2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/preempt.h>
42 #include <asm/cacheflush.h>
43 #include <asm/pgtable.h>
44 #include <asm/kdebug.h>
46 static DECLARE_MUTEX(kprobe_mutex
);
48 static struct kprobe
*current_kprobe
;
49 static unsigned long kprobe_status
, kprobe_old_rflags
, kprobe_saved_rflags
;
50 static struct kprobe
*kprobe_prev
;
51 static unsigned long kprobe_status_prev
, kprobe_old_rflags_prev
, kprobe_saved_rflags_prev
;
52 static struct pt_regs jprobe_saved_regs
;
53 static long *jprobe_saved_rsp
;
54 void jprobe_return_end(void);
56 /* copy of the kernel stack at the probe fire time */
57 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
60 * returns non-zero if opcode modifies the interrupt flag.
62 static inline int is_IF_modifier(kprobe_opcode_t
*insn
)
67 case 0xcf: /* iret/iretd */
68 case 0x9d: /* popf/popfd */
72 if (*insn
>= 0x40 && *insn
<= 0x4f && *++insn
== 0xcf)
77 int arch_prepare_kprobe(struct kprobe
*p
)
79 /* insn: must be on special executable page on x86_64. */
81 p
->ainsn
.insn
= get_insn_slot();
90 * Determine if the instruction uses the %rip-relative addressing mode.
91 * If it does, return the address of the 32-bit displacement word.
92 * If not, return null.
94 static inline s32
*is_riprel(u8
*insn
)
96 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
97 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
98 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
99 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
100 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
102 static const u64 onebyte_has_modrm
[256 / 64] = {
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104 /* ------------------------------- */
105 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
106 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
107 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
108 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
109 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
110 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
111 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
112 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
113 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
114 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
115 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
116 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
117 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
118 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
119 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
120 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
121 /* ------------------------------- */
122 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
124 static const u64 twobyte_has_modrm
[256 / 64] = {
125 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 /* ------------------------------- */
127 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
128 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
129 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
130 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
131 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
132 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
133 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
134 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
135 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
136 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
137 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
138 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
139 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
140 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
141 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
142 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
143 /* ------------------------------- */
144 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
149 /* Skip legacy instruction prefixes. */
169 /* Skip REX instruction prefix. */
170 if ((*insn
& 0xf0) == 0x40)
173 if (*insn
== 0x0f) { /* Two-byte opcode. */
175 need_modrm
= test_bit(*insn
, twobyte_has_modrm
);
176 } else { /* One-byte opcode. */
177 need_modrm
= test_bit(*insn
, onebyte_has_modrm
);
182 if ((modrm
& 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
183 /* Displacement follows ModRM byte. */
184 return (s32
*) ++insn
;
188 /* No %rip-relative addressing mode here. */
192 void arch_copy_kprobe(struct kprobe
*p
)
195 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
);
196 ripdisp
= is_riprel(p
->ainsn
.insn
);
199 * The copied instruction uses the %rip-relative
200 * addressing mode. Adjust the displacement for the
201 * difference between the original location of this
202 * instruction and the location of the copy that will
203 * actually be run. The tricky bit here is making sure
204 * that the sign extension happens correctly in this
205 * calculation, since we need a signed 32-bit result to
206 * be sign-extended to 64 bits when it's added to the
207 * %rip value and yield the same 64-bit result that the
208 * sign-extension of the original signed 32-bit
209 * displacement would have given.
