat);
2902 break;
2905 /* advance oldest used TBD pointer to start of next entry */
2906 txq->oldest = (e + 1) % txq->entries;
2907 /* increase available TBDs number */
2908 txq->available += descriptors_used;
2909 SET_STAT(&priv->txq_stat, txq->available);
2911 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2912 jiffies - packet->jiffy_start);
2914 return (!list_empty(&priv->fw_pend_list));
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2919 int i = 0;
2921 while (__ipw2100_tx_process(priv) && i < 200)
2922 i++;
2924 if (i == 200) {
2925 printk(KERN_WARNING DRV_NAME ": "
2926 "%s: Driver is running slow (%d iters).\n",
2927 priv->net_dev->name, i);
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2933 struct list_head *element;
2934 struct ipw2100_tx_packet *packet;
2935 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936 struct ipw2100_bd *tbd;
2937 int next = txq->next;
2939 while (!list_empty(&priv->msg_pend_list)) {
2940 /* if there isn't enough space in TBD queue, then
2941 * don't stuff a new one in.
2942 * NOTE: 3 are needed as a command will take one,
2943 * and there is a minimum of 2 that must be
2944 * maintained between the r and w indexes
2946 if (txq->available <= 3) {
2947 IPW_DEBUG_TX("no room in tx_queue\n");
2948 break;
2951 element = priv->msg_pend_list.next;
2952 list_del(element);
2953 DEC_STAT(&priv->msg_pend_stat);
2955 packet = list_entry(element, struct ipw2100_tx_packet, list);
2957 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958 &txq->drv[txq->next],
2959 (void *)(txq->nic + txq->next *
2960 sizeof(struct ipw2100_bd)));
2962 packet->index = txq->next;
2964 tbd = &txq->drv[txq->next];
2966 /* initialize TBD */
2967 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969 /* not marking number of fragments causes problems
2970 * with f/w debug version */
2971 tbd->num_fragments = 1;
2972 tbd->status.info.field =
2973 IPW_BD_STATUS_TX_FRAME_COMMAND |
2974 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2976 /* update TBD queue counters */
2977 txq->next++;
2978 txq->next %= txq->entries;
2979 txq->available--;
2980 DEC_STAT(&priv->txq_stat);
2982 list_add_tail(element, &priv->fw_pend_list);
2983 INC_STAT(&priv->fw_pend_stat);
2986 if (txq->next != next) {
2987 /* kick off the DMA by notifying firmware the
2988 * write index has moved; make sure TBD stores are sync'd */
2989 wmb();
2990 write_register(priv->net_dev,
2991 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992 txq->next);
2997 * ipw2100_tx_send_data
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3002 struct list_head *element;
3003 struct ipw2100_tx_packet *packet;
3004 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005 struct ipw2100_bd *tbd;
3006 int next = txq->next;
3007 int i = 0;
3008 struct ipw2100_data_header *ipw_hdr;
3009 struct ieee80211_hdr_3addr *hdr;
3011 while (!list_empty(&priv->tx_pend_list)) {
3012 /* if there isn't enough space in TBD queue, then
3013 * don't stuff a new one in.
3014 * NOTE: 4 are needed as a data will take two,
3015 * and there is a minimum of 2 that must be
3016 * maintained between the r and w indexes
3018 element = priv->tx_pend_list.next;
3019 packet = list_entry(element, struct ipw2100_tx_packet, list);
3021 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022 IPW_MAX_BDS)) {
3023 /* TODO: Support merging buffers if more than
3024 * IPW_MAX_BDS are used */
3025 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3026 "Increase fragmentation level.\n",
3027 priv->net_dev->name);
3030 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031 IPW_DEBUG_TX("no room in tx_queue\n");
3032 break;
3035 list_del(element);
3036 DEC_STAT(&priv->tx_pend_stat);
3038 tbd = &txq->drv[txq->next];
3040 packet->index = txq->next;
3042 ipw_hdr = packet->info.d_struct.data;
3043 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044 fragments[0]->data;
3046 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047 /* To DS: Addr1 = BSSID, Addr2 = SA,
3048 Addr3 = DA */
3049 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053 Addr3 = BSSID */
3054 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3058 ipw_hdr->host_command_reg = SEND;
3059 ipw_hdr->host_command_reg1 = 0;
3061 /* For now we only support host based encryption */
3062 ipw_hdr->needs_encryption = 0;
3063 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064 if (packet->info.d_struct.txb->nr_frags > 1)
3065 ipw_hdr->fragment_size =
3066 packet->info.d_struct.txb->frag_size -
3067 IEEE80211_3ADDR_LEN;
3068 else
3069 ipw_hdr->fragment_size = 0;
3071 tbd->host_addr = packet->info.d_struct.data_phys;
3072 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074 tbd->status.info.field =
3075 IPW_BD_STATUS_TX_FRAME_802_3 |
3076 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077 txq->next++;
3078 txq->next %= txq->entries;
3080 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081 packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083 if (packet->info.d_struct.txb->nr_frags > 1)
3084 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085 packet->info.d_struct.txb->nr_frags);
3086 #endif
3088 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089 tbd = &txq->drv[txq->next];
3090 if (i == packet->info.d_struct.txb->nr_frags - 1)
3091 tbd->status.info.field =
3092 IPW_BD_STATUS_TX_FRAME_802_3 |
3093 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094 else
3095 tbd->status.info.field =
3096 IPW_BD_STATUS_TX_FRAME_802_3 |
3097 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099 tbd->buf_length = packet->info.d_struct.txb->
3100 fragments[i]->len - IEEE80211_3ADDR_LEN;
3102 tbd->host_addr = pci_map_single(priv->pci_dev,
3103 packet->info.d_struct.
3104 txb->fragments[i]->
3105 data +
3106 IEEE80211_3ADDR_LEN,
3107 tbd->buf_length,
3108 PCI_DMA_TODEVICE);
3110 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111 txq->next, tbd->host_addr,
3112 tbd->buf_length);
3114 pci_dma_sync_single_for_device(priv->pci_dev,
3115 tbd->host_addr,
3116 tbd->buf_length,
3117 PCI_DMA_TODEVICE);
3119 txq->next++;
3120 txq->next %= txq->entries;
3123 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124 SET_STAT(&priv->txq_stat, txq->available);
3126 list_add_tail(element, &priv->fw_pend_list);
3127 INC_STAT(&priv->fw_pend_stat);
3130 if (txq->next != next) {
3131 /* kick off the DMA by notifying firmware the
3132 * write index has moved; make sure TBD stores are sync'd */
3133 write_register(priv->net_dev,
3134 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135 txq->next);
3137 return;
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3142 struct net_device *dev = priv->net_dev;
3143 unsigned long flags;
3144 u32 inta, tmp;
3146 spin_lock_irqsave(&priv->low_lock, flags);
3147 ipw2100_disable_interrupts(priv);
3149 read_register(dev, IPW_REG_INTA, &inta);
3151 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152 (unsigned long)inta & IPW_INTERRUPT_MASK);
3154 priv->in_isr++;
3155 priv->interrupts++;
3157 /* We do not loop and keep polling for more interrupts as this
3158 * is frowned upon and doesn't play nicely with other potentially
3159 * chained IRQs */
3160 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161 (unsigned long)inta & IPW_INTERRUPT_MASK);
3163 if (inta & IPW2100_INTA_FATAL_ERROR) {
3164 printk(KERN_WARNING DRV_NAME
3165 ": Fatal interrupt. Scheduling firmware restart.\n");
3166 priv->inta_other++;
3167 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3169 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171 priv->net_dev->name, priv->fatal_error);
3173 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175 priv->net_dev->name, tmp);
3177 /* Wake up any sleeping jobs */
3178 schedule_reset(priv);
3181 if (inta & IPW2100_INTA_PARITY_ERROR) {
3182 printk(KERN_ERR DRV_NAME
3183 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184 priv->inta_other++;
3185 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3188 if (inta & IPW2100_INTA_RX_TRANSFER) {
3189 IPW_DEBUG_ISR("RX interrupt\n");
3191 priv->rx_interrupts++;
3193 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3195 __ipw2100_rx_process(priv);
3196 __ipw2100_tx_complete(priv);
3199 if (inta & IPW2100_INTA_TX_TRANSFER) {
3200 IPW_DEBUG_ISR("TX interrupt\n");
3202 priv->tx_interrupts++;
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3206 __ipw2100_tx_complete(priv);
3207 ipw2100_tx_send_commands(priv);
3208 ipw2100_tx_send_data(priv);
3211 if (inta & IPW2100_INTA_TX_COMPLETE) {
3212 IPW_DEBUG_ISR("TX complete\n");
3213 priv->inta_other++;
3214 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3216 __ipw2100_tx_complete(priv);
3219 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220 /* ipw2100_handle_event(dev); */
3221 priv->inta_other++;
3222 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3225 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226 IPW_DEBUG_ISR("FW init done interrupt\n");
3227 priv->inta_other++;
3229 read_register(dev, IPW_REG_INTA, &tmp);
3230 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231 IPW2100_INTA_PARITY_ERROR)) {
3232 write_register(dev, IPW_REG_INTA,
3233 IPW2100_INTA_FATAL_ERROR |
3234 IPW2100_INTA_PARITY_ERROR);
3237 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3240 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241 IPW_DEBUG_ISR("Status change interrupt\n");
3242 priv->inta_other++;
3243 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3246 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248 priv->inta_other++;
3249 write_register(dev, IPW_REG_INTA,
3250 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3253 priv->in_isr--;
3254 ipw2100_enable_interrupts(priv);
3256 spin_unlock_irqrestore(&priv->low_lock, flags);
3258 IPW_DEBUG_ISR("exit\n");
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3263 struct ipw2100_priv *priv = data;
3264 u32 inta, inta_mask;
3266 if (!data)
3267 return IRQ_NONE;
3269 spin_lock(&priv->low_lock);
3271 /* We check to see if we should be ignoring interrupts before
3272 * we touch the hardware. During ucode load if we try and handle
3273 * an interrupt we can cause keyboard problems as well as cause
3274 * the ucode to fail to initialize */
3275 if (!(priv->status & STATUS_INT_ENABLED)) {
3276 /* Shared IRQ */
3277 goto none;
3280 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3283 if (inta == 0xFFFFFFFF) {
3284 /* Hardware disappeared */
3285 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286 goto none;
3289 inta &= IPW_INTERRUPT_MASK;
3291 if (!(inta & inta_mask)) {
3292 /* Shared interrupt */
3293 goto none;
3296 /* We disable the hardware interrupt here just to prevent unneeded
3297 * calls to be made. We disable this again within the actual
3298 * work tasklet, so if another part of the code re-enables the
3299 * interrupt, that is fine */
3300 ipw2100_disable_interrupts(priv);
3302 tasklet_schedule(&priv->irq_tasklet);
3303 spin_unlock(&priv->low_lock);
3305 return IRQ_HANDLED;
3306 none:
3307 spin_unlock(&priv->low_lock);
3308 return IRQ_NONE;
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312 int pri)
3314 struct ipw2100_priv *priv = ieee80211_priv(dev);
3315 struct list_head *element;
3316 struct ipw2100_tx_packet *packet;
3317 unsigned long flags;
3319 spin_lock_irqsave(&priv->low_lock, flags);
3321 if (!(priv->status & STATUS_ASSOCIATED)) {
3322 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323 priv->ieee->stats.tx_carrier_errors++;
3324 netif_stop_queue(dev);
3325 goto fail_unlock;
3328 if (list_empty(&priv->tx_free_list))
3329 goto fail_unlock;
3331 element = priv->tx_free_list.next;
3332 packet = list_entry(element, struct ipw2100_tx_packet, list);
3334 packet->info.d_struct.txb = txb;
3336 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3339 packet->jiffy_start = jiffies;
3341 list_del(element);
3342 DEC_STAT(&priv->tx_free_stat);
3344 list_add_tail(element, &priv->tx_pend_list);
3345 INC_STAT(&priv->tx_pend_stat);
3347 ipw2100_tx_send_data(priv);
3349 spin_unlock_irqrestore(&priv->low_lock, flags);
3350 return 0;
3352 fail_unlock:
3353 netif_stop_queue(dev);
3354 spin_unlock_irqrestore(&priv->low_lock, flags);
3355 return 1;
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3360 int i, j, err = -EINVAL;
3361 void *v;
3362 dma_addr_t p;
3364 priv->msg_buffers =
3365 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366 sizeof(struct
3367 ipw2100_tx_packet),
3368 GFP_KERNEL);
3369 if (!priv->msg_buffers) {
3370 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371 "buffers.\n", priv->net_dev->name);
3372 return -ENOMEM;
3375 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376 v = pci_alloc_consistent(priv->pci_dev,
3377 sizeof(struct ipw2100_cmd_header), &p);
3378 if (!v) {
3379 printk(KERN_ERR DRV_NAME ": "
3380 "%s: PCI alloc failed for msg "
3381 "buffers.\n", priv->net_dev->name);
3382 err = -ENOMEM;
3383 break;
3386 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3388 priv->msg_buffers[i].type = COMMAND;
3389 priv->msg_buffers[i].info.c_struct.cmd =
3390 (struct ipw2100_cmd_header *)v;
3391 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3394 if (i == IPW_COMMAND_POOL_SIZE)
3395 return 0;
3397 for (j = 0; j < i; j++) {
3398 pci_free_consistent(priv->pci_dev,
3399 sizeof(struct ipw2100_cmd_header),
3400 priv->msg_buffers[j].info.c_struct.cmd,
3401 priv->msg_buffers[j].info.c_struct.
3402 cmd_phys);
3405 kfree(priv->msg_buffers);
3406 priv->msg_buffers = NULL;
3408 return err;
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3413 int i;
3415 INIT_LIST_HEAD(&priv->msg_free_list);
3416 INIT_LIST_HEAD(&priv->msg_pend_list);
3418 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420 SET_STAT(&priv->msg_free_stat, i);
3422 return 0;
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3427 int i;
3429 if (!priv->msg_buffers)
3430 return;
3432 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433 pci_free_consistent(priv->pci_dev,
3434 sizeof(struct ipw2100_cmd_header),
3435 priv->msg_buffers[i].info.c_struct.cmd,
3436 priv->msg_buffers[i].info.c_struct.
