powerpc: Improve (in|out)_[bl]eXX() asm code
[linux-2.6/verdex.git] / arch / ppc / 8260_io / fcc_enet.c
blobd38b57e24ceefc94b29d9a82cde473dac6dd86f2
1 /*
2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/spinlock.h>
38 #include <linux/mii.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <asm/immap_cpm2.h>
43 #include <asm/pgtable.h>
44 #include <asm/mpc8260.h>
45 #include <asm/irq.h>
46 #include <asm/uaccess.h>
47 #include <asm/signal.h>
49 /* We can't use the PHY interrupt if we aren't using MDIO. */
50 #if !defined(CONFIG_USE_MDIO)
51 #undef PHY_INTERRUPT
52 #endif
54 /* If we have a PHY interrupt, we will advertise both full-duplex and half-
55 * duplex capabilities. If we don't have a PHY interrupt, then we will only
56 * advertise half-duplex capabilities.
58 #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
59 ADVERTISE_CSMA)
60 #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
61 MII_ADVERTISE_HALF)
62 #ifdef PHY_INTERRUPT
63 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
64 #else
65 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
66 #endif
67 #include <asm/cpm2.h>
69 /* The transmitter timeout
71 #define TX_TIMEOUT (2*HZ)
73 #ifdef CONFIG_USE_MDIO
74 /* Forward declarations of some structures to support different PHYs */
76 typedef struct {
77 uint mii_data;
78 void (*funct)(uint mii_reg, struct net_device *dev);
79 } phy_cmd_t;
81 typedef struct {
82 uint id;
83 char *name;
85 const phy_cmd_t *config;
86 const phy_cmd_t *startup;
87 const phy_cmd_t *ack_int;
88 const phy_cmd_t *shutdown;
89 } phy_info_t;
91 /* values for phy_status */
93 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
94 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
95 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
96 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
97 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
98 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
99 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
101 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
102 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
103 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
104 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
105 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
106 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
107 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
108 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
109 #endif /* CONFIG_USE_MDIO */
111 /* The number of Tx and Rx buffers. These are allocated from the page
112 * pool. The code may assume these are power of two, so it is best
113 * to keep them that size.
114 * We don't need to allocate pages for the transmitter. We just use
115 * the skbuffer directly.
117 #define FCC_ENET_RX_PAGES 16
118 #define FCC_ENET_RX_FRSIZE 2048
119 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
120 #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
121 #define TX_RING_SIZE 16 /* Must be power of two */
122 #define TX_RING_MOD_MASK 15 /* for this to work */
124 /* The FCC stores dest/src/type, data, and checksum for receive packets.
125 * size includes support for VLAN
127 #define PKT_MAXBUF_SIZE 1522
128 #define PKT_MINBUF_SIZE 64
130 /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
131 * size includes support for VLAN
133 #define PKT_MAXDMA_SIZE 1524
135 /* Maximum input buffer size. Must be a multiple of 32.
137 #define PKT_MAXBLR_SIZE 1536
139 static int fcc_enet_open(struct net_device *dev);
140 static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
141 static int fcc_enet_rx(struct net_device *dev);
142 static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
143 static int fcc_enet_close(struct net_device *dev);
144 static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
145 /* static void set_multicast_list(struct net_device *dev); */
146 static void fcc_restart(struct net_device *dev, int duplex);
147 static void fcc_stop(struct net_device *dev);
148 static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
150 /* These will be configurable for the FCC choice.
151 * Multiple ports can be configured. There is little choice among the
152 * I/O pins to the PHY, except the clocks. We will need some board
153 * dependent clock selection.
154 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
155 * help show what pins are used for each device.
158 /* Since the CLK setting changes greatly from board to board, I changed
159 * it to a easy way. You just need to specify which CLK number to use.
160 * Note that only limited choices can be make on each port.
163 /* FCC1 Clock Source Configuration. There are board specific.
164 Can only choose from CLK9-12 */
165 #ifdef CONFIG_SBC82xx
166 #define F1_RXCLK 9
167 #define F1_TXCLK 10
168 #else
169 #define F1_RXCLK 12
170 #define F1_TXCLK 11
171 #endif
173 /* FCC2 Clock Source Configuration. There are board specific.
174 Can only choose from CLK13-16 */
175 #define F2_RXCLK 13
176 #define F2_TXCLK 14
178 /* FCC3 Clock Source Configuration. There are board specific.
179 Can only choose from CLK13-16 */
180 #define F3_RXCLK 15
181 #define F3_TXCLK 16
183 /* Automatically generates register configurations */
184 #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
186 #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
187 #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
188 #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
189 #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
190 #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
191 #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
193 #define PC_F1RXCLK PC_CLK(F1_RXCLK)
194 #define PC_F1TXCLK PC_CLK(F1_TXCLK)
195 #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
196 #define CMX1_CLK_MASK ((uint)0xff000000)
198 #define PC_F2RXCLK PC_CLK(F2_RXCLK)
199 #define PC_F2TXCLK PC_CLK(F2_TXCLK)
200 #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
201 #define CMX2_CLK_MASK ((uint)0x00ff0000)
203 #define PC_F3RXCLK PC_CLK(F3_RXCLK)
204 #define PC_F3TXCLK PC_CLK(F3_TXCLK)
205 #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
206 #define CMX3_CLK_MASK ((uint)0x0000ff00)
209 /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
210 * but there is little variation among the choices.
212 #define PA1_COL ((uint)0x00000001)
213 #define PA1_CRS ((uint)0x00000002)
214 #define PA1_TXER ((uint)0x00000004)
215 #define PA1_TXEN ((uint)0x00000008)
216 #define PA1_RXDV ((uint)0x00000010)
217 #define PA1_RXER ((uint)0x00000020)
218 #define PA1_TXDAT ((uint)0x00003c00)
219 #define PA1_RXDAT ((uint)0x0003c000)
220 #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
221 #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
222 PA1_RXDV | PA1_RXER)
223 #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
224 #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
227 /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
228 * but there is little variation among the choices.
230 #define PB2_TXER ((uint)0x00000001)
231 #define PB2_RXDV ((uint)0x00000002)
232 #define PB2_TXEN ((uint)0x00000004)
233 #define PB2_RXER ((uint)0x00000008)
234 #define PB2_COL ((uint)0x00000010)
235 #define PB2_CRS ((uint)0x00000020)
236 #define PB2_TXDAT ((uint)0x000003c0)
237 #define PB2_RXDAT ((uint)0x00003c00)
238 #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
239 PB2_RXER | PB2_RXDV | PB2_TXER)
240 #define PB2_PSORB_BIN (PB2_TXEN)
241 #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
242 #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
245 /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
246 * but there is little variation among the choices.
248 #define PB3_RXDV ((uint)0x00004000)
249 #define PB3_RXER ((uint)0x00008000)
250 #define PB3_TXER ((uint)0x00010000)
251 #define PB3_TXEN ((uint)0x00020000)
252 #define PB3_COL ((uint)0x00040000)
253 #define PB3_CRS ((uint)0x00080000)
254 #ifndef CONFIG_RPX8260
255 #define PB3_TXDAT ((uint)0x0f000000)
256 #define PC3_TXDAT ((uint)0x00000000)
257 #else
258 #define PB3_TXDAT ((uint)0x0f000000)
259 #define PC3_TXDAT 0
260 #endif
261 #define PB3_RXDAT ((uint)0x00f00000)
262 #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
263 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
264 #define PB3_PSORB_BIN (0)
265 #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
266 #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
268 #define PC3_PSORC_BOUT (PC3_TXDAT)
269 #define PC3_PSORC_BIN (0)
270 #define PC3_DIRC_BOUT (0)
271 #define PC3_DIRC_BIN (PC3_TXDAT)
274 /* MII status/control serial interface.
276 #if defined(CONFIG_RPX8260)
277 /* The EP8260 doesn't use Port C for MDIO */
278 #define PC_MDIO ((uint)0x00000000)
279 #define PC_MDCK ((uint)0x00000000)
280 #elif defined(CONFIG_TQM8260)
281 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
282 #define PC_MDIO ((uint)0x00000002)
283 #define PC_MDCK ((uint)0x00000001)
284 #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260)
285 #define PC_MDIO ((uint)0x00400000)
286 #define PC_MDCK ((uint)0x00200000)
287 #else
288 #define PC_MDIO ((uint)0x00000004)
289 #define PC_MDCK ((uint)0x00000020)
290 #endif
292 #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
293 #error "Must define PC_MDIO and PC_MDCK if using MDIO"
294 #endif
296 /* PHY addresses */
297 /* default to dynamic config of phy addresses */
298 #define FCC1_PHY_ADDR 0
299 #ifdef CONFIG_PQ2FADS
300 #define FCC2_PHY_ADDR 0
301 #else
302 #define FCC2_PHY_ADDR 2
303 #endif
304 #define FCC3_PHY_ADDR 3
306 /* A table of information for supporting FCCs. This does two things.