211 s64 disp
= (u8
*) p
->addr
+ *ripdisp
- (u8
*) p
->ainsn
.insn
;
212 BUG_ON((s64
) (s32
) disp
!= disp
); /* Sanity check. */
215 p
->opcode
= *p
->addr
;
218 void arch_arm_kprobe(struct kprobe
*p
)
220 *p
->addr
= BREAKPOINT_INSTRUCTION
;
221 flush_icache_range((unsigned long) p
->addr
,
222 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
225 void arch_disarm_kprobe(struct kprobe
*p
)
227 *p
->addr
= p
->opcode
;
228 flush_icache_range((unsigned long) p
->addr
,
229 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
232 void arch_remove_kprobe(struct kprobe
*p
)
235 free_insn_slot(p
->ainsn
.insn
);
239 static inline void save_previous_kprobe(void)
241 kprobe_prev
= current_kprobe
;
242 kprobe_status_prev
= kprobe_status
;
243 kprobe_old_rflags_prev
= kprobe_old_rflags
;
244 kprobe_saved_rflags_prev
= kprobe_saved_rflags
;
247 static inline void restore_previous_kprobe(void)
249 current_kprobe
= kprobe_prev
;
250 kprobe_status
= kprobe_status_prev
;
251 kprobe_old_rflags
= kprobe_old_rflags_prev
;
252 kprobe_saved_rflags
= kprobe_saved_rflags_prev
;
255 static inline void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
258 kprobe_saved_rflags
= kprobe_old_rflags
259 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
260 if (is_IF_modifier(p
->ainsn
.insn
))
261 kprobe_saved_rflags
&= ~IF_MASK
;
264 static void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
266 regs
->eflags
|= TF_MASK
;
267 regs
->eflags
&= ~IF_MASK
;
268 /*single step inline if the instruction is an int3*/
269 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
270 regs
->rip
= (unsigned long)p
->addr
;
272 regs
->rip
= (unsigned long)p
->ainsn
.insn
;
275 void arch_prepare_kretprobe(struct kretprobe
*rp
, struct pt_regs
*regs
)
277 unsigned long *sara
= (unsigned long *)regs
->rsp
;
278 struct kretprobe_instance
*ri
;
280 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
283 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
285 /* Replace the return addr with trampoline addr */
286 *sara
= (unsigned long) &kretprobe_trampoline
;
295 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
296 * remain disabled thorough out this function.
298 int kprobe_handler(struct pt_regs
*regs
)
302 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)(regs
->rip
- sizeof(kprobe_opcode_t
));
304 /* We're in an interrupt, but this is clear and BUG()-safe. */
307 /* Check we're not actually recursing */
308 if (kprobe_running()) {
309 /* We *are* holding lock here, so this is safe.
310 Disarm the probe we just hit, and ignore it. */
311 p
= get_kprobe(addr
);
313 if (kprobe_status
== KPROBE_HIT_SS
) {
314 regs
->eflags
&= ~TF_MASK
;
315 regs
->eflags
|= kprobe_saved_rflags
;
318 } else if (kprobe_status
== KPROBE_HIT_SSDONE
) {
319 /* TODO: Provide re-entrancy from
320 * post_kprobes_handler() and avoid exception
321 * stack corruption while single-stepping on
322 * the instruction of the new probe.
324 arch_disarm_kprobe(p
);
325 regs
->rip
= (unsigned long)p
->addr
;
328 /* We have reentered the kprobe_handler(), since
329 * another probe was hit while within the
330 * handler. We here save the original kprobe
331 * variables and just single step on instruction
332 * of the new probe without calling any user
335 save_previous_kprobe();
336 set_current_kprobe(p
, regs
);
338 prepare_singlestep(p
, regs
);
339 kprobe_status
= KPROBE_REENTER
;
344 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
348 /* If it's not ours, can't be delete race, (we hold lock). */
353 p
= get_kprobe(addr
);
356 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
358 * The breakpoint instruction was removed right
359 * after we hit it. Another cpu has removed
360 * either a probepoint or a debugger breakpoint
361 * at this address. In either case, no further
362 * handling of this interrupt is appropriate.
366 /* Not one of ours: let kernel handle it */
370 kprobe_status
= KPROBE_HIT_ACTIVE
;
371 set_current_kprobe(p
, regs
);
373 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
374 /* handler has already set things up, so skip ss setup */
378 prepare_singlestep(p
, regs
);
379 kprobe_status
= KPROBE_HIT_SS
;
383 preempt_enable_no_resched();
388 * For function-return probes, init_kprobes() establishes a probepoint
389 * here. When a retprobed function returns, this probe is hit and
390 * trampoline_probe_handler() runs, calling the kretprobe's handler.
