usb-storage: use first bulk endpoints, not last
[linux-2.6/verdex.git] / drivers / block / pktcdvd.c
blob62462190e07e877634053cf20e41643c8ea227cf
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 const char* name,
109 struct kobject* parent,
110 struct kobj_type* ktype)
112 struct pktcdvd_kobj *p;
113 p = kzalloc(sizeof(*p), GFP_KERNEL);
114 if (!p)
115 return NULL;
116 kobject_set_name(&p->kobj, "%s", name);
117 p->kobj.parent = parent;
118 p->kobj.ktype = ktype;
119 p->pd = pd;
120 if (kobject_register(&p->kobj) != 0)
121 return NULL;
122 return p;
125 * remove a pktcdvd kernel object.
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
129 if (p)
130 kobject_unregister(&p->kobj);
133 * default release function for pktcdvd kernel objects.
135 static void pkt_kobj_release(struct kobject *kobj)
137 kfree(to_pktcdvdkobj(kobj));
141 /**********************************************************
143 * sysfs interface for pktcdvd
144 * by (C) 2006 Thomas Maier <balagi@justmail.de>
146 **********************************************************/
148 #define DEF_ATTR(_obj,_name,_mode) \
149 static struct attribute _obj = { \
150 .name = _name, .owner = THIS_MODULE, .mode = _mode }
152 /**********************************************************
153 /sys/class/pktcdvd/pktcdvd[0-7]/
154 stat/reset
155 stat/packets_started
156 stat/packets_finished
157 stat/kb_written
158 stat/kb_read
159 stat/kb_read_gather
160 write_queue/size
161 write_queue/congestion_off
162 write_queue/congestion_on
163 **********************************************************/
165 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
166 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
167 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
168 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
169 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
170 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
172 static struct attribute *kobj_pkt_attrs_stat[] = {
173 &kobj_pkt_attr_st1,
174 &kobj_pkt_attr_st2,
175 &kobj_pkt_attr_st3,
176 &kobj_pkt_attr_st4,
177 &kobj_pkt_attr_st5,
178 &kobj_pkt_attr_st6,
179 NULL
182 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
183 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
184 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
186 static struct attribute *kobj_pkt_attrs_wqueue[] = {
187 &kobj_pkt_attr_wq1,
188 &kobj_pkt_attr_wq2,
189 &kobj_pkt_attr_wq3,
190 NULL
193 /* declares a char buffer[64] _dbuf, copies data from
194 * _b with length _l into it and ensures that _dbuf ends
195 * with a \0 character.
197 #define DECLARE_BUF_AS_STRING(_dbuf, _b, _l) \
198 char _dbuf[64]; int dlen = (_l) < 0 ? 0 : (_l); \
199 if (dlen >= sizeof(_dbuf)) dlen = sizeof(_dbuf)-1; \
200 memcpy(_dbuf, _b, dlen); _dbuf[dlen] = 0
202 static ssize_t kobj_pkt_show(struct kobject *kobj,
203 struct attribute *attr, char *data)
205 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
206 int n = 0;
207 int v;
208 if (strcmp(attr->name, "packets_started") == 0) {
209 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
211 } else if (strcmp(attr->name, "packets_finished") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
214 } else if (strcmp(attr->name, "kb_written") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
217 } else if (strcmp(attr->name, "kb_read") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
220 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
223 } else if (strcmp(attr->name, "size") == 0) {
224 spin_lock(&pd->lock);
225 v = pd->bio_queue_size;
226 spin_unlock(&pd->lock);
227 n = sprintf(data, "%d\n", v);
229 } else if (strcmp(attr->name, "congestion_off") == 0) {
230 spin_lock(&pd->lock);
231 v = pd->write_congestion_off;
232 spin_unlock(&pd->lock);
233 n = sprintf(data, "%d\n", v);
235 } else if (strcmp(attr->name, "congestion_on") == 0) {
236 spin_lock(&pd->lock);
237 v = pd->write_congestion_on;
238 spin_unlock(&pd->lock);
239 n = sprintf(data, "%d\n", v);
241 return n;
244 static void init_write_congestion_marks(int* lo, int* hi)
246 if (*hi > 0) {
247 *hi = max(*hi, 500);
248 *hi = min(*hi, 1000000);
249 if (*lo <= 0)
250 *lo = *hi - 100;
251 else {
252 *lo = min(*lo, *hi - 100);
253 *lo = max(*lo, 100);
255 } else {
256 *hi = -1;
257 *lo = -1;
261 static ssize_t kobj_pkt_store(struct kobject *kobj,
262 struct attribute *attr,
263 const char *data, size_t len)
265 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
266 int val;
267 DECLARE_BUF_AS_STRING(dbuf, data, len); /* ensure sscanf scans a string */
269 if (strcmp(attr->name, "reset") == 0 && dlen > 0) {
270 pd->stats.pkt_started = 0;
271 pd->stats.pkt_ended = 0;
272 pd->stats.secs_w = 0;
273 pd->stats.secs_rg = 0;
274 pd->stats.secs_r = 0;
276 } else if (strcmp(attr->name, "congestion_off") == 0
277 && sscanf(dbuf, "%d", &val) == 1) {
278 spin_lock(&pd->lock);
279 pd->write_congestion_off = val;
280 init_write_congestion_marks(&pd->write_congestion_off,
281 &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
284 } else if (strcmp(attr->name, "congestion_on") == 0
285 && sscanf(dbuf, "%d", &val) == 1) {
286 spin_lock(&pd->lock);
287 pd->write_congestion_on = val;
288 init_write_congestion_marks(&pd->write_congestion_off,
289 &pd->write_congestion_on);
290 spin_unlock(&pd->lock);
292 return len;
295 static struct sysfs_ops kobj_pkt_ops = {
296 .show = kobj_pkt_show,
297 .store = kobj_pkt_store
299 static struct kobj_type kobj_pkt_type_stat = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_stat
304 static struct kobj_type kobj_pkt_type_wqueue = {
305 .release = pkt_kobj_release,
306 .sysfs_ops = &kobj_pkt_ops,
307 .default_attrs = kobj_pkt_attrs_wqueue
310 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
312 if (class_pktcdvd) {
313 pd->clsdev = class_device_create(class_pktcdvd,
314 NULL, pd->pkt_dev,
315 NULL, "%s", pd->name);
316 if (IS_ERR(pd->clsdev))
317 pd->clsdev = NULL;
319 if (pd->clsdev) {
320 pd->kobj_stat = pkt_kobj_create(pd, "stat",
321 &pd->clsdev->kobj,
322 &kobj_pkt_type_stat);
323 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
324 &pd->clsdev->kobj,
325 &kobj_pkt_type_wqueue);
329 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 pkt_kobj_remove(pd->kobj_stat);
332 pkt_kobj_remove(pd->kobj_wqueue);
333 if (class_pktcdvd)
334 class_device_destroy(class_pktcdvd, pd->pkt_dev);
338 /********************************************************************
339 /sys/class/pktcdvd/
340 add map block device
341 remove unmap packet dev
342 device_map show mappings
343 *******************************************************************/
345 static void class_pktcdvd_release(struct class *cls)
347 kfree(cls);
349 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
351 int n = 0;
352 int idx;
353 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
354 for (idx = 0; idx < MAX_WRITERS; idx++) {
355 struct pktcdvd_device *pd = pkt_devs[idx];
356 if (!pd)
357 continue;
358 n += sprintf(data+n, "%s %u:%u %u:%u\n",
359 pd->name,
360 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
361 MAJOR(pd->bdev->bd_dev),
362 MINOR(pd->bdev->bd_dev));
364 mutex_unlock(&ctl_mutex);
365 return n;
368 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
369 size_t count)
371 unsigned int major, minor;
372 DECLARE_BUF_AS_STRING(dbuf, buf, count);
373 if (sscanf(dbuf, "%u:%u", &major, &minor) == 2) {
374 pkt_setup_dev(MKDEV(major, minor), NULL);
375 return count;
377 return -EINVAL;
380 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
381 size_t count)
383 unsigned int major, minor;
384 DECLARE_BUF_AS_STRING(dbuf, buf, count);
385 if (sscanf(dbuf, "%u:%u", &major, &minor) == 2) {
386 pkt_remove_dev(MKDEV(major, minor));
387 return count;
389 return -EINVAL;
392 static struct class_attribute class_pktcdvd_attrs[] = {
393 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
394 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
395 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
396 __ATTR_NULL
400 static int pkt_sysfs_init(void)
402 int ret = 0;
405 * create control files in sysfs
406 * /sys/class/pktcdvd/...