307 * First, we know how many FCCs we have and they are always externally
308 * numbered from zero. Second, it holds control register and I/O
309 * information that could be different among board designs.
311 typedef struct fcc_info {
312 uint fc_fccnum;
313 uint fc_phyaddr;
314 uint fc_cpmblock;
315 uint fc_cpmpage;
316 uint fc_proff;
317 uint fc_interrupt;
318 uint fc_trxclocks;
319 uint fc_clockroute;
320 uint fc_clockmask;
321 uint fc_mdio;
322 uint fc_mdck;
323 } fcc_info_t;
325 static fcc_info_t fcc_ports[] = {
326 #ifdef CONFIG_FCC1_ENET
327 { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
328 (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
329 PC_MDIO, PC_MDCK },
330 #endif
331 #ifdef CONFIG_FCC2_ENET
332 { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
333 (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
334 PC_MDIO, PC_MDCK },
335 #endif
336 #ifdef CONFIG_FCC3_ENET
337 { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
338 (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
339 PC_MDIO, PC_MDCK },
340 #endif
343 /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
344 * tx_bd_base always point to the base of the buffer descriptors. The
345 * cur_rx and cur_tx point to the currently available buffer.
346 * The dirty_tx tracks the current buffer that is being sent by the
347 * controller. The cur_tx and dirty_tx are equal under both completely
348 * empty and completely full conditions. The empty/ready indicator in
349 * the buffer descriptor determines the actual condition.
351 struct fcc_enet_private {
352 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
353 struct sk_buff* tx_skbuff[TX_RING_SIZE];
354 ushort skb_cur;
355 ushort skb_dirty;
357 /* CPM dual port RAM relative addresses.
359 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
360 cbd_t *tx_bd_base;
361 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
362 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
363 volatile fcc_t *fccp;
364 volatile fcc_enet_t *ep;
365 struct net_device_stats stats;
366 uint tx_free;
367 spinlock_t lock;
369 #ifdef CONFIG_USE_MDIO
370 uint phy_id;
371 uint phy_id_done;
372 uint phy_status;
373 phy_info_t *phy;
374 struct work_struct phy_relink;
375 struct work_struct phy_display_config;
376 struct net_device *dev;
378 uint sequence_done;
380 uint phy_addr;
381 #endif /* CONFIG_USE_MDIO */
383 int link;
384 int old_link;
385 int full_duplex;
387 fcc_info_t *fip;
390 static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
391 volatile cpm2_map_t *immap);
392 static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
393 static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
394 volatile cpm2_map_t *immap);
395 static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
396 volatile cpm2_map_t *immap);
398 #ifdef CONFIG_USE_MDIO
399 static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
400 static uint mii_send_receive(fcc_info_t *fip, uint cmd);
401 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
403 /* Make MII read/write commands for the FCC.
405 #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
406 #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
407 ((VAL) & 0xffff))
408 #define mk_mii_end 0
409 #endif /* CONFIG_USE_MDIO */
412 static int
413 fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
415 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
416 volatile cbd_t *bdp;
418 /* Fill in a Tx ring entry */
419 bdp = cep->cur_tx;
421 #ifndef final_version
422 if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
423 /* Ooops. All transmit buffers are full. Bail out.
424 * This should not happen, since the tx queue should be stopped.
426 printk("%s: tx queue full!.\n", dev->name);
427 return 1;
429 #endif
431 /* Clear all of the status flags. */
432 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
434 /* If the frame is short, tell CPM to pad it. */
435 if (skb->len <= ETH_ZLEN)
436 bdp->cbd_sc |= BD_ENET_TX_PAD;
437 else
438 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
440 /* Set buffer length and buffer pointer. */
441 bdp->cbd_datlen = skb->len;
442 bdp->cbd_bufaddr = __pa(skb->data);
444 spin_lock_irq(&cep->lock);
446 /* Save skb pointer. */
447 cep->tx_skbuff[cep->skb_cur] = skb;
449 cep->stats.tx_bytes += skb->len;
450 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
452 /* Send it on its way. Tell CPM its ready, interrupt when done,
453 * its the last BD of the frame, and to put the CRC on the end.
455 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
457 #if 0
458 /* Errata says don't do this. */
459 cep->fccp->fcc_ftodr = 0x8000;
460 #endif
461 dev->trans_start = jiffies;
463 /* If this was the last BD in the ring, start at the beginning again. */
464 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
465 bdp = cep->tx_bd_base;
466 else
467 bdp++;
469 if (!--cep->tx_free)
470 netif_stop_queue(dev);
472 cep->cur_tx = (cbd_t *)bdp;
474 spin_unlock_irq(&cep->lock);
476 return 0;
480 static void
481 fcc_enet_timeout(struct net_device *dev)
483 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
485 printk("%s: transmit timed out.\n", dev->name);
486 cep->stats.tx_errors++;
487 #ifndef final_version
489 int i;
490 cbd_t *bdp;
491 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
492 cep->cur_tx, cep->tx_free,
493 cep->cur_rx);
494 bdp = cep->tx_bd_base;
495 printk(" Tx @base %p :\n", bdp);
496 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
497 printk("%04x %04x %08x\n",
498 bdp->cbd_sc,
499 bdp->cbd_datlen,
500 bdp->cbd_bufaddr);
501 bdp = cep->rx_bd_base;
502 printk(" Rx @base %p :\n", bdp);
503 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
504 printk("%04x %04x %08x\n",
505 bdp->cbd_sc,
506 bdp->cbd_datlen,
507 bdp->cbd_bufaddr);
509 #endif
510 if (cep->tx_free)
511 netif_wake_queue(dev);
514 /* The interrupt handler. */
515 static irqreturn_t
516 fcc_enet_interrupt(int irq, void *dev_id)
518 struct net_device *dev = dev_id;
519 volatile struct fcc_enet_private *cep;
520 volatile cbd_t *bdp;
521 ushort int_events;
522 int must_restart;
524 cep = dev->priv;
526 /* Get the interrupt events that caused us to be here.
528 int_events = cep->fccp->fcc_fcce;
529 cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
530 must_restart = 0;
532 #ifdef PHY_INTERRUPT
533 /* We have to be careful here to make sure that we aren't
534 * interrupted by a PHY interrupt.
536 disable_irq_nosync(PHY_INTERRUPT);
537 #endif
539 /* Handle receive event in its own function.
541 if (int_events & FCC_ENET_RXF)
542 fcc_enet_rx(dev_id);
544 /* Check for a transmit error. The manual is a little unclear
545 * about this, so the debug code until I get it figured out. It
546 * appears that if TXE is set, then TXB is not set. However,
547 * if carrier sense is lost during frame transmission, the TXE
548 * bit is set, "and continues the buffer transmission normally."
549 * I don't know if "normally" implies TXB is set when the buffer
550 * descriptor is closed.....trial and error :-).
553 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
555 if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
556 spin_lock(&cep->lock);
557 bdp = cep->dirty_tx;
558 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
559 if (cep->tx_free == TX_RING_SIZE)
560 break;
562 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
563 cep->stats.tx_heartbeat_errors++;
564 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
565 cep->stats.tx_window_errors++;
566 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
567 cep->stats.tx_aborted_errors++;
568 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
569 cep->stats.tx_fifo_errors++;
570 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
571 cep->stats.tx_carrier_errors++;
574 /* No heartbeat or Lost carrier are not really bad errors.
575 * The others require a restart transmit command.
577 if (bdp->cbd_sc &
578 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
579 must_restart = 1;
580 cep->stats.tx_errors++;
583 cep->stats.tx_packets++;
585 /* Deferred means some collisions occurred during transmit,
586 * but we eventually sent the packet OK.
588 if (bdp->cbd_sc & BD_ENET_TX_DEF)
589 cep->stats.collisions++;
591 /* Free the sk buffer associated with this last transmit. */
592 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
593 cep->tx_skbuff[cep->skb_dirty] = NULL;
594 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
596 /* Update pointer to next buffer descriptor to be transmitted. */
597 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
598 bdp = cep->tx_bd_base;
599 else
600 bdp++;
602 /* I don't know if we can be held off from processing these
603 * interrupts for more than one frame time. I really hope
604 * not. In such a case, we would now want to check the
605 * currently available BD (cur_tx) and determine if any
606 * buffers between the dirty_tx and cur_tx have also been
607 * sent. We would want to process anything in between that
608 * does not have BD_ENET_TX_READY set.