3437 cmd_phys);
3440 kfree(priv->msg_buffers);
3441 priv->msg_buffers = NULL;
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445 char *buf)
3447 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448 char *out = buf;
3449 int i, j;
3450 u32 val;
3452 for (i = 0; i < 16; i++) {
3453 out += sprintf(out, "[%08X] ", i * 16);
3454 for (j = 0; j < 16; j += 4) {
3455 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456 out += sprintf(out, "%08X ", val);
3458 out += sprintf(out, "\n");
3461 return out - buf;
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467 char *buf)
3469 struct ipw2100_priv *p = d->driver_data;
3470 return sprintf(buf, "0x%08x\n", (int)p->config);
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476 char *buf)
3478 struct ipw2100_priv *p = d->driver_data;
3479 return sprintf(buf, "0x%08x\n", (int)p->status);
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485 char *buf)
3487 struct ipw2100_priv *p = d->driver_data;
3488 return sprintf(buf, "0x%08x\n", (int)p->capability);
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495 u32 addr;
3496 const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499 IPW2100_REG(REG_GPIO),
3500 IPW2100_REG(REG_INTA),
3501 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504 u32 addr;
3505 const char *name;
3506 size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512 u8 index;
3513 const char *name;
3514 const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518 "successful Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_DIR_DATA,
3520 "successful Directed Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA1,
3522 "successful Directed Tx's (MSDU) @ 1MB"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA2,
3524 "successful Directed Tx's (MSDU) @ 2MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA11,
3528 "successful Directed Tx's (MSDU) @ 11MB"),
3529 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542 IPW2100_ORD(STAT_TX_ASSN_RESP,
3543 "successful Association response Tx's"),
3544 IPW2100_ORD(STAT_TX_REASSN,
3545 "successful Reassociation Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN_RESP,
3547 "successful Reassociation response Tx's"),
3548 IPW2100_ORD(STAT_TX_PROBE,
3549 "probes successfully transmitted"),
3550 IPW2100_ORD(STAT_TX_PROBE_RESP,
3551 "probe responses successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554 IPW2100_ORD(STAT_TX_DISASSN,
3555 "successful Disassociation TX"),
3556 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557 IPW2100_ORD(STAT_TX_DEAUTH,
3558 "successful Deauthentication TX"),
3559 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560 "Total successful Tx data bytes"),
3561 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568 "times max tries in a hop failed"),
3569 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570 "times disassociation failed"),
3571 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578 "directed packets at 5.5MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582 "nondirected packets at 1MB"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584 "nondirected packets at 2MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586 "nondirected packets at 5.5MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588 "nondirected packets at 11MB"),
3589 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591 "Rx CTS"),
3592 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598 IPW2100_ORD(STAT_RX_REASSN_RESP,
3599 "Reassociation response Rx's"),
3600 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608 "Total rx data bytes received"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614 IPW2100_ORD(STAT_RX_DUPLICATE1,
3615 "duplicate rx packets at 1MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE2,
3617 "duplicate rx packets at 2MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619 "duplicate rx packets at 5.5MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE11,
3621 "duplicate rx packets at 11MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3624 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3625 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3626 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627 "rx frames with invalid protocol"),
3628 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629 IPW2100_ORD(STAT_RX_NO_BUFFER,
3630 "rx frames rejected due to no buffer"),
3631 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632 "rx frames dropped due to missing fragment"),
3633 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634 "rx frames dropped due to non-sequential fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636 "rx frames dropped due to unmatched 1st frame"),
3637 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638 "rx frames dropped due to uncompleted frame"),
3639 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640 "ICV errors during decryption"),
3641 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644 "poll response timeouts"),
3645 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646 "timeouts waiting for last {broad,multi}cast pkt"),
3647 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652 "current calculation of % missed beacons"),
3653 IPW2100_ORD(STAT_PERCENT_RETRIES,
3654 "current calculation of % missed tx retries"),
3655 IPW2100_ORD(ASSOCIATED_AP_PTR,
3656 "0 if not associated, else pointer to AP table entry"),
3657 IPW2100_ORD(AVAILABLE_AP_CNT,
3658 "AP's decsribed in the AP table"),
3659 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663 "failures due to response fail"),
3664 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666 IPW2100_ORD(STAT_ROAM_INHIBIT,
3667 "times roaming was inhibited due to activity"),
3668 IPW2100_ORD(RSSI_AT_ASSN,
3669 "RSSI of associated AP at time of association"),
3670 IPW2100_ORD(STAT_ASSN_CAUSE1,
3671 "reassociation: no probe response or TX on hop"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE2,
3673 "reassociation: poor tx/rx quality"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE3,
3675 "reassociation: tx/rx quality (excessive AP load"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE4,
3677 "reassociation: AP RSSI level"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE5,
3679 "reassociations due to load leveling"),
3680 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682 "times authentication response failed"),
3683 IPW2100_ORD(STATION_TABLE_CNT,
3684 "entries in association table"),
3685 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687 IPW2100_ORD(COUNTRY_CODE,
3688 "IEEE country code as recv'd from beacon"),
3689 IPW2100_ORD(COUNTRY_CHANNELS,
3690 "channels suported by country"),
3691 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693 IPW2100_ORD(ANTENNA_DIVERSITY,
3694 "TRUE if antenna diversity is disabled"),
3695 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696 IPW2100_ORD(OUR_FREQ,
3697 "current radio freq lower digits - channel ID"),
3698 IPW2100_ORD(RTC_TIME, "current RTC time"),
3699 IPW2100_ORD(PORT_TYPE, "operating mode"),
3700 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706 IPW2100_ORD(CAPABILITIES,
3707 "Management frame capability field"),
3708 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710 IPW2100_ORD(RTS_THRESHOLD,
3711 "Min packet length for RTS handshaking"),
3712 IPW2100_ORD(INT_MODE, "International mode"),
3713 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714 "protocol frag threshold"),
3715 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716 "EEPROM offset in SRAM"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718 "EEPROM size in SRAM"),
3719 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721 "EEPROM IBSS 11b channel set"),
3722 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729 char *buf)
3731 int i;
3732 struct ipw2100_priv *priv = dev_get_drvdata(d);
3733 struct net_device *dev = priv->net_dev;
3734 char *out = buf;
3735 u32 val = 0;
3737 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3739 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3740 read_register(dev, hw_data[i].addr, &val);
3741 out += sprintf(out, "%30s [%08X] : %08X\n",
3742 hw_data[i].name, hw_data[i].addr, val);
3745 return out - buf;
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751 char *buf)
3753 struct ipw2100_priv *priv = dev_get_drvdata(d);
3754 struct net_device *dev = priv->net_dev;
3755 char *out = buf;
3756 int i;
3758 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3760 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3761 u8 tmp8;
3762 u16 tmp16;
3763 u32 tmp32;
3765 switch (nic_data[i].size) {
3766 case 1:
3767 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768 out += sprintf(out, "%30s [%08X] : %02X\n",
3769 nic_data[i].name, nic_data[i].addr,
3770 tmp8);
3771 break;
3772 case 2:
3773 read_nic_word(dev, nic_data[i].addr, &tmp16);
3774 out += sprintf(out, "%30s [%08X] : %04X\n",
3775 nic_data[i].name, nic_data[i].addr,
3776 tmp16);
3777 break;
3778 case 4:
3779 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780 out += sprintf(out, "%30s [%08X] : %08X\n",
3781 nic_data[i].name, nic_data[i].addr,
3782 tmp32);
3783 break;
3786 return out - buf;
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792 char *buf)
3794 struct ipw2100_priv *priv = dev_get_drvdata(d);
3795 struct net_device *dev = priv->net_dev;
3796 static unsigned long loop = 0;
3797 int len = 0;
3798 u32 buffer[4];
3799 int i;
3800 char line[81];
3802 if (loop >= 0x30000)
3803 loop = 0;
3805 /* sysfs provides us PAGE_SIZE buffer */
3806 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3808 if (priv->snapshot[0])
3809 for (i = 0; i < 4; i++)
3810 buffer[i] =
3811 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812 else
3813 for (i = 0; i < 4; i++)
3814 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3816 if (priv->dump_raw)
3817 len += sprintf(buf + len,
3818 "%c%c%c%c"
3819 "%c%c%c%c"
3820 "%c%c%c%c"
3821 "%c%c%c%c",
3822 ((u8 *) buffer)[0x0],
3823 ((u8 *) buffer)[0x1],
3824 ((u8 *) buffer)[0x2],
3825 ((u8 *) buffer)[0x3],
3826 ((u8 *) buffer)[0x4],
3827 ((u8 *) buffer)[0x5],
3828 ((u8 *) buffer)[0x6],
3829 ((u8 *) buffer)[0x7],
3830 ((u8 *) buffer)[0x8],
3831 ((u8 *) buffer)[0x9],
3832 ((u8 *) buffer)[0xa],
3833 ((u8 *) buffer)[0xb],
3834 ((u8 *) buffer)[0xc],
3835 ((u8 *) buffer)[0xd],
3836 ((u8 *) buffer)[0xe],
3837 ((u8 *) buffer)[0xf]);
3838 else
3839 len += sprintf(buf + len, "%s\n",
3840 snprint_line(line, sizeof(line),
3841 (u8 *) buffer, 16, loop));
3842 loop += 16;
3845 return len;
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849 const char *buf, size_t count)
3851 struct ipw2100_priv *priv = dev_get_drvdata(d);
3852 struct net_device *dev = priv->net_dev;
3853 const char *p = buf;
3855 (void)dev; /* kill unused-var warning for debug-only code */
3857 if (count < 1)
3858 return count;
3860 if (p[0] == '1' ||
3861 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863 dev->name);
3864 priv->dump_raw = 1;
3866 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867 tolower(p[1]) == 'f')) {
3868 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869 dev->name);
3870 priv->dump_raw = 0;
3872 } else if (tolower(p[0]) == 'r') {
3873 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874 ipw2100_snapshot_free(priv);
3876 } else
3877 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878 "reset = clear memory snapshot\n", dev->name);
3880 return count;
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886 char *buf)
3888 struct ipw2100_priv *priv = dev_get_drvdata(d);
3889 u32 val = 0;
3890 int len = 0;
3891 u32 val_len;
3892 static int loop = 0;
3894 if (priv->status & STATUS_RF_KILL_MASK)
3895 return 0;
3897 if (loop >= ARRAY_SIZE(ord_data))
3898 loop = 0;
3900 /* sysfs provides us PAGE_SIZE buffer */
3901 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3902 val_len = sizeof(u32);
3904 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3905 &val_len))
3906 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3907 ord_data[loop].index,
3908 ord_data[loop].desc);
3909 else
3910 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3911 ord_data[loop].index, val,
3912 ord_data[loop].desc);
3913 loop++;
3916 return len;
3919 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3921 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3922 char *buf)
3924 struct ipw2100_priv *priv = dev_get_drvdata(d);
3925 char *out = buf;
3927 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3928 priv->interrupts, priv->tx_interrupts,
3929 priv->rx_interrupts, priv->inta_other);
3930 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3931 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3932 #ifdef CONFIG_IPW2100_DEBUG
3933 out += sprintf(out, "packet mismatch image: %s\n",
3934 priv->snapshot[0] ? "YES" : "NO");
3935 #endif
3937 return out - buf;
3940 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3942 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3944 int err;
3946 if (mode == priv->ieee->iw_mode)
3947 return 0;
3949 err = ipw2100_disable_adapter(priv);
3950 if (err) {
3951 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3952 priv->net_dev->name, err);
3953 return err;
3956 switch (mode) {
3957 case IW_MODE_INFRA:
3958 priv->net_dev->type = ARPHRD_ETHER;
3959 break;
3960 case IW_MODE_ADHOC:
3961 priv->net_dev->type = ARPHRD_ETHER;
3962 break;
3963 #ifdef CONFIG_IPW2100_MONITOR
3964 case IW_MODE_MONITOR:
3965 priv->last_mode = priv->ieee->iw_mode;
3966 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3967 break;
3968 #endif /* CONFIG_IPW2100_MONITOR */
3971 priv->ieee->iw_mode = mode;
3973 #ifdef CONFIG_PM
3974 /* Indicate ipw2100_download_firmware download firmware
3975 * from disk instead of memory. */
3976 ipw2100_firmware.version = 0;
3977 #endif
3979 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3980 priv->reset_backoff = 0;
3981 schedule_reset(priv);
3983 return 0;
3986 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3987 char *buf)
3989 struct ipw2100_priv *priv = dev_get_drvdata(d);
3990 int len = 0;
3992 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3994 if (priv->status & STATUS_ASSOCIATED)
3995 len += sprintf(buf + len, "connected: %lu\n",
3996 get_seconds() - priv->connect_start);
3997 else
3998 len += sprintf(buf + len, "not connected\n");
4000 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4001 DUMP_VAR(status, "08lx");
4002 DUMP_VAR(config, "08lx");
4003 DUMP_VAR(capability, "08lx");
4005 len +=
4006 sprintf(buf + len, "last_rtc: %lu\n",
4007 (unsigned long)priv->last_rtc);
4009 DUMP_VAR(fatal_error, "d");
4010 DUMP_VAR(stop_hang_check, "d");
4011 DUMP_VAR(stop_rf_kill, "d");
4012 DUMP_VAR(messages_sent, "d");
4014 DUMP_VAR(tx_pend_stat.value, "d");
4015 DUMP_VAR(tx_pend_stat.hi, "d");
4017 DUMP_VAR(tx_free_stat.value, "d");
4018 DUMP_VAR(tx_free_stat.lo, "d");
4020 DUMP_VAR(msg_free_stat.value, "d");
4021 DUMP_VAR(msg_free_stat.lo, "d");
4023 DUMP_VAR(msg_pend_stat.value, "d");
4024 DUMP_VAR(msg_pend_stat.hi, "d");
4026 DUMP_VAR(fw_pend_stat.value, "d");
4027 DUMP_VAR(fw_pend_stat.hi, "d");
4029 DUMP_VAR(txq_stat.value, "d");
4030 DUMP_VAR(txq_stat.lo, "d");
4032 DUMP_VAR(ieee->scans, "d");
4033 DUMP_VAR(reset_backoff, "d");
4035 return len;
4038 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4040 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4041 char *buf)
4043 struct ipw2100_priv *priv = dev_get_drvdata(d);
4044 char essid[IW_ESSID_MAX_SIZE + 1];
4045 u8 bssid[ETH_ALEN];
4046 u32 chan = 0;
4047 char *out = buf;
4048 int length;
4049 int ret;
4051 if (priv->status & STATUS_RF_KILL_MASK)
4052 return 0;
4054 memset(essid, 0, sizeof(essid));
4055 memset(bssid, 0, sizeof(bssid));
4057 length = IW_ESSID_MAX_SIZE;
4058 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4059 if (ret)
4060 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4061 __LINE__);
4063 length = sizeof(bssid);
4064 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4065 bssid, &length);
4066 if (ret)
4067 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4068 __LINE__);
4070 length = sizeof(u32);
4071 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4072 if (ret)
4073 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074 __LINE__);
4076 out += sprintf(out, "ESSID: %s\n", essid);
4077 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4078 bssid[0], bssid[1], bssid[2],
4079 bssid[3], bssid[4], bssid[5]);
4080 out += sprintf(out, "Channel: %d\n", chan);
4082 return out - buf;
4085 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4087 #ifdef CONFIG_IPW2100_DEBUG
4088 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4090 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 static ssize_t store_debug_level(struct device_driver *d,
4094 const char *buf, size_t count)
4096 char *p = (char *)buf;
4097 u32 val;
4099 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4100 p++;
4101 if (p[0] == 'x' || p[0] == 'X')
4102 p++;
4103 val = simple_strtoul(p, &p, 16);
4104 } else
4105 val = simple_strtoul(p, &p, 10);
4106 if (p == buf)
4107 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4108 else
4109 ipw2100_debug_level = val;
4111 return strnlen(buf, count);
4114 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4115 store_debug_level);
4116 #endif /* CONFIG_IPW2100_DEBUG */
4118 static ssize_t show_fatal_error(struct device *d,
4119 struct device_attribute *attr, char *buf)
4121 struct ipw2100_priv *priv = dev_get_drvdata(d);
4122 char *out = buf;
4123 int i;
4125 if (priv->fatal_error)
4126 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4127 else
4128 out += sprintf(out, "0\n");
4130 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4131 if (!priv->fatal_errors[(priv->fatal_index - i) %
4132 IPW2100_ERROR_QUEUE])
4133 continue;
4135 out += sprintf(out, "%d. 0x%08X\n", i,
4136 priv->fatal_errors[(priv->fatal_index - i) %
4137 IPW2100_ERROR_QUEUE]);
4140 return out - buf;
4143 static ssize_t store_fatal_error(struct device *d,
4144 struct device_attribute *attr, const char *buf,
4145 size_t count)
4147 struct ipw2100_priv *priv = dev_get_drvdata(d);
4148 schedule_reset(priv);
4149 return count;
4152 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4153 store_fatal_error);
4155 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4156 char *buf)
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4163 const char *buf, size_t count)
4165 struct ipw2100_priv *priv = dev_get_drvdata(d);
4166 struct net_device *dev = priv->net_dev;
4167 char buffer[] = "00000000";
4168 unsigned long len =
4169 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4170 unsigned long val;
4171 char *p = buffer;
4173 (void)dev; /* kill unused-var warning for debug-only code */
4175 IPW_DEBUG_INFO("enter\n");
4177 strncpy(buffer, buf, len);
4178 buffer[len] = 0;
4180 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4181 p++;
4182 if (p[0] == 'x' || p[0] == 'X')
4183 p++;
4184 val = simple_strtoul(p, &p, 16);
4185 } else
4186 val = simple_strtoul(p, &p, 10);
4187 if (p == buffer) {
4188 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4189 } else {
4190 priv->ieee->scan_age = val;
4191 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194 IPW_DEBUG_INFO("exit\n");
4195 return len;
4198 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4200 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4201 char *buf)
4203 /* 0 - RF kill not enabled
4204 1 - SW based RF kill active (sysfs)
4205 2 - HW based RF kill active
4206 3 - Both HW and SW baed RF kill active */
4207 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4208 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4209 (rf_kill_active(priv) ? 0x2 : 0x0);
4210 return sprintf(buf, "%i\n", val);
4213 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4215 if ((disable_radio ? 1 : 0) ==
4216 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4217 return 0;
4219 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4220 disable_radio ? "OFF" : "ON");
4222 mutex_lock(&priv->action_mutex);
4224 if (disable_radio) {
4225 priv->status |= STATUS_RF_KILL_SW;
4226 ipw2100_down(priv);
4227 } else {
4228 priv->status &= ~STATUS_RF_KILL_SW;
4229 if (rf_kill_active(priv)) {
4230 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4231 "disabled by HW switch\n");
4232 /* Make sure the RF_KILL check timer is running */
4233 priv->stop_rf_kill = 0;
4234 cancel_delayed_work(&priv->rf_kill);
4235 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4236 } else
4237 schedule_reset(priv);
4240 mutex_unlock(&priv->action_mutex);
4241 return 1;
4244 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4245 const char *buf, size_t count)
4247 struct ipw2100_priv *priv = dev_get_drvdata(d);
4248 ipw_radio_kill_sw(priv, buf[0] == '1');
4249 return count;
4252 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4254 static struct attribute *ipw2100_sysfs_entries[] = {
4255 &dev_attr_hardware.attr,
4256 &dev_attr_registers.attr,
4257 &dev_attr_ordinals.attr,
4258 &dev_attr_pci.attr,
4259 &dev_attr_stats.attr,
4260 &dev_attr_internals.attr,
4261 &dev_attr_bssinfo.attr,
4262 &dev_attr_memory.attr,
4263 &dev_attr_scan_age.attr,
4264 &dev_attr_fatal_error.attr,
4265 &dev_attr_rf_kill.attr,
4266 &dev_attr_cfg.attr,
4267 &dev_attr_status.attr,
4268 &dev_attr_capability.attr,
4269 NULL,
4272 static struct attribute_group ipw2100_attribute_group = {
4273 .attrs = ipw2100_sysfs_entries,
4276 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4278 struct ipw2100_status_queue *q = &priv->status_queue;
4280 IPW_DEBUG_INFO("enter\n");
4282 q->size = entries * sizeof(struct ipw2100_status);
4283 q->drv =
4284 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4285 q->size, &q->nic);
4286 if (!q->drv) {
4287 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4288 return -ENOMEM;
4291 memset(q->drv, 0, q->size);
4293 IPW_DEBUG_INFO("exit\n");
4295 return 0;
4298 static void status_queue_free(struct ipw2100_priv *priv)
4300 IPW_DEBUG_INFO("enter\n");
4302 if (priv->status_queue.drv) {
4303 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4304 priv->status_queue.drv,
4305 priv->status_queue.nic);
4306 priv->status_queue.drv = NULL;
4309 IPW_DEBUG_INFO("exit\n");
4312 static int bd_queue_allocate(struct ipw2100_priv *priv,
4313 struct ipw2100_bd_queue *q, int entries)
4315 IPW_DEBUG_INFO("enter\n");
4317 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4319 q->entries = entries;
4320 q->size = entries * sizeof(struct ipw2100_bd);
4321 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4322 if (!q->drv) {
4323 IPW_DEBUG_INFO
4324 ("can't allocate shared memory for buffer descriptors\n");
4325 return -ENOMEM;
4327 memset(q->drv, 0, q->size);
4329 IPW_DEBUG_INFO("exit\n");
4331 return 0;
4334 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4336 IPW_DEBUG_INFO("enter\n");
4338 if (!q)
4339 return;
4341 if (q->drv) {
4342 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4343 q->drv = NULL;
4346 IPW_DEBUG_INFO("exit\n");
4349 static void bd_queue_initialize(struct ipw2100_priv *priv,
4350 struct ipw2100_bd_queue *q, u32 base, u32 size,
4351 u32 r, u32 w)
4353 IPW_DEBUG_INFO("enter\n");
4355 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4356 (u32) q->nic);
4358 write_register(priv->net_dev, base, q->nic);
4359 write_register(priv->net_dev, size, q->entries);
4360 write_register(priv->net_dev, r, q->oldest);
4361 write_register(priv->net_dev, w, q->next);
4363 IPW_DEBUG_INFO("exit\n");
4366 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4368 if (priv->workqueue) {
4369 priv->stop_rf_kill = 1;
4370 priv->stop_hang_check = 1;
4371 cancel_delayed_work(&priv->reset_work);
4372 cancel_delayed_work(&priv->security_work);
4373 cancel_delayed_work(&priv->wx_event_work);
4374 cancel_delayed_work(&priv->hang_check);
4375 cancel_delayed_work(&priv->rf_kill);
4376 destroy_workqueue(priv->workqueue);
4377 priv->workqueue = NULL;
4381 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4383 int i, j, err = -EINVAL;
4384 void *v;
4385 dma_addr_t p;
4387 IPW_DEBUG_INFO("enter\n");
4389 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4390 if (err) {
4391 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4392 priv->net_dev->name);
4393 return err;
4396 priv->tx_buffers =
4397 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4398 sizeof(struct
4399 ipw2100_tx_packet),
4400 GFP_ATOMIC);
4401 if (!priv->tx_buffers) {
4402 printk(KERN_ERR DRV_NAME
4403 ": %s: alloc failed form tx buffers.\n",
4404 priv->net_dev->name);
4405 bd_queue_free(priv, &priv->tx_queue);
4406 return -ENOMEM;
4409 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4410 v = pci_alloc_consistent(priv->pci_dev,
4411 sizeof(struct ipw2100_data_header),
4412 &p);
4413 if (!v) {
4414 printk(KERN_ERR DRV_NAME
4415 ": %s: PCI alloc failed for tx " "buffers.\n",
4416 priv->net_dev->name);
4417 err = -ENOMEM;
4418 break;
4421 priv->tx_buffers[i].type = DATA;
4422 priv->tx_buffers[i].info.d_struct.data =
4423 (struct ipw2100_data_header *)v;
4424 priv->tx_buffers[i].info.d_struct.data_phys = p;
4425 priv->tx_buffers[i].info.d_struct.txb = NULL;
4428 if (i == TX_PENDED_QUEUE_LENGTH)
4429 return 0;
4431 for (j = 0; j < i; j++) {
4432 pci_free_consistent(priv->pci_dev,
4433 sizeof(struct ipw2100_data_header),
4434 priv->tx_buffers[j].info.d_struct.data,
4435 priv->tx_buffers[j].info.d_struct.