408 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
409 if (!class_pktcdvd)
410 return -ENOMEM;
411 class_pktcdvd->name = DRIVER_NAME;
412 class_pktcdvd->owner = THIS_MODULE;
413 class_pktcdvd->class_release = class_pktcdvd_release;
414 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
415 ret = class_register(class_pktcdvd);
416 if (ret) {
417 kfree(class_pktcdvd);
418 class_pktcdvd = NULL;
419 printk(DRIVER_NAME": failed to create class pktcdvd\n");
420 return ret;
422 return 0;
425 static void pkt_sysfs_cleanup(void)
427 if (class_pktcdvd)
428 class_destroy(class_pktcdvd);
429 class_pktcdvd = NULL;
432 /********************************************************************
433 entries in debugfs
435 /debugfs/pktcdvd[0-7]/
436 info
438 *******************************************************************/
440 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
442 return pkt_seq_show(m, p);
445 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
447 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
450 static struct file_operations debug_fops = {
451 .open = pkt_debugfs_fops_open,
452 .read = seq_read,
453 .llseek = seq_lseek,
454 .release = single_release,
455 .owner = THIS_MODULE,
458 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
460 if (!pkt_debugfs_root)
461 return;
462 pd->dfs_f_info = NULL;
463 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
464 if (IS_ERR(pd->dfs_d_root)) {
465 pd->dfs_d_root = NULL;
466 return;
468 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
469 pd->dfs_d_root, pd, &debug_fops);
470 if (IS_ERR(pd->dfs_f_info)) {
471 pd->dfs_f_info = NULL;
472 return;
476 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
478 if (!pkt_debugfs_root)
479 return;
480 if (pd->dfs_f_info)
481 debugfs_remove(pd->dfs_f_info);
482 pd->dfs_f_info = NULL;
483 if (pd->dfs_d_root)
484 debugfs_remove(pd->dfs_d_root);
485 pd->dfs_d_root = NULL;
488 static void pkt_debugfs_init(void)
490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491 if (IS_ERR(pkt_debugfs_root)) {
492 pkt_debugfs_root = NULL;
493 return;
497 static void pkt_debugfs_cleanup(void)
499 if (!pkt_debugfs_root)
500 return;
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
505 /* ----------------------------------------------------------*/
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 VPRINTK(DRIVER_NAME": queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
518 static void pkt_bio_destructor(struct bio *bio)
520 kfree(bio->bi_io_vec);
521 kfree(bio);
524 static struct bio *pkt_bio_alloc(int nr_iovecs)
526 struct bio_vec *bvl = NULL;
527 struct bio *bio;
529 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
530 if (!bio)
531 goto no_bio;
532 bio_init(bio);
534 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
535 if (!bvl)
536 goto no_bvl;
538 bio->bi_max_vecs = nr_iovecs;
539 bio->bi_io_vec = bvl;
540 bio->bi_destructor = pkt_bio_destructor;
542 return bio;
544 no_bvl:
545 kfree(bio);
546 no_bio:
547 return NULL;
551 * Allocate a packet_data struct
553 static struct packet_data *pkt_alloc_packet_data(int frames)
555 int i;
556 struct packet_data *pkt;
558 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
559 if (!pkt)
560 goto no_pkt;
562 pkt->frames = frames;
563 pkt->w_bio = pkt_bio_alloc(frames);
564 if (!pkt->w_bio)
565 goto no_bio;
567 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
568 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
569 if (!pkt->pages[i])
570 goto no_page;
573 spin_lock_init(&pkt->lock);
575 for (i = 0; i < frames; i++) {
576 struct bio *bio = pkt_bio_alloc(1);
577 if (!bio)
578 goto no_rd_bio;
579 pkt->r_bios[i] = bio;
582 return pkt;
584 no_rd_bio:
585 for (i = 0; i < frames; i++) {
586 struct bio *bio = pkt->r_bios[i];
587 if (bio)
588 bio_put(bio);
591 no_page:
592 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
593 if (pkt->pages[i])
594 __free_page(pkt->pages[i]);
595 bio_put(pkt->w_bio);
596 no_bio:
597 kfree(pkt);
598 no_pkt:
599 return NULL;
603 * Free a packet_data struct
605 static void pkt_free_packet_data(struct packet_data *pkt)
607 int i;
609 for (i = 0; i < pkt->frames; i++) {
610 struct bio *bio = pkt->r_bios[i];
611 if (bio)
612 bio_put(bio);
614 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
615 __free_page(pkt->pages[i]);
616 bio_put(pkt->w_bio);
617 kfree(pkt);
620 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
622 struct packet_data *pkt, *next;
624 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
626 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
627 pkt_free_packet_data(pkt);
629 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
632 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
634 struct packet_data *pkt;
636 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
638 while (nr_packets > 0) {
639 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
640 if (!pkt) {
641 pkt_shrink_pktlist(pd);
642 return 0;
644 pkt->id = nr_packets;
645 pkt->pd = pd;
646 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
647 nr_packets--;
649 return 1;
652 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
654 struct rb_node *n = rb_next(&node->rb_node);
655 if (!n)
656 return NULL;
657 return rb_entry(n, struct pkt_rb_node, rb_node);
660 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
662 rb_erase(&node->rb_node, &pd->bio_queue);
663 mempool_free(node, pd->rb_pool);
664 pd->bio_queue_size--;
665 BUG_ON(pd->bio_queue_size < 0);
669 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
671 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
673 struct rb_node *n = pd->bio_queue.rb_node;
674 struct rb_node *next;
675 struct pkt_rb_node *tmp;
677 if (!n) {
678 BUG_ON(pd->bio_queue_size > 0);
679 return NULL;
682 for (;;) {
683 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
684 if (s <= tmp->bio->bi_sector)
685 next = n->rb_left;
686 else
687 next = n->rb_right;
688 if (!next)
689 break;
690 n = next;
693 if (s > tmp->bio->bi_sector) {
694 tmp = pkt_rbtree_next(tmp);
695 if (!tmp)
696 return NULL;
698 BUG_ON(s > tmp->bio->bi_sector);
699 return tmp;
703 * Insert a node into the pd->bio_queue rb tree.
705 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
707 struct rb_node **p = &pd->bio_queue.rb_node;
708 struct rb_node *parent = NULL;
709 sector_t s = node->bio->bi_sector;
710 struct pkt_rb_node *tmp;
712 while (*p) {
713 parent = *p;
714 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
715 if (s < tmp->bio->bi_sector)
716 p = &(*p)->rb_left;
717 else
718 p = &(*p)->rb_right;
720 rb_link_node(&node->rb_node, parent, p);
721 rb_insert_color(&node->rb_node, &pd->bio_queue);
722 pd->bio_queue_size++;
726 * Add a bio to a single linked list defined by its head and tail pointers.
728 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
730 bio->bi_next = NULL;
731 if (*list_tail) {
732 BUG_ON((*list_head) == NULL);
733 (*list_tail)->bi_next = bio;
734 (*list_tail) = bio;
735 } else {
736 BUG_ON((*list_head) != NULL);
737 (*list_head) = bio;
738 (*list_tail) = bio;
743 * Remove and return the first bio from a single linked list defined by its
744 * head and tail pointers.
746 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
748 struct bio *bio;
750 if (*list_head == NULL)
751 return NULL;
753 bio = *list_head;
754 *list_head = bio->bi_next;
755 if (*list_head == NULL)
756 *list_tail = NULL;
758 bio->bi_next = NULL;
759 return bio;
763 * Send a packet_command to the underlying block device and
764 * wait for completion.
766 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
768 request_queue_t *q = bdev_get_queue(pd->bdev);
769 struct request *rq;
770 int ret = 0;
772 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
773 WRITE : READ, __GFP_WAIT);
775 if (cgc->buflen) {
776 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
777 goto out;
780 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
781 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
782 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
783 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
785 rq->timeout = 60*HZ;
786 rq->cmd_type = REQ_TYPE_BLOCK_PC;
787 rq->cmd_flags |= REQ_HARDBARRIER;
788 if (cgc->quiet)
789 rq->cmd_flags |= REQ_QUIET;
791 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
792 ret = rq->errors;
793 out:
794 blk_put_request(rq);
795 return ret;
799 * A generic sense dump / resolve mechanism should be implemented across
800 * all ATAPI + SCSI devices.