611 /* Since we have freed up a buffer, the ring is no longer
612 * full.
614 if (!cep->tx_free++) {
615 if (netif_queue_stopped(dev)) {
616 netif_wake_queue(dev);
620 cep->dirty_tx = (cbd_t *)bdp;
623 if (must_restart) {
624 volatile cpm_cpm2_t *cp;
626 /* Some transmit errors cause the transmitter to shut
627 * down. We now issue a restart transmit. Since the
628 * errors close the BD and update the pointers, the restart
629 * _should_ pick up without having to reset any of our
630 * pointers either. Also, To workaround 8260 device erratum
631 * CPM37, we must disable and then re-enable the transmitter
632 * following a Late Collision, Underrun, or Retry Limit error.
634 cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
635 udelay(10); /* wait a few microseconds just on principle */
636 cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
638 cp = cpmp;
639 cp->cp_cpcr =
640 mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
641 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
642 while (cp->cp_cpcr & CPM_CR_FLG);
644 spin_unlock(&cep->lock);
647 /* Check for receive busy, i.e. packets coming but no place to
648 * put them.
650 if (int_events & FCC_ENET_BSY) {
651 cep->fccp->fcc_fcce = FCC_ENET_BSY;
652 cep->stats.rx_dropped++;
655 #ifdef PHY_INTERRUPT
656 enable_irq(PHY_INTERRUPT);
657 #endif
658 return IRQ_HANDLED;
661 /* During a receive, the cur_rx points to the current incoming buffer.
662 * When we update through the ring, if the next incoming buffer has
663 * not been given to the system, we just set the empty indicator,
664 * effectively tossing the packet.
666 static int
667 fcc_enet_rx(struct net_device *dev)
669 struct fcc_enet_private *cep;
670 volatile cbd_t *bdp;
671 struct sk_buff *skb;
672 ushort pkt_len;
674 cep = dev->priv;
676 /* First, grab all of the stats for the incoming packet.
677 * These get messed up if we get called due to a busy condition.
679 bdp = cep->cur_rx;
681 for (;;) {
682 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
683 break;
685 #ifndef final_version
686 /* Since we have allocated space to hold a complete frame, both
687 * the first and last indicators should be set.
689 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
690 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
691 printk("CPM ENET: rcv is not first+last\n");
692 #endif
694 /* Frame too long or too short. */
695 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
696 cep->stats.rx_length_errors++;
697 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
698 cep->stats.rx_frame_errors++;
699 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
700 cep->stats.rx_crc_errors++;
701 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
702 cep->stats.rx_crc_errors++;
703 if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
704 cep->stats.rx_frame_errors++;
706 if (!(bdp->cbd_sc &
707 (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
708 | BD_ENET_RX_OV | BD_ENET_RX_CL)))
710 /* Process the incoming frame. */
711 cep->stats.rx_packets++;
713 /* Remove the FCS from the packet length. */
714 pkt_len = bdp->cbd_datlen - 4;
715 cep->stats.rx_bytes += pkt_len;
717 /* This does 16 byte alignment, much more than we need. */
718 skb = dev_alloc_skb(pkt_len);
720 if (skb == NULL) {
721 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
722 cep->stats.rx_dropped++;
724 else {
725 skb_put(skb,pkt_len); /* Make room */
726 skb_copy_to_linear_data(skb,
727 (unsigned char *)__va(bdp->cbd_bufaddr),
728 pkt_len);
729 skb->protocol=eth_type_trans(skb,dev);
730 netif_rx(skb);
734 /* Clear the status flags for this buffer. */
735 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
737 /* Mark the buffer empty. */
738 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
740 /* Update BD pointer to next entry. */
741 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
742 bdp = cep->rx_bd_base;
743 else
744 bdp++;
747 cep->cur_rx = (cbd_t *)bdp;
749 return 0;
752 static int
753 fcc_enet_close(struct net_device *dev)
755 #ifdef CONFIG_USE_MDIO
756 struct fcc_enet_private *fep = dev->priv;
757 #endif
759 netif_stop_queue(dev);
760 fcc_stop(dev);
761 #ifdef CONFIG_USE_MDIO
762 if (fep->phy)
763 mii_do_cmd(dev, fep->phy->shutdown);
764 #endif
766 return 0;
769 static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
771 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
773 return &cep->stats;
776 #ifdef CONFIG_USE_MDIO
778 /* NOTE: Most of the following comes from the FEC driver for 860. The
779 * overall structure of MII code has been retained (as it's proved stable
780 * and well-tested), but actual transfer requests are processed "at once"
781 * instead of being queued (there's no interrupt-driven MII transfer
782 * mechanism, one has to toggle the data/clock bits manually).
784 static int
785 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
787 struct fcc_enet_private *fep;
788 int retval, tmp;
790 /* Add PHY address to register command. */
791 fep = dev->priv;
792 regval |= fep->phy_addr << 23;
794 retval = 0;
796 tmp = mii_send_receive(fep->fip, regval);
797 if (func)
798 func(tmp, dev);
800 return retval;
803 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
805 int k;
807 if(!c)
808 return;
810 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
811 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
814 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
816 volatile struct fcc_enet_private *fep = dev->priv;
817 uint s = fep->phy_status;
819 s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
821 if (mii_reg & BMSR_LSTATUS)
822 s |= PHY_STAT_LINK;
823 if (mii_reg & BMSR_RFAULT)
824 s |= PHY_STAT_FAULT;
825 if (mii_reg & BMSR_ANEGCOMPLETE)
826 s |= PHY_STAT_ANC;
828 fep->phy_status = s;
831 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
833 volatile struct fcc_enet_private *fep = dev->priv;
834 uint s = fep->phy_status;
836 s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
838 if (mii_reg & BMCR_ANENABLE)
839 s |= PHY_CONF_ANE;
840 if (mii_reg & BMCR_LOOPBACK)
841 s |= PHY_CONF_LOOP;
843 fep->phy_status = s;
846 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
848 volatile struct fcc_enet_private *fep = dev->priv;
849 uint s = fep->phy_status;
851 s &= ~(PHY_CONF_SPMASK);
853 if (mii_reg & ADVERTISE_10HALF)
854 s |= PHY_CONF_10HDX;
855 if (mii_reg & ADVERTISE_10FULL)
856 s |= PHY_CONF_10FDX;
857 if (mii_reg & ADVERTISE_100HALF)
858 s |= PHY_CONF_100HDX;
859 if (mii_reg & ADVERTISE_100FULL)
860 s |= PHY_CONF_100FDX;
862 fep->phy_status = s;
865 /* ------------------------------------------------------------------------- */
866 /* Generic PHY support. Should work for all PHYs, but does not support link
867 * change interrupts.
869 #ifdef CONFIG_FCC_GENERIC_PHY
871 static phy_info_t phy_info_generic = {
872 0x00000000, /* 0-->match any PHY */
873 "GENERIC",
875 (const phy_cmd_t []) { /* config */
876 /* advertise only half-duplex capabilities */
877 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
878 mii_parse_anar },
880 /* enable auto-negotiation */
881 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
882 { mk_mii_end, }
884 (const phy_cmd_t []) { /* startup */
885 /* restart auto-negotiation */
886 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
887 NULL },
888 { mk_mii_end, }
890 (const phy_cmd_t []) { /* ack_int */
891 /* We don't actually use the ack_int table with a generic
892 * PHY, but putting a reference to mii_parse_sr here keeps
893 * us from getting a compiler warning about unused static
894 * functions in the case where we only compile in generic
895 * PHY support.