4436 data_phys);
4439 kfree(priv->tx_buffers);
4440 priv->tx_buffers = NULL;
4442 return err;
4445 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4447 int i;
4449 IPW_DEBUG_INFO("enter\n");
4452 * reinitialize packet info lists
4454 INIT_LIST_HEAD(&priv->fw_pend_list);
4455 INIT_STAT(&priv->fw_pend_stat);
4458 * reinitialize lists
4460 INIT_LIST_HEAD(&priv->tx_pend_list);
4461 INIT_LIST_HEAD(&priv->tx_free_list);
4462 INIT_STAT(&priv->tx_pend_stat);
4463 INIT_STAT(&priv->tx_free_stat);
4465 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4466 /* We simply drop any SKBs that have been queued for
4467 * transmit */
4468 if (priv->tx_buffers[i].info.d_struct.txb) {
4469 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4470 txb);
4471 priv->tx_buffers[i].info.d_struct.txb = NULL;
4474 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4477 SET_STAT(&priv->tx_free_stat, i);
4479 priv->tx_queue.oldest = 0;
4480 priv->tx_queue.available = priv->tx_queue.entries;
4481 priv->tx_queue.next = 0;
4482 INIT_STAT(&priv->txq_stat);
4483 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4485 bd_queue_initialize(priv, &priv->tx_queue,
4486 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4491 IPW_DEBUG_INFO("exit\n");
4495 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4497 int i;
4499 IPW_DEBUG_INFO("enter\n");
4501 bd_queue_free(priv, &priv->tx_queue);
4503 if (!priv->tx_buffers)
4504 return;
4506 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507 if (priv->tx_buffers[i].info.d_struct.txb) {
4508 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4509 txb);
4510 priv->tx_buffers[i].info.d_struct.txb = NULL;
4512 if (priv->tx_buffers[i].info.d_struct.data)
4513 pci_free_consistent(priv->pci_dev,
4514 sizeof(struct ipw2100_data_header),
4515 priv->tx_buffers[i].info.d_struct.
4516 data,
4517 priv->tx_buffers[i].info.d_struct.
4518 data_phys);
4521 kfree(priv->tx_buffers);
4522 priv->tx_buffers = NULL;
4524 IPW_DEBUG_INFO("exit\n");
4527 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4529 int i, j, err = -EINVAL;
4531 IPW_DEBUG_INFO("enter\n");
4533 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4534 if (err) {
4535 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4536 return err;
4539 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4540 if (err) {
4541 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4542 bd_queue_free(priv, &priv->rx_queue);
4543 return err;
4547 * allocate packets
4549 priv->rx_buffers = (struct ipw2100_rx_packet *)
4550 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4551 GFP_KERNEL);
4552 if (!priv->rx_buffers) {
4553 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4555 bd_queue_free(priv, &priv->rx_queue);
4557 status_queue_free(priv);
4559 return -ENOMEM;
4562 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4563 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4565 err = ipw2100_alloc_skb(priv, packet);
4566 if (unlikely(err)) {
4567 err = -ENOMEM;
4568 break;
4571 /* The BD holds the cache aligned address */
4572 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4573 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4574 priv->status_queue.drv[i].status_fields = 0;
4577 if (i == RX_QUEUE_LENGTH)
4578 return 0;
4580 for (j = 0; j < i; j++) {
4581 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4582 sizeof(struct ipw2100_rx_packet),
4583 PCI_DMA_FROMDEVICE);
4584 dev_kfree_skb(priv->rx_buffers[j].skb);
4587 kfree(priv->rx_buffers);
4588 priv->rx_buffers = NULL;
4590 bd_queue_free(priv, &priv->rx_queue);
4592 status_queue_free(priv);
4594 return err;
4597 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4599 IPW_DEBUG_INFO("enter\n");
4601 priv->rx_queue.oldest = 0;
4602 priv->rx_queue.available = priv->rx_queue.entries - 1;
4603 priv->rx_queue.next = priv->rx_queue.entries - 1;
4605 INIT_STAT(&priv->rxq_stat);
4606 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4608 bd_queue_initialize(priv, &priv->rx_queue,
4609 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4610 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4611 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4612 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4614 /* set up the status queue */
4615 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4616 priv->status_queue.nic);
4618 IPW_DEBUG_INFO("exit\n");
4621 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4623 int i;
4625 IPW_DEBUG_INFO("enter\n");
4627 bd_queue_free(priv, &priv->rx_queue);
4628 status_queue_free(priv);
4630 if (!priv->rx_buffers)
4631 return;
4633 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4634 if (priv->rx_buffers[i].rxp) {
4635 pci_unmap_single(priv->pci_dev,
4636 priv->rx_buffers[i].dma_addr,
4637 sizeof(struct ipw2100_rx),
4638 PCI_DMA_FROMDEVICE);
4639 dev_kfree_skb(priv->rx_buffers[i].skb);
4643 kfree(priv->rx_buffers);
4644 priv->rx_buffers = NULL;
4646 IPW_DEBUG_INFO("exit\n");
4649 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4651 u32 length = ETH_ALEN;
4652 u8 mac[ETH_ALEN];
4654 int err;
4656 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4657 if (err) {
4658 IPW_DEBUG_INFO("MAC address read failed\n");
4659 return -EIO;
4661 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4662 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4664 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4666 return 0;
4669 /********************************************************************
4671 * Firmware Commands
4673 ********************************************************************/
4675 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4677 struct host_command cmd = {
4678 .host_command = ADAPTER_ADDRESS,
4679 .host_command_sequence = 0,
4680 .host_command_length = ETH_ALEN
4682 int err;
4684 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4686 IPW_DEBUG_INFO("enter\n");
4688 if (priv->config & CFG_CUSTOM_MAC) {
4689 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4690 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4691 } else
4692 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4693 ETH_ALEN);
4695 err = ipw2100_hw_send_command(priv, &cmd);
4697 IPW_DEBUG_INFO("exit\n");
4698 return err;
4701 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4702 int batch_mode)
4704 struct host_command cmd = {
4705 .host_command = PORT_TYPE,
4706 .host_command_sequence = 0,
4707 .host_command_length = sizeof(u32)
4709 int err;
4711 switch (port_type) {
4712 case IW_MODE_INFRA:
4713 cmd.host_command_parameters[0] = IPW_BSS;
4714 break;
4715 case IW_MODE_ADHOC:
4716 cmd.host_command_parameters[0] = IPW_IBSS;
4717 break;
4720 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4721 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4723 if (!batch_mode) {
4724 err = ipw2100_disable_adapter(priv);
4725 if (err) {
4726 printk(KERN_ERR DRV_NAME
4727 ": %s: Could not disable adapter %d\n",
4728 priv->net_dev->name, err);
4729 return err;
4733 /* send cmd to firmware */
4734 err = ipw2100_hw_send_command(priv, &cmd);
4736 if (!batch_mode)
4737 ipw2100_enable_adapter(priv);
4739 return err;
4742 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4743 int batch_mode)
4745 struct host_command cmd = {
4746 .host_command = CHANNEL,
4747 .host_command_sequence = 0,
4748 .host_command_length = sizeof(u32)
4750 int err;
4752 cmd.host_command_parameters[0] = channel;
4754 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4756 /* If BSS then we don't support channel selection */
4757 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4758 return 0;
4760 if ((channel != 0) &&
4761 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4762 return -EINVAL;
4764 if (!batch_mode) {
4765 err = ipw2100_disable_adapter(priv);
4766 if (err)
4767 return err;
4770 err = ipw2100_hw_send_command(priv, &cmd);
4771 if (err) {
4772 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4773 return err;
4776 if (channel)
4777 priv->config |= CFG_STATIC_CHANNEL;
4778 else
4779 priv->config &= ~CFG_STATIC_CHANNEL;
4781 priv->channel = channel;
4783 if (!batch_mode) {
4784 err = ipw2100_enable_adapter(priv);
4785 if (err)
4786 return err;
4789 return 0;
4792 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4794 struct host_command cmd = {
4795 .host_command = SYSTEM_CONFIG,
4796 .host_command_sequence = 0,
4797 .host_command_length = 12,
4799 u32 ibss_mask, len = sizeof(u32);
4800 int err;
4802 /* Set system configuration */
4804 if (!batch_mode) {
4805 err = ipw2100_disable_adapter(priv);
4806 if (err)
4807 return err;
4810 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4811 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4813 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4814 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4816 if (!(priv->config & CFG_LONG_PREAMBLE))
4817 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4819 err = ipw2100_get_ordinal(priv,
4820 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4821 &ibss_mask, &len);
4822 if (err)
4823 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4825 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4826 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4828 /* 11b only */
4829 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4831 err = ipw2100_hw_send_command(priv, &cmd);
4832 if (err)
4833 return err;
4835 /* If IPv6 is configured in the kernel then we don't want to filter out all
4836 * of the multicast packets as IPv6 needs some. */
4837 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4838 cmd.host_command = ADD_MULTICAST;
4839 cmd.host_command_sequence = 0;
4840 cmd.host_command_length = 0;
4842 ipw2100_hw_send_command(priv, &cmd);
4843 #endif
4844 if (!batch_mode) {
4845 err = ipw2100_enable_adapter(priv);
4846 if (err)
4847 return err;
4850 return 0;
4853 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4854 int batch_mode)
4856 struct host_command cmd = {
4857 .host_command = BASIC_TX_RATES,
4858 .host_command_sequence = 0,
4859 .host_command_length = 4
4861 int err;
4863 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4865 if (!batch_mode) {
4866 err = ipw2100_disable_adapter(priv);
4867 if (err)
4868 return err;
4871 /* Set BASIC TX Rate first */
4872 ipw2100_hw_send_command(priv, &cmd);
4874 /* Set TX Rate */
4875 cmd.host_command = TX_RATES;
4876 ipw2100_hw_send_command(priv, &cmd);
4878 /* Set MSDU TX Rate */
4879 cmd.host_command = MSDU_TX_RATES;
4880 ipw2100_hw_send_command(priv, &cmd);
4882 if (!batch_mode) {
4883 err = ipw2100_enable_adapter(priv);
4884 if (err)
4885 return err;
4888 priv->tx_rates = rate;
4890 return 0;
4893 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4895 struct host_command cmd = {
4896 .host_command = POWER_MODE,
4897 .host_command_sequence = 0,
4898 .host_command_length = 4
4900 int err;
4902 cmd.host_command_parameters[0] = power_level;
4904 err = ipw2100_hw_send_command(priv, &cmd);
4905 if (err)
4906 return err;
4908 if (power_level == IPW_POWER_MODE_CAM)
4909 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4910 else
4911 priv->power_mode = IPW_POWER_ENABLED | power_level;
4913 #ifdef IPW2100_TX_POWER
4914 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4915 /* Set beacon interval */
4916 cmd.host_command = TX_POWER_INDEX;
4917 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4919 err = ipw2100_hw_send_command(priv, &cmd);
4920 if (err)
4921 return err;
4923 #endif
4925 return 0;
4928 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4930 struct host_command cmd = {
4931 .host_command = RTS_THRESHOLD,
4932 .host_command_sequence = 0,
4933 .host_command_length = 4
4935 int err;
4937 if (threshold & RTS_DISABLED)
4938 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4939 else
4940 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4942 err = ipw2100_hw_send_command(priv, &cmd);
4943 if (err)
4944 return err;
4946 priv->rts_threshold = threshold;
4948 return 0;
4951 #if 0
4952 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4953 u32 threshold, int batch_mode)
4955 struct host_command cmd = {
4956 .host_command = FRAG_THRESHOLD,
4957 .host_command_sequence = 0,
4958 .host_command_length = 4,
4959 .host_command_parameters[0] = 0,
4961 int err;
4963 if (!batch_mode) {
4964 err = ipw2100_disable_adapter(priv);
4965 if (err)
4966 return err;
4969 if (threshold == 0)
4970 threshold = DEFAULT_FRAG_THRESHOLD;
4971 else {
4972 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4973 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4976 cmd.host_command_parameters[0] = threshold;
4978 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4980 err = ipw2100_hw_send_command(priv, &cmd);
4982 if (!batch_mode)
4983 ipw2100_enable_adapter(priv);
4985 if (!err)
4986 priv->frag_threshold = threshold;
4988 return err;
4990 #endif
4992 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4994 struct host_command cmd = {
4995 .host_command = SHORT_RETRY_LIMIT,
4996 .host_command_sequence = 0,
4997 .host_command_length = 4
4999 int err;
5001 cmd.host_command_parameters[0] = retry;
5003 err = ipw2100_hw_send_command(priv, &cmd);
5004 if (err)
5005 return err;
5007 priv->short_retry_limit = retry;
5009 return 0;
5012 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5014 struct host_command cmd = {
5015 .host_command = LONG_RETRY_LIMIT,
5016 .host_command_sequence = 0,
5017 .host_command_length = 4
5019 int err;
5021 cmd.host_command_parameters[0] = retry;
5023 err = ipw2100_hw_send_command(priv, &cmd);
5024 if (err)
5025 return err;
5027 priv->long_retry_limit = retry;
5029 return 0;
5032 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5033 int batch_mode)
5035 struct host_command cmd = {
5036 .host_command = MANDATORY_BSSID,
5037 .host_command_sequence = 0,
5038 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5040 int err;
5042 #ifdef CONFIG_IPW2100_DEBUG
5043 if (bssid != NULL)
5044 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5045 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5046 bssid[5]);
5047 else
5048 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5049 #endif
5050 /* if BSSID is empty then we disable mandatory bssid mode */
5051 if (bssid != NULL)
5052 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5054 if (!batch_mode) {
5055 err = ipw2100_disable_adapter(priv);
5056 if (err)
5057 return err;
5060 err = ipw2100_hw_send_command(priv, &cmd);
5062 if (!batch_mode)
5063 ipw2100_enable_adapter(priv);
5065 return err;
5068 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5070 struct host_command cmd = {
5071 .host_command = DISASSOCIATION_BSSID,
5072 .host_command_sequence = 0,
5073 .host_command_length = ETH_ALEN
5075 int err;
5076 int len;
5078 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5080 len = ETH_ALEN;
5081 /* The Firmware currently ignores the BSSID and just disassociates from
5082 * the currently associated AP -- but in the off chance that a future
5083 * firmware does use the BSSID provided here, we go ahead and try and
5084 * set it to the currently associated AP's BSSID */
5085 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5087 err = ipw2100_hw_send_command(priv, &cmd);
5089 return err;
5092 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5093 struct ipw2100_wpa_assoc_frame *, int)
5094 __attribute__ ((unused));
5096 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5097 struct ipw2100_wpa_assoc_frame *wpa_frame,
5098 int batch_mode)
5100 struct host_command cmd = {
5101 .host_command = SET_WPA_IE,
5102 .host_command_sequence = 0,
5103 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5105 int err;
5107 IPW_DEBUG_HC("SET_WPA_IE\n");
5109 if (!batch_mode) {
5110 err = ipw2100_disable_adapter(priv);
5111 if (err)
5112 return err;
5115 memcpy(cmd.host_command_parameters, wpa_frame,
5116 sizeof(struct ipw2100_wpa_assoc_frame));
5118 err = ipw2100_hw_send_command(priv, &cmd);
5120 if (!batch_mode) {
5121 if (ipw2100_enable_adapter(priv))
5122 err = -EIO;
5125 return err;
5128 struct security_info_params {
5129 u32 allowed_ciphers;
5130 u16 version;
5131 u8 auth_mode;
5132 u8 replay_counters_number;
5133 u8 unicast_using_group;
5134 } __attribute__ ((packed));
5136 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5137 int auth_mode,
5138 int security_level,
5139 int unicast_using_group,
5140 int batch_mode)
5142 struct host_command cmd = {
5143 .host_command = SET_SECURITY_INFORMATION,
5144 .host_command_sequence = 0,
5145 .host_command_length = sizeof(struct security_info_params)
5147 struct security_info_params *security =
5148 (struct security_info_params *)&cmd.host_command_parameters;
5149 int err;
5150 memset(security, 0, sizeof(*security));
5152 /* If shared key AP authentication is turned on, then we need to
5153 * configure the firmware to try and use it.
