2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/config.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "0.7"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define MAX_RX_RING_SIZE 4096
52 #define RX_COPY_THRESHOLD 128
53 #define RX_BUF_SIZE 1536
54 #define PHY_RETRIES 1000
55 #define ETH_JUMBO_MTU 9000
56 #define TX_WATCHDOG (5 * HZ)
57 #define NAPI_WEIGHT 64
58 #define BLINK_HZ (HZ/4)
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION
);
65 static const u32 default_msg
66 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
67 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
69 static int debug
= -1; /* defaults above */
70 module_param(debug
, int, 0);
71 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
73 static const struct pci_device_id skge_id_table
[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
76 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x9E00) }, /* SK-9Exx */
79 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
), },
80 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
82 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
83 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1032
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
87 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
89 static int skge_up(struct net_device
*dev
);
90 static int skge_down(struct net_device
*dev
);
91 static void skge_tx_clean(struct skge_port
*skge
);
92 static void xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
93 static void gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
94 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
95 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
96 static void yukon_init(struct skge_hw
*hw
, int port
);
97 static void yukon_reset(struct skge_hw
*hw
, int port
);
98 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
99 static void genesis_reset(struct skge_hw
*hw
, int port
);
100 static void genesis_link_up(struct skge_port
*skge
);
102 /* Avoid conditionals by using array */
103 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
104 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
105 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
106 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
107 static const u32 portirqmask
[] = { IS_PORT_1
, IS_PORT_2
};
109 /* Don't need to look at whole 16K.
110 * last interesting register is descriptor poll timer.
112 #define SKGE_REGS_LEN (29*128)
114 static int skge_get_regs_len(struct net_device
*dev
)
116 return SKGE_REGS_LEN
;
120 * Returns copy of control register region
121 * I/O region is divided into banks and certain regions are unreadable
123 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
126 const struct skge_port
*skge
= netdev_priv(dev
);
128 const void __iomem
*io
= skge
->hw
->regs
;
129 static const unsigned long bankmap
130 = (1<<0) | (1<<2) | (1<<8) | (1<<9)
131 | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
132 | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
133 | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
136 for (offs
= 0; offs
< regs
->len
; offs
+= 128) {
137 u32 len
= min_t(u32
, 128, regs
->len
- offs
);
139 if (bankmap
& (1<<(offs
/128)))
140 memcpy_fromio(p
+ offs
, io
+ offs
, len
);
142 memset(p
+ offs
, 0, len
);
146 /* Wake on Lan only supported on Yukon chps with rev 1 or above */
147 static int wol_supported(const struct skge_hw
*hw
)
149 return !((hw
->chip_id
== CHIP_ID_GENESIS
||
150 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)));
153 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
155 struct skge_port
*skge
= netdev_priv(dev
);
157 wol
->supported
= wol_supported(skge
->hw
) ? WAKE_MAGIC
: 0;
158 wol
->wolopts
= skge
->wol
? WAKE_MAGIC
: 0;
161 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
163 struct skge_port
*skge
= netdev_priv(dev
);
164 struct skge_hw
*hw
= skge
->hw
;
166 if (wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
169 if (wol
->wolopts
== WAKE_MAGIC
&& !wol_supported(hw
))
172 skge
->wol
= wol
->wolopts
== WAKE_MAGIC
;
175 memcpy_toio(hw
->regs
+ WOL_MAC_ADDR
, dev
->dev_addr
, ETH_ALEN
);
177 skge_write16(hw
, WOL_CTRL_STAT
,
178 WOL_CTL_ENA_PME_ON_MAGIC_PKT
|
179 WOL_CTL_ENA_MAGIC_PKT_UNIT
);
181 skge_write16(hw
, WOL_CTRL_STAT
, WOL_CTL_DEFAULT
);
186 /* Determine supported/adverised modes based on hardware.
187 * Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
189 static u32
skge_supported_modes(const struct skge_hw
*hw
)
194 supported
= SUPPORTED_10baseT_Half
195 | SUPPORTED_10baseT_Full
196 | SUPPORTED_100baseT_Half
197 | SUPPORTED_100baseT_Full
198 | SUPPORTED_1000baseT_Half
199 | SUPPORTED_1000baseT_Full
200 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
202 if (hw
->chip_id
== CHIP_ID_GENESIS
)
203 supported
&= ~(SUPPORTED_10baseT_Half
204 | SUPPORTED_10baseT_Full
205 | SUPPORTED_100baseT_Half
206 | SUPPORTED_100baseT_Full
);
208 else if (hw
->chip_id
== CHIP_ID_YUKON
)
209 supported
&= ~SUPPORTED_1000baseT_Half
;
211 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_FIBRE
217 static int skge_get_settings(struct net_device
*dev
,
218 struct ethtool_cmd
*ecmd
)
220 struct skge_port
*skge
= netdev_priv(dev
);
221 struct skge_hw
*hw
= skge
->hw
;
223 ecmd
->transceiver
= XCVR_INTERNAL
;
224 ecmd
->supported
= skge_supported_modes(hw
);
227 ecmd
->port
= PORT_TP
;
228 ecmd
->phy_address
= hw
->phy_addr
;
230 ecmd
->port
= PORT_FIBRE
;
232 ecmd
->advertising
= skge
->advertising
;
233 ecmd
->autoneg
= skge
->autoneg
;
234 ecmd
->speed
= skge
->speed
;
235 ecmd
->duplex
= skge
->duplex
;
239 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
241 struct skge_port
*skge
= netdev_priv(dev
);
242 const struct skge_hw
*hw
= skge
->hw
;
243 u32 supported
= skge_supported_modes(hw
);
245 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
246 ecmd
->advertising
= supported
;
252 switch(ecmd
->speed
) {
254 if (ecmd
->duplex
== DUPLEX_FULL
)
255 setting
= SUPPORTED_1000baseT_Full
;
256 else if (ecmd
->duplex
== DUPLEX_HALF
)
257 setting
= SUPPORTED_1000baseT_Half
;
262 if (ecmd
->duplex
== DUPLEX_FULL
)
263 setting
= SUPPORTED_100baseT_Full
;
264 else if (ecmd
->duplex
== DUPLEX_HALF
)
265 setting
= SUPPORTED_100baseT_Half
;
271 if (ecmd
->duplex
== DUPLEX_FULL
)
272 setting
= SUPPORTED_10baseT_Full
;
273 else if (ecmd
->duplex
== DUPLEX_HALF
)
274 setting
= SUPPORTED_10baseT_Half
;
282 if ((setting
& supported
) == 0)
285 skge
->speed
= ecmd
->speed
;
286 skge
->duplex
= ecmd
->duplex
;
289 skge
->autoneg
= ecmd
->autoneg
;
290 skge
->advertising
= ecmd
->advertising
;
292 if (netif_running(dev
)) {
299 static void skge_get_drvinfo(struct net_device
*dev
,
300 struct ethtool_drvinfo
*info
)
302 struct skge_port
*skge
= netdev_priv(dev
);
304 strcpy(info
->driver
, DRV_NAME
);
305 strcpy(info
->version
, DRV_VERSION
);
306 strcpy(info
->fw_version
, "N/A");
307 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
310 static const struct skge_stat
{
311 char name
[ETH_GSTRING_LEN
];
315 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
316 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
318 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
319 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
320 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
321 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
322 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
323 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
324 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
325 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
327 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
328 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
329 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
330 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
331 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
332 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
334 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
335 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
336 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
337 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
338 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
341 static int skge_get_stats_count(struct net_device
*dev
)
343 return ARRAY_SIZE(skge_stats
);
346 static void skge_get_ethtool_stats(struct net_device
*dev
,
347 struct ethtool_stats
*stats
, u64
*data
)
349 struct skge_port
*skge
= netdev_priv(dev
);
351 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
352 genesis_get_stats(skge
, data
);
354 yukon_get_stats(skge
, data
);
357 /* Use hardware MIB variables for critical path statistics and
358 * transmit feedback not reported at interrupt.
359 * Other errors are accounted for in interrupt handler.