802 static void pkt_dump_sense(struct packet_command *cgc)
804 static char *info[9] = { "No sense", "Recovered error", "Not ready",
805 "Medium error", "Hardware error", "Illegal request",
806 "Unit attention", "Data protect", "Blank check" };
807 int i;
808 struct request_sense *sense = cgc->sense;
810 printk(DRIVER_NAME":");
811 for (i = 0; i < CDROM_PACKET_SIZE; i++)
812 printk(" %02x", cgc->cmd[i]);
813 printk(" - ");
815 if (sense == NULL) {
816 printk("no sense\n");
817 return;
820 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
822 if (sense->sense_key > 8) {
823 printk(" (INVALID)\n");
824 return;
827 printk(" (%s)\n", info[sense->sense_key]);
831 * flush the drive cache to media
833 static int pkt_flush_cache(struct pktcdvd_device *pd)
835 struct packet_command cgc;
837 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
838 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
839 cgc.quiet = 1;
842 * the IMMED bit -- we default to not setting it, although that
843 * would allow a much faster close, this is safer
845 #if 0
846 cgc.cmd[1] = 1 << 1;
847 #endif
848 return pkt_generic_packet(pd, &cgc);
852 * speed is given as the normal factor, e.g. 4 for 4x
854 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
856 struct packet_command cgc;
857 struct request_sense sense;
858 int ret;
860 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
861 cgc.sense = &sense;
862 cgc.cmd[0] = GPCMD_SET_SPEED;
863 cgc.cmd[2] = (read_speed >> 8) & 0xff;
864 cgc.cmd[3] = read_speed & 0xff;
865 cgc.cmd[4] = (write_speed >> 8) & 0xff;
866 cgc.cmd[5] = write_speed & 0xff;
868 if ((ret = pkt_generic_packet(pd, &cgc)))
869 pkt_dump_sense(&cgc);
871 return ret;
875 * Queue a bio for processing by the low-level CD device. Must be called
876 * from process context.
878 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
880 spin_lock(&pd->iosched.lock);
881 if (bio_data_dir(bio) == READ) {
882 pkt_add_list_last(bio, &pd->iosched.read_queue,
883 &pd->iosched.read_queue_tail);
884 } else {
885 pkt_add_list_last(bio, &pd->iosched.write_queue,
886 &pd->iosched.write_queue_tail);
888 spin_unlock(&pd->iosched.lock);
890 atomic_set(&pd->iosched.attention, 1);
891 wake_up(&pd->wqueue);
895 * Process the queued read/write requests. This function handles special
896 * requirements for CDRW drives:
897 * - A cache flush command must be inserted before a read request if the
898 * previous request was a write.
899 * - Switching between reading and writing is slow, so don't do it more often
900 * than necessary.
901 * - Optimize for throughput at the expense of latency. This means that streaming
902 * writes will never be interrupted by a read, but if the drive has to seek
903 * before the next write, switch to reading instead if there are any pending
904 * read requests.
905 * - Set the read speed according to current usage pattern. When only reading
906 * from the device, it's best to use the highest possible read speed, but
907 * when switching often between reading and writing, it's better to have the
908 * same read and write speeds.
910 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
913 if (atomic_read(&pd->iosched.attention) == 0)
914 return;
915 atomic_set(&pd->iosched.attention, 0);
917 for (;;) {
918 struct bio *bio;
919 int reads_queued, writes_queued;
921 spin_lock(&pd->iosched.lock);
922 reads_queued = (pd->iosched.read_queue != NULL);
923 writes_queued = (pd->iosched.write_queue != NULL);
924 spin_unlock(&pd->iosched.lock);
926 if (!reads_queued && !writes_queued)
927 break;
929 if (pd->iosched.writing) {
930 int need_write_seek = 1;
931 spin_lock(&pd->iosched.lock);
932 bio = pd->iosched.write_queue;
933 spin_unlock(&pd->iosched.lock);
934 if (bio && (bio->bi_sector == pd->iosched.last_write))
935 need_write_seek = 0;
936 if (need_write_seek && reads_queued) {
937 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
938 VPRINTK(DRIVER_NAME": write, waiting\n");
939 break;
941 pkt_flush_cache(pd);
942 pd->iosched.writing = 0;
944 } else {
945 if (!reads_queued && writes_queued) {
946 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
947 VPRINTK(DRIVER_NAME": read, waiting\n");
948 break;
950 pd->iosched.writing = 1;
954 spin_lock(&pd->iosched.lock);
955 if (pd->iosched.writing) {
956 bio = pkt_get_list_first(&pd->iosched.write_queue,
957 &pd->iosched.write_queue_tail);
958 } else {
959 bio = pkt_get_list_first(&pd->iosched.read_queue,
960 &pd->iosched.read_queue_tail);
962 spin_unlock(&pd->iosched.lock);
964 if (!bio)
965 continue;
967 if (bio_data_dir(bio) == READ)
968 pd->iosched.successive_reads += bio->bi_size >> 10;
969 else {
970 pd->iosched.successive_reads = 0;
971 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
973 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
974 if (pd->read_speed == pd->write_speed) {
975 pd->read_speed = MAX_SPEED;
976 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
978 } else {
979 if (pd->read_speed != pd->write_speed) {
980 pd->read_speed = pd->write_speed;
981 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
985 atomic_inc(&pd->cdrw.pending_bios);
986 generic_make_request(bio);
991 * Special care is needed if the underlying block device has a small
992 * max_phys_segments value.
994 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
996 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
998 * The cdrom device can handle one segment/frame
1000 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1001 return 0;
1002 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1004 * We can handle this case at the expense of some extra memory
1005 * copies during write operations
1007 set_bit(PACKET_MERGE_SEGS, &pd->flags);
1008 return 0;
1009 } else {
1010 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1011 return -EIO;
1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1020 unsigned int copy_size = CD_FRAMESIZE;
1022 while (copy_size > 0) {
1023 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1024 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1025 src_bvl->bv_offset + offs;
1026 void *vto = page_address(dst_page) + dst_offs;
1027 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1029 BUG_ON(len < 0);
1030 memcpy(vto, vfrom, len);
1031 kunmap_atomic(vfrom, KM_USER0);
1033 seg++;
1034 offs = 0;
1035 dst_offs += len;
1036 copy_size -= len;
1041 * Copy all data for this packet to pkt->pages[], so that
1042 * a) The number of required segments for the write bio is minimized, which
1043 * is necessary for some scsi controllers.
1044 * b) The data can be used as cache to avoid read requests if we receive a
1045 * new write request for the same zone.
1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1049 int f, p, offs;
1051 /* Copy all data to pkt->pages[] */
1052 p = 0;
1053 offs = 0;
1054 for (f = 0; f < pkt->frames; f++) {
1055 if (bvec[f].bv_page != pkt->pages[p]) {
1056 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1057 void *vto = page_address(pkt->pages[p]) + offs;
1058 memcpy(vto, vfrom, CD_FRAMESIZE);
1059 kunmap_atomic(vfrom, KM_USER0);
1060 bvec[f].bv_page = pkt->pages[p];
1061 bvec[f].bv_offset = offs;
1062 } else {
1063 BUG_ON(bvec[f].bv_offset != offs);
1065 offs += CD_FRAMESIZE;
1066 if (offs >= PAGE_SIZE) {
1067 offs = 0;
1068 p++;
1073 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1075 struct packet_data *pkt = bio->bi_private;
1076 struct pktcdvd_device *pd = pkt->pd;
1077 BUG_ON(!pd);
1079 if (bio->bi_size)
1080 return 1;
1082 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1083 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1085 if (err)
1086 atomic_inc(&pkt->io_errors);
1087 if (atomic_dec_and_test(&pkt->io_wait)) {
1088 atomic_inc(&pkt->run_sm);
1089 wake_up(&pd->wqueue);
1091 pkt_bio_finished(pd);
1093 return 0;
1096 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1098 struct packet_data *pkt = bio->bi_private;
1099 struct pktcdvd_device *pd = pkt->pd;
1100 BUG_ON(!pd);
1102 if (bio->bi_size)
1103 return 1;
1105 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1107 pd->stats.pkt_ended++;
1109 pkt_bio_finished(pd);
1110 atomic_dec(&pkt->io_wait);
1111 atomic_inc(&pkt->run_sm);
1112 wake_up(&pd->wqueue);
1113 return 0;
1117 * Schedule reads for the holes in a packet
1119 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1121 int frames_read = 0;
1122 struct bio *bio;
1123 int f;
1124 char written[PACKET_MAX_SIZE];
1126 BUG_ON(!pkt->orig_bios);
1128 atomic_set(&pkt->io_wait, 0);
1129 atomic_set(&pkt->io_errors, 0);
1132 * Figure out which frames we need to read before we can write.
1134 memset(written, 0, sizeof(written));
1135 spin_lock(&pkt->lock);
1136 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1137 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1138 int num_frames = bio->bi_size / CD_FRAMESIZE;
1139 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1140 BUG_ON(first_frame < 0);
1141 BUG_ON(first_frame + num_frames > pkt->frames);
1142 for (f = first_frame; f < first_frame + num_frames; f++)
1143 written[f] = 1;
1145 spin_unlock(&pkt->lock);
1147 if (pkt->cache_valid) {
1148 VPRINTK("pkt_gather_data: zone %llx cached\n",
1149 (unsigned long long)pkt->sector);
1150 goto out_account;
1154 * Schedule reads for missing parts of the packet.