5155 * Actual data encryption/decryption is handled by the host. */
5156 security->auth_mode = auth_mode;
5157 security->unicast_using_group = unicast_using_group;
5159 switch (security_level) {
5160 default:
5161 case SEC_LEVEL_0:
5162 security->allowed_ciphers = IPW_NONE_CIPHER;
5163 break;
5164 case SEC_LEVEL_1:
5165 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166 IPW_WEP104_CIPHER;
5167 break;
5168 case SEC_LEVEL_2:
5169 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5171 break;
5172 case SEC_LEVEL_2_CKIP:
5173 security->allowed_ciphers = IPW_WEP40_CIPHER |
5174 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5175 break;
5176 case SEC_LEVEL_3:
5177 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5179 break;
5182 IPW_DEBUG_HC
5183 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5184 security->auth_mode, security->allowed_ciphers, security_level);
5186 security->replay_counters_number = 0;
5188 if (!batch_mode) {
5189 err = ipw2100_disable_adapter(priv);
5190 if (err)
5191 return err;
5194 err = ipw2100_hw_send_command(priv, &cmd);
5196 if (!batch_mode)
5197 ipw2100_enable_adapter(priv);
5199 return err;
5202 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5204 struct host_command cmd = {
5205 .host_command = TX_POWER_INDEX,
5206 .host_command_sequence = 0,
5207 .host_command_length = 4
5209 int err = 0;
5210 u32 tmp = tx_power;
5212 if (tx_power != IPW_TX_POWER_DEFAULT)
5213 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5214 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5216 cmd.host_command_parameters[0] = tmp;
5218 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5219 err = ipw2100_hw_send_command(priv, &cmd);
5220 if (!err)
5221 priv->tx_power = tx_power;
5223 return 0;
5226 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5227 u32 interval, int batch_mode)
5229 struct host_command cmd = {
5230 .host_command = BEACON_INTERVAL,
5231 .host_command_sequence = 0,
5232 .host_command_length = 4
5234 int err;
5236 cmd.host_command_parameters[0] = interval;
5238 IPW_DEBUG_INFO("enter\n");
5240 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5241 if (!batch_mode) {
5242 err = ipw2100_disable_adapter(priv);
5243 if (err)
5244 return err;
5247 ipw2100_hw_send_command(priv, &cmd);
5249 if (!batch_mode) {
5250 err = ipw2100_enable_adapter(priv);
5251 if (err)
5252 return err;
5256 IPW_DEBUG_INFO("exit\n");
5258 return 0;
5261 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5263 ipw2100_tx_initialize(priv);
5264 ipw2100_rx_initialize(priv);
5265 ipw2100_msg_initialize(priv);
5268 void ipw2100_queues_free(struct ipw2100_priv *priv)
5270 ipw2100_tx_free(priv);
5271 ipw2100_rx_free(priv);
5272 ipw2100_msg_free(priv);
5275 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5277 if (ipw2100_tx_allocate(priv) ||
5278 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5279 goto fail;
5281 return 0;
5283 fail:
5284 ipw2100_tx_free(priv);
5285 ipw2100_rx_free(priv);
5286 ipw2100_msg_free(priv);
5287 return -ENOMEM;
5290 #define IPW_PRIVACY_CAPABLE 0x0008
5292 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5293 int batch_mode)
5295 struct host_command cmd = {
5296 .host_command = WEP_FLAGS,
5297 .host_command_sequence = 0,
5298 .host_command_length = 4
5300 int err;
5302 cmd.host_command_parameters[0] = flags;
5304 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5306 if (!batch_mode) {
5307 err = ipw2100_disable_adapter(priv);
5308 if (err) {
5309 printk(KERN_ERR DRV_NAME
5310 ": %s: Could not disable adapter %d\n",
5311 priv->net_dev->name, err);
5312 return err;
5316 /* send cmd to firmware */
5317 err = ipw2100_hw_send_command(priv, &cmd);
5319 if (!batch_mode)
5320 ipw2100_enable_adapter(priv);
5322 return err;
5325 struct ipw2100_wep_key {
5326 u8 idx;
5327 u8 len;
5328 u8 key[13];
5331 /* Macros to ease up priting WEP keys */
5332 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5333 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5334 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5335 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5338 * Set a the wep key
5340 * @priv: struct to work on
5341 * @idx: index of the key we want to set
5342 * @key: ptr to the key data to set
5343 * @len: length of the buffer at @key
5344 * @batch_mode: FIXME perform the operation in batch mode, not
5345 * disabling the device.
5347 * @returns 0 if OK, < 0 errno code on error.
5349 * Fill out a command structure with the new wep key, length an
5350 * index and send it down the wire.
5352 static int ipw2100_set_key(struct ipw2100_priv *priv,
5353 int idx, char *key, int len, int batch_mode)
5355 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5356 struct host_command cmd = {
5357 .host_command = WEP_KEY_INFO,
5358 .host_command_sequence = 0,
5359 .host_command_length = sizeof(struct ipw2100_wep_key),
5361 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5362 int err;
5364 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5365 idx, keylen, len);
5367 /* NOTE: We don't check cached values in case the firmware was reset
5368 * or some other problem is occurring. If the user is setting the key,
5369 * then we push the change */
5371 wep_key->idx = idx;
5372 wep_key->len = keylen;
5374 if (keylen) {
5375 memcpy(wep_key->key, key, len);
5376 memset(wep_key->key + len, 0, keylen - len);
5379 /* Will be optimized out on debug not being configured in */
5380 if (keylen == 0)
5381 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5382 priv->net_dev->name, wep_key->idx);
5383 else if (keylen == 5)
5384 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5385 priv->net_dev->name, wep_key->idx, wep_key->len,
5386 WEP_STR_64(wep_key->key));
5387 else
5388 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5389 "\n",
5390 priv->net_dev->name, wep_key->idx, wep_key->len,
5391 WEP_STR_128(wep_key->key));
5393 if (!batch_mode) {
5394 err = ipw2100_disable_adapter(priv);
5395 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5396 if (err) {
5397 printk(KERN_ERR DRV_NAME
5398 ": %s: Could not disable adapter %d\n",
5399 priv->net_dev->name, err);
5400 return err;
5404 /* send cmd to firmware */
5405 err = ipw2100_hw_send_command(priv, &cmd);
5407 if (!batch_mode) {
5408 int err2 = ipw2100_enable_adapter(priv);
5409 if (err == 0)
5410 err = err2;
5412 return err;
5415 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5416 int idx, int batch_mode)
5418 struct host_command cmd = {
5419 .host_command = WEP_KEY_INDEX,
5420 .host_command_sequence = 0,
5421 .host_command_length = 4,
5422 .host_command_parameters = {idx},
5424 int err;
5426 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5428 if (idx < 0 || idx > 3)
5429 return -EINVAL;
5431 if (!batch_mode) {
5432 err = ipw2100_disable_adapter(priv);
5433 if (err) {
5434 printk(KERN_ERR DRV_NAME
5435 ": %s: Could not disable adapter %d\n",
5436 priv->net_dev->name, err);
5437 return err;
5441 /* send cmd to firmware */
5442 err = ipw2100_hw_send_command(priv, &cmd);
5444 if (!batch_mode)
5445 ipw2100_enable_adapter(priv);
5447 return err;
5450 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5452 int i, err, auth_mode, sec_level, use_group;
5454 if (!(priv->status & STATUS_RUNNING))
5455 return 0;
5457 if (!batch_mode) {
5458 err = ipw2100_disable_adapter(priv);
5459 if (err)
5460 return err;
5463 if (!priv->ieee->sec.enabled) {
5464 err =
5465 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5466 SEC_LEVEL_0, 0, 1);
5467 } else {
5468 auth_mode = IPW_AUTH_OPEN;
5469 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5470 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5471 auth_mode = IPW_AUTH_SHARED;
5472 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5473 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5476 sec_level = SEC_LEVEL_0;
5477 if (priv->ieee->sec.flags & SEC_LEVEL)
5478 sec_level = priv->ieee->sec.level;
5480 use_group = 0;
5481 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5482 use_group = priv->ieee->sec.unicast_uses_group;
5484 err =
5485 ipw2100_set_security_information(priv, auth_mode, sec_level,
5486 use_group, 1);
5489 if (err)
5490 goto exit;
5492 if (priv->ieee->sec.enabled) {
5493 for (i = 0; i < 4; i++) {
5494 if (!(priv->ieee->sec.flags & (1 << i))) {
5495 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5496 priv->ieee->sec.key_sizes[i] = 0;
5497 } else {
5498 err = ipw2100_set_key(priv, i,
5499 priv->ieee->sec.keys[i],
5500 priv->ieee->sec.
5501 key_sizes[i], 1);
5502 if (err)
5503 goto exit;
5507 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5510 /* Always enable privacy so the Host can filter WEP packets if
5511 * encrypted data is sent up */
5512 err =
5513 ipw2100_set_wep_flags(priv,
5514 priv->ieee->sec.
5515 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5516 if (err)
5517 goto exit;
5519 priv->status &= ~STATUS_SECURITY_UPDATED;
5521 exit:
5522 if (!batch_mode)
5523 ipw2100_enable_adapter(priv);
5525 return err;
5528 static void ipw2100_security_work(struct work_struct *work)
5530 struct ipw2100_priv *priv =
5531 container_of(work, struct ipw2100_priv, security_work.work);
5533 /* If we happen to have reconnected before we get a chance to
5534 * process this, then update the security settings--which causes
5535 * a disassociation to occur */
5536 if (!(priv->status & STATUS_ASSOCIATED) &&
5537 priv->status & STATUS_SECURITY_UPDATED)
5538 ipw2100_configure_security(priv, 0);
5541 static void shim__set_security(struct net_device *dev,
5542 struct ieee80211_security *sec)
5544 struct ipw2100_priv *priv = ieee80211_priv(dev);
5545 int i, force_update = 0;
5547 mutex_lock(&priv->action_mutex);
5548 if (!(priv->status & STATUS_INITIALIZED))
5549 goto done;
5551 for (i = 0; i < 4; i++) {
5552 if (sec->flags & (1 << i)) {
5553 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5554 if (sec->key_sizes[i] == 0)
5555 priv->ieee->sec.flags &= ~(1 << i);
5556 else
5557 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5558 sec->key_sizes[i]);
5559 if (sec->level == SEC_LEVEL_1) {
5560 priv->ieee->sec.flags |= (1 << i);
5561 priv->status |= STATUS_SECURITY_UPDATED;
5562 } else
5563 priv->ieee->sec.flags &= ~(1 << i);
5567 if ((sec->flags & SEC_ACTIVE_KEY) &&
5568 priv->ieee->sec.active_key != sec->active_key) {
5569 if (sec->active_key <= 3) {
5570 priv->ieee->sec.active_key = sec->active_key;
5571 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5572 } else
5573 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5575 priv->status |= STATUS_SECURITY_UPDATED;
5578 if ((sec->flags & SEC_AUTH_MODE) &&
5579 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5580 priv->ieee->sec.auth_mode = sec->auth_mode;
5581 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5582 priv->status |= STATUS_SECURITY_UPDATED;
5585 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5586 priv->ieee->sec.flags |= SEC_ENABLED;
5587 priv->ieee->sec.enabled = sec->enabled;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5589 force_update = 1;
5592 if (sec->flags & SEC_ENCRYPT)
5593 priv->ieee->sec.encrypt = sec->encrypt;
5595 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5596 priv->ieee->sec.level = sec->level;
5597 priv->ieee->sec.flags |= SEC_LEVEL;
5598 priv->status |= STATUS_SECURITY_UPDATED;
5601 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5602 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5603 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5612 /* As a temporary work around to enable WPA until we figure out why
5613 * wpa_supplicant toggles the security capability of the driver, which
5614 * forces a disassocation with force_update...
5616 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5617 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5618 ipw2100_configure_security(priv, 0);
5619 done:
5620 mutex_unlock(&priv->action_mutex);
5623 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5625 int err;
5626 int batch_mode = 1;
5627 u8 *bssid;
5629 IPW_DEBUG_INFO("enter\n");
5631 err = ipw2100_disable_adapter(priv);
5632 if (err)
5633 return err;
5634 #ifdef CONFIG_IPW2100_MONITOR
5635 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5636 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5637 if (err)
5638 return err;
5640 IPW_DEBUG_INFO("exit\n");
5642 return 0;
5644 #endif /* CONFIG_IPW2100_MONITOR */
5646 err = ipw2100_read_mac_address(priv);
5647 if (err)
5648 return -EIO;
5650 err = ipw2100_set_mac_address(priv, batch_mode);
5651 if (err)
5652 return err;
5654 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5655 if (err)
5656 return err;
5658 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5659 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5660 if (err)
5661 return err;
5664 err = ipw2100_system_config(priv, batch_mode);
5665 if (err)
5666 return err;
5668 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5669 if (err)
5670 return err;
5672 /* Default to power mode OFF */
5673 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5674 if (err)
5675 return err;
5677 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5678 if (err)
5679 return err;
5681 if (priv->config & CFG_STATIC_BSSID)
5682 bssid = priv->bssid;
5683 else
5684 bssid = NULL;
5685 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5686 if (err)
5687 return err;
5689 if (priv->config & CFG_STATIC_ESSID)
5690 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5691 batch_mode);
5692 else
5693 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5694 if (err)
5695 return err;
5697 err = ipw2100_configure_security(priv, batch_mode);
5698 if (err)
5699 return err;
5701 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5702 err =
5703 ipw2100_set_ibss_beacon_interval(priv,
5704 priv->beacon_interval,
5705 batch_mode);
5706 if (err)
5707 return err;
5709 err = ipw2100_set_tx_power(priv, priv->tx_power);
5710 if (err)
5711 return err;
5715 err = ipw2100_set_fragmentation_threshold(
5716 priv, priv->frag_threshold, batch_mode);
5717 if (err)
5718 return err;
5721 IPW_DEBUG_INFO("exit\n");
5723 return 0;
5726 /*************************************************************************
5728 * EXTERNALLY CALLED METHODS
5730 *************************************************************************/
5732 /* This method is called by the network layer -- not to be confused with
5733 * ipw2100_set_mac_address() declared above called by this driver (and this
5734 * method as well) to talk to the firmware */
5735 static int ipw2100_set_address(struct net_device *dev, void *p)
5737 struct ipw2100_priv *priv = ieee80211_priv(dev);
5738 struct sockaddr *addr = p;
5739 int err = 0;
5741 if (!is_valid_ether_addr(addr->sa_data))
5742 return -EADDRNOTAVAIL;
5744 mutex_lock(&priv->action_mutex);
5746 priv->config |= CFG_CUSTOM_MAC;
5747 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5749 err = ipw2100_set_mac_address(priv, 0);
5750 if (err)
5751 goto done;
5753 priv->reset_backoff = 0;
5754 mutex_unlock(&priv->action_mutex);
5755 ipw2100_reset_adapter(&priv->reset_work.work);
5756 return 0;
5758 done:
5759 mutex_unlock(&priv->action_mutex);
5760 return err;
5763 static int ipw2100_open(struct net_device *dev)
5765 struct ipw2100_priv *priv = ieee80211_priv(dev);
5766 unsigned long flags;
5767 IPW_DEBUG_INFO("dev->open\n");
5769 spin_lock_irqsave(&priv->low_lock, flags);
5770 if (priv->status & STATUS_ASSOCIATED) {
5771 netif_carrier_on(dev);
5772 netif_start_queue(dev);
5774 spin_unlock_irqrestore(&priv->low_lock, flags);
5776 return 0;
5779 static int ipw2100_close(struct net_device *dev)
5781 struct ipw2100_priv *priv = ieee80211_priv(dev);
5782 unsigned long flags;
5783 struct list_head *element;
5784 struct ipw2100_tx_packet *packet;
5786 IPW_DEBUG_INFO("enter\n");
5788 spin_lock_irqsave(&priv->low_lock, flags);
5790 if (priv->status & STATUS_ASSOCIATED)
5791 netif_carrier_off(dev);
5792 netif_stop_queue(dev);
5794 /* Flush the TX queue ... */
5795 while (!list_empty(&priv->tx_pend_list)) {
5796 element = priv->tx_pend_list.next;
5797 packet = list_entry(element, struct ipw2100_tx_packet, list);
5799 list_del(element);
5800 DEC_STAT(&priv->tx_pend_stat);
5802 ieee80211_txb_free(packet->info.d_struct.txb);
5803 packet->info.d_struct.txb = NULL;
5805 list_add_tail(element, &priv->tx_free_list);
5806 INC_STAT(&priv->tx_free_stat);
5808 spin_unlock_irqrestore(&priv->low_lock, flags);
5810 IPW_DEBUG_INFO("exit\n");
5812 return 0;
5816 * TODO: Fix this function... its just wrong
5818 static void ipw2100_tx_timeout(struct net_device *dev)
5820 struct ipw2100_priv *priv = ieee80211_priv(dev);
5822 priv->ieee->stats.tx_errors++;
5824 #ifdef CONFIG_IPW2100_MONITOR
5825 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5826 return;
5827 #endif
5829 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5830 dev->name);
5831 schedule_reset(priv);
5834 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5836 /* This is called when wpa_supplicant loads and closes the driver
5837 * interface. */
5838 priv->ieee->wpa_enabled = value;
5839 return 0;
5842 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 struct ieee80211_device *ieee = priv->ieee;
5846 struct ieee80211_security sec = {
5847 .flags = SEC_AUTH_MODE,
5849 int ret = 0;
5851 if (value & IW_AUTH_ALG_SHARED_KEY) {
5852 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5853 ieee->open_wep = 0;
5854 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5855 sec.auth_mode = WLAN_AUTH_OPEN;
5856 ieee->open_wep = 1;
5857 } else if (value & IW_AUTH_ALG_LEAP) {
5858 sec.auth_mode = WLAN_AUTH_LEAP;
5859 ieee->open_wep = 1;
5860 } else
5861 return -EINVAL;
5863 if (ieee->set_security)
5864 ieee->set_security(ieee->dev, &sec);
5865 else
5866 ret = -EOPNOTSUPP;
5868 return ret;
5871 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5872 char *wpa_ie, int wpa_ie_len)
5875 struct ipw2100_wpa_assoc_frame frame;
5877 frame.fixed_ie_mask = 0;
5879 /* copy WPA IE */
5880 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5881 frame.var_ie_len = wpa_ie_len;