361 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
363 struct skge_port
*skge
= netdev_priv(dev
);
364 u64 data
[ARRAY_SIZE(skge_stats
)];
366 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
367 genesis_get_stats(skge
, data
);
369 yukon_get_stats(skge
, data
);
371 skge
->net_stats
.tx_bytes
= data
[0];
372 skge
->net_stats
.rx_bytes
= data
[1];
373 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
374 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
375 skge
->net_stats
.multicast
= data
[5] + data
[7];
376 skge
->net_stats
.collisions
= data
[10];
377 skge
->net_stats
.tx_aborted_errors
= data
[12];
379 return &skge
->net_stats
;
382 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
388 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
389 memcpy(data
+ i
* ETH_GSTRING_LEN
,
390 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
395 static void skge_get_ring_param(struct net_device
*dev
,
396 struct ethtool_ringparam
*p
)
398 struct skge_port
*skge
= netdev_priv(dev
);
400 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
401 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
402 p
->rx_mini_max_pending
= 0;
403 p
->rx_jumbo_max_pending
= 0;
405 p
->rx_pending
= skge
->rx_ring
.count
;
406 p
->tx_pending
= skge
->tx_ring
.count
;
407 p
->rx_mini_pending
= 0;
408 p
->rx_jumbo_pending
= 0;
411 static int skge_set_ring_param(struct net_device
*dev
,
412 struct ethtool_ringparam
*p
)
414 struct skge_port
*skge
= netdev_priv(dev
);
416 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
417 p
->tx_pending
== 0 || p
->tx_pending
> MAX_TX_RING_SIZE
)
420 skge
->rx_ring
.count
= p
->rx_pending
;
421 skge
->tx_ring
.count
= p
->tx_pending
;
423 if (netif_running(dev
)) {
431 static u32
skge_get_msglevel(struct net_device
*netdev
)
433 struct skge_port
*skge
= netdev_priv(netdev
);
434 return skge
->msg_enable
;
437 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
439 struct skge_port
*skge
= netdev_priv(netdev
);
440 skge
->msg_enable
= value
;
443 static int skge_nway_reset(struct net_device
*dev
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 struct skge_hw
*hw
= skge
->hw
;
447 int port
= skge
->port
;
449 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
452 spin_lock_bh(&hw
->phy_lock
);
453 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
454 genesis_reset(hw
, port
);
455 genesis_mac_init(hw
, port
);
457 yukon_reset(hw
, port
);
458 yukon_init(hw
, port
);
460 spin_unlock_bh(&hw
->phy_lock
);
464 static int skge_set_sg(struct net_device
*dev
, u32 data
)
466 struct skge_port
*skge
= netdev_priv(dev
);
467 struct skge_hw
*hw
= skge
->hw
;
469 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
471 return ethtool_op_set_sg(dev
, data
);
474 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
476 struct skge_port
*skge
= netdev_priv(dev
);
477 struct skge_hw
*hw
= skge
->hw
;
479 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
482 return ethtool_op_set_tx_csum(dev
, data
);
485 static u32
skge_get_rx_csum(struct net_device
*dev
)
487 struct skge_port
*skge
= netdev_priv(dev
);
489 return skge
->rx_csum
;
492 /* Only Yukon supports checksum offload. */
493 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
495 struct skge_port
*skge
= netdev_priv(dev
);
497 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
500 skge
->rx_csum
= data
;
504 static void skge_get_pauseparam(struct net_device
*dev
,
505 struct ethtool_pauseparam
*ecmd
)
507 struct skge_port
*skge
= netdev_priv(dev
);
509 ecmd
->tx_pause
= (skge
->flow_control
== FLOW_MODE_LOC_SEND
)
510 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
511 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_REM_SEND
)
512 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
514 ecmd
->autoneg
= skge
->autoneg
;
517 static int skge_set_pauseparam(struct net_device
*dev
,
518 struct ethtool_pauseparam
*ecmd
)
520 struct skge_port
*skge
= netdev_priv(dev
);
522 skge
->autoneg
= ecmd
->autoneg
;
523 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
524 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
525 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
526 skge
->flow_control
= FLOW_MODE_REM_SEND
;
527 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
528 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
530 skge
->flow_control
= FLOW_MODE_NONE
;
532 if (netif_running(dev
)) {
539 /* Chip internal frequency for clock calculations */
540 static inline u32
hwkhz(const struct skge_hw
*hw
)
542 if (hw
->chip_id
== CHIP_ID_GENESIS
)
543 return 53215; /* or: 53.125 MHz */
545 return 78215; /* or: 78.125 MHz */
548 /* Chip hz to microseconds */
549 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
551 return (ticks
* 1000) / hwkhz(hw
);
554 /* Microseconds to chip hz */
555 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
557 return hwkhz(hw
) * usec
/ 1000;
560 static int skge_get_coalesce(struct net_device
*dev
,
561 struct ethtool_coalesce
*ecmd
)
563 struct skge_port
*skge
= netdev_priv(dev
);
564 struct skge_hw
*hw
= skge
->hw
;
565 int port
= skge
->port
;
567 ecmd
->rx_coalesce_usecs
= 0;
568 ecmd
->tx_coalesce_usecs
= 0;
570 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
571 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
572 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
574 if (msk
& rxirqmask
[port
])
575 ecmd
->rx_coalesce_usecs
= delay
;
576 if (msk
& txirqmask
[port
])
577 ecmd
->tx_coalesce_usecs
= delay
;
583 /* Note: interrupt timer is per board, but can turn on/off per port */
584 static int skge_set_coalesce(struct net_device
*dev
,
585 struct ethtool_coalesce
*ecmd
)
587 struct skge_port
*skge
= netdev_priv(dev
);
588 struct skge_hw
*hw
= skge
->hw
;
589 int port
= skge
->port
;
590 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
593 if (ecmd
->rx_coalesce_usecs
== 0)
594 msk
&= ~rxirqmask
[port
];
595 else if (ecmd
->rx_coalesce_usecs
< 25 ||
596 ecmd
->rx_coalesce_usecs
> 33333)
599 msk
|= rxirqmask
[port
];
600 delay
= ecmd
->rx_coalesce_usecs
;
603 if (ecmd
->tx_coalesce_usecs
== 0)
604 msk
&= ~txirqmask
[port
];
605 else if (ecmd
->tx_coalesce_usecs
< 25 ||
606 ecmd
->tx_coalesce_usecs
> 33333)
609 msk
|= txirqmask
[port
];
610 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
613 skge_write32(hw
, B2_IRQM_MSK
, msk
);
615 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
617 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
618 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
623 static void skge_led_on(struct skge_hw
*hw
, int port
)
625 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
626 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
627 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
629 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
630 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
631 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
633 /* For Broadcom Phy only */
634 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
636 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
637 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
638 PHY_M_LED_MO_DUP(MO_LED_ON
) |
639 PHY_M_LED_MO_10(MO_LED_ON
) |
640 PHY_M_LED_MO_100(MO_LED_ON
) |
641 PHY_M_LED_MO_1000(MO_LED_ON
) |
642 PHY_M_LED_MO_RX(MO_LED_ON
));
646 static void skge_led_off(struct skge_hw
*hw
, int port
)
648 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
649 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
650 skge_write8(hw
, B0_LED
, LED_STAT_OFF
);
652 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
653 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
656 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
658 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
659 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
660 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
661 PHY_M_LED_MO_10(MO_LED_OFF
) |
662 PHY_M_LED_MO_100(MO_LED_OFF
) |
663 PHY_M_LED_MO_1000(MO_LED_OFF
) |
664 PHY_M_LED_MO_RX(MO_LED_OFF
));
668 static void skge_blink_timer(unsigned long data
)
670 struct skge_port
*skge
= (struct skge_port
*) data
;
671 struct skge_hw
*hw
= skge
->hw
;
674 spin_lock_irqsave(&hw
->phy_lock
, flags
);
676 skge_led_on(hw
, skge
->port
);
678 skge_led_off(hw
, skge
->port
);
679 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
681 skge
->blink_on
= !skge
->blink_on
;
682 mod_timer(&skge
->led_blink
, jiffies
+ BLINK_HZ
);
685 /* blink LED's for finding board */
686 static int skge_phys_id(struct net_device
*dev
, u32 data
)
688 struct skge_port
*skge
= netdev_priv(dev
);
690 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
691 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
695 mod_timer(&skge
->led_blink
, jiffies
+1);
697 msleep_interruptible(data
* 1000);
698 del_timer_sync(&skge
->led_blink
);
700 skge_led_off(skge
->hw
, skge
->port
);
705 static struct ethtool_ops skge_ethtool_ops
= {
706 .get_settings
= skge_get_settings
,
707 .set_settings
= skge_set_settings
,
708 .get_drvinfo
= skge_get_drvinfo
,
709 .get_regs_len
= skge_get_regs_len
,
710 .get_regs
= skge_get_regs
,
711 .get_wol
= skge_get_wol
,
712 .set_wol
= skge_set_wol
,
713 .get_msglevel
= skge_get_msglevel
,
714 .set_msglevel
= skge_set_msglevel
,
715 .nway_reset
= skge_nway_reset
,
716 .get_link
= ethtool_op_get_link
,
717 .get_ringparam
= skge_get_ring_param
,
718 .set_ringparam
= skge_set_ring_param
,
719 .get_pauseparam
= skge_get_pauseparam
,
720 .set_pauseparam
= skge_set_pauseparam
,
721 .get_coalesce
= skge_get_coalesce
,
722 .set_coalesce
= skge_set_coalesce
,
723 .get_sg
= ethtool_op_get_sg
,
724 .set_sg
= skge_set_sg
,
725 .get_tx_csum
= ethtool_op_get_tx_csum
,
726 .set_tx_csum
= skge_set_tx_csum
,
727 .get_rx_csum
= skge_get_rx_csum
,
728 .set_rx_csum
= skge_set_rx_csum
,
729 .get_strings
= skge_get_strings
,
730 .phys_id
= skge_phys_id
,
731 .get_stats_count
= skge_get_stats_count
,
732 .get_ethtool_stats
= skge_get_ethtool_stats
,
736 * Allocate ring elements and chain them together
737 * One-to-one association of board descriptors with ring elements
739 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u64 base
)
741 struct skge_tx_desc
*d
;
742 struct skge_element
*e
;
745 ring
->start
= kmalloc(sizeof(*e
)*ring
->count
, GFP_KERNEL
);
749 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
752 if (i
== ring
->count
- 1) {
753 e
->next
= ring
->start
;
754 d
->next_offset
= base
;
757 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
760 ring
->to_use
= ring
->to_clean
= ring
->start
;
765 static struct sk_buff
*skge_rx_alloc(struct net_device
*dev
, unsigned int size
)
767 struct sk_buff
*skb
= dev_alloc_skb(size
);
771 skb_reserve(skb
, NET_IP_ALIGN
);
776 /* Allocate and setup a new buffer for receiving */
777 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
778 struct sk_buff
*skb
, unsigned int bufsize
)
780 struct skge_rx_desc
*rd
= e
->desc
;
783 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
787 rd
->dma_hi
= map
>> 32;
789 rd
->csum1_start
= ETH_HLEN
;
790 rd
->csum2_start
= ETH_HLEN
;
796 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
797 pci_unmap_addr_set(e
, mapaddr
, map
);
798 pci_unmap_len_set(e
, maplen
, bufsize
);
801 /* Resume receiving using existing skb,
802 * Note: DMA address is not changed by chip.
803 * MTU not changed while receiver active.
805 static void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
807 struct skge_rx_desc
*rd
= e
->desc
;
810 rd
->csum2_start
= ETH_HLEN
;
814 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
818 /* Free all buffers in receive ring, assumes receiver stopped */
819 static void skge_rx_clean(struct skge_port
*skge
)
821 struct skge_hw
*hw
= skge
->hw
;
822 struct skge_ring
*ring
= &skge
->rx_ring
;
823 struct skge_element
*e
;
827 struct skge_rx_desc
*rd
= e
->desc
;
830 pci_unmap_single(hw
->pdev
,
831 pci_unmap_addr(e
, mapaddr
),
832 pci_unmap_len(e
, maplen
),
834 dev_kfree_skb(e
->skb
);
837 } while ((e
= e
->next
) != ring
->start
);
841 /* Allocate buffers for receive ring
842 * For receive: to_clean is next received frame.