897 { mk_mii_read(MII_BMSR), mii_parse_sr },
898 { mk_mii_end, }
900 (const phy_cmd_t []) { /* shutdown */
901 { mk_mii_end, }
904 #endif /* ifdef CONFIG_FCC_GENERIC_PHY */
906 /* ------------------------------------------------------------------------- */
907 /* The Level one LXT970 is used by many boards */
909 #ifdef CONFIG_FCC_LXT970
911 #define MII_LXT970_MIRROR 16 /* Mirror register */
912 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
913 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
914 #define MII_LXT970_CONFIG 19 /* Configuration Register */
915 #define MII_LXT970_CSR 20 /* Chip Status Register */
917 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
919 volatile struct fcc_enet_private *fep = dev->priv;
920 uint s = fep->phy_status;
922 s &= ~(PHY_STAT_SPMASK);
924 if (mii_reg & 0x0800) {
925 if (mii_reg & 0x1000)
926 s |= PHY_STAT_100FDX;
927 else
928 s |= PHY_STAT_100HDX;
929 } else {
930 if (mii_reg & 0x1000)
931 s |= PHY_STAT_10FDX;
932 else
933 s |= PHY_STAT_10HDX;
936 fep->phy_status = s;
939 static phy_info_t phy_info_lxt970 = {
940 0x07810000,
941 "LXT970",
943 (const phy_cmd_t []) { /* config */
944 #if 0
945 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
947 /* Set default operation of 100-TX....for some reason
948 * some of these bits are set on power up, which is wrong.
950 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
951 #endif
952 { mk_mii_read(MII_BMCR), mii_parse_cr },
953 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
954 { mk_mii_end, }
956 (const phy_cmd_t []) { /* startup - enable interrupts */
957 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
958 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
959 { mk_mii_end, }
961 (const phy_cmd_t []) { /* ack_int */
962 /* read SR and ISR to acknowledge */
964 { mk_mii_read(MII_BMSR), mii_parse_sr },
965 { mk_mii_read(MII_LXT970_ISR), NULL },
967 /* find out the current status */
969 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
970 { mk_mii_end, }
972 (const phy_cmd_t []) { /* shutdown - disable interrupts */
973 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
974 { mk_mii_end, }
978 #endif /* CONFIG_FEC_LXT970 */
980 /* ------------------------------------------------------------------------- */
981 /* The Level one LXT971 is used on some of my custom boards */
983 #ifdef CONFIG_FCC_LXT971
985 /* register definitions for the 971 */
987 #define MII_LXT971_PCR 16 /* Port Control Register */
988 #define MII_LXT971_SR2 17 /* Status Register 2 */
989 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
990 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
991 #define MII_LXT971_LCR 20 /* LED Control Register */
992 #define MII_LXT971_TCR 30 /* Transmit Control Register */
995 * I had some nice ideas of running the MDIO faster...
996 * The 971 should support 8MHz and I tried it, but things acted really
997 * weird, so 2.5 MHz ought to be enough for anyone...
1000 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1002 volatile struct fcc_enet_private *fep = dev->priv;
1003 uint s = fep->phy_status;
1005 s &= ~(PHY_STAT_SPMASK);
1007 if (mii_reg & 0x4000) {
1008 if (mii_reg & 0x0200)
1009 s |= PHY_STAT_100FDX;
1010 else
1011 s |= PHY_STAT_100HDX;
1012 } else {
1013 if (mii_reg & 0x0200)
1014 s |= PHY_STAT_10FDX;
1015 else
1016 s |= PHY_STAT_10HDX;
1018 if (mii_reg & 0x0008)
1019 s |= PHY_STAT_FAULT;
1021 fep->phy_status = s;
1024 static phy_info_t phy_info_lxt971 = {
1025 0x0001378e,
1026 "LXT971",
1028 (const phy_cmd_t []) { /* config */
1029 /* configure link capabilities to advertise */
1030 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
1031 mii_parse_anar },
1033 /* enable auto-negotiation */
1034 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
1035 { mk_mii_end, }
1037 (const phy_cmd_t []) { /* startup - enable interrupts */
1038 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1040 /* restart auto-negotiation */
1041 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
1042 NULL },
1043 { mk_mii_end, }
1045 (const phy_cmd_t []) { /* ack_int */
1046 /* find out the current status */
1047 { mk_mii_read(MII_BMSR), NULL },
1048 { mk_mii_read(MII_BMSR), mii_parse_sr },
1049 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1051 /* we only need to read ISR to acknowledge */
1052 { mk_mii_read(MII_LXT971_ISR), NULL },
1053 { mk_mii_end, }
1055 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1056 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1057 { mk_mii_end, }
1061 #endif /* CONFIG_FCC_LXT971 */
1063 /* ------------------------------------------------------------------------- */
1064 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1066 #ifdef CONFIG_FCC_QS6612
1068 /* register definitions */
1070 #define MII_QS6612_MCR 17 /* Mode Control Register */
1071 #define MII_QS6612_FTR 27 /* Factory Test Register */
1072 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1073 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1074 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1075 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1077 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1079 volatile struct fcc_enet_private *fep = dev->priv;
1080 uint s = fep->phy_status;
1082 s &= ~(PHY_STAT_SPMASK);
1084 switch((mii_reg >> 2) & 7) {
1085 case 1: s |= PHY_STAT_10HDX; break;
1086 case 2: s |= PHY_STAT_100HDX; break;
1087 case 5: s |= PHY_STAT_10FDX; break;
1088 case 6: s |= PHY_STAT_100FDX; break;
1091 fep->phy_status = s;
1094 static phy_info_t phy_info_qs6612 = {
1095 0x00181440,
1096 "QS6612",
1098 (const phy_cmd_t []) { /* config */
1099 // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1101 /* The PHY powers up isolated on the RPX,
1102 * so send a command to allow operation.
1105 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1107 /* parse cr and anar to get some info */
1109 { mk_mii_read(MII_BMCR), mii_parse_cr },
1110 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1111 { mk_mii_end, }
1113 (const phy_cmd_t []) { /* startup - enable interrupts */
1114 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1115 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1116 { mk_mii_end, }
1118 (const phy_cmd_t []) { /* ack_int */
1120 /* we need to read ISR, SR and ANER to acknowledge */
1122 { mk_mii_read(MII_QS6612_ISR), NULL },
1123 { mk_mii_read(MII_BMSR), mii_parse_sr },
1124 { mk_mii_read(MII_EXPANSION), NULL },
1126 /* read pcr to get info */
1128 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1129 { mk_mii_end, }
1131 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1132 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1133 { mk_mii_end, }
1138 #endif /* CONFIG_FEC_QS6612 */
1141 /* ------------------------------------------------------------------------- */
1142 /* The Davicom DM9131 is used on the HYMOD board */
1144 #ifdef CONFIG_FCC_DM9131
1146 /* register definitions */
1148 #define MII_DM9131_ACR 16 /* Aux. Config Register */
1149 #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1150 #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1151 #define MII_DM9131_INTR 21 /* Interrupt Register */
1152 #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1153 #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1155 static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
1157 volatile struct fcc_enet_private *fep = dev->priv;
1158 uint s = fep->phy_status;
1160 s &= ~(PHY_STAT_SPMASK);
1162 switch ((mii_reg >> 12) & 0xf) {
1163 case 1: s |= PHY_STAT_10HDX; break;
1164 case 2: s |= PHY_STAT_10FDX; break;
1165 case 4: s |= PHY_STAT_100HDX; break;
1166 case 8: s |= PHY_STAT_100FDX; break;
1169 fep->phy_status = s;
1172 static phy_info_t phy_info_dm9131 = {
1173 0x00181b80,
1174 "DM9131",
1176 (const phy_cmd_t []) { /* config */
1177 /* parse cr and anar to get some info */
1178 { mk_mii_read(MII_BMCR), mii_parse_cr },
1179 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1180 { mk_mii_end, }
1182 (const phy_cmd_t []) { /* startup - enable interrupts */
1183 { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
1184 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1185 { mk_mii_end, }
1187 (const phy_cmd_t []) { /* ack_int */
1189 /* we need to read INTR, SR and ANER to acknowledge */
1191 { mk_mii_read(MII_DM9131_INTR), NULL },
1192 { mk_mii_read(MII_BMSR), mii_parse_sr },
1193 { mk_mii_read(MII_EXPANSION), NULL },
1195 /* read acsr to get info */
1197 { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
1198 { mk_mii_end, }
1200 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1201 { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