1156 for (f = 0; f < pkt->frames; f++) {
1157 int p, offset;
1158 if (written[f])
1159 continue;
1160 bio = pkt->r_bios[f];
1161 bio_init(bio);
1162 bio->bi_max_vecs = 1;
1163 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1164 bio->bi_bdev = pd->bdev;
1165 bio->bi_end_io = pkt_end_io_read;
1166 bio->bi_private = pkt;
1168 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1169 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1170 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1171 f, pkt->pages[p], offset);
1172 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1173 BUG();
1175 atomic_inc(&pkt->io_wait);
1176 bio->bi_rw = READ;
1177 pkt_queue_bio(pd, bio);
1178 frames_read++;
1181 out_account:
1182 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1183 frames_read, (unsigned long long)pkt->sector);
1184 pd->stats.pkt_started++;
1185 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1189 * Find a packet matching zone, or the least recently used packet if
1190 * there is no match.
1192 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1194 struct packet_data *pkt;
1196 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1197 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1198 list_del_init(&pkt->list);
1199 if (pkt->sector != zone)
1200 pkt->cache_valid = 0;
1201 return pkt;
1204 BUG();
1205 return NULL;
1208 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1210 if (pkt->cache_valid) {
1211 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1212 } else {
1213 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1218 * recover a failed write, query for relocation if possible
1220 * returns 1 if recovery is possible, or 0 if not
1223 static int pkt_start_recovery(struct packet_data *pkt)
1226 * FIXME. We need help from the file system to implement
1227 * recovery handling.
1229 return 0;
1230 #if 0
1231 struct request *rq = pkt->rq;
1232 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1233 struct block_device *pkt_bdev;
1234 struct super_block *sb = NULL;
1235 unsigned long old_block, new_block;
1236 sector_t new_sector;
1238 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1239 if (pkt_bdev) {
1240 sb = get_super(pkt_bdev);
1241 bdput(pkt_bdev);
1244 if (!sb)
1245 return 0;
1247 if (!sb->s_op || !sb->s_op->relocate_blocks)
1248 goto out;
1250 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1251 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1252 goto out;
1254 new_sector = new_block * (CD_FRAMESIZE >> 9);
1255 pkt->sector = new_sector;
1257 pkt->bio->bi_sector = new_sector;
1258 pkt->bio->bi_next = NULL;
1259 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1260 pkt->bio->bi_idx = 0;
1262 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1263 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1264 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1265 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1266 BUG_ON(pkt->bio->bi_private != pkt);
1268 drop_super(sb);
1269 return 1;
1271 out:
1272 drop_super(sb);
1273 return 0;
1274 #endif
1277 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1279 #if PACKET_DEBUG > 1
1280 static const char *state_name[] = {
1281 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1283 enum packet_data_state old_state = pkt->state;
1284 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1285 state_name[old_state], state_name[state]);
1286 #endif
1287 pkt->state = state;
1291 * Scan the work queue to see if we can start a new packet.
1292 * returns non-zero if any work was done.
1294 static int pkt_handle_queue(struct pktcdvd_device *pd)
1296 struct packet_data *pkt, *p;
1297 struct bio *bio = NULL;
1298 sector_t zone = 0; /* Suppress gcc warning */
1299 struct pkt_rb_node *node, *first_node;
1300 struct rb_node *n;
1301 int wakeup;
1303 VPRINTK("handle_queue\n");
1305 atomic_set(&pd->scan_queue, 0);
1307 if (list_empty(&pd->cdrw.pkt_free_list)) {
1308 VPRINTK("handle_queue: no pkt\n");
1309 return 0;
1313 * Try to find a zone we are not already working on.
1315 spin_lock(&pd->lock);
1316 first_node = pkt_rbtree_find(pd, pd->current_sector);
1317 if (!first_node) {
1318 n = rb_first(&pd->bio_queue);
1319 if (n)
1320 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1322 node = first_node;
1323 while (node) {
1324 bio = node->bio;
1325 zone = ZONE(bio->bi_sector, pd);
1326 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1327 if (p->sector == zone) {
1328 bio = NULL;
1329 goto try_next_bio;
1332 break;
1333 try_next_bio:
1334 node = pkt_rbtree_next(node);
1335 if (!node) {
1336 n = rb_first(&pd->bio_queue);
1337 if (n)
1338 node = rb_entry(n, struct pkt_rb_node, rb_node);
1340 if (node == first_node)
1341 node = NULL;
1343 spin_unlock(&pd->lock);
1344 if (!bio) {
1345 VPRINTK("handle_queue: no bio\n");
1346 return 0;
1349 pkt = pkt_get_packet_data(pd, zone);
1351 pd->current_sector = zone + pd->settings.size;
1352 pkt->sector = zone;
1353 BUG_ON(pkt->frames != pd->settings.size >> 2);
1354 pkt->write_size = 0;
1357 * Scan work queue for bios in the same zone and link them
1358 * to this packet.
1360 spin_lock(&pd->lock);
1361 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1362 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1363 bio = node->bio;
1364 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1365 (unsigned long long)ZONE(bio->bi_sector, pd));
1366 if (ZONE(bio->bi_sector, pd) != zone)
1367 break;
1368 pkt_rbtree_erase(pd, node);
1369 spin_lock(&pkt->lock);
1370 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1371 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1372 spin_unlock(&pkt->lock);
1374 /* check write congestion marks, and if bio_queue_size is
1375 below, wake up any waiters */
1376 wakeup = (pd->write_congestion_on > 0
1377 && pd->bio_queue_size <= pd->write_congestion_off);
1378 spin_unlock(&pd->lock);
1379 if (wakeup)
1380 blk_clear_queue_congested(pd->disk->queue, WRITE);
1382 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1383 pkt_set_state(pkt, PACKET_WAITING_STATE);
1384 atomic_set(&pkt->run_sm, 1);
1386 spin_lock(&pd->cdrw.active_list_lock);
1387 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1388 spin_unlock(&pd->cdrw.active_list_lock);
1390 return 1;
1394 * Assemble a bio to write one packet and queue the bio for processing
1395 * by the underlying block device.
1397 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1399 struct bio *bio;
1400 int f;
1401 int frames_write;
1402 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1404 for (f = 0; f < pkt->frames; f++) {
1405 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1406 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1410 * Fill-in bvec with data from orig_bios.
1412 frames_write = 0;
1413 spin_lock(&pkt->lock);
1414 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1415 int segment = bio->bi_idx;
1416 int src_offs = 0;
1417 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1418 int num_frames = bio->bi_size / CD_FRAMESIZE;
1419 BUG_ON(first_frame < 0);
1420 BUG_ON(first_frame + num_frames > pkt->frames);
1421 for (f = first_frame; f < first_frame + num_frames; f++) {
1422 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1424 while (src_offs >= src_bvl->bv_len) {
1425 src_offs -= src_bvl->bv_len;
1426 segment++;
1427 BUG_ON(segment >= bio->bi_vcnt);
1428 src_bvl = bio_iovec_idx(bio, segment);
1431 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1432 bvec[f].bv_page = src_bvl->bv_page;
1433 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1434 } else {
1435 pkt_copy_bio_data(bio, segment, src_offs,
1436 bvec[f].bv_page, bvec[f].bv_offset);
1438 src_offs += CD_FRAMESIZE;
1439 frames_write++;
1442 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1443 spin_unlock(&pkt->lock);
1445 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1446 frames_write, (unsigned long long)pkt->sector);
1447 BUG_ON(frames_write != pkt->write_size);
1449 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1450 pkt_make_local_copy(pkt, bvec);
1451 pkt->cache_valid = 1;
1452 } else {
1453 pkt->cache_valid = 0;
1456 /* Start the write request */
1457 bio_init(pkt->w_bio);
1458 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1459 pkt->w_bio->bi_sector = pkt->sector;
1460 pkt->w_bio->bi_bdev = pd->bdev;
1461 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1462 pkt->w_bio->bi_private = pkt;
1463 for (f = 0; f < pkt->frames; f++)
1464 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1465 BUG();
1466 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1468 atomic_set(&pkt->io_wait, 1);
1469 pkt->w_bio->bi_rw = WRITE;
1470 pkt_queue_bio(pd, pkt->w_bio);
1473 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1475 struct bio *bio, *next;
1477 if (!uptodate)
1478 pkt->cache_valid = 0;
1480 /* Finish all bios corresponding to this packet */
1481 bio = pkt->orig_bios;
1482 while (bio) {
1483 next = bio->bi_next;
1484 bio->bi_next = NULL;
1485 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1486 bio = next;
1488 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1491 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1493 int uptodate;
1495 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1497 for (;;) {
1498 switch (pkt->state) {
1499 case PACKET_WAITING_STATE:
1500 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1501 return;
1503 pkt->sleep_time = 0;
1504 pkt_gather_data(pd, pkt);
1505 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1506 break;
1508 case PACKET_READ_WAIT_STATE:
1509 if (atomic_read(&pkt->io_wait) > 0)
1510 return;
1512 if (atomic_read(&pkt->io_errors) > 0) {
1513 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1514 } else {
1515 pkt_start_write(pd, pkt);
1517 break;
1519 case PACKET_WRITE_WAIT_STATE:
1520 if (atomic_read(&pkt->io_wait) > 0)
1521 return;