844 static int skge_rx_fill(struct skge_port
*skge
)
846 struct skge_ring
*ring
= &skge
->rx_ring
;
847 struct skge_element
*e
;
848 unsigned int bufsize
= skge
->rx_buf_size
;
852 struct sk_buff
*skb
= skge_rx_alloc(skge
->netdev
, bufsize
);
857 skge_rx_setup(skge
, e
, skb
, bufsize
);
858 } while ( (e
= e
->next
) != ring
->start
);
860 ring
->to_clean
= ring
->start
;
864 static void skge_link_up(struct skge_port
*skge
)
866 netif_carrier_on(skge
->netdev
);
867 if (skge
->tx_avail
> MAX_SKB_FRAGS
+ 1)
868 netif_wake_queue(skge
->netdev
);
870 if (netif_msg_link(skge
))
872 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
873 skge
->netdev
->name
, skge
->speed
,
874 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
875 (skge
->flow_control
== FLOW_MODE_NONE
) ? "none" :
876 (skge
->flow_control
== FLOW_MODE_LOC_SEND
) ? "tx only" :
877 (skge
->flow_control
== FLOW_MODE_REM_SEND
) ? "rx only" :
878 (skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ? "tx and rx" :
882 static void skge_link_down(struct skge_port
*skge
)
884 netif_carrier_off(skge
->netdev
);
885 netif_stop_queue(skge
->netdev
);
887 if (netif_msg_link(skge
))
888 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
891 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
896 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
897 v
= xm_read16(hw
, port
, XM_PHY_DATA
);
899 /* Need to wait for external PHY */
900 for (i
= 0; i
< PHY_RETRIES
; i
++) {
902 if (xm_read16(hw
, port
, XM_MMU_CMD
)
907 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
908 hw
->dev
[port
]->name
);
911 v
= xm_read16(hw
, port
, XM_PHY_DATA
);
916 static void xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
920 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
921 for (i
= 0; i
< PHY_RETRIES
; i
++) {
922 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
926 printk(KERN_WARNING PFX
"%s: phy write failed to come ready\n",
927 hw
->dev
[port
]->name
);
931 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
932 for (i
= 0; i
< PHY_RETRIES
; i
++) {
934 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
937 printk(KERN_WARNING PFX
"%s: phy write timed out\n",
938 hw
->dev
[port
]->name
);
941 static void genesis_init(struct skge_hw
*hw
)
943 /* set blink source counter */
944 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
945 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
947 /* configure mac arbiter */
948 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
950 /* configure mac arbiter timeout values */
951 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
952 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
953 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
954 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
956 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
957 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
958 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
959 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
961 /* configure packet arbiter timeout */
962 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
963 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
964 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
965 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
966 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
969 static void genesis_reset(struct skge_hw
*hw
, int port
)
971 const u8 zero
[8] = { 0 };
973 /* reset the statistics module */
974 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
975 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
976 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
977 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
978 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
980 /* disable Broadcom PHY IRQ */
981 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
983 xm_outhash(hw
, port
, XM_HSM
, zero
);
987 /* Convert mode to MII values */
988 static const u16 phy_pause_map
[] = {
989 [FLOW_MODE_NONE
] = 0,
990 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
991 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
992 [FLOW_MODE_REM_SEND
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
996 /* Check status of Broadcom phy link */
997 static void bcom_check_link(struct skge_hw
*hw
, int port
)
999 struct net_device
*dev
= hw
->dev
[port
];
1000 struct skge_port
*skge
= netdev_priv(dev
);
1003 /* read twice because of latch */
1004 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1005 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1007 pr_debug("bcom_check_link status=0x%x\n", status
);
1009 if ((status
& PHY_ST_LSYNC
) == 0) {
1010 u16 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1011 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1012 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1013 /* dummy read to ensure writing */
1014 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
1016 if (netif_carrier_ok(dev
))
1017 skge_link_down(skge
);
1019 if (skge
->autoneg
== AUTONEG_ENABLE
&&
1020 (status
& PHY_ST_AN_OVER
)) {
1021 u16 lpa
= xm_phy_read(hw
, port
, PHY_BCOM_AUNE_LP
);
1022 u16 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1024 if (lpa
& PHY_B_AN_RF
) {
1025 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1030 /* Check Duplex mismatch */
1031 switch(aux
& PHY_B_AS_AN_RES_MSK
) {
1032 case PHY_B_RES_1000FD
:
1033 skge
->duplex
= DUPLEX_FULL
;
1035 case PHY_B_RES_1000HD
:
1036 skge
->duplex
= DUPLEX_HALF
;
1039 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1045 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1046 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1047 case PHY_B_AS_PAUSE_MSK
:
1048 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1051 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1054 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1057 skge
->flow_control
= FLOW_MODE_NONE
;
1060 skge
->speed
= SPEED_1000
;
1063 if (!netif_carrier_ok(dev
))
1064 genesis_link_up(skge
);
1068 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1069 * Phy on for 100 or 10Mbit operation
1071 static void bcom_phy_init(struct skge_port
*skge
, int jumbo
)
1073 struct skge_hw
*hw
= skge
->hw
;
1074 int port
= skge
->port
;
1076 u16 id1
, r
, ext
, ctl
;
1078 /* magic workaround patterns for Broadcom */
1079 static const struct {
1083 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1084 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1085 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1086 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1088 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1089 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1092 pr_debug("bcom_phy_init\n");
1094 /* read Id from external PHY (all have the same address) */
1095 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1097 /* Optimize MDIO transfer by suppressing preamble. */
1098 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1100 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1103 case PHY_BCOM_ID1_C0
:
1105 * Workaround BCOM Errata for the C0 type.
1106 * Write magic patterns to reserved registers.
1108 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1109 xm_phy_write(hw
, port
,
1110 C0hack
[i
].reg
, C0hack
[i
].val
);
1113 case PHY_BCOM_ID1_A1
:
1115 * Workaround BCOM Errata for the A1 type.
1116 * Write magic patterns to reserved registers.
1118 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1119 xm_phy_write(hw
, port
,
1120 A1hack
[i
].reg
, A1hack
[i
].val
);
1125 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1126 * Disable Power Management after reset.
1128 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1129 r
|= PHY_B_AC_DIS_PM
;
1130 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1133 xm_read16(hw
, port
, XM_ISRC
);
1135 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1136 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1138 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1140 * Workaround BCOM Errata #1 for the C5 type.
1141 * 1000Base-T Link Acquisition Failure in Slave Mode
1142 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1144 u16 adv
= PHY_B_1000C_RD
;
1145 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1146 adv
|= PHY_B_1000C_AHD
;
1147 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1148 adv
|= PHY_B_1000C_AFD
;
1149 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1151 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1153 if (skge
->duplex
== DUPLEX_FULL
)
1154 ctl
|= PHY_CT_DUP_MD
;
1155 /* Force to slave */
1156 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1159 /* Set autonegotiation pause parameters */
1160 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1161 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1163 /* Handle Jumbo frames */
1165 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1166 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1168 ext
|= PHY_B_PEC_HIGH_LA
;
1172 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1173 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1175 /* Use link status change interrrupt */
1176 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1178 bcom_check_link(hw
, port
);
1181 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1183 struct net_device
*dev
= hw
->dev
[port
];
1184 struct skge_port
*skge
= netdev_priv(dev
);
1185 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1188 const u8 zero
[6] = { 0 };
1190 /* Clear MIB counters */
1191 xm_write16(hw
, port
, XM_STAT_CMD
,
1192 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1193 /* Clear two times according to Errata #3 */
1194 xm_write16(hw
, port
, XM_STAT_CMD
,
1195 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1197 /* initialize Rx, Tx and Link LED */
1198 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
1199 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
1201 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
1202 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
1204 /* Unreset the XMAC. */
1205 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1208 * Perform additional initialization for external PHYs,
1209 * namely for the 1000baseTX cards that use the XMAC's
1212 spin_lock_bh(&hw
->phy_lock
);
1213 /* Take external Phy out of reset */
1214 r
= skge_read32(hw
, B2_GP_IO
);
1216 r
|= GP_DIR_0
|GP_IO_0
;
1218 r
|= GP_DIR_2
|GP_IO_2
;
1220 skge_write32(hw
, B2_GP_IO
, r
);
1221 skge_read32(hw
, B2_GP_IO
);
1222 spin_unlock_bh(&hw
->phy_lock
);
1224 /* Enable GMII interfac */
1225 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1227 bcom_phy_init(skge
, jumbo
);
1229 /* Set Station Address */
1230 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1232 /* We don't use match addresses so clear */
1233 for (i
= 1; i
< 16; i
++)
1234 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1236 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1237 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1239 /* We don't need the FCS appended to the packet. */
1240 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1242 r
|= XM_RX_BIG_PK_OK
;
1244 if (skge
->duplex
== DUPLEX_HALF
) {
1246 * If in manual half duplex mode the other side might be in
1247 * full duplex mode, so ignore if a carrier extension is not seen
1248 * on frames received
1250 r
|= XM_RX_DIS_CEXT
;
1252 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1255 /* We want short frames padded to 60 bytes. */
1256 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1259 * Bump up the transmit threshold. This helps hold off transmit
1260 * underruns when we're blasting traffic from both ports at once.
1262 xm_write16(hw
, port
, XM_TX_THR
, 512);
1265 * Enable the reception of all error frames. This is is
1266 * a necessary evil due to the design of the XMAC. The
1267 * XMAC's receive FIFO is only 8K in size, however jumbo
1268 * frames can be up to 9000 bytes in length. When bad
1269 * frame filtering is enabled, the XMAC's RX FIFO operates
1270 * in 'store and forward' mode. For this to work, the
1271 * entire frame has to fit into the FIFO, but that means
1272 * that jumbo frames larger than 8192 bytes will be
1273 * truncated. Disabling all bad frame filtering causes
1274 * the RX FIFO to operate in streaming mode, in which
1275 * case the XMAC will start transfering frames out of the
1276 * RX FIFO as soon as the FIFO threshold is reached.
1278 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1282 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1283 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1284 * and 'Octets Rx OK Hi Cnt Ov'.