392 void kretprobe_trampoline_holder(void)
394 asm volatile ( ".global kretprobe_trampoline\n"
395 "kretprobe_trampoline: \n"
400 * Called when we hit the probe point at kretprobe_trampoline
402 int trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
404 struct kretprobe_instance
*ri
= NULL
;
405 struct hlist_head
*head
;
406 struct hlist_node
*node
, *tmp
;
407 unsigned long orig_ret_address
= 0;
408 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
410 head
= kretprobe_inst_table_head(current
);
413 * It is possible to have multiple instances associated with a given
414 * task either because an multiple functions in the call path
415 * have a return probe installed on them, and/or more then one return
416 * return probe was registered for a target function.
418 * We can handle this because:
419 * - instances are always inserted at the head of the list
420 * - when multiple return probes are registered for the same
421 * function, the first instance's ret_addr will point to the
422 * real return address, and all the rest will point to
423 * kretprobe_trampoline
425 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
426 if (ri
->task
!= current
)
427 /* another task is sharing our hash bucket */
430 if (ri
->rp
&& ri
->rp
->handler
)
431 ri
->rp
->handler(ri
, regs
);
433 orig_ret_address
= (unsigned long)ri
->ret_addr
;
436 if (orig_ret_address
!= trampoline_address
)
438 * This is the real return address. Any other
439 * instances associated with this task are for
440 * other calls deeper on the call stack
445 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
446 regs
->rip
= orig_ret_address
;
449 preempt_enable_no_resched();
452 * By returning a non-zero value, we are telling
453 * kprobe_handler() that we have handled unlocking
454 * and re-enabling preemption.
460 * Called after single-stepping. p->addr is the address of the
461 * instruction whose first byte has been replaced by the "int 3"
462 * instruction. To avoid the SMP problems that can occur when we
463 * temporarily put back the original opcode to single-step, we
464 * single-stepped a copy of the instruction. The address of this
465 * copy is p->ainsn.insn.
467 * This function prepares to return from the post-single-step
468 * interrupt. We have to fix up the stack as follows:
470 * 0) Except in the case of absolute or indirect jump or call instructions,
471 * the new rip is relative to the copied instruction. We need to make
472 * it relative to the original instruction.
474 * 1) If the single-stepped instruction was pushfl, then the TF and IF
475 * flags are set in the just-pushed eflags, and may need to be cleared.
477 * 2) If the single-stepped instruction was a call, the return address
478 * that is atop the stack is the address following the copied instruction.
479 * We need to make it the address following the original instruction.
481 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
483 unsigned long *tos
= (unsigned long *)regs
->rsp
;
484 unsigned long next_rip
= 0;
485 unsigned long copy_rip
= (unsigned long)p
->ainsn
.insn
;
486 unsigned long orig_rip
= (unsigned long)p
->addr
;
487 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
489 /*skip the REX prefix*/
490 if (*insn
>= 0x40 && *insn
<= 0x4f)
494 case 0x9c: /* pushfl */
495 *tos
&= ~(TF_MASK
| IF_MASK
);
496 *tos
|= kprobe_old_rflags
;
498 case 0xc3: /* ret/lret */
502 regs
->eflags
&= ~TF_MASK
;
503 /* rip is already adjusted, no more changes required*/
505 case 0xe8: /* call relative - Fix return addr */
506 *tos
= orig_rip
+ (*tos
- copy_rip
);
509 if ((*insn
& 0x30) == 0x10) {
510 /* call absolute, indirect */
511 /* Fix return addr; rip is correct. */
512 next_rip
= regs
->rip
;
513 *tos
= orig_rip
+ (*tos
- copy_rip
);
514 } else if (((*insn
& 0x31) == 0x20) || /* jmp near, absolute indirect */
515 ((*insn
& 0x31) == 0x21)) { /* jmp far, absolute indirect */
516 /* rip is correct. */
517 next_rip
= regs
->rip
;
520 case 0xea: /* jmp absolute -- rip is correct */
521 next_rip
= regs
->rip
;
527 regs
->eflags
&= ~TF_MASK
;
529 regs
->rip
= next_rip
;
531 regs
->rip
= orig_rip
+ (regs
->rip
- copy_rip
);
536 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
537 * remain disabled thoroughout this function. And we hold kprobe lock.