1202 { mk_mii_end, }
1207 #endif /* CONFIG_FEC_DM9131 */
1208 #ifdef CONFIG_FCC_DM9161
1209 /* ------------------------------------------------------------------------- */
1210 /* DM9161 Control register values */
1211 #define MIIM_DM9161_CR_STOP 0x0400
1212 #define MIIM_DM9161_CR_RSTAN 0x1200
1214 #define MIIM_DM9161_SCR 0x10
1215 #define MIIM_DM9161_SCR_INIT 0x0610
1217 /* DM9161 Specified Configuration and Status Register */
1218 #define MIIM_DM9161_SCSR 0x11
1219 #define MIIM_DM9161_SCSR_100F 0x8000
1220 #define MIIM_DM9161_SCSR_100H 0x4000
1221 #define MIIM_DM9161_SCSR_10F 0x2000
1222 #define MIIM_DM9161_SCSR_10H 0x1000
1223 /* DM9161 10BT register */
1224 #define MIIM_DM9161_10BTCSR 0x12
1225 #define MIIM_DM9161_10BTCSR_INIT 0x7800
1226 /* DM9161 Interrupt Register */
1227 #define MIIM_DM9161_INTR 0x15
1228 #define MIIM_DM9161_INTR_PEND 0x8000
1229 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1230 #define MIIM_DM9161_INTR_SPD_MASK 0x0400
1231 #define MIIM_DM9161_INTR_LINK_MASK 0x0200
1232 #define MIIM_DM9161_INTR_MASK 0x0100
1233 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1234 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1235 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1236 #define MIIM_DM9161_INTR_INIT 0x0000
1237 #define MIIM_DM9161_INTR_STOP \
1238 (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1239 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1241 static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
1243 volatile struct fcc_enet_private *fep = dev->priv;
1244 uint regstat, timeout=0xffff;
1246 while(!(mii_reg & 0x0020) && timeout--)
1248 regstat=mk_mii_read(MII_BMSR);
1249 regstat |= fep->phy_addr <<23;
1250 mii_reg = mii_send_receive(fep->fip,regstat);
1253 mii_parse_sr(mii_reg, dev);
1256 static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
1258 volatile struct fcc_enet_private *fep = dev->priv;
1259 uint s = fep->phy_status;
1261 s &= ~(PHY_STAT_SPMASK);
1262 switch((mii_reg >>12) & 0xf) {
1263 case 1:
1265 s |= PHY_STAT_10HDX;
1266 printk("10BaseT Half Duplex\n");
1267 break;
1269 case 2:
1271 s |= PHY_STAT_10FDX;
1272 printk("10BaseT Full Duplex\n");
1273 break;
1275 case 4:
1277 s |= PHY_STAT_100HDX;
1278 printk("100BaseT Half Duplex\n");
1279 break;
1281 case 8:
1283 s |= PHY_STAT_100FDX;
1284 printk("100BaseT Full Duplex\n");
1285 break;
1289 fep->phy_status = s;
1293 static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
1295 int timeout = HZ;
1297 /* Davicom takes a bit to come up after a reset,
1298 * so wait here for a bit */
1299 schedule_timeout_uninterruptible(timeout);
1302 static phy_info_t phy_info_dm9161 = {
1303 0x00181b88,
1304 "Davicom DM9161E",
1305 (const phy_cmd_t[]) { /* config */
1306 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
1307 /* Do not bypass the scrambler/descrambler */
1308 { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
1309 /* Configure 10BTCSR register */
1310 { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
1311 /* Configure some basic stuff */
1312 { mk_mii_write(MII_BMCR, 0x1000), NULL},
1313 { mk_mii_read(MII_BMCR), mii_parse_cr },
1314 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1315 { mk_mii_end,}
1317 (const phy_cmd_t[]) { /* startup */
1318 /* Restart Auto Negotiation */
1319 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
1320 /* Status is read once to clear old link state */
1321 { mk_mii_read(MII_BMSR), mii_dm9161_wait},
1322 /* Auto-negotiate */
1323 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1324 /* Read the status */
1325 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1326 /* Clear any pending interrupts */
1327 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1328 /* Enable Interrupts */
1329 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
1330 { mk_mii_end,}
1332 (const phy_cmd_t[]) { /* ack_int */
1333 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1334 #if 0
1335 { mk_mii_read(MII_BMSR), NULL},
1336 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1337 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1338 #endif
1339 { mk_mii_end,}
1341 (const phy_cmd_t[]) { /* shutdown */
1342 { mk_mii_read(MIIM_DM9161_INTR),NULL},
1343 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
1344 { mk_mii_end,}
1347 #endif /* CONFIG_FCC_DM9161 */
1349 static phy_info_t *phy_info[] = {
1351 #ifdef CONFIG_FCC_LXT970
1352 &phy_info_lxt970,
1353 #endif /* CONFIG_FEC_LXT970 */
1355 #ifdef CONFIG_FCC_LXT971
1356 &phy_info_lxt971,
1357 #endif /* CONFIG_FEC_LXT971 */
1359 #ifdef CONFIG_FCC_QS6612
1360 &phy_info_qs6612,
1361 #endif /* CONFIG_FEC_QS6612 */
1363 #ifdef CONFIG_FCC_DM9131
1364 &phy_info_dm9131,
1365 #endif /* CONFIG_FEC_DM9131 */
1367 #ifdef CONFIG_FCC_DM9161
1368 &phy_info_dm9161,
1369 #endif /* CONFIG_FCC_DM9161 */
1371 #ifdef CONFIG_FCC_GENERIC_PHY
1372 /* Generic PHY support. This must be the last PHY in the table.
1373 * It will be used to support any PHY that doesn't match a previous
1374 * entry in the table.
1376 &phy_info_generic,
1377 #endif /* CONFIG_FCC_GENERIC_PHY */
1379 NULL
1382 static void mii_display_status(struct work_struct *work)
1384 volatile struct fcc_enet_private *fep =
1385 container_of(work, struct fcc_enet_private, phy_relink);
1386 struct net_device *dev = fep->dev;
1387 uint s = fep->phy_status;
1389 if (!fep->link && !fep->old_link) {
1390 /* Link is still down - don't print anything */
1391 return;
1394 printk("%s: status: ", dev->name);
1396 if (!fep->link) {
1397 printk("link down");
1398 } else {
1399 printk("link up");
1401 switch(s & PHY_STAT_SPMASK) {
1402 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1403 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1404 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1405 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1406 default:
1407 printk(", Unknown speed/duplex");
1410 if (s & PHY_STAT_ANC)
1411 printk(", auto-negotiation complete");
1414 if (s & PHY_STAT_FAULT)
1415 printk(", remote fault");
1417 printk(".\n");
1420 static void mii_display_config(struct work_struct *work)
1422 volatile struct fcc_enet_private *fep =
1423 container_of(work, struct fcc_enet_private,
1424 phy_display_config);
1425 struct net_device *dev = fep->dev;
1426 uint s = fep->phy_status;
1428 printk("%s: config: auto-negotiation ", dev->name);
1430 if (s & PHY_CONF_ANE)
1431 printk("on");
1432 else
1433 printk("off");
1435 if (s & PHY_CONF_100FDX)
1436 printk(", 100FDX");
1437 if (s & PHY_CONF_100HDX)
1438 printk(", 100HDX");
1439 if (s & PHY_CONF_10FDX)
1440 printk(", 10FDX");
1441 if (s & PHY_CONF_10HDX)
1442 printk(", 10HDX");
1443 if (!(s & PHY_CONF_SPMASK))
1444 printk(", No speed/duplex selected?");
1446 if (s & PHY_CONF_LOOP)
1447 printk(", loopback enabled");
1449 printk(".\n");
1451 fep->sequence_done = 1;
1454 static void mii_relink(struct net_device *dev)
1456 struct fcc_enet_private *fep = dev->priv;
1457 int duplex = 0;
1459 fep->old_link = fep->link;
1460 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1462 #ifdef MDIO_DEBUG
1463 printk(" mii_relink: link=%d\n", fep->link);
1464 #endif
1466 if (fep->link) {
1467 if (fep->phy_status
1468 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1469 duplex = 1;
1470 fcc_restart(dev, duplex);
1471 #ifdef MDIO_DEBUG
1472 printk(" mii_relink: duplex=%d\n", duplex);
1473 #endif
1477 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1479 struct fcc_enet_private *fep = dev->priv;
1481 mii_relink(dev);
1483 schedule_work(&fep->phy_relink);
1486 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1488 struct fcc_enet_private *fep = dev->priv;
1490 schedule_work(&fep->phy_display_config);
1493 phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
1494 { mk_mii_end, } };
1495 phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
1496 { mk_mii_end, } };
1499 /* Read remainder of PHY ID.
1501 static void
1502 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1504 struct fcc_enet_private *fep;
1505 int i;
1507 fep = dev->priv;
1508 printk("mii_reg: %08x\n", mii_reg);
1509 fep->phy_id |= (mii_reg & 0xffff);
1511 for(i = 0; phy_info[i]; i++)
1512 if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
1513 break;
1515 if(!phy_info[i])
1516 panic("%s: PHY id 0x%08x is not supported!\n",
1517 dev->name, fep->phy_id);
1519 fep->phy = phy_info[i];
1520 fep->phy_id_done = 1;
1522 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1523 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1526 /* Scan all of the MII PHY addresses looking for someone to respond
1527 * with a valid ID. This usually happens quickly.