1286 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1289 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1290 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1291 * and 'Octets Tx OK Hi Cnt Ov'.
1293 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1295 /* Configure MAC arbiter */
1296 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1298 /* configure timeout values */
1299 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1300 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1301 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1302 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1304 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1305 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1306 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1307 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1309 /* Configure Rx MAC FIFO */
1310 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1311 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1312 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1314 /* Configure Tx MAC FIFO */
1315 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1316 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1317 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1320 /* Enable frame flushing if jumbo frames used */
1321 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1323 /* enable timeout timers if normal frames */
1324 skge_write16(hw
, B3_PA_CTRL
,
1325 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1329 static void genesis_stop(struct skge_port
*skge
)
1331 struct skge_hw
*hw
= skge
->hw
;
1332 int port
= skge
->port
;
1335 /* Clear Tx packet arbiter timeout IRQ */
1336 skge_write16(hw
, B3_PA_CTRL
,
1337 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1340 * If the transfer stucks at the MAC the STOP command will not
1341 * terminate if we don't flush the XMAC's transmit FIFO !
1343 xm_write32(hw
, port
, XM_MODE
,
1344 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1348 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1350 /* For external PHYs there must be special handling */
1351 reg
= skge_read32(hw
, B2_GP_IO
);
1359 skge_write32(hw
, B2_GP_IO
, reg
);
1360 skge_read32(hw
, B2_GP_IO
);
1362 xm_write16(hw
, port
, XM_MMU_CMD
,
1363 xm_read16(hw
, port
, XM_MMU_CMD
)
1364 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1366 xm_read16(hw
, port
, XM_MMU_CMD
);
1370 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1372 struct skge_hw
*hw
= skge
->hw
;
1373 int port
= skge
->port
;
1375 unsigned long timeout
= jiffies
+ HZ
;
1377 xm_write16(hw
, port
,
1378 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1380 /* wait for update to complete */
1381 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1382 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1383 if (time_after(jiffies
, timeout
))
1388 /* special case for 64 bit octet counter */
1389 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1390 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1391 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1392 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1394 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1395 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1398 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1400 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1401 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1403 if (netif_msg_intr(skge
))
1404 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1405 skge
->netdev
->name
, status
);
1407 if (status
& XM_IS_TXF_UR
) {
1408 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1409 ++skge
->net_stats
.tx_fifo_errors
;
1411 if (status
& XM_IS_RXF_OV
) {
1412 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1413 ++skge
->net_stats
.rx_fifo_errors
;
1417 static void gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1421 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1422 gma_write16(hw
, port
, GM_SMI_CTRL
,
1423 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1424 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1427 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1432 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1436 gma_write16(hw
, port
, GM_SMI_CTRL
,
1437 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1438 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1440 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1442 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1446 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1447 hw
->dev
[port
]->name
);
1450 return gma_read16(hw
, port
, GM_SMI_DATA
);
1453 static void genesis_link_up(struct skge_port
*skge
)
1455 struct skge_hw
*hw
= skge
->hw
;
1456 int port
= skge
->port
;
1460 pr_debug("genesis_link_up\n");
1461 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1464 * enabling pause frame reception is required for 1000BT
1465 * because the XMAC is not reset if the link is going down
1467 if (skge
->flow_control
== FLOW_MODE_NONE
||
1468 skge
->flow_control
== FLOW_MODE_LOC_SEND
)
1469 /* Disable Pause Frame Reception */
1470 cmd
|= XM_MMU_IGN_PF
;
1472 /* Enable Pause Frame Reception */
1473 cmd
&= ~XM_MMU_IGN_PF
;
1475 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1477 mode
= xm_read32(hw
, port
, XM_MODE
);
1478 if (skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1479 skge
->flow_control
== FLOW_MODE_LOC_SEND
) {
1481 * Configure Pause Frame Generation
1482 * Use internal and external Pause Frame Generation.
1483 * Sending pause frames is edge triggered.
1484 * Send a Pause frame with the maximum pause time if
1485 * internal oder external FIFO full condition occurs.
1486 * Send a zero pause time frame to re-start transmission.
1488 /* XM_PAUSE_DA = '010000C28001' (default) */
1489 /* XM_MAC_PTIME = 0xffff (maximum) */
1490 /* remember this value is defined in big endian (!) */
1491 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1493 mode
|= XM_PAUSE_MODE
;
1494 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1497 * disable pause frame generation is required for 1000BT
1498 * because the XMAC is not reset if the link is going down
1500 /* Disable Pause Mode in Mode Register */
1501 mode
&= ~XM_PAUSE_MODE
;
1503 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1506 xm_write32(hw
, port
, XM_MODE
, mode
);
1509 /* disable GP0 interrupt bit for external Phy */
1510 msk
|= XM_IS_INP_ASS
;
1512 xm_write16(hw
, port
, XM_IMSK
, msk
);
1513 xm_read16(hw
, port
, XM_ISRC
);
1515 /* get MMU Command Reg. */
1516 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1517 if (skge
->duplex
== DUPLEX_FULL
)
1518 cmd
|= XM_MMU_GMII_FD
;
1521 * Workaround BCOM Errata (#10523) for all BCom Phys
1522 * Enable Power Management after link up
1524 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1525 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1526 & ~PHY_B_AC_DIS_PM
);
1527 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1530 xm_write16(hw
, port
, XM_MMU_CMD
,
1531 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1536 static inline void bcom_phy_intr(struct skge_port
*skge
)
1538 struct skge_hw
*hw
= skge
->hw
;
1539 int port
= skge
->port
;
1542 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1543 if (netif_msg_intr(skge
))
1544 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1545 skge
->netdev
->name
, isrc
);
1547 if (isrc
& PHY_B_IS_PSE
)
1548 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1549 hw
->dev
[port
]->name
);
1551 /* Workaround BCom Errata:
1552 * enable and disable loopback mode if "NO HCD" occurs.
1554 if (isrc
& PHY_B_IS_NO_HDCL
) {
1555 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1556 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1557 ctrl
| PHY_CT_LOOP
);
1558 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1559 ctrl
& ~PHY_CT_LOOP
);
1562 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1563 bcom_check_link(hw
, port
);
1567 /* Marvell Phy Initailization */
1568 static void yukon_init(struct skge_hw
*hw
, int port
)
1570 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1571 u16 ctrl
, ct1000
, adv
;
1572 u16 ledctrl
, ledover
;
1574 pr_debug("yukon_init\n");
1575 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1576 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1578 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1579 PHY_M_EC_MAC_S_MSK
);
1580 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1582 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1584 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1587 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1588 if (skge
->autoneg
== AUTONEG_DISABLE
)
1589 ctrl
&= ~PHY_CT_ANE
;
1591 ctrl
|= PHY_CT_RESET
;
1592 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1598 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1600 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1601 ct1000
|= PHY_M_1000C_AFD
;
1602 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1603 ct1000
|= PHY_M_1000C_AHD
;
1604 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1605 adv
|= PHY_M_AN_100_FD
;
1606 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1607 adv
|= PHY_M_AN_100_HD
;
1608 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1609 adv
|= PHY_M_AN_10_FD
;
1610 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1611 adv
|= PHY_M_AN_10_HD
;
1612 } else /* special defines for FIBER (88E1011S only) */
1613 adv
|= PHY_M_AN_1000X_AHD
| PHY_M_AN_1000X_AFD
;
1615 /* Set Flow-control capabilities */
1616 adv
|= phy_pause_map
[skge
->flow_control
];
1618 /* Restart Auto-negotiation */
1619 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1621 /* forced speed/duplex settings */
1622 ct1000
= PHY_M_1000C_MSE
;
1624 if (skge
->duplex
== DUPLEX_FULL
)
1625 ctrl
|= PHY_CT_DUP_MD
;
1627 switch (skge
->speed
) {
1629 ctrl
|= PHY_CT_SP1000
;
1632 ctrl
|= PHY_CT_SP100
;
1636 ctrl
|= PHY_CT_RESET
;
1639 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1641 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1642 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1644 /* Setup Phy LED's */
1645 ledctrl
= PHY_M_LED_PULS_DUR(PULS_170MS
);
1648 ledctrl
|= PHY_M_LED_BLINK_RT(BLINK_84MS
) | PHY_M_LEDC_TX_CTRL
;
1650 /* turn off the Rx LED (LED_RX) */
1651 ledover
|= PHY_M_LED_MO_RX(MO_LED_OFF
);
1653 /* disable blink mode (LED_DUPLEX) on collisions */
1654 ctrl
|= PHY_M_LEDC_DP_CTRL
;
1655 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, ledctrl
);
1657 if (skge
->autoneg
== AUTONEG_DISABLE
|| skge
->speed
== SPEED_100
) {
1658 /* turn on 100 Mbps LED (LED_LINK100) */
1659 ledover
|= PHY_M_LED_MO_100(MO_LED_ON
);
1663 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
, ledover
);
1665 /* Enable phy interrupt on autonegotiation complete (or link up) */
1666 if (skge
->autoneg
== AUTONEG_ENABLE
)
1667 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_COMPL
);
1669 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_DEF_MSK
);
1672 static void yukon_reset(struct skge_hw
*hw
, int port
)
1674 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1675 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1676 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1677 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1678 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1680 gma_write16(hw
, port
, GM_RX_CTRL
,
1681 gma_read16(hw
, port
, GM_RX_CTRL
)
1682 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1685 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1687 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1690 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1692 /* WA code for COMA mode -- set PHY reset */
1693 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1694 hw
->chip_rev
== CHIP_REV_YU_LITE_A3
)
1695 skge_write32(hw
, B2_GP_IO
,
1696 (skge_read32(hw
, B2_GP_IO
) | GP_DIR_9
| GP_IO_9
));
1699 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1700 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1702 /* WA code for COMA mode -- clear PHY reset */
1703 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1704 hw
->chip_rev
== CHIP_REV_YU_LITE_A3
)
1705 skge_write32(hw
, B2_GP_IO
,
1706 (skge_read32(hw
, B2_GP_IO
) | GP_DIR_9
)
1709 /* Set hardware config mode */
1710 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
1711 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
1712 reg
|= iscopper(hw
) ? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
1714 /* Clear GMC reset */
1715 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
1716 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
1717 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
1718 if (skge
->autoneg
== AUTONEG_DISABLE
) {
1719 reg
= GM_GPCR_AU_ALL_DIS
;
1720 gma_write16(hw
, port
, GM_GP_CTRL
,
1721 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
1723 switch (skge
->speed
) {
1725 reg
|= GM_GPCR_SPEED_1000
;
1728 reg
|= GM_GPCR_SPEED_100
;
1731 if (skge
->duplex
== DUPLEX_FULL
)
1732 reg
|= GM_GPCR_DUP_FULL
;
1734 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
1735 switch (skge
->flow_control
) {
1736 case FLOW_MODE_NONE
:
1737 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
1738 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1740 case FLOW_MODE_LOC_SEND
:
1741 /* disable Rx flow-control */
1742 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1745 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1746 skge_read16(hw
, GMAC_IRQ_SRC
);
1748 spin_lock_bh(&hw
->phy_lock
);
1749 yukon_init(hw
, port
);
1750 spin_unlock_bh(&hw
->phy_lock
);
1753 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
1754 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
1756 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