1523 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1524 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1525 } else {
1526 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1528 break;
1530 case PACKET_RECOVERY_STATE:
1531 if (pkt_start_recovery(pkt)) {
1532 pkt_start_write(pd, pkt);
1533 } else {
1534 VPRINTK("No recovery possible\n");
1535 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1537 break;
1539 case PACKET_FINISHED_STATE:
1540 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1541 pkt_finish_packet(pkt, uptodate);
1542 return;
1544 default:
1545 BUG();
1546 break;
1551 static void pkt_handle_packets(struct pktcdvd_device *pd)
1553 struct packet_data *pkt, *next;
1555 VPRINTK("pkt_handle_packets\n");
1558 * Run state machine for active packets
1560 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1561 if (atomic_read(&pkt->run_sm) > 0) {
1562 atomic_set(&pkt->run_sm, 0);
1563 pkt_run_state_machine(pd, pkt);
1568 * Move no longer active packets to the free list
1570 spin_lock(&pd->cdrw.active_list_lock);
1571 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1572 if (pkt->state == PACKET_FINISHED_STATE) {
1573 list_del(&pkt->list);
1574 pkt_put_packet_data(pd, pkt);
1575 pkt_set_state(pkt, PACKET_IDLE_STATE);
1576 atomic_set(&pd->scan_queue, 1);
1579 spin_unlock(&pd->cdrw.active_list_lock);
1582 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1584 struct packet_data *pkt;
1585 int i;
1587 for (i = 0; i < PACKET_NUM_STATES; i++)
1588 states[i] = 0;
1590 spin_lock(&pd->cdrw.active_list_lock);
1591 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1592 states[pkt->state]++;
1594 spin_unlock(&pd->cdrw.active_list_lock);
1598 * kcdrwd is woken up when writes have been queued for one of our
1599 * registered devices
1601 static int kcdrwd(void *foobar)
1603 struct pktcdvd_device *pd = foobar;
1604 struct packet_data *pkt;
1605 long min_sleep_time, residue;
1607 set_user_nice(current, -20);
1609 for (;;) {
1610 DECLARE_WAITQUEUE(wait, current);
1613 * Wait until there is something to do
1615 add_wait_queue(&pd->wqueue, &wait);
1616 for (;;) {
1617 set_current_state(TASK_INTERRUPTIBLE);
1619 /* Check if we need to run pkt_handle_queue */
1620 if (atomic_read(&pd->scan_queue) > 0)
1621 goto work_to_do;
1623 /* Check if we need to run the state machine for some packet */
1624 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1625 if (atomic_read(&pkt->run_sm) > 0)
1626 goto work_to_do;
1629 /* Check if we need to process the iosched queues */
1630 if (atomic_read(&pd->iosched.attention) != 0)
1631 goto work_to_do;
1633 /* Otherwise, go to sleep */
1634 if (PACKET_DEBUG > 1) {
1635 int states[PACKET_NUM_STATES];
1636 pkt_count_states(pd, states);
1637 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1638 states[0], states[1], states[2], states[3],
1639 states[4], states[5]);
1642 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1643 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1644 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1645 min_sleep_time = pkt->sleep_time;
1648 generic_unplug_device(bdev_get_queue(pd->bdev));
1650 VPRINTK("kcdrwd: sleeping\n");
1651 residue = schedule_timeout(min_sleep_time);
1652 VPRINTK("kcdrwd: wake up\n");
1654 /* make swsusp happy with our thread */
1655 try_to_freeze();
1657 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1658 if (!pkt->sleep_time)
1659 continue;
1660 pkt->sleep_time -= min_sleep_time - residue;
1661 if (pkt->sleep_time <= 0) {
1662 pkt->sleep_time = 0;
1663 atomic_inc(&pkt->run_sm);
1667 if (signal_pending(current)) {
1668 flush_signals(current);
1670 if (kthread_should_stop())
1671 break;
1673 work_to_do:
1674 set_current_state(TASK_RUNNING);
1675 remove_wait_queue(&pd->wqueue, &wait);
1677 if (kthread_should_stop())
1678 break;
1681 * if pkt_handle_queue returns true, we can queue
1682 * another request.
1684 while (pkt_handle_queue(pd))
1688 * Handle packet state machine
1690 pkt_handle_packets(pd);
1693 * Handle iosched queues
1695 pkt_iosched_process_queue(pd);
1698 return 0;
1701 static void pkt_print_settings(struct pktcdvd_device *pd)
1703 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1704 printk("%u blocks, ", pd->settings.size >> 2);
1705 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1708 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1710 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1712 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1713 cgc->cmd[2] = page_code | (page_control << 6);
1714 cgc->cmd[7] = cgc->buflen >> 8;
1715 cgc->cmd[8] = cgc->buflen & 0xff;
1716 cgc->data_direction = CGC_DATA_READ;
1717 return pkt_generic_packet(pd, cgc);
1720 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1722 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1723 memset(cgc->buffer, 0, 2);
1724 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1725 cgc->cmd[1] = 0x10; /* PF */
1726 cgc->cmd[7] = cgc->buflen >> 8;
1727 cgc->cmd[8] = cgc->buflen & 0xff;
1728 cgc->data_direction = CGC_DATA_WRITE;
1729 return pkt_generic_packet(pd, cgc);
1732 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1734 struct packet_command cgc;
1735 int ret;
1737 /* set up command and get the disc info */
1738 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1739 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1740 cgc.cmd[8] = cgc.buflen = 2;
1741 cgc.quiet = 1;
1743 if ((ret = pkt_generic_packet(pd, &cgc)))
1744 return ret;
1746 /* not all drives have the same disc_info length, so requeue
1747 * packet with the length the drive tells us it can supply
1749 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1750 sizeof(di->disc_information_length);
1752 if (cgc.buflen > sizeof(disc_information))
1753 cgc.buflen = sizeof(disc_information);
1755 cgc.cmd[8] = cgc.buflen;
1756 return pkt_generic_packet(pd, &cgc);
1759 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1761 struct packet_command cgc;
1762 int ret;
1764 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1765 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1766 cgc.cmd[1] = type & 3;
1767 cgc.cmd[4] = (track & 0xff00) >> 8;
1768 cgc.cmd[5] = track & 0xff;
1769 cgc.cmd[8] = 8;
1770 cgc.quiet = 1;
1772 if ((ret = pkt_generic_packet(pd, &cgc)))
1773 return ret;
1775 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1776 sizeof(ti->track_information_length);
1778 if (cgc.buflen > sizeof(track_information))
1779 cgc.buflen = sizeof(track_information);
1781 cgc.cmd[8] = cgc.buflen;
1782 return pkt_generic_packet(pd, &cgc);
1785 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1787 disc_information di;
1788 track_information ti;
1789 __u32 last_track;
1790 int ret = -1;
1792 if ((ret = pkt_get_disc_info(pd, &di)))
1793 return ret;
1795 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1796 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1797 return ret;
1799 /* if this track is blank, try the previous. */
1800 if (ti.blank) {
1801 last_track--;
1802 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1803 return ret;
1806 /* if last recorded field is valid, return it. */
1807 if (ti.lra_v) {
1808 *last_written = be32_to_cpu(ti.last_rec_address);
1809 } else {
1810 /* make it up instead */
1811 *last_written = be32_to_cpu(ti.track_start) +
1812 be32_to_cpu(ti.track_size);
1813 if (ti.free_blocks)
1814 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1816 return 0;
1820 * write mode select package based on pd->settings
1822 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1824 struct packet_command cgc;
1825 struct request_sense sense;
1826 write_param_page *wp;
1827 char buffer[128];
1828 int ret, size;
1830 /* doesn't apply to DVD+RW or DVD-RAM */
1831 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1832 return 0;
1834 memset(buffer, 0, sizeof(buffer));
1835 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1836 cgc.sense = &sense;
1837 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1838 pkt_dump_sense(&cgc);
1839 return ret;
1842 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1843 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1844 if (size > sizeof(buffer))
1845 size = sizeof(buffer);
1848 * now get it all
1850 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1851 cgc.sense = &sense;
1852 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1853 pkt_dump_sense(&cgc);
1854 return ret;
1858 * write page is offset header + block descriptor length
1860 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1862 wp->fp = pd->settings.fp;
1863 wp->track_mode = pd->settings.track_mode;
1864 wp->write_type = pd->settings.write_type;
1865 wp->data_block_type = pd->settings.block_mode;
1867 wp->multi_session = 0;
1869 #ifdef PACKET_USE_LS
1870 wp->link_size = 7;
1871 wp->ls_v = 1;
1872 #endif
1874 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1875 wp->session_format = 0;
1876 wp->subhdr2 = 0x20;
1877 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1878 wp->session_format = 0x20;
1879 wp->subhdr2 = 8;
1880 #if 0
1881 wp->mcn[0] = 0x80;
1882 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1883 #endif
1884 } else {
1886 * paranoia
1888 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1889 return 1;
1891 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1893 cgc.buflen = cgc.cmd[8] = size;
1894 if ((ret = pkt_mode_select(pd, &cgc))) {
1895 pkt_dump_sense(&cgc);
1896 return ret;
1899 pkt_print_settings(pd);
1900 return 0;
1904 * 1 -- we can write to this track, 0 -- we can't
1906 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1908 switch (pd->mmc3_profile) {
1909 case 0x1a: /* DVD+RW */
1910 case 0x12: /* DVD-RAM */
1911 /* The track is always writable on DVD+RW/DVD-RAM */
1912 return 1;
1913 default:
1914 break;
1917 if (!ti->packet || !ti->fp)
1918 return 0;
1921 * "good" settings as per Mt Fuji.