5883 /* make sure WPA is enabled */
5884 ipw2100_wpa_enable(priv, 1);
5885 ipw2100_set_wpa_ie(priv, &frame, 0);
5888 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5889 struct ethtool_drvinfo *info)
5891 struct ipw2100_priv *priv = ieee80211_priv(dev);
5892 char fw_ver[64], ucode_ver[64];
5894 strcpy(info->driver, DRV_NAME);
5895 strcpy(info->version, DRV_VERSION);
5897 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5898 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5900 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5901 fw_ver, priv->eeprom_version, ucode_ver);
5903 strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5908 struct ipw2100_priv *priv = ieee80211_priv(dev);
5909 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 static const struct ethtool_ops ipw2100_ethtool_ops = {
5913 .get_link = ipw2100_ethtool_get_link,
5914 .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 static void ipw2100_hang_check(struct work_struct *work)
5919 struct ipw2100_priv *priv =
5920 container_of(work, struct ipw2100_priv, hang_check.work);
5921 unsigned long flags;
5922 u32 rtc = 0xa5a5a5a5;
5923 u32 len = sizeof(rtc);
5924 int restart = 0;
5926 spin_lock_irqsave(&priv->low_lock, flags);
5928 if (priv->fatal_error != 0) {
5929 /* If fatal_error is set then we need to restart */
5930 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5931 priv->net_dev->name);
5933 restart = 1;
5934 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5935 (rtc == priv->last_rtc)) {
5936 /* Check if firmware is hung */
5937 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5938 priv->net_dev->name);
5940 restart = 1;
5943 if (restart) {
5944 /* Kill timer */
5945 priv->stop_hang_check = 1;
5946 priv->hangs++;
5948 /* Restart the NIC */
5949 schedule_reset(priv);
5952 priv->last_rtc = rtc;
5954 if (!priv->stop_hang_check)
5955 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957 spin_unlock_irqrestore(&priv->low_lock, flags);
5960 static void ipw2100_rf_kill(struct work_struct *work)
5962 struct ipw2100_priv *priv =
5963 container_of(work, struct ipw2100_priv, rf_kill.work);
5964 unsigned long flags;
5966 spin_lock_irqsave(&priv->low_lock, flags);
5968 if (rf_kill_active(priv)) {
5969 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970 if (!priv->stop_rf_kill)
5971 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972 goto exit_unlock;
5975 /* RF Kill is now disabled, so bring the device back up */
5977 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979 "device\n");
5980 schedule_reset(priv);
5981 } else
5982 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5983 "enabled\n");
5985 exit_unlock:
5986 spin_unlock_irqrestore(&priv->low_lock, flags);
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994 void __iomem * base_addr,
5995 unsigned long mem_start,
5996 unsigned long mem_len)
5998 struct ipw2100_priv *priv;
5999 struct net_device *dev;
6001 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002 if (!dev)
6003 return NULL;
6004 priv = ieee80211_priv(dev);
6005 priv->ieee = netdev_priv(dev);
6006 priv->pci_dev = pci_dev;
6007 priv->net_dev = dev;
6009 priv->ieee->hard_start_xmit = ipw2100_tx;
6010 priv->ieee->set_security = shim__set_security;
6012 priv->ieee->perfect_rssi = -20;
6013 priv->ieee->worst_rssi = -85;
6015 dev->open = ipw2100_open;
6016 dev->stop = ipw2100_close;
6017 dev->init = ipw2100_net_init;
6018 dev->ethtool_ops = &ipw2100_ethtool_ops;
6019 dev->tx_timeout = ipw2100_tx_timeout;
6020 dev->wireless_handlers = &ipw2100_wx_handler_def;
6021 priv->wireless_data.ieee80211 = priv->ieee;
6022 dev->wireless_data = &priv->wireless_data;
6023 dev->set_mac_address = ipw2100_set_address;
6024 dev->watchdog_timeo = 3 * HZ;
6025 dev->irq = 0;
6027 dev->base_addr = (unsigned long)base_addr;
6028 dev->mem_start = mem_start;
6029 dev->mem_end = dev->mem_start + mem_len - 1;
6031 /* NOTE: We don't use the wireless_handlers hook
6032 * in dev as the system will start throwing WX requests
6033 * to us before we're actually initialized and it just
6034 * ends up causing problems. So, we just handle
6035 * the WX extensions through the ipw2100_ioctl interface */
6037 /* memset() puts everything to 0, so we only have explicitely set
6038 * those values that need to be something else */
6040 /* If power management is turned on, default to AUTO mode */
6041 priv->power_mode = IPW_POWER_AUTO;
6043 #ifdef CONFIG_IPW2100_MONITOR
6044 priv->config |= CFG_CRC_CHECK;
6045 #endif
6046 priv->ieee->wpa_enabled = 0;
6047 priv->ieee->drop_unencrypted = 0;
6048 priv->ieee->privacy_invoked = 0;
6049 priv->ieee->ieee802_1x = 1;
6051 /* Set module parameters */
6052 switch (mode) {
6053 case 1:
6054 priv->ieee->iw_mode = IW_MODE_ADHOC;
6055 break;
6056 #ifdef CONFIG_IPW2100_MONITOR
6057 case 2:
6058 priv->ieee->iw_mode = IW_MODE_MONITOR;
6059 break;
6060 #endif
6061 default:
6062 case 0:
6063 priv->ieee->iw_mode = IW_MODE_INFRA;
6064 break;
6067 if (disable == 1)
6068 priv->status |= STATUS_RF_KILL_SW;
6070 if (channel != 0 &&
6071 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6072 priv->config |= CFG_STATIC_CHANNEL;
6073 priv->channel = channel;
6076 if (associate)
6077 priv->config |= CFG_ASSOCIATE;
6079 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6080 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6081 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6082 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6083 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6084 priv->tx_power = IPW_TX_POWER_DEFAULT;
6085 priv->tx_rates = DEFAULT_TX_RATES;
6087 strcpy(priv->nick, "ipw2100");
6089 spin_lock_init(&priv->low_lock);
6090 mutex_init(&priv->action_mutex);
6091 mutex_init(&priv->adapter_mutex);
6093 init_waitqueue_head(&priv->wait_command_queue);
6095 netif_carrier_off(dev);
6097 INIT_LIST_HEAD(&priv->msg_free_list);
6098 INIT_LIST_HEAD(&priv->msg_pend_list);
6099 INIT_STAT(&priv->msg_free_stat);
6100 INIT_STAT(&priv->msg_pend_stat);
6102 INIT_LIST_HEAD(&priv->tx_free_list);
6103 INIT_LIST_HEAD(&priv->tx_pend_list);
6104 INIT_STAT(&priv->tx_free_stat);
6105 INIT_STAT(&priv->tx_pend_stat);
6107 INIT_LIST_HEAD(&priv->fw_pend_list);
6108 INIT_STAT(&priv->fw_pend_stat);
6110 priv->workqueue = create_workqueue(DRV_NAME);
6112 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6113 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6114 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6115 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6116 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6118 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6119 ipw2100_irq_tasklet, (unsigned long)priv);
6121 /* NOTE: We do not start the deferred work for status checks yet */
6122 priv->stop_rf_kill = 1;
6123 priv->stop_hang_check = 1;
6125 return dev;
6128 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6129 const struct pci_device_id *ent)
6131 unsigned long mem_start, mem_len, mem_flags;
6132 void __iomem *base_addr = NULL;
6133 struct net_device *dev = NULL;
6134 struct ipw2100_priv *priv = NULL;
6135 int err = 0;
6136 int registered = 0;
6137 u32 val;
6139 IPW_DEBUG_INFO("enter\n");
6141 mem_start = pci_resource_start(pci_dev, 0);
6142 mem_len = pci_resource_len(pci_dev, 0);
6143 mem_flags = pci_resource_flags(pci_dev, 0);
6145 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6146 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6147 err = -ENODEV;
6148 goto fail;
6151 base_addr = ioremap_nocache(mem_start, mem_len);
6152 if (!base_addr) {
6153 printk(KERN_WARNING DRV_NAME
6154 "Error calling ioremap_nocache.\n");
6155 err = -EIO;
6156 goto fail;
6159 /* allocate and initialize our net_device */
6160 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6161 if (!dev) {
6162 printk(KERN_WARNING DRV_NAME
6163 "Error calling ipw2100_alloc_device.\n");
6164 err = -ENOMEM;
6165 goto fail;
6168 /* set up PCI mappings for device */
6169 err = pci_enable_device(pci_dev);
6170 if (err) {
6171 printk(KERN_WARNING DRV_NAME
6172 "Error calling pci_enable_device.\n");
6173 return err;
6176 priv = ieee80211_priv(dev);
6178 pci_set_master(pci_dev);
6179 pci_set_drvdata(pci_dev, priv);
6181 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6182 if (err) {
6183 printk(KERN_WARNING DRV_NAME
6184 "Error calling pci_set_dma_mask.\n");
6185 pci_disable_device(pci_dev);
6186 return err;
6189 err = pci_request_regions(pci_dev, DRV_NAME);
6190 if (err) {
6191 printk(KERN_WARNING DRV_NAME
6192 "Error calling pci_request_regions.\n");
6193 pci_disable_device(pci_dev);
6194 return err;
6197 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6198 * PCI Tx retries from interfering with C3 CPU state */
6199 pci_read_config_dword(pci_dev, 0x40, &val);
6200 if ((val & 0x0000ff00) != 0)
6201 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6203 pci_set_power_state(pci_dev, PCI_D0);
6205 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6206 printk(KERN_WARNING DRV_NAME
6207 "Device not found via register read.\n");
6208 err = -ENODEV;
6209 goto fail;
6212 SET_NETDEV_DEV(dev, &pci_dev->dev);
6214 /* Force interrupts to be shut off on the device */
6215 priv->status |= STATUS_INT_ENABLED;
6216 ipw2100_disable_interrupts(priv);
6218 /* Allocate and initialize the Tx/Rx queues and lists */
6219 if (ipw2100_queues_allocate(priv)) {
6220 printk(KERN_WARNING DRV_NAME
6221 "Error calling ipw2100_queues_allocate.\n");
6222 err = -ENOMEM;
6223 goto fail;
6225 ipw2100_queues_initialize(priv);
6227 err = request_irq(pci_dev->irq,
6228 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6229 if (err) {
6230 printk(KERN_WARNING DRV_NAME
6231 "Error calling request_irq: %d.\n", pci_dev->irq);
6232 goto fail;
6234 dev->irq = pci_dev->irq;
6236 IPW_DEBUG_INFO("Attempting to register device...\n");
6238 SET_MODULE_OWNER(dev);
6240 printk(KERN_INFO DRV_NAME
6241 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6243 /* Bring up the interface. Pre 0.46, after we registered the
6244 * network device we would call ipw2100_up. This introduced a race
6245 * condition with newer hotplug configurations (network was coming
6246 * up and making calls before the device was initialized).
6248 * If we called ipw2100_up before we registered the device, then the
6249 * device name wasn't registered. So, we instead use the net_dev->init
6250 * member to call a function that then just turns and calls ipw2100_up.
6251 * net_dev->init is called after name allocation but before the
6252 * notifier chain is called */
6253 err = register_netdev(dev);
6254 if (err) {
6255 printk(KERN_WARNING DRV_NAME
6256 "Error calling register_netdev.\n");
6257 goto fail;
6260 mutex_lock(&priv->action_mutex);
6261 registered = 1;
6263 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6265 /* perform this after register_netdev so that dev->name is set */
6266 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6267 if (err)
6268 goto fail_unlock;
6270 /* If the RF Kill switch is disabled, go ahead and complete the
6271 * startup sequence */
6272 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6273 /* Enable the adapter - sends HOST_COMPLETE */
6274 if (ipw2100_enable_adapter(priv)) {
6275 printk(KERN_WARNING DRV_NAME
6276 ": %s: failed in call to enable adapter.\n",
6277 priv->net_dev->name);
6278 ipw2100_hw_stop_adapter(priv);
6279 err = -EIO;
6280 goto fail_unlock;
6283 /* Start a scan . . . */
6284 ipw2100_set_scan_options(priv);
6285 ipw2100_start_scan(priv);
6288 IPW_DEBUG_INFO("exit\n");
6290 priv->status |= STATUS_INITIALIZED;
6292 mutex_unlock(&priv->action_mutex);
6294 return 0;
6296 fail_unlock:
6297 mutex_unlock(&priv->action_mutex);
6299 fail:
6300 if (dev) {
6301 if (registered)
6302 unregister_netdev(dev);
6304 ipw2100_hw_stop_adapter(priv);
6306 ipw2100_disable_interrupts(priv);
6308 if (dev->irq)
6309 free_irq(dev->irq, priv);
6311 ipw2100_kill_workqueue(priv);
6313 /* These are safe to call even if they weren't allocated */
6314 ipw2100_queues_free(priv);
6315 sysfs_remove_group(&pci_dev->dev.kobj,
6316 &ipw2100_attribute_group);
6318 free_ieee80211(dev);
6319 pci_set_drvdata(pci_dev, NULL);
6322 if (base_addr)
6323 iounmap(base_addr);
6325 pci_release_regions(pci_dev);
6326 pci_disable_device(pci_dev);
6328 return err;
6331 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6333 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6334 struct net_device *dev;
6336 if (priv) {
6337 mutex_lock(&priv->action_mutex);
6339 priv->status &= ~STATUS_INITIALIZED;
6341 dev = priv->net_dev;
6342 sysfs_remove_group(&pci_dev->dev.kobj,
6343 &ipw2100_attribute_group);
6345 #ifdef CONFIG_PM
6346 if (ipw2100_firmware.version)
6347 ipw2100_release_firmware(priv, &ipw2100_firmware);
6348 #endif
6349 /* Take down the hardware */
6350 ipw2100_down(priv);
6352 /* Release the mutex so that the network subsystem can
6353 * complete any needed calls into the driver... */
6354 mutex_unlock(&priv->action_mutex);
6356 /* Unregister the device first - this results in close()
6357 * being called if the device is open. If we free storage
6358 * first, then close() will crash. */
6359 unregister_netdev(dev);
6361 /* ipw2100_down will ensure that there is no more pending work
6362 * in the workqueue's, so we can safely remove them now. */
6363 ipw2100_kill_workqueue(priv);
6365 ipw2100_queues_free(priv);
6367 /* Free potential debugging firmware snapshot */
6368 ipw2100_snapshot_free(priv);
6370 if (dev->irq)
6371 free_irq(dev->irq, priv);
6373 if (dev->base_addr)
6374 iounmap((void __iomem *)dev->base_addr);
6376 free_ieee80211(dev);
6379 pci_release_regions(pci_dev);
6380 pci_disable_device(pci_dev);
6382 IPW_DEBUG_INFO("exit\n");
6385 #ifdef CONFIG_PM
6386 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6388 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6389 struct net_device *dev = priv->net_dev;
6391 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6393 mutex_lock(&priv->action_mutex);
6394 if (priv->status & STATUS_INITIALIZED) {
6395 /* Take down the device; powers it off, etc. */
6396 ipw2100_down(priv);
6399 /* Remove the PRESENT state of the device */
6400 netif_device_detach(dev);
6402 pci_save_state(pci_dev);
6403 pci_disable_device(pci_dev);
6404 pci_set_power_state(pci_dev, PCI_D3hot);
6406 mutex_unlock(&priv->action_mutex);
6408 return 0;
6411 static int ipw2100_resume(struct pci_dev *pci_dev)
6413 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6414 struct net_device *dev = priv->net_dev;
6415 int err;
6416 u32 val;
6418 if (IPW2100_PM_DISABLED)
6419 return 0;
6421 mutex_lock(&priv->action_mutex);
6423 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425 pci_set_power_state(pci_dev, PCI_D0);
6426 err = pci_enable_device(pci_dev);
6427 if (err) {
6428 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6429 dev->name);
6430 return err;
6432 pci_restore_state(pci_dev);
6435 * Suspend/Resume resets the PCI configuration space, so we have to
6436 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6437 * from interfering with C3 CPU state. pci_restore_state won't help
6438 * here since it only restores the first 64 bytes pci config header.
6440 pci_read_config_dword(pci_dev, 0x40, &val);
6441 if ((val & 0x0000ff00) != 0)
6442 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6444 /* Set the device back into the PRESENT state; this will also wake
6445 * the queue of needed */
6446 netif_device_attach(dev);
6448 /* Bring the device back up */
6449 if (!(priv->status & STATUS_RF_KILL_SW))
6450 ipw2100_up(priv, 0);
6452 mutex_unlock(&priv->action_mutex);
6454 return 0;
6456 #endif
6458 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6460 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6461 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6462 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6463 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6464 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6465 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6466 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6467 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6468 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6469 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6470 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6472 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6475 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6476 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6477 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6478 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6482 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6483 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6484 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6485 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6486 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6491 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6492 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6493 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6494 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6497 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6500 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6501 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6507 {0,},
6510 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6512 static struct pci_driver ipw2100_pci_driver = {
6513 .name = DRV_NAME,
6514 .id_table = ipw2100_pci_id_table,
6515 .probe = ipw2100_pci_init_one,
6516 .remove = __devexit_p(ipw2100_pci_remove_one),
6517 #ifdef CONFIG_PM
6518 .suspend = ipw2100_suspend,
6519 .resume = ipw2100_resume,
6520 #endif
6524 * Initialize the ipw2100 driver/module
6526 * @returns 0 if ok, < 0 errno node con error.
6528 * Note: we cannot init the /proc stuff until the PCI driver is there,
6529 * or we risk an unlikely race condition on someone accessing
6530 * uninitialized data in the PCI dev struct through /proc.