1757 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
1758 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
1760 /* transmit control */
1761 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
1763 /* receive control reg: unicast + multicast + no FCS */
1764 gma_write16(hw
, port
, GM_RX_CTRL
,
1765 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
1767 /* transmit flow control */
1768 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
1770 /* transmit parameter */
1771 gma_write16(hw
, port
, GM_TX_PARAM
,
1772 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
1773 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
1774 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
1776 /* serial mode register */
1777 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
1778 if (hw
->dev
[port
]->mtu
> 1500)
1779 reg
|= GM_SMOD_JUMBO_ENA
;
1781 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
1783 /* physical address: used for pause frames */
1784 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
1785 /* virtual address for data */
1786 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
1788 /* enable interrupt mask for counter overflows */
1789 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
1790 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
1791 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
1793 /* Initialize Mac Fifo */
1795 /* Configure Rx MAC FIFO */
1796 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
1797 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
1798 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1799 hw
->chip_rev
== CHIP_REV_YU_LITE_A3
)
1800 reg
&= ~GMF_RX_F_FL_ON
;
1801 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
1802 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
1803 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
);
1805 /* Configure Tx MAC FIFO */
1806 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
1807 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
1810 static void yukon_stop(struct skge_port
*skge
)
1812 struct skge_hw
*hw
= skge
->hw
;
1813 int port
= skge
->port
;
1815 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1816 hw
->chip_rev
== CHIP_REV_YU_LITE_A3
) {
1817 skge_write32(hw
, B2_GP_IO
,
1818 skge_read32(hw
, B2_GP_IO
) | GP_DIR_9
| GP_IO_9
);
1821 gma_write16(hw
, port
, GM_GP_CTRL
,
1822 gma_read16(hw
, port
, GM_GP_CTRL
)
1823 & ~(GM_GPCR_RX_ENA
|GM_GPCR_RX_ENA
));
1824 gma_read16(hw
, port
, GM_GP_CTRL
);
1826 /* set GPHY Control reset */
1827 gma_write32(hw
, port
, GPHY_CTRL
, GPC_RST_SET
);
1828 gma_write32(hw
, port
, GMAC_CTRL
, GMC_RST_SET
);
1831 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
1833 struct skge_hw
*hw
= skge
->hw
;
1834 int port
= skge
->port
;
1837 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
1838 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
1839 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
1840 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
1842 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1843 data
[i
] = gma_read32(hw
, port
,
1844 skge_stats
[i
].gma_offset
);
1847 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
1849 struct net_device
*dev
= hw
->dev
[port
];
1850 struct skge_port
*skge
= netdev_priv(dev
);
1851 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
1853 if (netif_msg_intr(skge
))
1854 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1857 if (status
& GM_IS_RX_FF_OR
) {
1858 ++skge
->net_stats
.rx_fifo_errors
;
1859 gma_write8(hw
, port
, RX_GMF_CTRL_T
, GMF_CLI_RX_FO
);
1861 if (status
& GM_IS_TX_FF_UR
) {
1862 ++skge
->net_stats
.tx_fifo_errors
;
1863 gma_write8(hw
, port
, TX_GMF_CTRL_T
, GMF_CLI_TX_FU
);
1868 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
1870 switch (aux
& PHY_M_PS_SPEED_MSK
) {
1871 case PHY_M_PS_SPEED_1000
:
1873 case PHY_M_PS_SPEED_100
:
1880 static void yukon_link_up(struct skge_port
*skge
)
1882 struct skge_hw
*hw
= skge
->hw
;
1883 int port
= skge
->port
;
1886 pr_debug("yukon_link_up\n");
1888 /* Enable Transmit FIFO Underrun */
1889 skge_write8(hw
, GMAC_IRQ_MSK
, GMAC_DEF_MSK
);
1891 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
1892 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
1893 reg
|= GM_GPCR_DUP_FULL
;
1896 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
1897 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1899 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_DEF_MSK
);
1903 static void yukon_link_down(struct skge_port
*skge
)
1905 struct skge_hw
*hw
= skge
->hw
;
1906 int port
= skge
->port
;
1908 pr_debug("yukon_link_down\n");
1909 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);
1910 gm_phy_write(hw
, port
, GM_GP_CTRL
,
1911 gm_phy_read(hw
, port
, GM_GP_CTRL
)
1912 & ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
));
1914 if (skge
->flow_control
== FLOW_MODE_REM_SEND
) {
1915 /* restore Asymmetric Pause bit */
1916 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
1917 gm_phy_read(hw
, port
,
1923 yukon_reset(hw
, port
);
1924 skge_link_down(skge
);
1926 yukon_init(hw
, port
);
1929 static void yukon_phy_intr(struct skge_port
*skge
)
1931 struct skge_hw
*hw
= skge
->hw
;
1932 int port
= skge
->port
;
1933 const char *reason
= NULL
;
1934 u16 istatus
, phystat
;
1936 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
1937 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
1939 if (netif_msg_intr(skge
))
1940 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
1941 skge
->netdev
->name
, istatus
, phystat
);
1943 if (istatus
& PHY_M_IS_AN_COMPL
) {
1944 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
1946 reason
= "remote fault";
1950 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
1951 reason
= "master/slave fault";
1955 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
1956 reason
= "speed/duplex";
1960 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
1961 ? DUPLEX_FULL
: DUPLEX_HALF
;
1962 skge
->speed
= yukon_speed(hw
, phystat
);
1964 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1965 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
1966 case PHY_M_PS_PAUSE_MSK
:
1967 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1969 case PHY_M_PS_RX_P_EN
:
1970 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1972 case PHY_M_PS_TX_P_EN
:
1973 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1976 skge
->flow_control
= FLOW_MODE_NONE
;
1979 if (skge
->flow_control
== FLOW_MODE_NONE
||
1980 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
1981 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
1983 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
1984 yukon_link_up(skge
);
1988 if (istatus
& PHY_M_IS_LSP_CHANGE
)
1989 skge
->speed
= yukon_speed(hw
, phystat
);
1991 if (istatus
& PHY_M_IS_DUP_CHANGE
)
1992 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
1993 if (istatus
& PHY_M_IS_LST_CHANGE
) {
1994 if (phystat
& PHY_M_PS_LINK_UP
)
1995 yukon_link_up(skge
);
1997 yukon_link_down(skge
);
2001 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2002 skge
->netdev
->name
, reason
);
2004 /* XXX restart autonegotiation? */
2007 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2013 end
= start
+ len
- 1;
2015 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2016 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2017 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2018 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2019 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2021 if (q
== Q_R1
|| q
== Q_R2
) {
2022 /* Set thresholds on receive queue's */
2023 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2025 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2028 /* Enable store & forward on Tx queue's because
2029 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2031 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2034 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2037 /* Setup Bus Memory Interface */
2038 static void skge_qset(struct skge_port
*skge
, u16 q
,
2039 const struct skge_element
*e
)
2041 struct skge_hw
*hw
= skge
->hw
;
2042 u32 watermark
= 0x600;
2043 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2045 /* optimization to reduce window on 32bit/33mhz */
2046 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2049 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2050 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2051 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2052 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2055 static int skge_up(struct net_device
*dev
)
2057 struct skge_port
*skge
= netdev_priv(dev
);
2058 struct skge_hw
*hw
= skge
->hw
;
2059 int port
= skge
->port
;
2060 u32 chunk
, ram_addr
;
2061 size_t rx_size
, tx_size
;
2064 if (netif_msg_ifup(skge
))
2065 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2067 if (dev
->mtu
> RX_BUF_SIZE
)
2068 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
+ NET_IP_ALIGN
;
2070 skge
->rx_buf_size
= RX_BUF_SIZE
;
2073 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2074 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2075 skge
->mem_size
= tx_size
+ rx_size
;
2076 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2080 memset(skge
->mem
, 0, skge
->mem_size
);
2082 if ((err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
)))
2085 err
= skge_rx_fill(skge
);
2089 if ((err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2090 skge
->dma
+ rx_size
)))
2093 skge
->tx_avail
= skge
->tx_ring
.count
- 1;
2095 /* Enable IRQ from port */
2096 hw
->intr_mask
|= portirqmask
[port
];
2097 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2100 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2101 genesis_mac_init(hw
, port
);
2103 yukon_mac_init(hw
, port
);
2105 /* Configure RAMbuffers */
2106 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2107 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2109 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2110 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2112 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2113 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2114 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2116 /* Start receiver BMU */
2118 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2120 pr_debug("skge_up completed\n");
2124 skge_rx_clean(skge
);
2125 kfree(skge
->rx_ring
.start
);
2127 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2132 static int skge_down(struct net_device
*dev
)
2134 struct skge_port
*skge
= netdev_priv(dev
);
2135 struct skge_hw
*hw
= skge
->hw
;
2136 int port
= skge
->port
;
2138 if (netif_msg_ifdown(skge
))
2139 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2141 netif_stop_queue(dev
);
2143 del_timer_sync(&skge
->led_blink
);
2145 /* Stop transmitter */
2146 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2147 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2148 RB_RST_SET
|RB_DIS_OP_MD
);
2150 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2155 /* Disable Force Sync bit and Enable Alloc bit */
2156 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2157 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2159 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2160 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2161 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2163 /* Reset PCI FIFO */
2164 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2165 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2167 /* Reset the RAM Buffer async Tx queue */
2168 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2170 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2171 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2172 RB_RST_SET
|RB_DIS_OP_MD
);
2173 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2175 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2176 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2177 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2178 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_STOP
);
2179 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_STOP
);
2181 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2182 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2185 /* turn off led's */
2186 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
2188 skge_tx_clean(skge
);
2189 skge_rx_clean(skge
);
2191 kfree(skge
->rx_ring
.start
);
2192 kfree(skge
->tx_ring
.start
);
2193 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2197 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2199 struct skge_port
*skge
= netdev_priv(dev
);
2200 struct skge_hw
*hw
= skge
->hw
;
2201 struct skge_ring
*ring
= &skge
->tx_ring
;
2202 struct skge_element
*e
;
2203 struct skge_tx_desc
*td
;
2207 unsigned long flags
;
2209 skb
= skb_padto(skb
, ETH_ZLEN
);
2211 return NETDEV_TX_OK
;
2213 local_irq_save(flags
);
2214 if (!spin_trylock(&skge
->tx_lock
)) {
2215 /* Collision - tell upper layer to requeue */
2216 local_irq_restore(flags
);
2217 return NETDEV_TX_LOCKED
;
2220 if (unlikely(skge
->tx_avail
< skb_shinfo(skb
)->nr_frags
+1)) {
2221 netif_stop_queue(dev
);
2222 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2224 printk(KERN_WARNING PFX
"%s: ring full when queue awake!\n",
2226 return NETDEV_TX_BUSY
;
2232 len
= skb_headlen(skb
);
2233 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2234 pci_unmap_addr_set(e
, mapaddr
, map
);
2235 pci_unmap_len_set(e
, maplen
, len
);
2238 td
->dma_hi
= map
>> 32;
2240 if (skb
->ip_summed
== CHECKSUM_HW
) {
2241 const struct iphdr
*ip
2242 = (const struct iphdr
*) (skb
->data
+ ETH_HLEN
);
2243 int offset
= skb
->h
.raw
- skb
->data
;
2245 /* This seems backwards, but it is what the sk98lin
2246 * does. Looks like hardware is wrong?