1923 if (ti->rt == 0 && ti->blank == 0)
1924 return 1;
1926 if (ti->rt == 0 && ti->blank == 1)
1927 return 1;
1929 if (ti->rt == 1 && ti->blank == 0)
1930 return 1;
1932 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1933 return 0;
1937 * 1 -- we can write to this disc, 0 -- we can't
1939 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1941 switch (pd->mmc3_profile) {
1942 case 0x0a: /* CD-RW */
1943 case 0xffff: /* MMC3 not supported */
1944 break;
1945 case 0x1a: /* DVD+RW */
1946 case 0x13: /* DVD-RW */
1947 case 0x12: /* DVD-RAM */
1948 return 1;
1949 default:
1950 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1951 return 0;
1955 * for disc type 0xff we should probably reserve a new track.
1956 * but i'm not sure, should we leave this to user apps? probably.
1958 if (di->disc_type == 0xff) {
1959 printk(DRIVER_NAME": Unknown disc. No track?\n");
1960 return 0;
1963 if (di->disc_type != 0x20 && di->disc_type != 0) {
1964 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1965 return 0;
1968 if (di->erasable == 0) {
1969 printk(DRIVER_NAME": Disc not erasable\n");
1970 return 0;
1973 if (di->border_status == PACKET_SESSION_RESERVED) {
1974 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1975 return 0;
1978 return 1;
1981 static int pkt_probe_settings(struct pktcdvd_device *pd)
1983 struct packet_command cgc;
1984 unsigned char buf[12];
1985 disc_information di;
1986 track_information ti;
1987 int ret, track;
1989 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1990 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1991 cgc.cmd[8] = 8;
1992 ret = pkt_generic_packet(pd, &cgc);
1993 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1995 memset(&di, 0, sizeof(disc_information));
1996 memset(&ti, 0, sizeof(track_information));
1998 if ((ret = pkt_get_disc_info(pd, &di))) {
1999 printk("failed get_disc\n");
2000 return ret;
2003 if (!pkt_writable_disc(pd, &di))
2004 return -EROFS;
2006 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2008 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2009 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2010 printk(DRIVER_NAME": failed get_track\n");
2011 return ret;
2014 if (!pkt_writable_track(pd, &ti)) {
2015 printk(DRIVER_NAME": can't write to this track\n");
2016 return -EROFS;
2020 * we keep packet size in 512 byte units, makes it easier to
2021 * deal with request calculations.
2023 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2024 if (pd->settings.size == 0) {
2025 printk(DRIVER_NAME": detected zero packet size!\n");
2026 return -ENXIO;
2028 if (pd->settings.size > PACKET_MAX_SECTORS) {
2029 printk(DRIVER_NAME": packet size is too big\n");
2030 return -EROFS;
2032 pd->settings.fp = ti.fp;
2033 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2035 if (ti.nwa_v) {
2036 pd->nwa = be32_to_cpu(ti.next_writable);
2037 set_bit(PACKET_NWA_VALID, &pd->flags);
2041 * in theory we could use lra on -RW media as well and just zero
2042 * blocks that haven't been written yet, but in practice that
2043 * is just a no-go. we'll use that for -R, naturally.
2045 if (ti.lra_v) {
2046 pd->lra = be32_to_cpu(ti.last_rec_address);
2047 set_bit(PACKET_LRA_VALID, &pd->flags);
2048 } else {
2049 pd->lra = 0xffffffff;
2050 set_bit(PACKET_LRA_VALID, &pd->flags);
2054 * fine for now
2056 pd->settings.link_loss = 7;
2057 pd->settings.write_type = 0; /* packet */
2058 pd->settings.track_mode = ti.track_mode;
2061 * mode1 or mode2 disc
2063 switch (ti.data_mode) {
2064 case PACKET_MODE1:
2065 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2066 break;
2067 case PACKET_MODE2:
2068 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2069 break;
2070 default:
2071 printk(DRIVER_NAME": unknown data mode\n");
2072 return -EROFS;
2074 return 0;
2078 * enable/disable write caching on drive
2080 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2082 struct packet_command cgc;
2083 struct request_sense sense;
2084 unsigned char buf[64];
2085 int ret;
2087 memset(buf, 0, sizeof(buf));
2088 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2089 cgc.sense = &sense;
2090 cgc.buflen = pd->mode_offset + 12;
2093 * caching mode page might not be there, so quiet this command
2095 cgc.quiet = 1;
2097 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2098 return ret;
2100 buf[pd->mode_offset + 10] |= (!!set << 2);
2102 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2103 ret = pkt_mode_select(pd, &cgc);
2104 if (ret) {
2105 printk(DRIVER_NAME": write caching control failed\n");
2106 pkt_dump_sense(&cgc);
2107 } else if (!ret && set)
2108 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2109 return ret;
2112 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2114 struct packet_command cgc;
2116 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2117 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2118 cgc.cmd[4] = lockflag ? 1 : 0;
2119 return pkt_generic_packet(pd, &cgc);
2123 * Returns drive maximum write speed
2125 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2127 struct packet_command cgc;
2128 struct request_sense sense;
2129 unsigned char buf[256+18];
2130 unsigned char *cap_buf;
2131 int ret, offset;
2133 memset(buf, 0, sizeof(buf));
2134 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2135 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2136 cgc.sense = &sense;
2138 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2139 if (ret) {
2140 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2141 sizeof(struct mode_page_header);
2142 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2143 if (ret) {
2144 pkt_dump_sense(&cgc);
2145 return ret;
2149 offset = 20; /* Obsoleted field, used by older drives */
2150 if (cap_buf[1] >= 28)
2151 offset = 28; /* Current write speed selected */
2152 if (cap_buf[1] >= 30) {
2153 /* If the drive reports at least one "Logical Unit Write
2154 * Speed Performance Descriptor Block", use the information
2155 * in the first block. (contains the highest speed)
2157 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2158 if (num_spdb > 0)
2159 offset = 34;
2162 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2163 return 0;
2166 /* These tables from cdrecord - I don't have orange book */
2167 /* standard speed CD-RW (1-4x) */
2168 static char clv_to_speed[16] = {
2169 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2170 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2172 /* high speed CD-RW (-10x) */
2173 static char hs_clv_to_speed[16] = {
2174 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2175 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2177 /* ultra high speed CD-RW */
2178 static char us_clv_to_speed[16] = {
2179 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2180 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2184 * reads the maximum media speed from ATIP
2186 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2188 struct packet_command cgc;
2189 struct request_sense sense;
2190 unsigned char buf[64];
2191 unsigned int size, st, sp;
2192 int ret;
2194 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2195 cgc.sense = &sense;
2196 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2197 cgc.cmd[1] = 2;
2198 cgc.cmd[2] = 4; /* READ ATIP */
2199 cgc.cmd[8] = 2;
2200 ret = pkt_generic_packet(pd, &cgc);
2201 if (ret) {
2202 pkt_dump_sense(&cgc);
2203 return ret;
2205 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2206 if (size > sizeof(buf))
2207 size = sizeof(buf);
2209 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2210 cgc.sense = &sense;
2211 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2212 cgc.cmd[1] = 2;
2213 cgc.cmd[2] = 4;
2214 cgc.cmd[8] = size;
2215 ret = pkt_generic_packet(pd, &cgc);
2216 if (ret) {
2217 pkt_dump_sense(&cgc);
2218 return ret;
2221 if (!buf[6] & 0x40) {
2222 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2223 return 1;
2225 if (!buf[6] & 0x4) {
2226 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2227 return 1;
2230 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2232 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2234 /* Info from cdrecord */
2235 switch (st) {
2236 case 0: /* standard speed */
2237 *speed = clv_to_speed[sp];
2238 break;
2239 case 1: /* high speed */
2240 *speed = hs_clv_to_speed[sp];
2241 break;
2242 case 2: /* ultra high speed */
2243 *speed = us_clv_to_speed[sp];
2244 break;
2245 default:
2246 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2247 return 1;
2249 if (*speed) {
2250 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2251 return 0;
2252 } else {
2253 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2254 return 1;
2258 static int pkt_perform_opc(struct pktcdvd_device *pd)
2260 struct packet_command cgc;
2261 struct request_sense sense;
2262 int ret;
2264 VPRINTK(DRIVER_NAME": Performing OPC\n");
2266 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2267 cgc.sense = &sense;
2268 cgc.timeout = 60*HZ;
2269 cgc.cmd[0] = GPCMD_SEND_OPC;
2270 cgc.cmd[1] = 1;
2271 if ((ret = pkt_generic_packet(pd, &cgc)))
2272 pkt_dump_sense(&cgc);
2273 return ret;
2276 static int pkt_open_write(struct pktcdvd_device *pd)
2278 int ret;
2279 unsigned int write_speed, media_write_speed, read_speed;
2281 if ((ret = pkt_probe_settings(pd))) {
2282 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2283 return ret;
2286 if ((ret = pkt_set_write_settings(pd))) {
2287 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2288 return -EIO;
2291 pkt_write_caching(pd, USE_WCACHING);
2293 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2294 write_speed = 16 * 177;
2295 switch (pd->mmc3_profile) {
2296 case 0x13: /* DVD-RW */
2297 case 0x1a: /* DVD+RW */
2298 case 0x12: /* DVD-RAM */
2299 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2300 break;
2301 default:
2302 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2303 media_write_speed = 16;
2304 write_speed = min(write_speed, media_write_speed * 177);
2305 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2306 break;
2308 read_speed = write_speed;
2310 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2311 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2312 return -EIO;
2314 pd->write_speed = write_speed;
2315 pd->read_speed = read_speed;
2317 if ((ret = pkt_perform_opc(pd))) {
2318 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2321 return 0;
2325 * called at open time.