6532 static int __init ipw2100_init(void)
6534 int ret;
6536 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6537 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6539 ret = pci_register_driver(&ipw2100_pci_driver);
6540 if (ret)
6541 goto out;
6543 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6544 #ifdef CONFIG_IPW2100_DEBUG
6545 ipw2100_debug_level = debug;
6546 ret = driver_create_file(&ipw2100_pci_driver.driver,
6547 &driver_attr_debug_level);
6548 #endif
6550 out:
6551 return ret;
6555 * Cleanup ipw2100 driver registration
6557 static void __exit ipw2100_exit(void)
6559 /* FIXME: IPG: check that we have no instances of the devices open */
6560 #ifdef CONFIG_IPW2100_DEBUG
6561 driver_remove_file(&ipw2100_pci_driver.driver,
6562 &driver_attr_debug_level);
6563 #endif
6564 pci_unregister_driver(&ipw2100_pci_driver);
6565 remove_acceptable_latency("ipw2100");
6568 module_init(ipw2100_init);
6569 module_exit(ipw2100_exit);
6571 #define WEXT_USECHANNELS 1
6573 static const long ipw2100_frequencies[] = {
6574 2412, 2417, 2422, 2427,
6575 2432, 2437, 2442, 2447,
6576 2452, 2457, 2462, 2467,
6577 2472, 2484
6580 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6581 sizeof(ipw2100_frequencies[0]))
6583 static const long ipw2100_rates_11b[] = {
6584 1000000,
6585 2000000,
6586 5500000,
6587 11000000
6590 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6592 static int ipw2100_wx_get_name(struct net_device *dev,
6593 struct iw_request_info *info,
6594 union iwreq_data *wrqu, char *extra)
6597 * This can be called at any time. No action lock required
6600 struct ipw2100_priv *priv = ieee80211_priv(dev);
6601 if (!(priv->status & STATUS_ASSOCIATED))
6602 strcpy(wrqu->name, "unassociated");
6603 else
6604 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6606 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6607 return 0;
6610 static int ipw2100_wx_set_freq(struct net_device *dev,
6611 struct iw_request_info *info,
6612 union iwreq_data *wrqu, char *extra)
6614 struct ipw2100_priv *priv = ieee80211_priv(dev);
6615 struct iw_freq *fwrq = &wrqu->freq;
6616 int err = 0;
6618 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6619 return -EOPNOTSUPP;
6621 mutex_lock(&priv->action_mutex);
6622 if (!(priv->status & STATUS_INITIALIZED)) {
6623 err = -EIO;
6624 goto done;
6627 /* if setting by freq convert to channel */
6628 if (fwrq->e == 1) {
6629 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6630 int f = fwrq->m / 100000;
6631 int c = 0;
6633 while ((c < REG_MAX_CHANNEL) &&
6634 (f != ipw2100_frequencies[c]))
6635 c++;
6637 /* hack to fall through */
6638 fwrq->e = 0;
6639 fwrq->m = c + 1;
6643 if (fwrq->e > 0 || fwrq->m > 1000) {
6644 err = -EOPNOTSUPP;
6645 goto done;
6646 } else { /* Set the channel */
6647 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6648 err = ipw2100_set_channel(priv, fwrq->m, 0);
6651 done:
6652 mutex_unlock(&priv->action_mutex);
6653 return err;
6656 static int ipw2100_wx_get_freq(struct net_device *dev,
6657 struct iw_request_info *info,
6658 union iwreq_data *wrqu, char *extra)
6661 * This can be called at any time. No action lock required
6664 struct ipw2100_priv *priv = ieee80211_priv(dev);
6666 wrqu->freq.e = 0;
6668 /* If we are associated, trying to associate, or have a statically
6669 * configured CHANNEL then return that; otherwise return ANY */
6670 if (priv->config & CFG_STATIC_CHANNEL ||
6671 priv->status & STATUS_ASSOCIATED)
6672 wrqu->freq.m = priv->channel;
6673 else
6674 wrqu->freq.m = 0;
6676 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6677 return 0;
6681 static int ipw2100_wx_set_mode(struct net_device *dev,
6682 struct iw_request_info *info,
6683 union iwreq_data *wrqu, char *extra)
6685 struct ipw2100_priv *priv = ieee80211_priv(dev);
6686 int err = 0;
6688 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6690 if (wrqu->mode == priv->ieee->iw_mode)
6691 return 0;
6693 mutex_lock(&priv->action_mutex);
6694 if (!(priv->status & STATUS_INITIALIZED)) {
6695 err = -EIO;
6696 goto done;
6699 switch (wrqu->mode) {
6700 #ifdef CONFIG_IPW2100_MONITOR
6701 case IW_MODE_MONITOR:
6702 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6703 break;
6704 #endif /* CONFIG_IPW2100_MONITOR */
6705 case IW_MODE_ADHOC:
6706 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6707 break;
6708 case IW_MODE_INFRA:
6709 case IW_MODE_AUTO:
6710 default:
6711 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6712 break;
6715 done:
6716 mutex_unlock(&priv->action_mutex);
6717 return err;
6720 static int ipw2100_wx_get_mode(struct net_device *dev,
6721 struct iw_request_info *info,
6722 union iwreq_data *wrqu, char *extra)
6725 * This can be called at any time. No action lock required
6728 struct ipw2100_priv *priv = ieee80211_priv(dev);
6730 wrqu->mode = priv->ieee->iw_mode;
6731 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6733 return 0;
6736 #define POWER_MODES 5
6738 /* Values are in microsecond */
6739 static const s32 timeout_duration[POWER_MODES] = {
6740 350000,
6741 250000,
6742 75000,
6743 37000,
6744 25000,
6747 static const s32 period_duration[POWER_MODES] = {
6748 400000,
6749 700000,
6750 1000000,
6751 1000000,
6752 1000000
6755 static int ipw2100_wx_get_range(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6760 * This can be called at any time. No action lock required
6763 struct ipw2100_priv *priv = ieee80211_priv(dev);
6764 struct iw_range *range = (struct iw_range *)extra;
6765 u16 val;
6766 int i, level;
6768 wrqu->data.length = sizeof(*range);
6769 memset(range, 0, sizeof(*range));
6771 /* Let's try to keep this struct in the same order as in
6772 * linux/include/wireless.h
6775 /* TODO: See what values we can set, and remove the ones we can't
6776 * set, or fill them with some default data.
6779 /* ~5 Mb/s real (802.11b) */
6780 range->throughput = 5 * 1000 * 1000;
6782 // range->sensitivity; /* signal level threshold range */
6784 range->max_qual.qual = 100;
6785 /* TODO: Find real max RSSI and stick here */
6786 range->max_qual.level = 0;
6787 range->max_qual.noise = 0;
6788 range->max_qual.updated = 7; /* Updated all three */
6790 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6791 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6792 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6793 range->avg_qual.noise = 0;
6794 range->avg_qual.updated = 7; /* Updated all three */
6796 range->num_bitrates = RATE_COUNT;
6798 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6799 range->bitrate[i] = ipw2100_rates_11b[i];
6802 range->min_rts = MIN_RTS_THRESHOLD;
6803 range->max_rts = MAX_RTS_THRESHOLD;
6804 range->min_frag = MIN_FRAG_THRESHOLD;
6805 range->max_frag = MAX_FRAG_THRESHOLD;
6807 range->min_pmp = period_duration[0]; /* Minimal PM period */
6808 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6809 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6810 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6812 /* How to decode max/min PM period */
6813 range->pmp_flags = IW_POWER_PERIOD;
6814 /* How to decode max/min PM period */
6815 range->pmt_flags = IW_POWER_TIMEOUT;
6816 /* What PM options are supported */
6817 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6819 range->encoding_size[0] = 5;
6820 range->encoding_size[1] = 13; /* Different token sizes */
6821 range->num_encoding_sizes = 2; /* Number of entry in the list */
6822 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6823 // range->encoding_login_index; /* token index for login token */
6825 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6826 range->txpower_capa = IW_TXPOW_DBM;
6827 range->num_txpower = IW_MAX_TXPOWER;
6828 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6829 i < IW_MAX_TXPOWER;
6830 i++, level -=
6831 ((IPW_TX_POWER_MAX_DBM -
6832 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6833 range->txpower[i] = level / 16;
6834 } else {
6835 range->txpower_capa = 0;
6836 range->num_txpower = 0;
6839 /* Set the Wireless Extension versions */
6840 range->we_version_compiled = WIRELESS_EXT;
6841 range->we_version_source = 18;
6843 // range->retry_capa; /* What retry options are supported */
6844 // range->retry_flags; /* How to decode max/min retry limit */
6845 // range->r_time_flags; /* How to decode max/min retry life */
6846 // range->min_retry; /* Minimal number of retries */
6847 // range->max_retry; /* Maximal number of retries */
6848 // range->min_r_time; /* Minimal retry lifetime */
6849 // range->max_r_time; /* Maximal retry lifetime */
6851 range->num_channels = FREQ_COUNT;
6853 val = 0;
6854 for (i = 0; i < FREQ_COUNT; i++) {
6855 // TODO: Include only legal frequencies for some countries
6856 // if (local->channel_mask & (1 << i)) {
6857 range->freq[val].i = i + 1;
6858 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6859 range->freq[val].e = 1;
6860 val++;
6861 // }
6862 if (val == IW_MAX_FREQUENCIES)
6863 break;
6865 range->num_frequency = val;
6867 /* Event capability (kernel + driver) */
6868 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6869 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6870 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6872 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6873 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6875 IPW_DEBUG_WX("GET Range\n");
6877 return 0;
6880 static int ipw2100_wx_set_wap(struct net_device *dev,
6881 struct iw_request_info *info,
6882 union iwreq_data *wrqu, char *extra)
6884 struct ipw2100_priv *priv = ieee80211_priv(dev);
6885 int err = 0;
6887 static const unsigned char any[] = {
6888 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6890 static const unsigned char off[] = {
6891 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6894 // sanity checks
6895 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6896 return -EINVAL;
6898 mutex_lock(&priv->action_mutex);
6899 if (!(priv->status & STATUS_INITIALIZED)) {
6900 err = -EIO;
6901 goto done;
6904 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6905 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6906 /* we disable mandatory BSSID association */
6907 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6908 priv->config &= ~CFG_STATIC_BSSID;
6909 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6910 goto done;
6913 priv->config |= CFG_STATIC_BSSID;
6914 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6916 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6918 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6919 wrqu->ap_addr.sa_data[0] & 0xff,
6920 wrqu->ap_addr.sa_data[1] & 0xff,
6921 wrqu->ap_addr.sa_data[2] & 0xff,
6922 wrqu->ap_addr.sa_data[3] & 0xff,
6923 wrqu->ap_addr.sa_data[4] & 0xff,
6924 wrqu->ap_addr.sa_data[5] & 0xff);
6926 done:
6927 mutex_unlock(&priv->action_mutex);
6928 return err;
6931 static int ipw2100_wx_get_wap(struct net_device *dev,
6932 struct iw_request_info *info,
6933 union iwreq_data *wrqu, char *extra)
6936 * This can be called at any time. No action lock required
6939 struct ipw2100_priv *priv = ieee80211_priv(dev);
6941 /* If we are associated, trying to associate, or have a statically
6942 * configured BSSID then return that; otherwise return ANY */
6943 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6944 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6945 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6946 } else
6947 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6949 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6950 MAC_ARG(wrqu->ap_addr.sa_data));
6951 return 0;
6954 static int ipw2100_wx_set_essid(struct net_device *dev,
6955 struct iw_request_info *info,
6956 union iwreq_data *wrqu, char *extra)
6958 struct ipw2100_priv *priv = ieee80211_priv(dev);
6959 char *essid = ""; /* ANY */
6960 int length = 0;
6961 int err = 0;
6963 mutex_lock(&priv->action_mutex);
6964 if (!(priv->status & STATUS_INITIALIZED)) {
6965 err = -EIO;
6966 goto done;
6969 if (wrqu->essid.flags && wrqu->essid.length) {
6970 length = wrqu->essid.length;
6971 essid = extra;
6974 if (length == 0) {
6975 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6976 priv->config &= ~CFG_STATIC_ESSID;
6977 err = ipw2100_set_essid(priv, NULL, 0, 0);
6978 goto done;
6981 length = min(length, IW_ESSID_MAX_SIZE);
6983 priv->config |= CFG_STATIC_ESSID;
6985 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6986 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6987 err = 0;
6988 goto done;
6991 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6992 length);
6994 priv->essid_len = length;
6995 memcpy(priv->essid, essid, priv->essid_len);
6997 err = ipw2100_set_essid(priv, essid, length, 0);
6999 done:
7000 mutex_unlock(&priv->action_mutex);
7001 return err;
7004 static int ipw2100_wx_get_essid(struct net_device *dev,
7005 struct iw_request_info *info,
7006 union iwreq_data *wrqu, char *extra)
7009 * This can be called at any time. No action lock required
7012 struct ipw2100_priv *priv = ieee80211_priv(dev);
7014 /* If we are associated, trying to associate, or have a statically
7015 * configured ESSID then return that; otherwise return ANY */
7016 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7017 IPW_DEBUG_WX("Getting essid: '%s'\n",
7018 escape_essid(priv->essid, priv->essid_len));
7019 memcpy(extra, priv->essid, priv->essid_len);
7020 wrqu->essid.length = priv->essid_len;
7021 wrqu->essid.flags = 1; /* active */
7022 } else {
7023 IPW_DEBUG_WX("Getting essid: ANY\n");
7024 wrqu->essid.length = 0;
7025 wrqu->essid.flags = 0; /* active */
7028 return 0;
7031 static int ipw2100_wx_set_nick(struct net_device *dev,
7032 struct iw_request_info *info,
7033 union iwreq_data *wrqu, char *extra)
7036 * This can be called at any time. No action lock required
7039 struct ipw2100_priv *priv = ieee80211_priv(dev);
7041 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7042 return -E2BIG;
7044 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7045 memset(priv->nick, 0, sizeof(priv->nick));
7046 memcpy(priv->nick, extra, wrqu->data.length);
7048 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7050 return 0;
7053 static int ipw2100_wx_get_nick(struct net_device *dev,
7054 struct iw_request_info *info,
7055 union iwreq_data *wrqu, char *extra)
7058 * This can be called at any time. No action lock required
7061 struct ipw2100_priv *priv = ieee80211_priv(dev);
7063 wrqu->data.length = strlen(priv->nick);
7064 memcpy(extra, priv->nick, wrqu->data.length);
7065 wrqu->data.flags = 1; /* active */
7067 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7069 return 0;
7072 static int ipw2100_wx_set_rate(struct net_device *dev,
7073 struct iw_request_info *info,
7074 union iwreq_data *wrqu, char *extra)
7076 struct ipw2100_priv *priv = ieee80211_priv(dev);
7077 u32 target_rate = wrqu->bitrate.value;
7078 u32 rate;
7079 int err = 0;
7081 mutex_lock(&priv->action_mutex);
7082 if (!(priv->status & STATUS_INITIALIZED)) {
7083 err = -EIO;
7084 goto done;
7087 rate = 0;
7089 if (target_rate == 1000000 ||
7090 (!wrqu->bitrate.fixed && target_rate > 1000000))
7091 rate |= TX_RATE_1_MBIT;
7092 if (target_rate == 2000000 ||
7093 (!wrqu->bitrate.fixed && target_rate > 2000000))
7094 rate |= TX_RATE_2_MBIT;
7095 if (target_rate == 5500000 ||
7096 (!wrqu->bitrate.fixed && target_rate > 5500000))
7097 rate |= TX_RATE_5_5_MBIT;
7098 if (target_rate == 11000000 ||
7099 (!wrqu->bitrate.fixed && target_rate > 11000000))
7100 rate |= TX_RATE_11_MBIT;
7101 if (rate == 0)
7102 rate = DEFAULT_TX_RATES;
7104 err = ipw2100_set_tx_rates(priv, rate, 0);
7106 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7107 done:
7108 mutex_unlock(&priv->action_mutex);
7109 return err;
7112 static int ipw2100_wx_get_rate(struct net_device *dev,
7113 struct iw_request_info *info,
7114 union iwreq_data *wrqu, char *extra)
7116 struct ipw2100_priv *priv = ieee80211_priv(dev);
7117 int val;
7118 int len = sizeof(val);
7119 int err = 0;
7121 if (!(priv->status & STATUS_ENABLED) ||
7122 priv->status & STATUS_RF_KILL_MASK ||
7123 !(priv->status & STATUS_ASSOCIATED)) {
7124 wrqu->bitrate.value = 0;
7125 return 0;
7128 mutex_lock(&priv->action_mutex);
7129 if (!(priv->status & STATUS_INITIALIZED)) {
7130 err = -EIO;
7131 goto done;
7134 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7135 if (err) {
7136 IPW_DEBUG_WX("failed querying ordinals.\n");
7137 return err;
7140 switch (val & TX_RATE_MASK) {
7141 case TX_RATE_1_MBIT:
7142 wrqu->bitrate.value = 1000000;
7143 break;
7144 case TX_RATE_2_MBIT:
7145 wrqu->bitrate.value = 2000000;
7146 break;
7147 case TX_RATE_5_5_MBIT:
7148 wrqu->bitrate.value = 5500000;
7149 break;
7150 case TX_RATE_11_MBIT:
7151 wrqu->bitrate.value = 11000000;
7152 break;
7153 default:
7154 wrqu->bitrate.value = 0;
7157 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7159 done:
7160 mutex_unlock(&priv->action_mutex);
7161 return err;
7164 static int ipw2100_wx_set_rts(struct net_device *dev,
7165 struct iw_request_info *info,
7166 union iwreq_data *wrqu, char *extra)
7168 struct ipw2100_priv *priv = ieee80211_priv(dev);
7169 int value, err;
7171 /* Auto RTS not yet supported */
7172 if (wrqu->rts.fixed == 0)
7173 return -EINVAL;
7175 mutex_lock(&priv->action_mutex);
7176 if (!(priv->status & STATUS_INITIALIZED)) {
7177 err = -EIO;
7178 goto done;
7181 if (wrqu->rts.disabled)
7182 value = priv->rts_threshold | RTS_DISABLED;
7183 else {
7184 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7185 err = -EINVAL;
7186 goto done;
7188 value = wrqu->rts.value;
7191 err = ipw2100_set_rts_threshold(priv, value);
7193 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7194 done:
7195 mutex_unlock(&priv->action_mutex);
7196 return err;
7199 static int ipw2100_wx_get_rts(struct net_device *dev,
7200 struct iw_request_info *info,
7201 union iwreq_data *wrqu, char *extra)
7204 * This can be called at any time. No action lock required
7207 struct ipw2100_priv *priv = ieee80211_priv(dev);
7209 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7210 wrqu->rts.fixed = 1; /* no auto select */
7212 /* If RTS is set to the default value, then it is disabled */
7213 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7215 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7217 return 0;
7220 static int ipw2100_wx_set_txpow(struct net_device *dev,
7221 struct iw_request_info *info,
7222 union iwreq_data *wrqu, char *extra)
7224 struct ipw2100_priv *priv = ieee80211_priv(dev);
7225 int err = 0, value;
7227 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7228 return -EINPROGRESS;
7230 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7231 return 0;
7233 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7234 return -EINVAL;
7236 if (wrqu->txpower.fixed == 0)
7237 value = IPW_TX_POWER_DEFAULT;
7238 else {
7239 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7240 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7241 return -EINVAL;
7243 value = wrqu->txpower.value;
7246 mutex_lock(&priv->action_mutex);
7247 if (!(priv->status & STATUS_INITIALIZED)) {
7248 err = -EIO;
7249 goto done;
7252 err = ipw2100_set_tx_power(priv, value);
7254 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7256 done:
7257 mutex_unlock(&priv->action_mutex);
7258 return err;
7261 static int ipw2100_wx_get_txpow(struct net_device *dev,
7262 struct iw_request_info *info,
7263 union iwreq_data *wrqu, char *extra)
7266 * This can be called at any time. No action lock required
7269 struct ipw2100_priv *priv = ieee80211_priv(dev);
7271 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7273 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7274 wrqu->txpower.fixed = 0;
7275 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7276 } else {
7277 wrqu->txpower.fixed = 1;
7278 wrqu->txpower.value = priv->tx_power;
7281 wrqu->txpower.flags = IW_TXPOW_DBM;
7283 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7285 return 0;
7288 static int ipw2100_wx_set_frag(struct net_device *dev,
7289 struct iw_request_info *info,
7290 union iwreq_data *wrqu, char *extra)
7293 * This can be called at any time. No action lock required
7296 struct ipw2100_priv *priv = ieee80211_priv(dev);
7298 if (!wrqu->frag.fixed)
7299 return -EINVAL;
7301 if (wrqu->frag.disabled) {
7302 priv->frag_threshold |= FRAG_DISABLED;
7303 priv->ieee->fts = DEFAULT_FTS;
7304 } else {
7305 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7306 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7307 return -EINVAL;
7309 priv->ieee->fts = wrqu->frag.value & ~0x1;
7310 priv->frag_threshold = priv->ieee->fts;
7313 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7315 return 0;
7318 static int ipw2100_wx_get_frag(struct net_device *dev,
7319 struct iw_request_info *info,
7320 union iwreq_data *wrqu, char *extra)
7323 * This can be called at any time. No action lock required
7326 struct ipw2100_priv *priv = ieee80211_priv(dev);
7327 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7328 wrqu->frag.fixed = 0; /* no auto select */
7329 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7331 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7333 return 0;
7336 static int ipw2100_wx_set_retry(struct net_device *dev,
7337 struct iw_request_info *info,
7338 union iwreq_data *wrqu, char *extra)
7340 struct ipw2100_priv *priv = ieee80211_priv(dev);
7341 int err = 0;
7343 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7344 return -EINVAL;
7346 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7347 return 0;
7349 mutex_lock(&priv->action_mutex);
7350 if (!(priv->status & STATUS_INITIALIZED)) {
7351 err = -EIO;
7352 goto done;
7355 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7356 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7357 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7358 wrqu->retry.value);
7359 goto done;
7362 if (wrqu->retry.flags & IW_RETRY_LONG) {
7363 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7364 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7365 wrqu->retry.value);
7366 goto done;
7369 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7370 if (!err)
7371 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7373 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7375 done:
7376 mutex_unlock(&priv->action_mutex);
7377 return err;
7380 static int ipw2100_wx_get_retry(struct net_device *dev,
7381 struct iw_request_info *info,
7382 union iwreq_data *wrqu, char *extra)
7385 * This can be called at any time. No action lock required
7388 struct ipw2100_priv *priv = ieee80211_priv(dev);
7390 wrqu->retry.disabled = 0; /* can't be disabled */
7392 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7393 return -EINVAL;
7395 if (wrqu->retry.flags & IW_RETRY_LONG) {
7396 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7397 wrqu->retry.value = priv->long_retry_limit;
7398 } else {
7399 wrqu->retry.flags =
7400 (priv->short_retry_limit !=
7401 priv->long_retry_limit) ?