2248 if (ip
->protocol
== IPPROTO_UDP
2249 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2250 control
= BMU_TCP_CHECK
;
2252 control
= BMU_UDP_CHECK
;
2255 td
->csum_start
= offset
;
2256 td
->csum_write
= offset
+ skb
->csum
;
2258 control
= BMU_CHECK
;
2260 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2261 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2263 struct skge_tx_desc
*tf
= td
;
2265 control
|= BMU_STFWD
;
2266 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2267 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2269 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2270 frag
->size
, PCI_DMA_TODEVICE
);
2276 tf
->dma_hi
= (u64
) map
>> 32;
2277 pci_unmap_addr_set(e
, mapaddr
, map
);
2278 pci_unmap_len_set(e
, maplen
, frag
->size
);
2280 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2282 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2284 /* Make sure all the descriptors written */
2286 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2289 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2291 if (netif_msg_tx_queued(skge
))
2292 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2293 dev
->name
, e
- ring
->start
, skb
->len
);
2295 ring
->to_use
= e
->next
;
2296 skge
->tx_avail
-= skb_shinfo(skb
)->nr_frags
+ 1;
2297 if (skge
->tx_avail
<= MAX_SKB_FRAGS
+ 1) {
2298 pr_debug("%s: transmit queue full\n", dev
->name
);
2299 netif_stop_queue(dev
);
2302 dev
->trans_start
= jiffies
;
2303 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2305 return NETDEV_TX_OK
;
2308 static inline void skge_tx_free(struct skge_hw
*hw
, struct skge_element
*e
)
2310 /* This ring element can be skb or fragment */
2312 pci_unmap_single(hw
->pdev
,
2313 pci_unmap_addr(e
, mapaddr
),
2314 pci_unmap_len(e
, maplen
),
2316 dev_kfree_skb_any(e
->skb
);
2319 pci_unmap_page(hw
->pdev
,
2320 pci_unmap_addr(e
, mapaddr
),
2321 pci_unmap_len(e
, maplen
),
2326 static void skge_tx_clean(struct skge_port
*skge
)
2328 struct skge_ring
*ring
= &skge
->tx_ring
;
2329 struct skge_element
*e
;
2330 unsigned long flags
;
2332 spin_lock_irqsave(&skge
->tx_lock
, flags
);
2333 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
2335 skge_tx_free(skge
->hw
, e
);
2338 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2341 static void skge_tx_timeout(struct net_device
*dev
)
2343 struct skge_port
*skge
= netdev_priv(dev
);
2345 if (netif_msg_timer(skge
))
2346 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2348 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2349 skge_tx_clean(skge
);
2352 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2355 int running
= netif_running(dev
);
2357 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2370 static void genesis_set_multicast(struct net_device
*dev
)
2372 struct skge_port
*skge
= netdev_priv(dev
);
2373 struct skge_hw
*hw
= skge
->hw
;
2374 int port
= skge
->port
;
2375 int i
, count
= dev
->mc_count
;
2376 struct dev_mc_list
*list
= dev
->mc_list
;
2380 pr_debug("genesis_set_multicast flags=%x count=%d\n", dev
->flags
, dev
->mc_count
);
2382 mode
= xm_read32(hw
, port
, XM_MODE
);
2383 mode
|= XM_MD_ENA_HASH
;
2384 if (dev
->flags
& IFF_PROMISC
)
2385 mode
|= XM_MD_ENA_PROM
;
2387 mode
&= ~XM_MD_ENA_PROM
;
2389 if (dev
->flags
& IFF_ALLMULTI
)
2390 memset(filter
, 0xff, sizeof(filter
));
2392 memset(filter
, 0, sizeof(filter
));
2393 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
) {
2395 crc
= ether_crc_le(ETH_ALEN
, list
->dmi_addr
);
2397 filter
[bit
/8] |= 1 << (bit
%8);
2401 xm_write32(hw
, port
, XM_MODE
, mode
);
2402 xm_outhash(hw
, port
, XM_HSM
, filter
);
2405 static void yukon_set_multicast(struct net_device
*dev
)
2407 struct skge_port
*skge
= netdev_priv(dev
);
2408 struct skge_hw
*hw
= skge
->hw
;
2409 int port
= skge
->port
;
2410 struct dev_mc_list
*list
= dev
->mc_list
;
2414 memset(filter
, 0, sizeof(filter
));
2416 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2417 reg
|= GM_RXCR_UCF_ENA
;
2419 if (dev
->flags
& IFF_PROMISC
) /* promiscious */
2420 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2421 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2422 memset(filter
, 0xff, sizeof(filter
));
2423 else if (dev
->mc_count
== 0) /* no multicast */
2424 reg
&= ~GM_RXCR_MCF_ENA
;
2427 reg
|= GM_RXCR_MCF_ENA
;
2429 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
) {
2430 u32 bit
= ether_crc(ETH_ALEN
, list
->dmi_addr
) & 0x3f;
2431 filter
[bit
/8] |= 1 << (bit
%8);
2436 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2437 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2438 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2439 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2440 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2441 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2442 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2443 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2445 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2448 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2450 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2451 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2453 return (status
& GMR_FS_ANY_ERR
) ||
2454 (status
& GMR_FS_RX_OK
) == 0;
2457 static void skge_rx_error(struct skge_port
*skge
, int slot
,
2458 u32 control
, u32 status
)
2460 if (netif_msg_rx_err(skge
))
2461 printk(KERN_DEBUG PFX
"%s: rx err, slot %d control 0x%x status 0x%x\n",
2462 skge
->netdev
->name
, slot
, control
, status
);
2464 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2465 skge
->net_stats
.rx_length_errors
++;
2466 else if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2467 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2468 skge
->net_stats
.rx_length_errors
++;
2469 if (status
& XMR_FS_FRA_ERR
)
2470 skge
->net_stats
.rx_frame_errors
++;
2471 if (status
& XMR_FS_FCS_ERR
)
2472 skge
->net_stats
.rx_crc_errors
++;
2474 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
2475 skge
->net_stats
.rx_length_errors
++;
2476 if (status
& GMR_FS_FRAGMENT
)
2477 skge
->net_stats
.rx_frame_errors
++;
2478 if (status
& GMR_FS_CRC_ERR
)
2479 skge
->net_stats
.rx_crc_errors
++;
2483 /* Get receive buffer from descriptor.