2327 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2329 int ret;
2330 long lba;
2331 request_queue_t *q;
2334 * We need to re-open the cdrom device without O_NONBLOCK to be able
2335 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2336 * so bdget() can't fail.
2338 bdget(pd->bdev->bd_dev);
2339 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2340 goto out;
2342 if ((ret = bd_claim(pd->bdev, pd)))
2343 goto out_putdev;
2345 if ((ret = pkt_get_last_written(pd, &lba))) {
2346 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2347 goto out_unclaim;
2350 set_capacity(pd->disk, lba << 2);
2351 set_capacity(pd->bdev->bd_disk, lba << 2);
2352 bd_set_size(pd->bdev, (loff_t)lba << 11);
2354 q = bdev_get_queue(pd->bdev);
2355 if (write) {
2356 if ((ret = pkt_open_write(pd)))
2357 goto out_unclaim;
2359 * Some CDRW drives can not handle writes larger than one packet,
2360 * even if the size is a multiple of the packet size.
2362 spin_lock_irq(q->queue_lock);
2363 blk_queue_max_sectors(q, pd->settings.size);
2364 spin_unlock_irq(q->queue_lock);
2365 set_bit(PACKET_WRITABLE, &pd->flags);
2366 } else {
2367 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2368 clear_bit(PACKET_WRITABLE, &pd->flags);
2371 if ((ret = pkt_set_segment_merging(pd, q)))
2372 goto out_unclaim;
2374 if (write) {
2375 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2376 printk(DRIVER_NAME": not enough memory for buffers\n");
2377 ret = -ENOMEM;
2378 goto out_unclaim;
2380 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2383 return 0;
2385 out_unclaim:
2386 bd_release(pd->bdev);
2387 out_putdev:
2388 blkdev_put(pd->bdev);
2389 out:
2390 return ret;
2394 * called when the device is closed. makes sure that the device flushes
2395 * the internal cache before we close.
2397 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2399 if (flush && pkt_flush_cache(pd))
2400 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2402 pkt_lock_door(pd, 0);
2404 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2405 bd_release(pd->bdev);
2406 blkdev_put(pd->bdev);
2408 pkt_shrink_pktlist(pd);
2411 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2413 if (dev_minor >= MAX_WRITERS)
2414 return NULL;
2415 return pkt_devs[dev_minor];
2418 static int pkt_open(struct inode *inode, struct file *file)
2420 struct pktcdvd_device *pd = NULL;
2421 int ret;
2423 VPRINTK(DRIVER_NAME": entering open\n");
2425 mutex_lock(&ctl_mutex);
2426 pd = pkt_find_dev_from_minor(iminor(inode));
2427 if (!pd) {
2428 ret = -ENODEV;
2429 goto out;
2431 BUG_ON(pd->refcnt < 0);
2433 pd->refcnt++;
2434 if (pd->refcnt > 1) {
2435 if ((file->f_mode & FMODE_WRITE) &&
2436 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2437 ret = -EBUSY;
2438 goto out_dec;
2440 } else {
2441 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2442 if (ret)
2443 goto out_dec;
2445 * needed here as well, since ext2 (among others) may change
2446 * the blocksize at mount time
2448 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2451 mutex_unlock(&ctl_mutex);
2452 return 0;
2454 out_dec:
2455 pd->refcnt--;
2456 out:
2457 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2458 mutex_unlock(&ctl_mutex);
2459 return ret;
2462 static int pkt_close(struct inode *inode, struct file *file)
2464 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2465 int ret = 0;
2467 mutex_lock(&ctl_mutex);
2468 pd->refcnt--;
2469 BUG_ON(pd->refcnt < 0);
2470 if (pd->refcnt == 0) {
2471 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2472 pkt_release_dev(pd, flush);
2474 mutex_unlock(&ctl_mutex);
2475 return ret;
2479 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2481 struct packet_stacked_data *psd = bio->bi_private;
2482 struct pktcdvd_device *pd = psd->pd;
2484 if (bio->bi_size)
2485 return 1;
2487 bio_put(bio);
2488 bio_endio(psd->bio, psd->bio->bi_size, err);
2489 mempool_free(psd, psd_pool);
2490 pkt_bio_finished(pd);
2491 return 0;
2494 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2496 struct pktcdvd_device *pd;
2497 char b[BDEVNAME_SIZE];
2498 sector_t zone;
2499 struct packet_data *pkt;
2500 int was_empty, blocked_bio;
2501 struct pkt_rb_node *node;
2503 pd = q->queuedata;
2504 if (!pd) {
2505 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2506 goto end_io;
2510 * Clone READ bios so we can have our own bi_end_io callback.
2512 if (bio_data_dir(bio) == READ) {
2513 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2514 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2516 psd->pd = pd;
2517 psd->bio = bio;
2518 cloned_bio->bi_bdev = pd->bdev;
2519 cloned_bio->bi_private = psd;
2520 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2521 pd->stats.secs_r += bio->bi_size >> 9;
2522 pkt_queue_bio(pd, cloned_bio);
2523 return 0;
2526 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2527 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2528 pd->name, (unsigned long long)bio->bi_sector);
2529 goto end_io;
2532 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2533 printk(DRIVER_NAME": wrong bio size\n");
2534 goto end_io;
2537 blk_queue_bounce(q, &bio);
2539 zone = ZONE(bio->bi_sector, pd);
2540 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2541 (unsigned long long)bio->bi_sector,
2542 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2544 /* Check if we have to split the bio */
2546 struct bio_pair *bp;
2547 sector_t last_zone;
2548 int first_sectors;
2550 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2551 if (last_zone != zone) {
2552 BUG_ON(last_zone != zone + pd->settings.size);
2553 first_sectors = last_zone - bio->bi_sector;
2554 bp = bio_split(bio, bio_split_pool, first_sectors);
2555 BUG_ON(!bp);
2556 pkt_make_request(q, &bp->bio1);
2557 pkt_make_request(q, &bp->bio2);
2558 bio_pair_release(bp);
2559 return 0;
2564 * If we find a matching packet in state WAITING or READ_WAIT, we can
2565 * just append this bio to that packet.
2567 spin_lock(&pd->cdrw.active_list_lock);
2568 blocked_bio = 0;
2569 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2570 if (pkt->sector == zone) {
2571 spin_lock(&pkt->lock);
2572 if ((pkt->state == PACKET_WAITING_STATE) ||
2573 (pkt->state == PACKET_READ_WAIT_STATE)) {
2574 pkt_add_list_last(bio, &pkt->orig_bios,
2575 &pkt->orig_bios_tail);
2576 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2577 if ((pkt->write_size >= pkt->frames) &&
2578 (pkt->state == PACKET_WAITING_STATE)) {
2579 atomic_inc(&pkt->run_sm);
2580 wake_up(&pd->wqueue);
2582 spin_unlock(&pkt->lock);
2583 spin_unlock(&pd->cdrw.active_list_lock);
2584 return 0;
2585 } else {
2586 blocked_bio = 1;
2588 spin_unlock(&pkt->lock);
2591 spin_unlock(&pd->cdrw.active_list_lock);
2594 * Test if there is enough room left in the bio work queue
2595 * (queue size >= congestion on mark).