7402 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7404 wrqu->retry.value = priv->short_retry_limit;
7407 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7409 return 0;
7412 static int ipw2100_wx_set_scan(struct net_device *dev,
7413 struct iw_request_info *info,
7414 union iwreq_data *wrqu, char *extra)
7416 struct ipw2100_priv *priv = ieee80211_priv(dev);
7417 int err = 0;
7419 mutex_lock(&priv->action_mutex);
7420 if (!(priv->status & STATUS_INITIALIZED)) {
7421 err = -EIO;
7422 goto done;
7425 IPW_DEBUG_WX("Initiating scan...\n");
7426 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7427 IPW_DEBUG_WX("Start scan failed.\n");
7429 /* TODO: Mark a scan as pending so when hardware initialized
7430 * a scan starts */
7433 done:
7434 mutex_unlock(&priv->action_mutex);
7435 return err;
7438 static int ipw2100_wx_get_scan(struct net_device *dev,
7439 struct iw_request_info *info,
7440 union iwreq_data *wrqu, char *extra)
7443 * This can be called at any time. No action lock required
7446 struct ipw2100_priv *priv = ieee80211_priv(dev);
7447 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7451 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7453 static int ipw2100_wx_set_encode(struct net_device *dev,
7454 struct iw_request_info *info,
7455 union iwreq_data *wrqu, char *key)
7458 * No check of STATUS_INITIALIZED required
7461 struct ipw2100_priv *priv = ieee80211_priv(dev);
7462 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7465 static int ipw2100_wx_get_encode(struct net_device *dev,
7466 struct iw_request_info *info,
7467 union iwreq_data *wrqu, char *key)
7470 * This can be called at any time. No action lock required
7473 struct ipw2100_priv *priv = ieee80211_priv(dev);
7474 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7477 static int ipw2100_wx_set_power(struct net_device *dev,
7478 struct iw_request_info *info,
7479 union iwreq_data *wrqu, char *extra)
7481 struct ipw2100_priv *priv = ieee80211_priv(dev);
7482 int err = 0;
7484 mutex_lock(&priv->action_mutex);
7485 if (!(priv->status & STATUS_INITIALIZED)) {
7486 err = -EIO;
7487 goto done;
7490 if (wrqu->power.disabled) {
7491 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7492 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7493 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7494 goto done;
7497 switch (wrqu->power.flags & IW_POWER_MODE) {
7498 case IW_POWER_ON: /* If not specified */
7499 case IW_POWER_MODE: /* If set all mask */
7500 case IW_POWER_ALL_R: /* If explicitely state all */
7501 break;
7502 default: /* Otherwise we don't support it */
7503 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7504 wrqu->power.flags);
7505 err = -EOPNOTSUPP;
7506 goto done;
7509 /* If the user hasn't specified a power management mode yet, default
7510 * to BATTERY */
7511 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7512 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7514 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7516 done:
7517 mutex_unlock(&priv->action_mutex);
7518 return err;
7522 static int ipw2100_wx_get_power(struct net_device *dev,
7523 struct iw_request_info *info,
7524 union iwreq_data *wrqu, char *extra)
7527 * This can be called at any time. No action lock required
7530 struct ipw2100_priv *priv = ieee80211_priv(dev);
7532 if (!(priv->power_mode & IPW_POWER_ENABLED))
7533 wrqu->power.disabled = 1;
7534 else {
7535 wrqu->power.disabled = 0;
7536 wrqu->power.flags = 0;
7539 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7541 return 0;
7545 * WE-18 WPA support
7548 /* SIOCSIWGENIE */
7549 static int ipw2100_wx_set_genie(struct net_device *dev,
7550 struct iw_request_info *info,
7551 union iwreq_data *wrqu, char *extra)
7554 struct ipw2100_priv *priv = ieee80211_priv(dev);
7555 struct ieee80211_device *ieee = priv->ieee;
7556 u8 *buf;
7558 if (!ieee->wpa_enabled)
7559 return -EOPNOTSUPP;
7561 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7562 (wrqu->data.length && extra == NULL))
7563 return -EINVAL;
7565 if (wrqu->data.length) {
7566 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7567 if (buf == NULL)
7568 return -ENOMEM;
7570 kfree(ieee->wpa_ie);
7571 ieee->wpa_ie = buf;
7572 ieee->wpa_ie_len = wrqu->data.length;
7573 } else {
7574 kfree(ieee->wpa_ie);
7575 ieee->wpa_ie = NULL;
7576 ieee->wpa_ie_len = 0;
7579 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7581 return 0;
7584 /* SIOCGIWGENIE */
7585 static int ipw2100_wx_get_genie(struct net_device *dev,
7586 struct iw_request_info *info,
7587 union iwreq_data *wrqu, char *extra)
7589 struct ipw2100_priv *priv = ieee80211_priv(dev);
7590 struct ieee80211_device *ieee = priv->ieee;
7592 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7593 wrqu->data.length = 0;
7594 return 0;
7597 if (wrqu->data.length < ieee->wpa_ie_len)
7598 return -E2BIG;
7600 wrqu->data.length = ieee->wpa_ie_len;
7601 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7603 return 0;
7606 /* SIOCSIWAUTH */
7607 static int ipw2100_wx_set_auth(struct net_device *dev,
7608 struct iw_request_info *info,
7609 union iwreq_data *wrqu, char *extra)
7611 struct ipw2100_priv *priv = ieee80211_priv(dev);
7612 struct ieee80211_device *ieee = priv->ieee;
7613 struct iw_param *param = &wrqu->param;
7614 struct ieee80211_crypt_data *crypt;
7615 unsigned long flags;
7616 int ret = 0;
7618 switch (param->flags & IW_AUTH_INDEX) {
7619 case IW_AUTH_WPA_VERSION:
7620 case IW_AUTH_CIPHER_PAIRWISE:
7621 case IW_AUTH_CIPHER_GROUP:
7622 case IW_AUTH_KEY_MGMT:
7624 * ipw2200 does not use these parameters
7626 break;
7628 case IW_AUTH_TKIP_COUNTERMEASURES:
7629 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7630 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7631 break;
7633 flags = crypt->ops->get_flags(crypt->priv);
7635 if (param->value)
7636 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7637 else
7638 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7640 crypt->ops->set_flags(flags, crypt->priv);
7642 break;
7644 case IW_AUTH_DROP_UNENCRYPTED:{
7645 /* HACK:
7647 * wpa_supplicant calls set_wpa_enabled when the driver
7648 * is loaded and unloaded, regardless of if WPA is being
7649 * used. No other calls are made which can be used to
7650 * determine if encryption will be used or not prior to
7651 * association being expected. If encryption is not being
7652 * used, drop_unencrypted is set to false, else true -- we
7653 * can use this to determine if the CAP_PRIVACY_ON bit should
7654 * be set.
7656 struct ieee80211_security sec = {
7657 .flags = SEC_ENABLED,
7658 .enabled = param->value,
7660 priv->ieee->drop_unencrypted = param->value;
7661 /* We only change SEC_LEVEL for open mode. Others
7662 * are set by ipw_wpa_set_encryption.
7664 if (!param->value) {
7665 sec.flags |= SEC_LEVEL;
7666 sec.level = SEC_LEVEL_0;
7667 } else {
7668 sec.flags |= SEC_LEVEL;
7669 sec.level = SEC_LEVEL_1;
7671 if (priv->ieee->set_security)
7672 priv->ieee->set_security(priv->ieee->dev, &sec);
7673 break;
7676 case IW_AUTH_80211_AUTH_ALG:
7677 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7678 break;
7680 case IW_AUTH_WPA_ENABLED:
7681 ret = ipw2100_wpa_enable(priv, param->value);
7682 break;
7684 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7685 ieee->ieee802_1x = param->value;
7686 break;
7688 //case IW_AUTH_ROAMING_CONTROL:
7689 case IW_AUTH_PRIVACY_INVOKED:
7690 ieee->privacy_invoked = param->value;
7691 break;
7693 default:
7694 return -EOPNOTSUPP;
7696 return ret;
7699 /* SIOCGIWAUTH */
7700 static int ipw2100_wx_get_auth(struct net_device *dev,
7701 struct iw_request_info *info,
7702 union iwreq_data *wrqu, char *extra)
7704 struct ipw2100_priv *priv = ieee80211_priv(dev);
7705 struct ieee80211_device *ieee = priv->ieee;
7706 struct ieee80211_crypt_data *crypt;
7707 struct iw_param *param = &wrqu->param;
7708 int ret = 0;
7710 switch (param->flags & IW_AUTH_INDEX) {
7711 case IW_AUTH_WPA_VERSION:
7712 case IW_AUTH_CIPHER_PAIRWISE:
7713 case IW_AUTH_CIPHER_GROUP:
7714 case IW_AUTH_KEY_MGMT:
7716 * wpa_supplicant will control these internally
7718 ret = -EOPNOTSUPP;
7719 break;
7721 case IW_AUTH_TKIP_COUNTERMEASURES:
7722 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7723 if (!crypt || !crypt->ops->get_flags) {
7724 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7725 "crypt not set!\n");
7726 break;
7729 param->value = (crypt->ops->get_flags(crypt->priv) &
7730 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7732 break;
7734 case IW_AUTH_DROP_UNENCRYPTED:
7735 param->value = ieee->drop_unencrypted;
7736 break;
7738 case IW_AUTH_80211_AUTH_ALG:
7739 param->value = priv->ieee->sec.auth_mode;
7740 break;
7742 case IW_AUTH_WPA_ENABLED:
7743 param->value = ieee->wpa_enabled;
7744 break;
7746 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7747 param->value = ieee->ieee802_1x;
7748 break;
7750 case IW_AUTH_ROAMING_CONTROL:
7751 case IW_AUTH_PRIVACY_INVOKED:
7752 param->value = ieee->privacy_invoked;
7753 break;
7755 default:
7756 return -EOPNOTSUPP;
7758 return 0;
7761 /* SIOCSIWENCODEEXT */
7762 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7763 struct iw_request_info *info,
7764 union iwreq_data *wrqu, char *extra)
7766 struct ipw2100_priv *priv = ieee80211_priv(dev);
7767 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7770 /* SIOCGIWENCODEEXT */
7771 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7772 struct iw_request_info *info,
7773 union iwreq_data *wrqu, char *extra)
7775 struct ipw2100_priv *priv = ieee80211_priv(dev);
7776 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7779 /* SIOCSIWMLME */
7780 static int ipw2100_wx_set_mlme(struct net_device *dev,
7781 struct iw_request_info *info,
7782 union iwreq_data *wrqu, char *extra)
7784 struct ipw2100_priv *priv = ieee80211_priv(dev);
7785 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7786 u16 reason;
7788 reason = cpu_to_le16(mlme->reason_code);
7790 switch (mlme->cmd) {
7791 case IW_MLME_DEAUTH:
7792 // silently ignore
7793 break;
7795 case IW_MLME_DISASSOC:
7796 ipw2100_disassociate_bssid(priv);
7797 break;
7799 default:
7800 return -EOPNOTSUPP;
7802 return 0;
7807 * IWPRIV handlers
7810 #ifdef CONFIG_IPW2100_MONITOR
7811 static int ipw2100_wx_set_promisc(struct net_device *dev,
7812 struct iw_request_info *info,
7813 union iwreq_data *wrqu, char *extra)
7815 struct ipw2100_priv *priv = ieee80211_priv(dev);
7816 int *parms = (int *)extra;
7817 int enable = (parms[0] > 0);
7818 int err = 0;
7820 mutex_lock(&priv->action_mutex);
7821 if (!(priv->status & STATUS_INITIALIZED)) {
7822 err = -EIO;
7823 goto done;
7826 if (enable) {
7827 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7828 err = ipw2100_set_channel(priv, parms[1], 0);
7829 goto done;
7831 priv->channel = parms[1];
7832 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7833 } else {
7834 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7835 err = ipw2100_switch_mode(priv, priv->last_mode);
7837 done:
7838 mutex_unlock(&priv->action_mutex);
7839 return err;
7842 static int ipw2100_wx_reset(struct net_device *dev,
7843 struct iw_request_info *info,
7844 union iwreq_data *wrqu, char *extra)
7846 struct ipw2100_priv *priv = ieee80211_priv(dev);
7847 if (priv->status & STATUS_INITIALIZED)
7848 schedule_reset(priv);
7849 return 0;
7852 #endif
7854 static int ipw2100_wx_set_powermode(struct net_device *dev,
7855 struct iw_request_info *info,
7856 union iwreq_data *wrqu, char *extra)
7858 struct ipw2100_priv *priv = ieee80211_priv(dev);
7859 int err = 0, mode = *(int *)extra;
7861 mutex_lock(&priv->action_mutex);
7862 if (!(priv->status & STATUS_INITIALIZED)) {
7863 err = -EIO;
7864 goto done;
7867 if ((mode < 1) || (mode > POWER_MODES))
7868 mode = IPW_POWER_AUTO;
7870 if (priv->power_mode != mode)
7871 err = ipw2100_set_power_mode(priv, mode);
7872 done:
7873 mutex_unlock(&priv->action_mutex);
7874 return err;
7877 #define MAX_POWER_STRING 80
7878 static int ipw2100_wx_get_powermode(struct net_device *dev,
7879 struct iw_request_info *info,
7880 union iwreq_data *wrqu, char *extra)
7883 * This can be called at any time. No action lock required
7886 struct ipw2100_priv *priv = ieee80211_priv(dev);
7887 int level = IPW_POWER_LEVEL(priv->power_mode);
7888 s32 timeout, period;
7890 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7891 snprintf(extra, MAX_POWER_STRING,
7892 "Power save level: %d (Off)", level);
7893 } else {
7894 switch (level) {
7895 case IPW_POWER_MODE_CAM:
7896 snprintf(extra, MAX_POWER_STRING,
7897 "Power save level: %d (None)", level);
7898 break;
7899 case IPW_POWER_AUTO:
7900 snprintf(extra, MAX_POWER_STRING,
7901 "Power save level: %d (Auto)", 0);
7902 break;
7903 default:
7904 timeout = timeout_duration[level - 1] / 1000;
7905 period = period_duration[level - 1] / 1000;
7906 snprintf(extra, MAX_POWER_STRING,
7907 "Power save level: %d "
7908 "(Timeout %dms, Period %dms)",
7909 level, timeout, period);
7913 wrqu->data.length = strlen(extra) + 1;
7915 return 0;
7918 static int ipw2100_wx_set_preamble(struct net_device *dev,
7919 struct iw_request_info *info,
7920 union iwreq_data *wrqu, char *extra)
7922 struct ipw2100_priv *priv = ieee80211_priv(dev);
7923 int err, mode = *(int *)extra;
7925 mutex_lock(&priv->action_mutex);
7926 if (!(priv->status & STATUS_INITIALIZED)) {
7927 err = -EIO;
7928 goto done;
7931 if (mode == 1)
7932 priv->config |= CFG_LONG_PREAMBLE;
7933 else if (mode == 0)
7934 priv->config &= ~CFG_LONG_PREAMBLE;
7935 else {
7936 err = -EINVAL;
7937 goto done;
7940 err = ipw2100_system_config(priv, 0);
7942 done:
7943 mutex_unlock(&priv->action_mutex);
7944 return err;
7947 static int ipw2100_wx_get_preamble(struct net_device *dev,
7948 struct iw_request_info *info,
7949 union iwreq_data *wrqu, char *extra)
7952 * This can be called at any time. No action lock required
7955 struct ipw2100_priv *priv = ieee80211_priv(dev);
7957 if (priv->config & CFG_LONG_PREAMBLE)
7958 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7959 else
7960 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7962 return 0;
7965 #ifdef CONFIG_IPW2100_MONITOR
7966 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7967 struct iw_request_info *info,
7968 union iwreq_data *wrqu, char *extra)
7970 struct ipw2100_priv *priv = ieee80211_priv(dev);
7971 int err, mode = *(int *)extra;
7973 mutex_lock(&priv->action_mutex);
7974 if (!(priv->status & STATUS_INITIALIZED)) {
7975 err = -EIO;
7976 goto done;
7979 if (mode == 1)
7980 priv->config |= CFG_CRC_CHECK;
7981 else if (mode == 0)
7982 priv->config &= ~CFG_CRC_CHECK;
7983 else {
7984 err = -EINVAL;
7985 goto done;
7987 err = 0;
7989 done:
7990 mutex_unlock(&priv->action_mutex);
7991 return err;
7994 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7995 struct iw_request_info *info,
7996 union iwreq_data *wrqu, char *extra)
7999 * This can be called at any time. No action lock required
8002 struct ipw2100_priv *priv = ieee80211_priv(dev);
8004 if (priv->config & CFG_CRC_CHECK)
8005 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8006 else
8007 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8009 return 0;
8011 #endif /* CONFIG_IPW2100_MONITOR */
8013 static iw_handler ipw2100_wx_handlers[] = {
8014 NULL, /* SIOCSIWCOMMIT */
8015 ipw2100_wx_get_name, /* SIOCGIWNAME */
8016 NULL, /* SIOCSIWNWID */
8017 NULL, /* SIOCGIWNWID */
8018 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8019 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8020 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8021 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8022 NULL, /* SIOCSIWSENS */
8023 NULL, /* SIOCGIWSENS */
8024 NULL, /* SIOCSIWRANGE */
8025 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8026 NULL, /* SIOCSIWPRIV */
8027 NULL, /* SIOCGIWPRIV */
8028 NULL, /* SIOCSIWSTATS */
8029 NULL, /* SIOCGIWSTATS */
8030 NULL, /* SIOCSIWSPY */
8031 NULL, /* SIOCGIWSPY */
8032 NULL, /* SIOCGIWTHRSPY */
8033 NULL, /* SIOCWIWTHRSPY */
8034 ipw2100_wx_set_wap, /* SIOCSIWAP */
8035 ipw2100_wx_get_wap, /* SIOCGIWAP */
8036 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8037 NULL, /* SIOCGIWAPLIST -- deprecated */
8038 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8039 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8040 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8041 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8042 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8043 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8044 NULL, /* -- hole -- */
8045 NULL, /* -- hole -- */