2484 * Handles copy of small buffers and reallocation failures
2486 static inline struct sk_buff
*skge_rx_get(struct skge_port
*skge
,
2487 struct skge_element
*e
,
2490 struct sk_buff
*nskb
, *skb
;
2492 if (len
< RX_COPY_THRESHOLD
) {
2493 nskb
= skge_rx_alloc(skge
->netdev
, len
+ NET_IP_ALIGN
);
2494 if (unlikely(!nskb
))
2497 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2498 pci_unmap_addr(e
, mapaddr
),
2499 len
, PCI_DMA_FROMDEVICE
);
2500 memcpy(nskb
->data
, e
->skb
->data
, len
);
2501 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2502 pci_unmap_addr(e
, mapaddr
),
2503 len
, PCI_DMA_FROMDEVICE
);
2505 if (skge
->rx_csum
) {
2506 struct skge_rx_desc
*rd
= e
->desc
;
2507 nskb
->csum
= le16_to_cpu(rd
->csum2
);
2508 nskb
->ip_summed
= CHECKSUM_HW
;
2510 skge_rx_reuse(e
, skge
->rx_buf_size
);
2513 nskb
= skge_rx_alloc(skge
->netdev
, skge
->rx_buf_size
);
2514 if (unlikely(!nskb
))
2517 pci_unmap_single(skge
->hw
->pdev
,
2518 pci_unmap_addr(e
, mapaddr
),
2519 pci_unmap_len(e
, maplen
),
2520 PCI_DMA_FROMDEVICE
);
2522 if (skge
->rx_csum
) {
2523 struct skge_rx_desc
*rd
= e
->desc
;
2524 skb
->csum
= le16_to_cpu(rd
->csum2
);
2525 skb
->ip_summed
= CHECKSUM_HW
;
2528 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2534 static int skge_poll(struct net_device
*dev
, int *budget
)
2536 struct skge_port
*skge
= netdev_priv(dev
);
2537 struct skge_hw
*hw
= skge
->hw
;
2538 struct skge_ring
*ring
= &skge
->rx_ring
;
2539 struct skge_element
*e
;
2540 unsigned int to_do
= min(dev
->quota
, *budget
);
2541 unsigned int work_done
= 0;
2543 pr_debug("skge_poll\n");
2545 for (e
= ring
->to_clean
; work_done
< to_do
; e
= e
->next
) {
2546 struct skge_rx_desc
*rd
= e
->desc
;
2547 struct sk_buff
*skb
;
2548 u32 control
, len
, status
;
2551 control
= rd
->control
;
2552 if (control
& BMU_OWN
)
2555 len
= control
& BMU_BBC
;
2556 status
= rd
->status
;
2558 if (unlikely((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
)
2559 || bad_phy_status(hw
, status
))) {
2560 skge_rx_error(skge
, e
- ring
->start
, control
, status
);
2561 skge_rx_reuse(e
, skge
->rx_buf_size
);
2565 if (netif_msg_rx_status(skge
))
2566 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2567 dev
->name
, e
- ring
->start
, rd
->status
, len
);
2569 skb
= skge_rx_get(skge
, e
, len
);
2572 skb
->protocol
= eth_type_trans(skb
, dev
);
2574 dev
->last_rx
= jiffies
;
2575 netif_receive_skb(skb
);
2579 skge_rx_reuse(e
, skge
->rx_buf_size
);
2583 /* restart receiver */
2585 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
),
2586 CSR_START
| CSR_IRQ_CL_F
);
2588 *budget
-= work_done
;
2589 dev
->quota
-= work_done
;
2591 if (work_done
>= to_do
)
2592 return 1; /* not done */
2594 local_irq_disable();
2595 __netif_rx_complete(dev
);
2596 hw
->intr_mask
|= portirqmask
[skge
->port
];
2597 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2602 static inline void skge_tx_intr(struct net_device
*dev
)
2604 struct skge_port
*skge
= netdev_priv(dev
);
2605 struct skge_hw
*hw
= skge
->hw
;
2606 struct skge_ring
*ring
= &skge
->tx_ring
;
2607 struct skge_element
*e
;
2609 spin_lock(&skge
->tx_lock
);
2610 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
2611 struct skge_tx_desc
*td
= e
->desc
;
2615 control
= td
->control
;
2616 if (control
& BMU_OWN
)
2619 if (unlikely(netif_msg_tx_done(skge
)))
2620 printk(KERN_DEBUG PFX
"%s: tx done slot %td status 0x%x\n",
2621 dev
->name
, e
- ring
->start
, td
->status
);
2623 skge_tx_free(hw
, e
);
2628 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
2630 if (skge
->tx_avail
> MAX_SKB_FRAGS
+ 1)
2631 netif_wake_queue(dev
);
2633 spin_unlock(&skge
->tx_lock
);
2636 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
2638 printk(KERN_ERR PFX
"%s: mac data parity error\n",
2639 hw
->dev
[port
] ? hw
->dev
[port
]->name
2640 : (port
== 0 ? "(port A)": "(port B"));
2642 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2643 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
2646 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2647 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
2648 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
2649 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
2652 static void skge_pci_clear(struct skge_hw
*hw
)
2656 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &status
);
2657 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
2658 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
2659 status
| PCI_STATUS_ERROR_BITS
);
2660 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
2663 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
2665 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2666 genesis_mac_intr(hw
, port
);
2668 yukon_mac_intr(hw
, port
);
2671 /* Handle device specific framing and timeout interrupts */
2672 static void skge_error_irq(struct skge_hw
*hw
)
2674 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2676 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2677 /* clear xmac errors */
2678 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
2679 skge_write16(hw
, SK_REG(0, RX_MFF_CTRL1
), MFF_CLR_INSTAT
);
2680 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
2681 skge_write16(hw
, SK_REG(0, RX_MFF_CTRL2
), MFF_CLR_INSTAT
);
2683 /* Timestamp (unused) overflow */
2684 if (hwstatus
& IS_IRQ_TIST_OV
)
2685 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
2687 if (hwstatus
& IS_IRQ_SENSOR
) {
2688 /* no sensors on 32-bit Yukon */
2689 if (!(skge_read16(hw
, B0_CTST
) & CS_BUS_SLOT_SZ
)) {
2690 printk(KERN_ERR PFX
"ignoring bogus sensor interrups\n");
2691 skge_write32(hw
, B0_HWE_IMSK
,
2692 IS_ERR_MSK
& ~IS_IRQ_SENSOR
);
2694 printk(KERN_WARNING PFX
"sensor interrupt\n");
2700 if (hwstatus
& IS_RAM_RD_PAR
) {
2701 printk(KERN_ERR PFX
"Ram read data parity error\n");
2702 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
2705 if (hwstatus
& IS_RAM_WR_PAR
) {
2706 printk(KERN_ERR PFX
"Ram write data parity error\n");
2707 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
2710 if (hwstatus
& IS_M1_PAR_ERR
)
2711 skge_mac_parity(hw
, 0);
2713 if (hwstatus
& IS_M2_PAR_ERR
)
2714 skge_mac_parity(hw
, 1);
2716 if (hwstatus
& IS_R1_PAR_ERR
)
2717 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
2719 if (hwstatus
& IS_R2_PAR_ERR
)
2720 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
2722 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
2723 printk(KERN_ERR PFX
"hardware error detected (status 0x%x)\n",
2728 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2729 if (hwstatus
& IS_IRQ_STAT
) {
2730 printk(KERN_WARNING PFX
"IRQ status %x: still set ignoring hardware errors\n",
2732 hw
->intr_mask
&= ~IS_HW_ERR
;
2738 * Interrrupt from PHY are handled in tasklet (soft irq)
2739 * because accessing phy registers requires spin wait which might
2740 * cause excess interrupt latency.
2742 static void skge_extirq(unsigned long data
)
2744 struct skge_hw
*hw
= (struct skge_hw
*) data
;
2747 spin_lock(&hw
->phy_lock
);
2748 for (port
= 0; port
< 2; port
++) {
2749 struct net_device
*dev
= hw
->dev
[port
];
2751 if (dev
&& netif_running(dev
)) {
2752 struct skge_port
*skge
= netdev_priv(dev
);
2754 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
2755 yukon_phy_intr(skge
);
2757 bcom_phy_intr(skge
);
2760 spin_unlock(&hw
->phy_lock
);
2762 local_irq_disable();
2763 hw
->intr_mask
|= IS_EXT_REG
;
2764 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2768 static irqreturn_t
skge_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
2770 struct skge_hw
*hw
= dev_id
;
2771 u32 status
= skge_read32(hw
, B0_SP_ISRC
);
2773 if (status
== 0 || status
== ~0) /* hotplug or shared irq */
2776 status
&= hw
->intr_mask
;
2777 if (status
& IS_R1_F
) {
2778 hw
->intr_mask
&= ~IS_R1_F
;
2779 netif_rx_schedule(hw
->dev
[0]);
2782 if (status
& IS_R2_F
) {
2783 hw
->intr_mask
&= ~IS_R2_F
;
2784 netif_rx_schedule(hw
->dev
[1]);
2787 if (status
& IS_XA1_F
)
2788 skge_tx_intr(hw
->dev
[0]);
2790 if (status
& IS_XA2_F
)
2791 skge_tx_intr(hw
->dev
[1]);
2793 if (status
& IS_PA_TO_RX1
) {
2794 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
2795 ++skge
->net_stats
.rx_over_errors
;
2796 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
2799 if (status
& IS_PA_TO_RX2
) {
2800 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
2801 ++skge
->net_stats
.rx_over_errors
;
2802 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
2805 if (status
& IS_PA_TO_TX1
)
2806 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
2808 if (status
& IS_PA_TO_TX2
)
2809 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
2811 if (status
& IS_MAC1
)
2812 skge_mac_intr(hw
, 0);
2814 if (status
& IS_MAC2
)
2815 skge_mac_intr(hw
, 1);
2817 if (status
& IS_HW_ERR
)
2820 if (status
& IS_EXT_REG
) {
2821 hw
->intr_mask
&= ~IS_EXT_REG
;
2822 tasklet_schedule(&hw
->ext_tasklet
);
2825 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2830 #ifdef CONFIG_NET_POLL_CONTROLLER
2831 static void skge_netpoll(struct net_device
*dev
)
2833 struct skge_port
*skge
= netdev_priv(dev
);
2835 disable_irq(dev
->irq
);
2836 skge_intr(dev
->irq
, skge
->hw
, NULL
);
2837 enable_irq(dev
->irq
);
2841 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
2843 struct skge_port
*skge
= netdev_priv(dev
);
2844 struct sockaddr
*addr
= p
;
2847 if (!is_valid_ether_addr(addr
->sa_data
))
2848 return -EADDRNOTAVAIL
;
2851 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
2852 memcpy_toio(skge
->hw
->regs
+ B2_MAC_1
+ skge
->port
*8,
2853 dev
->dev_addr
, ETH_ALEN
);
2854 memcpy_toio(skge
->hw
->regs
+ B2_MAC_2
+ skge
->port
*8,
2855 dev
->dev_addr
, ETH_ALEN
);
2856 if (dev
->flags
& IFF_UP
)
2861 static const struct {
2865 { CHIP_ID_GENESIS
, "Genesis" },
2866 { CHIP_ID_YUKON
, "Yukon" },
2867 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
2868 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
2871 static const char *skge_board_name(const struct skge_hw
*hw
)
2874 static char buf
[16];
2876 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
2877 if (skge_chips
[i
].id
== hw
->chip_id
)
2878 return skge_chips
[i
].name
;
2880 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
2886 * Setup the board data structure, but don't bring up
2889 static int skge_reset(struct skge_hw
*hw
)
2895 ctst
= skge_read16(hw
, B0_CTST
);
2898 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
2899 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
2901 /* clear PCI errors, if any */