1529 static void
1530 mii_discover_phy(uint mii_reg, struct net_device *dev)
1532 struct fcc_enet_private *fep;
1533 uint phytype;
1535 fep = dev->priv;
1537 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1539 /* Got first part of ID, now get remainder. */
1540 fep->phy_id = phytype << 16;
1541 mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
1542 } else {
1543 fep->phy_addr++;
1544 if (fep->phy_addr < 32) {
1545 mii_queue(dev, mk_mii_read(MII_PHYSID1),
1546 mii_discover_phy);
1547 } else {
1548 printk("fec: No PHY device found.\n");
1552 #endif /* CONFIG_USE_MDIO */
1554 #ifdef PHY_INTERRUPT
1555 /* This interrupt occurs when the PHY detects a link change. */
1556 static irqreturn_t
1557 mii_link_interrupt(int irq, void * dev_id)
1559 struct net_device *dev = dev_id;
1560 struct fcc_enet_private *fep = dev->priv;
1561 fcc_info_t *fip = fep->fip;
1563 if (fep->phy) {
1564 /* We don't want to be interrupted by an FCC
1565 * interrupt here.
1567 disable_irq_nosync(fip->fc_interrupt);
1569 mii_do_cmd(dev, fep->phy->ack_int);
1570 /* restart and display status */
1571 mii_do_cmd(dev, phy_cmd_relink);
1573 enable_irq(fip->fc_interrupt);
1575 return IRQ_HANDLED;
1577 #endif /* ifdef PHY_INTERRUPT */
1579 #if 0 /* This should be fixed someday */
1580 /* Set or clear the multicast filter for this adaptor.
1581 * Skeleton taken from sunlance driver.
1582 * The CPM Ethernet implementation allows Multicast as well as individual
1583 * MAC address filtering. Some of the drivers check to make sure it is
1584 * a group multicast address, and discard those that are not. I guess I
1585 * will do the same for now, but just remove the test if you want
1586 * individual filtering as well (do the upper net layers want or support
1587 * this kind of feature?).
1589 static void
1590 set_multicast_list(struct net_device *dev)
1592 struct fcc_enet_private *cep;
1593 struct dev_mc_list *dmi;
1594 u_char *mcptr, *tdptr;
1595 volatile fcc_enet_t *ep;
1596 int i, j;
1598 cep = (struct fcc_enet_private *)dev->priv;
1600 return;
1601 /* Get pointer to FCC area in parameter RAM.
1603 ep = (fcc_enet_t *)dev->base_addr;
1605 if (dev->flags&IFF_PROMISC) {
1607 /* Log any net taps. */
1608 printk("%s: Promiscuous mode enabled.\n", dev->name);
1609 cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
1610 } else {
1612 cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
1614 if (dev->flags & IFF_ALLMULTI) {
1615 /* Catch all multicast addresses, so set the
1616 * filter to all 1's.
1618 ep->fen_gaddrh = 0xffffffff;
1619 ep->fen_gaddrl = 0xffffffff;
1621 else {
1622 /* Clear filter and add the addresses in the list.
1624 ep->fen_gaddrh = 0;
1625 ep->fen_gaddrl = 0;
1627 dmi = dev->mc_list;
1629 for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
1631 /* Only support group multicast for now.
1633 if (!(dmi->dmi_addr[0] & 1))
1634 continue;
1636 /* The address in dmi_addr is LSB first,
1637 * and taddr is MSB first. We have to
1638 * copy bytes MSB first from dmi_addr.
1640 mcptr = (u_char *)dmi->dmi_addr + 5;
1641 tdptr = (u_char *)&ep->fen_taddrh;
1642 for (j=0; j<6; j++)
1643 *tdptr++ = *mcptr--;
1645 /* Ask CPM to run CRC and set bit in
1646 * filter mask.
1648 cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
1649 cep->fip->fc_cpmblock, 0x0c,
1650 CPM_CR_SET_GADDR) | CPM_CR_FLG;
1651 udelay(10);
1652 while (cpmp->cp_cpcr & CPM_CR_FLG);
1657 #endif /* if 0 */
1660 /* Set the individual MAC address.
1662 int fcc_enet_set_mac_address(struct net_device *dev, void *p)
1664 struct sockaddr *addr= (struct sockaddr *) p;
1665 struct fcc_enet_private *cep;
1666 volatile fcc_enet_t *ep;
1667 unsigned char *eap;
1668 int i;
1670 cep = (struct fcc_enet_private *)(dev->priv);
1671 ep = cep->ep;
1673 if (netif_running(dev))
1674 return -EBUSY;
1676 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1678 eap = (unsigned char *) &(ep->fen_paddrh);
1679 for (i=5; i>=0; i--)
1680 *eap++ = addr->sa_data[i];
1682 return 0;
1686 /* Initialize the CPM Ethernet on FCC.
1688 static int __init fec_enet_init(void)
1690 struct net_device *dev;
1691 struct fcc_enet_private *cep;
1692 fcc_info_t *fip;
1693 int i, np, err;
1694 volatile cpm2_map_t *immap;
1695 volatile iop_cpm2_t *io;
1697 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
1698 io = &immap->im_ioport;
1700 np = sizeof(fcc_ports) / sizeof(fcc_info_t);
1701 fip = fcc_ports;
1703 while (np-- > 0) {
1704 /* Create an Ethernet device instance.
1706 dev = alloc_etherdev(sizeof(*cep));
1707 if (!dev)
1708 return -ENOMEM;
1710 cep = dev->priv;
1711 spin_lock_init(&cep->lock);
1712 cep->fip = fip;
1714 init_fcc_shutdown(fip, cep, immap);
1715 init_fcc_ioports(fip, io, immap);
1716 init_fcc_param(fip, dev, immap);
1718 dev->base_addr = (unsigned long)(cep->ep);
1720 /* The CPM Ethernet specific entries in the device
1721 * structure.
1723 dev->open = fcc_enet_open;
1724 dev->hard_start_xmit = fcc_enet_start_xmit;
1725 dev->tx_timeout = fcc_enet_timeout;
1726 dev->watchdog_timeo = TX_TIMEOUT;
1727 dev->stop = fcc_enet_close;
1728 dev->get_stats = fcc_enet_get_stats;
1729 /* dev->set_multicast_list = set_multicast_list; */
1730 dev->set_mac_address = fcc_enet_set_mac_address;
1732 init_fcc_startup(fip, dev);
1734 err = register_netdev(dev);
1735 if (err) {
1736 free_netdev(dev);
1737 return err;
1740 printk("%s: FCC ENET Version 0.3, ", dev->name);
1741 for (i=0; i<5; i++)
1742 printk("%02x:", dev->dev_addr[i]);
1743 printk("%02x\n", dev->dev_addr[5]);
1745 #ifdef CONFIG_USE_MDIO
1746 /* Queue up command to detect the PHY and initialize the
1747 * remainder of the interface.
1749 cep->phy_id_done = 0;
1750 cep->phy_addr = fip->fc_phyaddr;
1751 mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
1752 INIT_WORK(&cep->phy_relink, mii_display_status);
1753 INIT_WORK(&cep->phy_display_config, mii_display_config);
1754 cep->dev = dev;
1755 #endif /* CONFIG_USE_MDIO */
1757 fip++;
1760 return 0;
1762 module_init(fec_enet_init);
1764 /* Make sure the device is shut down during initialization.
1766 static void __init
1767 init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
1768 volatile cpm2_map_t *immap)
1770 volatile fcc_enet_t *ep;
1771 volatile fcc_t *fccp;
1773 /* Get pointer to FCC area in parameter RAM.
1775 ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
1777 /* And another to the FCC register area.
1779 fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
1780 cep->fccp = fccp; /* Keep the pointers handy */
1781 cep->ep = ep;
1783 /* Disable receive and transmit in case someone left it running.
1785 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
1788 /* Initialize the I/O pins for the FCC Ethernet.
1790 static void __init
1791 init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
1792 volatile cpm2_map_t *immap)
1795 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1797 if (fip->fc_proff == PROFF_FCC1) {
1798 /* Configure port A and C pins for FCC1 Ethernet.