8046 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8047 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8048 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8049 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8050 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8051 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8052 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8053 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8054 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8055 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8056 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8057 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8058 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8059 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8060 NULL, /* -- hole -- */
8061 NULL, /* -- hole -- */
8062 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8063 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8064 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8065 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8066 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8067 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8068 NULL, /* SIOCSIWPMKSA */
8071 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8072 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8073 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8074 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8075 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8076 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8077 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8078 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8080 static const struct iw_priv_args ipw2100_private_args[] = {
8082 #ifdef CONFIG_IPW2100_MONITOR
8084 IPW2100_PRIV_SET_MONITOR,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8087 IPW2100_PRIV_RESET,
8088 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8089 #endif /* CONFIG_IPW2100_MONITOR */
8092 IPW2100_PRIV_SET_POWER,
8093 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8095 IPW2100_PRIV_GET_POWER,
8096 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8097 "get_power"},
8099 IPW2100_PRIV_SET_LONGPREAMBLE,
8100 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8102 IPW2100_PRIV_GET_LONGPREAMBLE,
8103 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8104 #ifdef CONFIG_IPW2100_MONITOR
8106 IPW2100_PRIV_SET_CRC_CHECK,
8107 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8109 IPW2100_PRIV_GET_CRC_CHECK,
8110 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8111 #endif /* CONFIG_IPW2100_MONITOR */
8114 static iw_handler ipw2100_private_handler[] = {
8115 #ifdef CONFIG_IPW2100_MONITOR
8116 ipw2100_wx_set_promisc,
8117 ipw2100_wx_reset,
8118 #else /* CONFIG_IPW2100_MONITOR */
8119 NULL,
8120 NULL,
8121 #endif /* CONFIG_IPW2100_MONITOR */
8122 ipw2100_wx_set_powermode,
8123 ipw2100_wx_get_powermode,
8124 ipw2100_wx_set_preamble,
8125 ipw2100_wx_get_preamble,
8126 #ifdef CONFIG_IPW2100_MONITOR
8127 ipw2100_wx_set_crc_check,
8128 ipw2100_wx_get_crc_check,
8129 #else /* CONFIG_IPW2100_MONITOR */
8130 NULL,
8131 NULL,
8132 #endif /* CONFIG_IPW2100_MONITOR */
8136 * Get wireless statistics.
8137 * Called by /proc/net/wireless
8138 * Also called by SIOCGIWSTATS
8140 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8142 enum {
8143 POOR = 30,
8144 FAIR = 60,
8145 GOOD = 80,
8146 VERY_GOOD = 90,
8147 EXCELLENT = 95,
8148 PERFECT = 100
8150 int rssi_qual;
8151 int tx_qual;
8152 int beacon_qual;
8154 struct ipw2100_priv *priv = ieee80211_priv(dev);
8155 struct iw_statistics *wstats;
8156 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8157 u32 ord_len = sizeof(u32);
8159 if (!priv)
8160 return (struct iw_statistics *)NULL;
8162 wstats = &priv->wstats;
8164 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8165 * ipw2100_wx_wireless_stats seems to be called before fw is
8166 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8167 * and associated; if not associcated, the values are all meaningless
8168 * anyway, so set them all to NULL and INVALID */
8169 if (!(priv->status & STATUS_ASSOCIATED)) {
8170 wstats->miss.beacon = 0;
8171 wstats->discard.retries = 0;
8172 wstats->qual.qual = 0;
8173 wstats->qual.level = 0;
8174 wstats->qual.noise = 0;
8175 wstats->qual.updated = 7;
8176 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8177 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8178 return wstats;
8181 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8182 &missed_beacons, &ord_len))
8183 goto fail_get_ordinal;
8185 /* If we don't have a connection the quality and level is 0 */
8186 if (!(priv->status & STATUS_ASSOCIATED)) {
8187 wstats->qual.qual = 0;
8188 wstats->qual.level = 0;
8189 } else {
8190 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8191 &rssi, &ord_len))
8192 goto fail_get_ordinal;
8193 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8194 if (rssi < 10)
8195 rssi_qual = rssi * POOR / 10;
8196 else if (rssi < 15)
8197 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8198 else if (rssi < 20)
8199 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8200 else if (rssi < 30)
8201 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8202 10 + GOOD;
8203 else
8204 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8205 10 + VERY_GOOD;
8207 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8208 &tx_retries, &ord_len))
8209 goto fail_get_ordinal;
8211 if (tx_retries > 75)
8212 tx_qual = (90 - tx_retries) * POOR / 15;
8213 else if (tx_retries > 70)
8214 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8215 else if (tx_retries > 65)
8216 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8217 else if (tx_retries > 50)
8218 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8219 15 + GOOD;
8220 else
8221 tx_qual = (50 - tx_retries) *
8222 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224 if (missed_beacons > 50)
8225 beacon_qual = (60 - missed_beacons) * POOR / 10;
8226 else if (missed_beacons > 40)
8227 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8228 10 + POOR;
8229 else if (missed_beacons > 32)
8230 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8231 18 + FAIR;
8232 else if (missed_beacons > 20)
8233 beacon_qual = (32 - missed_beacons) *
8234 (VERY_GOOD - GOOD) / 20 + GOOD;
8235 else
8236 beacon_qual = (20 - missed_beacons) *
8237 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8241 #ifdef CONFIG_IPW2100_DEBUG
8242 if (beacon_qual == quality)
8243 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8244 else if (tx_qual == quality)
8245 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8246 else if (quality != 100)
8247 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8248 else
8249 IPW_DEBUG_WX("Quality not clamped.\n");
8250 #endif
8252 wstats->qual.qual = quality;
8253 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256 wstats->qual.noise = 0;
8257 wstats->qual.updated = 7;
8258 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260 /* FIXME: this is percent and not a # */
8261 wstats->miss.beacon = missed_beacons;
8263 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8264 &tx_failures, &ord_len))
8265 goto fail_get_ordinal;
8266 wstats->discard.retries = tx_failures;
8268 return wstats;
8270 fail_get_ordinal:
8271 IPW_DEBUG_WX("failed querying ordinals.\n");
8273 return (struct iw_statistics *)NULL;
8276 static struct iw_handler_def ipw2100_wx_handler_def = {
8277 .standard = ipw2100_wx_handlers,
8278 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8279 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8280 .num_private_args = sizeof(ipw2100_private_args) /
8281 sizeof(struct iw_priv_args),
8282 .private = (iw_handler *) ipw2100_private_handler,
8283 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284 .get_wireless_stats = ipw2100_wx_wireless_stats,
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8289 struct ipw2100_priv *priv =
8290 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291 union iwreq_data wrqu;
8292 int len = ETH_ALEN;
8294 if (priv->status & STATUS_STOPPING)
8295 return;
8297 mutex_lock(&priv->action_mutex);
8299 IPW_DEBUG_WX("enter\n");
8301 mutex_unlock(&priv->action_mutex);
8303 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305 /* Fetch BSSID from the hardware */
8306 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307 priv->status & STATUS_RF_KILL_MASK ||
8308 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309 &priv->bssid, &len)) {
8310 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8311 } else {
8312 /* We now have the BSSID, so can finish setting to the full
8313 * associated state */
8314 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316 priv->status &= ~STATUS_ASSOCIATING;
8317 priv->status |= STATUS_ASSOCIATED;
8318 netif_carrier_on(priv->net_dev);
8319 netif_wake_queue(priv->net_dev);
8322 if (!(priv->status & STATUS_ASSOCIATED)) {
8323 IPW_DEBUG_WX("Configuring ESSID\n");
8324 mutex_lock(&priv->action_mutex);
8325 /* This is a disassociation event, so kick the firmware to
8326 * look for another AP */
8327 if (priv->config & CFG_STATIC_ESSID)
8328 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330 else
8331 ipw2100_set_essid(priv, NULL, 0, 0);
8332 mutex_unlock(&priv->action_mutex);
8335 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345 IPW2100_FW_MAJOR_VERSION)
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8354 BINARY FIRMWARE HEADER FORMAT
8356 offset length desc
8357 0 2 version
8358 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8359 4 4 fw_len
8360 8 4 uc_len
8361 C fw_len firmware data
8362 12 + fw_len uc_len microcode data
8366 struct ipw2100_fw_header {
8367 short version;
8368 short mode;
8369 unsigned int fw_size;
8370 unsigned int uc_size;
8371 } __attribute__ ((packed));
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 struct ipw2100_fw_header *h =
8376 (struct ipw2100_fw_header *)fw->fw_entry->data;
8378 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380 "(detected version id of %u). "
8381 "See Documentation/networking/README.ipw2100\n",
8382 h->version);
8383 return 1;
8386 fw->version = h->version;
8387 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388 fw->fw.size = h->fw_size;
8389 fw->uc.data = fw->fw.data + h->fw_size;
8390 fw->uc.size = h->uc_size;
8392 return 0;
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396 struct ipw2100_fw *fw)
8398 char *fw_name;
8399 int rc;
8401 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402 priv->net_dev->name);
8404 switch (priv->ieee->iw_mode) {
8405 case IW_MODE_ADHOC:
8406 fw_name = IPW2100_FW_NAME("-i");
8407 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409 case IW_MODE_MONITOR:
8410 fw_name = IPW2100_FW_NAME("-p");
8411 break;
8412 #endif
8413 case IW_MODE_INFRA:
8414 default:
8415 fw_name = IPW2100_FW_NAME("");
8416 break;
8419 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421 if (rc < 0) {
8422 printk(KERN_ERR DRV_NAME ": "
8423 "%s: Firmware '%s' not available or load failed.\n",
8424 priv->net_dev->name, fw_name);
8425 return rc;
8427 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428 fw->fw_entry->size);
8430 ipw2100_mod_firmware_load(fw);
8432 return 0;
8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436 struct ipw2100_fw *fw)
8438 fw->version = 0;
8439 if (fw->fw_entry)
8440 release_firmware(fw->fw_entry);
8441 fw->fw_entry = NULL;
8444 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8445 size_t max)
8447 char ver[MAX_FW_VERSION_LEN];
8448 u32 len = MAX_FW_VERSION_LEN;
8449 u32 tmp;
8450 int i;
8451 /* firmware version is an ascii string (max len of 14) */
8452 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8453 return -EIO;
8454 tmp = max;
8455 if (len >= max)
8456 len = max - 1;
8457 for (i = 0; i < len; i++)
8458 buf[i] = ver[i];
8459 buf[i] = '\0';
8460 return tmp;
8463 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8464 size_t max)
8466 u32 ver;
8467 u32 len = sizeof(ver);
8468 /* microcode version is a 32 bit integer */
8469 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8470 return -EIO;
8471 return snprintf(buf, max, "%08X", ver);
8475 * On exit, the firmware will have been freed from the fw list
8477 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8479 /* firmware is constructed of N contiguous entries, each entry is
8480 * structured as:
8482 * offset sie desc
8483 * 0 4 address to write to
8484 * 4 2 length of data run
8485 * 6 length data
8487 unsigned int addr;
8488 unsigned short len;
8490 const unsigned char *firmware_data = fw->fw.data;
8491 unsigned int firmware_data_left = fw->fw.size;
8493 while (firmware_data_left > 0) {
8494 addr = *(u32 *) (firmware_data);
8495 firmware_data += 4;
8496 firmware_data_left -= 4;
8498 len = *(u16 *) (firmware_data);
8499 firmware_data += 2;
8500 firmware_data_left -= 2;
8502 if (len > 32) {
8503 printk(KERN_ERR DRV_NAME ": "
8504 "Invalid firmware run-length of %d bytes\n",
8505 len);
8506 return -EINVAL;
8509 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8510 firmware_data += len;
8511 firmware_data_left -= len;
8514 return 0;
8517 struct symbol_alive_response {
8518 u8 cmd_id;
8519 u8 seq_num;
8520 u8 ucode_rev;
8521 u8 eeprom_valid;
8522 u16 valid_flags;
8523 u8 IEEE_addr[6];
8524 u16 flags;
8525 u16 pcb_rev;
8526 u16 clock_settle_time; // 1us LSB
8527 u16 powerup_settle_time; // 1us LSB
8528 u16 hop_settle_time; // 1us LSB
8529 u8 date[3]; // month, day, year
8530 u8 time[2]; // hours, minutes
8531 u8 ucode_valid;
8534 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8535 struct ipw2100_fw *fw)
8537 struct net_device *dev = priv->net_dev;
8538 const unsigned char *microcode_data = fw->uc.data;
8539 unsigned int microcode_data_left = fw->uc.size;
8540 void __iomem *reg = (void __iomem *)dev->base_addr;
8542 struct symbol_alive_response response;
8543 int i, j;
8544 u8 data;
8546 /* Symbol control */
8547 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8548 readl(reg);
8549 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8550 readl(reg);
8552 /* HW config */
8553 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8554 readl(reg);
8555 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 readl(reg);
8558 /* EN_CS_ACCESS bit to reset control store pointer */
8559 write_nic_byte(dev, 0x210000, 0x40);
8560 readl(reg);
8561 write_nic_byte(dev, 0x210000, 0x0);
8562 readl(reg);
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8566 /* copy microcode from buffer into Symbol */
8568 while (microcode_data_left > 0) {
8569 write_nic_byte(dev, 0x210010, *microcode_data++);
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 microcode_data_left -= 2;
8574 /* EN_CS_ACCESS bit to reset the control store pointer */
8575 write_nic_byte(dev, 0x210000, 0x0);
8576 readl(reg);
8578 /* Enable System (Reg 0)
8579 * first enable causes garbage in RX FIFO */
8580 write_nic_byte(dev, 0x210000, 0x0);
8581 readl(reg);
8582 write_nic_byte(dev, 0x210000, 0x80);
8583 readl(reg);
8585 /* Reset External Baseband Reg */
8586 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8587 readl(reg);
8588 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8589 readl(reg);
8591 /* HW Config (Reg 5) */
8592 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8593 readl(reg);
8594 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 readl(reg);
8597 /* Enable System (Reg 0)
8598 * second enable should be OK */
8599 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8600 readl(reg);
8601 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8603 /* check Symbol is enabled - upped this from 5 as it wasn't always
8604 * catching the update */
8605 for (i = 0; i < 10; i++) {
8606 udelay(10);
8608 /* check Dino is enabled bit */
8609 read_nic_byte(dev, 0x210000, &data);
8610 if (data & 0x1)
8611 break;
8614 if (i == 10) {
8615 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8616 dev->name);
8617 return -EIO;
8620 /* Get Symbol alive response */
8621 for (i = 0; i < 30; i++) {
8622 /* Read alive response structure */
8623 for (j = 0;
8624 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8625 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8627 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8628 break;
8629 udelay(10);
8632 if (i == 30) {
8633 printk(KERN_ERR DRV_NAME
8634 ": %s: No response from Symbol - hw not alive\n",
8635 dev->name);
8636 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8637 return -EIO;
8640 return 0;