539 int post_kprobe_handler(struct pt_regs
*regs
)
541 if (!kprobe_running())
544 if ((kprobe_status
!= KPROBE_REENTER
) && current_kprobe
->post_handler
) {
545 kprobe_status
= KPROBE_HIT_SSDONE
;
546 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
549 resume_execution(current_kprobe
, regs
);
550 regs
->eflags
|= kprobe_saved_rflags
;
552 /* Restore the original saved kprobes variables and continue. */
553 if (kprobe_status
== KPROBE_REENTER
) {
554 restore_previous_kprobe();
560 preempt_enable_no_resched();
563 * if somebody else is singlestepping across a probe point, eflags
564 * will have TF set, in which case, continue the remaining processing
565 * of do_debug, as if this is not a probe hit.
567 if (regs
->eflags
& TF_MASK
)
573 /* Interrupts disabled, kprobe_lock held. */
574 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
576 if (current_kprobe
->fault_handler
577 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
580 if (kprobe_status
& KPROBE_HIT_SS
) {
581 resume_execution(current_kprobe
, regs
);
582 regs
->eflags
|= kprobe_old_rflags
;
585 preempt_enable_no_resched();
591 * Wrapper routine for handling exceptions.
593 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
596 struct die_args
*args
= (struct die_args
*)data
;
599 if (kprobe_handler(args
->regs
))
603 if (post_kprobe_handler(args
->regs
))
607 if (kprobe_running() &&
608 kprobe_fault_handler(args
->regs
, args
->trapnr
))
612 if (kprobe_running() &&
613 kprobe_fault_handler(args
->regs
, args
->trapnr
))
622 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
624 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
627 jprobe_saved_regs
= *regs
;
628 jprobe_saved_rsp
= (long *) regs
->rsp
;
629 addr
= (unsigned long)jprobe_saved_rsp
;
631 * As Linus pointed out, gcc assumes that the callee
632 * owns the argument space and could overwrite it, e.g.
633 * tailcall optimization. So, to be absolutely safe
634 * we also save and restore enough stack bytes to cover
637 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
638 regs
->eflags
&= ~IF_MASK
;
639 regs
->rip
= (unsigned long)(jp
->entry
);
643 void jprobe_return(void)
645 preempt_enable_no_resched();
646 asm volatile (" xchg %%rbx,%%rsp \n"
648 " .globl jprobe_return_end \n"
649 " jprobe_return_end: \n"
651 (jprobe_saved_rsp
):"memory");
654 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
656 u8
*addr
= (u8
*) (regs
->rip
- 1);
657 unsigned long stack_addr
= (unsigned long)jprobe_saved_rsp
;
658 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
660 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
661 if ((long *)regs
->rsp
!= jprobe_saved_rsp
) {
662 struct pt_regs
*saved_regs
=
663 container_of(jprobe_saved_rsp
, struct pt_regs
, rsp
);
664 printk("current rsp %p does not match saved rsp %p\n",
665 (long *)regs
->rsp
, jprobe_saved_rsp
);
666 printk("Saved registers for jprobe %p\n", jp
);
667 show_registers(saved_regs
);
668 printk("Current registers\n");
669 show_registers(regs
);
672 *regs
= jprobe_saved_regs
;
673 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
674 MIN_STACK_SIZE(stack_addr
));
680 static struct kprobe trampoline_p
= {
681 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
682 .pre_handler
= trampoline_probe_handler
685 int __init
arch_init_kprobes(void)
687 return register_kprobe(&trampoline_p
);