1800 io->iop_pdira &= ~PA1_DIRA_BOUT;
1801 io->iop_pdira |= PA1_DIRA_BIN;
1802 io->iop_psora &= ~PA1_PSORA_BOUT;
1803 io->iop_psora |= PA1_PSORA_BIN;
1804 io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
1806 if (fip->fc_proff == PROFF_FCC2) {
1807 /* Configure port B and C pins for FCC Ethernet.
1809 io->iop_pdirb &= ~PB2_DIRB_BOUT;
1810 io->iop_pdirb |= PB2_DIRB_BIN;
1811 io->iop_psorb &= ~PB2_PSORB_BOUT;
1812 io->iop_psorb |= PB2_PSORB_BIN;
1813 io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
1815 if (fip->fc_proff == PROFF_FCC3) {
1816 /* Configure port B and C pins for FCC Ethernet.
1818 io->iop_pdirb &= ~PB3_DIRB_BOUT;
1819 io->iop_pdirb |= PB3_DIRB_BIN;
1820 io->iop_psorb &= ~PB3_PSORB_BOUT;
1821 io->iop_psorb |= PB3_PSORB_BIN;
1822 io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
1824 io->iop_pdirc &= ~PC3_DIRC_BOUT;
1825 io->iop_pdirc |= PC3_DIRC_BIN;
1826 io->iop_psorc &= ~PC3_PSORC_BOUT;
1827 io->iop_psorc |= PC3_PSORC_BIN;
1828 io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
1832 /* Port C has clocks......
1834 io->iop_psorc &= ~(fip->fc_trxclocks);
1835 io->iop_pdirc &= ~(fip->fc_trxclocks);
1836 io->iop_pparc |= fip->fc_trxclocks;
1838 #ifdef CONFIG_USE_MDIO
1839 /* ....and the MII serial clock/data.
1841 io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
1842 io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
1843 io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
1844 io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
1845 #endif /* CONFIG_USE_MDIO */
1847 /* Configure Serial Interface clock routing.
1848 * First, clear all FCC bits to zero,
1849 * then set the ones we want.
1851 immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
1852 immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
1855 static void __init
1856 init_fcc_param(fcc_info_t *fip, struct net_device *dev,
1857 volatile cpm2_map_t *immap)
1859 unsigned char *eap;
1860 unsigned long mem_addr;
1861 bd_t *bd;
1862 int i, j;
1863 struct fcc_enet_private *cep;
1864 volatile fcc_enet_t *ep;
1865 volatile cbd_t *bdp;
1866 volatile cpm_cpm2_t *cp;
1868 cep = (struct fcc_enet_private *)(dev->priv);
1869 ep = cep->ep;
1870 cp = cpmp;
1872 bd = (bd_t *)__res;
1874 /* Zero the whole thing.....I must have missed some individually.
1875 * It works when I do this.
1877 memset((char *)ep, 0, sizeof(fcc_enet_t));
1879 /* Allocate space for the buffer descriptors from regular memory.
1880 * Initialize base addresses for the buffer descriptors.
1882 cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
1883 GFP_KERNEL | GFP_DMA);
1884 ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
1885 cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
1886 GFP_KERNEL | GFP_DMA);
1887 ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
1889 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
1890 cep->cur_rx = cep->rx_bd_base;
1892 ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1893 ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1895 /* Set maximum bytes per receive buffer.
1896 * It must be a multiple of 32.
1898 ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
1900 /* Allocate space in the reserved FCC area of DPRAM for the
1901 * internal buffers. No one uses this space (yet), so we
1902 * can do this. Later, we will add resource management for
1903 * this area.
1905 mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
1906 ep->fen_genfcc.fcc_riptr = mem_addr;
1907 ep->fen_genfcc.fcc_tiptr = mem_addr+32;
1908 ep->fen_padptr = mem_addr+64;
1909 memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
1911 ep->fen_genfcc.fcc_rbptr = 0;
1912 ep->fen_genfcc.fcc_tbptr = 0;
1913 ep->fen_genfcc.fcc_rcrc = 0;
1914 ep->fen_genfcc.fcc_tcrc = 0;
1915 ep->fen_genfcc.fcc_res1 = 0;
1916 ep->fen_genfcc.fcc_res2 = 0;
1918 ep->fen_camptr = 0; /* CAM isn't used in this driver */
1920 /* Set CRC preset and mask.
1922 ep->fen_cmask = 0xdebb20e3;
1923 ep->fen_cpres = 0xffffffff;
1925 ep->fen_crcec = 0; /* CRC Error counter */
1926 ep->fen_alec = 0; /* alignment error counter */
1927 ep->fen_disfc = 0; /* discard frame counter */
1928 ep->fen_retlim = 15; /* Retry limit threshold */
1929 ep->fen_pper = 0; /* Normal persistence */
1931 /* Clear hash filter tables.
1933 ep->fen_gaddrh = 0;
1934 ep->fen_gaddrl = 0;
1935 ep->fen_iaddrh = 0;
1936 ep->fen_iaddrl = 0;
1938 /* Clear the Out-of-sequence TxBD.
1940 ep->fen_tfcstat = 0;
1941 ep->fen_tfclen = 0;
1942 ep->fen_tfcptr = 0;
1944 ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
1945 ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
1947 /* Set Ethernet station address.
1949 * This is supplied in the board information structure, so we
1950 * copy that into the controller.
1951 * So, far we have only been given one Ethernet address. We make
1952 * it unique by setting a few bits in the upper byte of the
1953 * non-static part of the address.
1955 eap = (unsigned char *)&(ep->fen_paddrh);
1956 for (i=5; i>=0; i--) {
1959 * The EP8260 only uses FCC3, so we can safely give it the real
1960 * MAC address.
1962 #ifdef CONFIG_SBC82xx
1963 if (i == 5) {
1964 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1965 devices count up from there */
1966 dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
1967 dev->dev_addr[i] += 1 + fip->fc_fccnum;
1968 *eap++ = dev->dev_addr[i];
1970 #else
1971 #ifndef CONFIG_RPX8260
1972 if (i == 3) {
1973 dev->dev_addr[i] = bd->bi_enetaddr[i];
1974 dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
1975 *eap++ = dev->dev_addr[i];
1976 } else
1977 #endif
1979 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
1981 #endif
1984 ep->fen_taddrh = 0;
1985 ep->fen_taddrm = 0;
1986 ep->fen_taddrl = 0;
1988 ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
1989 ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
1991 /* Clear stat counters, in case we ever enable RMON.
1993 ep->fen_octc = 0;
1994 ep->fen_colc = 0;
1995 ep->fen_broc = 0;
1996 ep->fen_mulc = 0;
1997 ep->fen_uspc = 0;
1998 ep->fen_frgc = 0;
1999 ep->fen_ospc = 0;
2000 ep->fen_jbrc = 0;
2001 ep->fen_p64c = 0;
2002 ep->fen_p65c = 0;
2003 ep->fen_p128c = 0;
2004 ep->fen_p256c = 0;
2005 ep->fen_p512c = 0;
2006 ep->fen_p1024c = 0;
2008 ep->fen_rfthr = 0; /* Suggested by manual */
2009 ep->fen_rfcnt = 0;
2010 ep->fen_cftype = 0;
2012 /* Now allocate the host memory pages and initialize the
2013 * buffer descriptors.
2015 bdp = cep->tx_bd_base;
2016 for (i=0; i<TX_RING_SIZE; i++) {
2018 /* Initialize the BD for every fragment in the page.
2020 bdp->cbd_sc = 0;
2021 bdp->cbd_datlen = 0;
2022 bdp->cbd_bufaddr = 0;
2023 bdp++;
2026 /* Set the last buffer to wrap.
2028 bdp--;
2029 bdp->cbd_sc |= BD_SC_WRAP;
2031 bdp = cep->rx_bd_base;
2032 for (i=0; i<FCC_ENET_RX_PAGES; i++) {
2034 /* Allocate a page.
2036 mem_addr = __get_free_page(GFP_KERNEL);
2038 /* Initialize the BD for every fragment in the page.
2040 for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
2041 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
2042 bdp->cbd_datlen = 0;
2043 bdp->cbd_bufaddr = __pa(mem_addr);
2044 mem_addr += FCC_ENET_RX_FRSIZE;
2045 bdp++;
2049 /* Set the last buffer to wrap.
2051 bdp--;
2052 bdp->cbd_sc |= BD_SC_WRAP;
2054 /* Let's re-initialize the channel now. We have to do it later
2055 * than the manual describes because we have just now finished
2056 * the BD initialization.