2904 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
2906 /* restore CLK_RUN bits (for Yukon-Lite) */
2907 skge_write16(hw
, B0_CTST
,
2908 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
2910 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
2911 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
2912 hw
->pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
2914 switch (hw
->chip_id
) {
2915 case CHIP_ID_GENESIS
:
2916 switch (hw
->phy_type
) {
2918 hw
->phy_addr
= PHY_ADDR_BCOM
;
2921 printk(KERN_ERR PFX
"%s: unsupported phy type 0x%x\n",
2922 pci_name(hw
->pdev
), hw
->phy_type
);
2928 case CHIP_ID_YUKON_LITE
:
2929 case CHIP_ID_YUKON_LP
:
2930 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& hw
->pmd_type
!= 'S')
2931 hw
->phy_type
= SK_PHY_MARV_COPPER
;
2933 hw
->phy_addr
= PHY_ADDR_MARV
;
2935 hw
->phy_type
= SK_PHY_MARV_FIBER
;
2940 printk(KERN_ERR PFX
"%s: unsupported chip type 0x%x\n",
2941 pci_name(hw
->pdev
), hw
->chip_id
);
2945 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
2946 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
2947 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
2949 /* read the adapters RAM size */
2950 t8
= skge_read8(hw
, B2_E_0
);
2951 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2953 /* special case: 4 x 64k x 36, offset = 0x80000 */
2954 hw
->ram_size
= 0x100000;
2955 hw
->ram_offset
= 0x80000;
2957 hw
->ram_size
= t8
* 512;
2960 hw
->ram_size
= 0x20000;
2962 hw
->ram_size
= t8
* 4096;
2964 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2967 /* switch power to VCC (WA for VAUX problem) */
2968 skge_write8(hw
, B0_POWER_CTRL
,
2969 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
2970 for (i
= 0; i
< hw
->ports
; i
++) {
2971 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
2972 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
2976 /* turn off hardware timer (unused) */
2977 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
2978 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
2979 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
2981 /* enable the Tx Arbiters */
2982 for (i
= 0; i
< hw
->ports
; i
++)
2983 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
2985 /* Initialize ram interface */
2986 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
2988 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
2989 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
2990 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
2991 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
2992 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
2993 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
2994 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
2995 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
2996 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
2997 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
2998 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
2999 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3001 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3003 /* Set interrupt moderation for Transmit only
3004 * Receive interrupts avoided by NAPI
3006 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3007 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3008 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3010 hw
->intr_mask
= IS_HW_ERR
| IS_EXT_REG
;
3011 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3013 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3014 skge_write8(hw
, GMAC_IRQ_MSK
, 0);
3016 spin_lock_bh(&hw
->phy_lock
);
3017 for (i
= 0; i
< hw
->ports
; i
++) {
3018 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3019 genesis_reset(hw
, i
);
3023 spin_unlock_bh(&hw
->phy_lock
);
3028 /* Initialize network device */
3029 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3032 struct skge_port
*skge
;
3033 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3036 printk(KERN_ERR
"skge etherdev alloc failed");
3040 SET_MODULE_OWNER(dev
);
3041 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3042 dev
->open
= skge_up
;
3043 dev
->stop
= skge_down
;
3044 dev
->hard_start_xmit
= skge_xmit_frame
;
3045 dev
->get_stats
= skge_get_stats
;
3046 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3047 dev
->set_multicast_list
= genesis_set_multicast
;
3049 dev
->set_multicast_list
= yukon_set_multicast
;
3051 dev
->set_mac_address
= skge_set_mac_address
;
3052 dev
->change_mtu
= skge_change_mtu
;
3053 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3054 dev
->tx_timeout
= skge_tx_timeout
;
3055 dev
->watchdog_timeo
= TX_WATCHDOG
;
3056 dev
->poll
= skge_poll
;
3057 dev
->weight
= NAPI_WEIGHT
;
3058 #ifdef CONFIG_NET_POLL_CONTROLLER
3059 dev
->poll_controller
= skge_netpoll
;
3061 dev
->irq
= hw
->pdev
->irq
;
3062 dev
->features
= NETIF_F_LLTX
;
3064 dev
->features
|= NETIF_F_HIGHDMA
;
3066 skge
= netdev_priv(dev
);
3069 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3070 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3071 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3073 /* Auto speed and flow control */
3074 skge
->autoneg
= AUTONEG_ENABLE
;
3075 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
3078 skge
->advertising
= skge_supported_modes(hw
);
3080 hw
->dev
[port
] = dev
;
3084 spin_lock_init(&skge
->tx_lock
);
3086 init_timer(&skge
->led_blink
);
3087 skge
->led_blink
.function
= skge_blink_timer
;
3088 skge
->led_blink
.data
= (unsigned long) skge
;
3090 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3091 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3095 /* read the mac address */
3096 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3098 /* device is off until link detection */
3099 netif_carrier_off(dev
);
3100 netif_stop_queue(dev
);
3105 static void __devinit
skge_show_addr(struct net_device
*dev
)
3107 const struct skge_port
*skge
= netdev_priv(dev
);
3109 if (netif_msg_probe(skge
))
3110 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3112 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3113 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3116 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3117 const struct pci_device_id
*ent
)
3119 struct net_device
*dev
, *dev1
;
3121 int err
, using_dac
= 0;
3123 if ((err
= pci_enable_device(pdev
))) {
3124 printk(KERN_ERR PFX
"%s cannot enable PCI device\n",
3129 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
3130 printk(KERN_ERR PFX
"%s cannot obtain PCI resources\n",
3132 goto err_out_disable_pdev
;
3135 pci_set_master(pdev
);
3137 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)))
3139 else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3140 printk(KERN_ERR PFX
"%s no usable DMA configuration\n",
3142 goto err_out_free_regions
;
3146 /* byte swap decriptors in hardware */
3150 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3151 reg
|= PCI_REV_DESC
;
3152 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3157 hw
= kmalloc(sizeof(*hw
), GFP_KERNEL
);
3159 printk(KERN_ERR PFX
"%s: cannot allocate hardware struct\n",
3161 goto err_out_free_regions
;
3164 memset(hw
, 0, sizeof(*hw
));
3166 spin_lock_init(&hw
->phy_lock
);
3167 tasklet_init(&hw
->ext_tasklet
, skge_extirq
, (unsigned long) hw
);
3169 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3171 printk(KERN_ERR PFX
"%s: cannot map device registers\n",
3173 goto err_out_free_hw
;
3176 if ((err
= request_irq(pdev
->irq
, skge_intr
, SA_SHIRQ
, DRV_NAME
, hw
))) {
3177 printk(KERN_ERR PFX
"%s: cannot assign irq %d\n",
3178 pci_name(pdev
), pdev
->irq
);
3179 goto err_out_iounmap
;
3181 pci_set_drvdata(pdev
, hw
);
3183 err
= skge_reset(hw
);
3185 goto err_out_free_irq
;
3187 printk(KERN_INFO PFX
"addr 0x%lx irq %d chip %s rev %d\n",
3188 pci_resource_start(pdev
, 0), pdev
->irq
,
3189 skge_board_name(hw
), hw
->chip_rev
);
3191 if ((dev
= skge_devinit(hw
, 0, using_dac
)) == NULL
)
3192 goto err_out_led_off
;
3194 if ((err
= register_netdev(dev
))) {
3195 printk(KERN_ERR PFX
"%s: cannot register net device\n",
3197 goto err_out_free_netdev
;
3200 skge_show_addr(dev
);
3202 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3203 if (register_netdev(dev1
) == 0)
3204 skge_show_addr(dev1
);
3206 /* Failure to register second port need not be fatal */
3207 printk(KERN_WARNING PFX
"register of second port failed\n");
3215 err_out_free_netdev
:
3218 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3220 free_irq(pdev
->irq
, hw
);
3225 err_out_free_regions
:
3226 pci_release_regions(pdev
);
3227 err_out_disable_pdev
:
3228 pci_disable_device(pdev
);
3229 pci_set_drvdata(pdev
, NULL
);
3234 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3236 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3237 struct net_device
*dev0
, *dev1
;
3242 if ((dev1
= hw
->dev
[1]))
3243 unregister_netdev(dev1
);
3245 unregister_netdev(dev0
);
3247 tasklet_kill(&hw
->ext_tasklet
);
3249 free_irq(pdev
->irq
, hw
);
3250 pci_release_regions(pdev
);
3251 pci_disable_device(pdev
);
3255 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3258 pci_set_drvdata(pdev
, NULL
);
3262 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3264 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3267 for (i
= 0; i
< 2; i
++) {
3268 struct net_device
*dev
= hw
->dev
[i
];
3271 struct skge_port
*skge
= netdev_priv(dev
);
3272 if (netif_running(dev
)) {
3273 netif_carrier_off(dev
);
3276 netif_device_detach(dev
);
3281 pci_save_state(pdev
);
3282 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3283 pci_disable_device(pdev
);
3284 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3289 static int skge_resume(struct pci_dev
*pdev
)
3291 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3294 pci_set_power_state(pdev
, PCI_D0
);
3295 pci_restore_state(pdev
);
3296 pci_enable_wake(pdev
, PCI_D0
, 0);
3300 for (i
= 0; i
< 2; i
++) {
3301 struct net_device
*dev
= hw
->dev
[i
];
3303 netif_device_attach(dev
);
3304 if (netif_running(dev
))
3312 static struct pci_driver skge_driver
= {
3314 .id_table
= skge_id_table
,
3315 .probe
= skge_probe
,
3316 .remove
= __devexit_p(skge_remove
),
3318 .suspend
= skge_suspend
,
3319 .resume
= skge_resume
,
3323 static int __init
skge_init_module(void)
3325 return pci_module_init(&skge_driver
);
3328 static void __exit
skge_cleanup_module(void)
3330 pci_unregister_driver(&skge_driver
);
3333 module_init(skge_init_module
);
3334 module_exit(skge_cleanup_module
);