2058 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
2059 CPM_CR_INIT_TRX) | CPM_CR_FLG;
2060 while (cp->cp_cpcr & CPM_CR_FLG);
2062 cep->skb_cur = cep->skb_dirty = 0;
2065 /* Let 'er rip.
2067 static void __init
2068 init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
2070 volatile fcc_t *fccp;
2071 struct fcc_enet_private *cep;
2073 cep = (struct fcc_enet_private *)(dev->priv);
2074 fccp = cep->fccp;
2076 #ifdef CONFIG_RPX8260
2077 #ifdef PHY_INTERRUPT
2078 /* Route PHY interrupt to IRQ. The following code only works for
2079 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2081 *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
2082 *((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
2083 ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
2084 #endif
2085 /* Initialize MDIO pins. */
2086 *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
2087 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
2088 BCSR4_MII_READ | BCSR4_MII_MDIO;
2089 /* Enable external LXT971 PHY. */
2090 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
2091 udelay(1000);
2092 *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
2093 udelay(1000);
2094 #endif /* ifdef CONFIG_RPX8260 */
2096 fccp->fcc_fcce = 0xffff; /* Clear any pending events */
2098 /* Leave FCC interrupts masked for now. Will be unmasked by
2099 * fcc_restart().
2101 fccp->fcc_fccm = 0;
2103 /* Install our interrupt handler.
2105 if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
2106 dev) < 0)
2107 printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
2109 #ifdef PHY_INTERRUPT
2110 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2111 * on Port C.
2113 ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
2114 (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
2116 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
2117 "mii", dev) < 0)
2118 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2119 #endif /* PHY_INTERRUPT */
2121 /* Set GFMR to enable Ethernet operating mode.
2123 fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
2125 /* Set sync/delimiters.
2127 fccp->fcc_fdsr = 0xd555;
2129 /* Set protocol specific processing mode for Ethernet.
2130 * This has to be adjusted for Full Duplex operation after we can
2131 * determine how to detect that.
2133 fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
2135 #ifdef CONFIG_PQ2ADS
2136 /* Enable the PHY. */
2137 *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
2138 *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
2139 #endif
2140 #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2141 /* Enable the 2nd PHY. */
2142 *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
2143 *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
2144 #endif
2146 #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2147 /* start in full duplex mode, and negotiate speed
2149 fcc_restart (dev, 1);
2150 #else
2151 /* start in half duplex mode
2153 fcc_restart (dev, 0);
2154 #endif
2157 #ifdef CONFIG_USE_MDIO
2158 /* MII command/status interface.
2159 * I'm not going to describe all of the details. You can find the
2160 * protocol definition in many other places, including the data sheet
2161 * of most PHY parts.
2162 * I wonder what "they" were thinking (maybe weren't) when they leave
2163 * the I2C in the CPM but I have to toggle these bits......
2165 #ifdef CONFIG_RPX8260
2166 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2167 * like most other boards.
2169 #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2170 #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2171 #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2172 #define OUT_MDIO(bit) \
2173 if (bit) \
2174 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2175 else \
2176 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2177 #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2178 #define OUT_MDC(bit) \
2179 if (bit) \
2180 *MDIO_ADDR |= BCSR4_MII_MDC; \
2181 else \
2182 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2183 #else /* ifdef CONFIG_RPX8260 */
2184 /* This is for the usual case where the MDIO pins are on Port C.
2186 #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2187 #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2188 #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2189 #define OUT_MDIO(bit) \
2190 if (bit) \
2191 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2192 else \
2193 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2194 #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2195 #define OUT_MDC(bit) \
2196 if (bit) \
2197 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2198 else \
2199 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2200 #endif /* ifdef CONFIG_RPX8260 */
2202 static uint
2203 mii_send_receive(fcc_info_t *fip, uint cmd)
2205 uint retval;
2206 int read_op, i, off;
2207 const int us = 1;
2209 read_op = ((cmd & 0xf0000000) == 0x60000000);
2211 /* Write preamble
2213 OUT_MDIO(1);
2214 MAKE_MDIO_OUTPUT;
2215 OUT_MDIO(1);
2216 for (i = 0; i < 32; i++)
2218 udelay(us);
2219 OUT_MDC(1);
2220 udelay(us);
2221 OUT_MDC(0);
2224 /* Write data
2226 for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
2228 OUT_MDIO((cmd >> off) & 0x00000001);
2229 udelay(us);
2230 OUT_MDC(1);
2231 udelay(us);
2232 OUT_MDC(0);
2235 retval = cmd;
2237 if (read_op)
2239 retval >>= 16;
2241 MAKE_MDIO_INPUT;
2242 udelay(us);
2243 OUT_MDC(1);
2244 udelay(us);
2245 OUT_MDC(0);
2247 for (i = 0; i < 16; i++)
2249 udelay(us);
2250 OUT_MDC(1);
2251 udelay(us);
2252 retval <<= 1;
2253 if (IN_MDIO)
2254 retval++;
2255 OUT_MDC(0);
2259 MAKE_MDIO_INPUT;
2260 udelay(us);
2261 OUT_MDC(1);
2262 udelay(us);
2263 OUT_MDC(0);
2265 return retval;
2267 #endif /* CONFIG_USE_MDIO */
2269 static void
2270 fcc_stop(struct net_device *dev)
2272 struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
2273 volatile fcc_t *fccp = fep->fccp;
2274 fcc_info_t *fip = fep->fip;
2275 volatile fcc_enet_t *ep = fep->ep;
2276 volatile cpm_cpm2_t *cp = cpmp;
2277 volatile cbd_t *bdp;
2278 int i;
2280 if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
2281 return; /* already down */
2283 fccp->fcc_fccm = 0;
2285 /* issue the graceful stop tx command */
2286 while (cp->cp_cpcr & CPM_CR_FLG);
2287 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2288 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
2289 while (cp->cp_cpcr & CPM_CR_FLG);
2291 /* Disable transmit/receive */
2292 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
2294 /* issue the restart tx command */
2295 fccp->fcc_fcce = FCC_ENET_GRA;
2296 while (cp->cp_cpcr & CPM_CR_FLG);
2297 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2298 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
2299 while (cp->cp_cpcr & CPM_CR_FLG);
2301 /* free tx buffers */
2302 fep->skb_cur = fep->skb_dirty = 0;
2303 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2304 if (fep->tx_skbuff[i] != NULL) {
2305 dev_kfree_skb(fep->tx_skbuff[i]);
2306 fep->tx_skbuff[i] = NULL;
2309 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2310 fep->tx_free = TX_RING_SIZE;
2311 ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
2313 /* Initialize the tx buffer descriptors. */
2314 bdp = fep->tx_bd_base;
2315 for (i=0; i<TX_RING_SIZE; i++) {
2316 bdp->cbd_sc = 0;
2317 bdp->cbd_datlen = 0;
2318 bdp->cbd_bufaddr = 0;
2319 bdp++;
2321 /* Set the last buffer to wrap. */
2322 bdp--;
2323 bdp->cbd_sc |= BD_SC_WRAP;
2326 static void
2327 fcc_restart(struct net_device *dev, int duplex)
2329 struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
2330 volatile fcc_t *fccp = fep->fccp;
2332 /* stop any transmissions in progress */
2333 fcc_stop(dev);
2335 if (duplex)
2336 fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
2337 else
2338 fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
2340 /* Enable interrupts for transmit error, complete frame
2341 * received, and any transmit buffer we have also set the
2342 * interrupt flag.
2344 fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
2346 /* Enable transmit/receive */
2347 fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
2350 static int
2351 fcc_enet_open(struct net_device *dev)
2353 struct fcc_enet_private *fep = dev->priv;
2355 #ifdef CONFIG_USE_MDIO
2356 fep->sequence_done = 0;
2357 fep->link = 0;
2359 if (fep->phy) {
2360 fcc_restart(dev, 0); /* always start in half-duplex */
2361 mii_do_cmd(dev, fep->phy->ack_int);
2362 mii_do_cmd(dev, fep->phy->config);
2363 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2364 while(!fep->sequence_done)
2365 schedule();
2367 mii_do_cmd(dev, fep->phy->startup);
2368 netif_start_queue(dev);
2369 return 0; /* Success */
2371 return -ENODEV; /* No PHY we understand */
2372 #else
2373 fep->link = 1;
2374 fcc_restart(dev, 0); /* always start in half-duplex */
2375 netif_start_queue(dev);
2376 return 0; /* Always succeed */
2377 #endif /* CONFIG_USE_MDIO */