2596 * If not, wait till the work queue size is below the congestion off mark.
2598 spin_lock(&pd->lock);
2599 if (pd->write_congestion_on > 0
2600 && pd->bio_queue_size >= pd->write_congestion_on) {
2601 blk_set_queue_congested(q, WRITE);
2602 do {
2603 spin_unlock(&pd->lock);
2604 congestion_wait(WRITE, HZ);
2605 spin_lock(&pd->lock);
2606 } while(pd->bio_queue_size > pd->write_congestion_off);
2608 spin_unlock(&pd->lock);
2611 * No matching packet found. Store the bio in the work queue.
2613 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2614 node->bio = bio;
2615 spin_lock(&pd->lock);
2616 BUG_ON(pd->bio_queue_size < 0);
2617 was_empty = (pd->bio_queue_size == 0);
2618 pkt_rbtree_insert(pd, node);
2619 spin_unlock(&pd->lock);
2622 * Wake up the worker thread.
2624 atomic_set(&pd->scan_queue, 1);
2625 if (was_empty) {
2626 /* This wake_up is required for correct operation */
2627 wake_up(&pd->wqueue);
2628 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2630 * This wake up is not required for correct operation,
2631 * but improves performance in some cases.
2633 wake_up(&pd->wqueue);
2635 return 0;
2636 end_io:
2637 bio_io_error(bio, bio->bi_size);
2638 return 0;
2643 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2645 struct pktcdvd_device *pd = q->queuedata;
2646 sector_t zone = ZONE(bio->bi_sector, pd);
2647 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2648 int remaining = (pd->settings.size << 9) - used;
2649 int remaining2;
2652 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2653 * boundary, pkt_make_request() will split the bio.
2655 remaining2 = PAGE_SIZE - bio->bi_size;
2656 remaining = max(remaining, remaining2);
2658 BUG_ON(remaining < 0);
2659 return remaining;
2662 static void pkt_init_queue(struct pktcdvd_device *pd)
2664 request_queue_t *q = pd->disk->queue;
2666 blk_queue_make_request(q, pkt_make_request);
2667 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2668 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2669 blk_queue_merge_bvec(q, pkt_merge_bvec);
2670 q->queuedata = pd;
2673 static int pkt_seq_show(struct seq_file *m, void *p)
2675 struct pktcdvd_device *pd = m->private;
2676 char *msg;
2677 char bdev_buf[BDEVNAME_SIZE];
2678 int states[PACKET_NUM_STATES];
2680 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2681 bdevname(pd->bdev, bdev_buf));
2683 seq_printf(m, "\nSettings:\n");
2684 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2686 if (pd->settings.write_type == 0)
2687 msg = "Packet";
2688 else
2689 msg = "Unknown";
2690 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2692 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2693 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2695 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2697 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2698 msg = "Mode 1";
2699 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2700 msg = "Mode 2";
2701 else
2702 msg = "Unknown";
2703 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2705 seq_printf(m, "\nStatistics:\n");
2706 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2707 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2708 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2709 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2710 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2712 seq_printf(m, "\nMisc:\n");
2713 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2714 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2715 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2716 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2717 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2718 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2720 seq_printf(m, "\nQueue state:\n");
2721 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2722 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2723 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2725 pkt_count_states(pd, states);
2726 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2727 states[0], states[1], states[2], states[3], states[4], states[5]);
2729 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2730 pd->write_congestion_off,
2731 pd->write_congestion_on);
2732 return 0;
2735 static int pkt_seq_open(struct inode *inode, struct file *file)
2737 return single_open(file, pkt_seq_show, PDE(inode)->data);
2740 static struct file_operations pkt_proc_fops = {
2741 .open = pkt_seq_open,
2742 .read = seq_read,
2743 .llseek = seq_lseek,
2744 .release = single_release
2747 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2749 int i;
2750 int ret = 0;
2751 char b[BDEVNAME_SIZE];
2752 struct proc_dir_entry *proc;
2753 struct block_device *bdev;
2755 if (pd->pkt_dev == dev) {
2756 printk(DRIVER_NAME": Recursive setup not allowed\n");
2757 return -EBUSY;
2759 for (i = 0; i < MAX_WRITERS; i++) {
2760 struct pktcdvd_device *pd2 = pkt_devs[i];
2761 if (!pd2)
2762 continue;
2763 if (pd2->bdev->bd_dev == dev) {
2764 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2765 return -EBUSY;
2767 if (pd2->pkt_dev == dev) {
2768 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2769 return -EBUSY;
2773 bdev = bdget(dev);
2774 if (!bdev)
2775 return -ENOMEM;
2776 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2777 if (ret)
2778 return ret;
2780 /* This is safe, since we have a reference from open(). */
2781 __module_get(THIS_MODULE);
2783 pd->bdev = bdev;
2784 set_blocksize(bdev, CD_FRAMESIZE);
2786 pkt_init_queue(pd);
2788 atomic_set(&pd->cdrw.pending_bios, 0);
2789 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2790 if (IS_ERR(pd->cdrw.thread)) {
2791 printk(DRIVER_NAME": can't start kernel thread\n");
2792 ret = -ENOMEM;
2793 goto out_mem;
2796 proc = create_proc_entry(pd->name, 0, pkt_proc);
2797 if (proc) {
2798 proc->data = pd;
2799 proc->proc_fops = &pkt_proc_fops;
2801 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2802 return 0;
2804 out_mem:
2805 blkdev_put(bdev);
2806 /* This is safe: open() is still holding a reference. */
2807 module_put(THIS_MODULE);
2808 return ret;
2811 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2813 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2815 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2817 switch (cmd) {
2819 * forward selected CDROM ioctls to CD-ROM, for UDF
2821 case CDROMMULTISESSION:
2822 case CDROMREADTOCENTRY:
2823 case CDROM_LAST_WRITTEN:
2824 case CDROM_SEND_PACKET:
2825 case SCSI_IOCTL_SEND_COMMAND:
2826 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2828 case CDROMEJECT:
2830 * The door gets locked when the device is opened, so we
2831 * have to unlock it or else the eject command fails.
2833 if (pd->refcnt == 1)
2834 pkt_lock_door(pd, 0);
2835 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2837 default:
2838 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2839 return -ENOTTY;
2842 return 0;
2845 static int pkt_media_changed(struct gendisk *disk)
2847 struct pktcdvd_device *pd = disk->private_data;
2848 struct gendisk *attached_disk;
2850 if (!pd)
2851 return 0;
2852 if (!pd->bdev)
2853 return 0;
2854 attached_disk = pd->bdev->bd_disk;
2855 if (!attached_disk)
2856 return 0;
2857 return attached_disk->fops->media_changed(attached_disk);
2860 static struct block_device_operations pktcdvd_ops = {
2861 .owner = THIS_MODULE,
2862 .open = pkt_open,
2863 .release = pkt_close,
2864 .ioctl = pkt_ioctl,
2865 .media_changed = pkt_media_changed,
2869 * Set up mapping from pktcdvd device to CD-ROM device.
2871 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2873 int idx;
2874 int ret = -ENOMEM;
2875 struct pktcdvd_device *pd;
2876 struct gendisk *disk;
2878 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2880 for (idx = 0; idx < MAX_WRITERS; idx++)
2881 if (!pkt_devs[idx])
2882 break;
2883 if (idx == MAX_WRITERS) {
2884 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2885 ret = -EBUSY;
2886 goto out_mutex;
2889 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2890 if (!pd)
2891 goto out_mutex;
2893 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2894 sizeof(struct pkt_rb_node));
2895 if (!pd->rb_pool)
2896 goto out_mem;
2898 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2899 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2900 spin_lock_init(&pd->cdrw.active_list_lock);
2902 spin_lock_init(&pd->lock);
2903 spin_lock_init(&pd->iosched.lock);
2904 sprintf(pd->name, DRIVER_NAME"%d", idx);
2905 init_waitqueue_head(&pd->wqueue);
2906 pd->bio_queue = RB_ROOT;
2908 pd->write_congestion_on = write_congestion_on;
2909 pd->write_congestion_off = write_congestion_off;
2911 disk = alloc_disk(1);
2912 if (!disk)
2913 goto out_mem;
2914 pd->disk = disk;
2915 disk->major = pktdev_major;
2916 disk->first_minor = idx;
2917 disk->fops = &pktcdvd_ops;
2918 disk->flags = GENHD_FL_REMOVABLE;
2919 strcpy(disk->disk_name, pd->name);
2920 disk->private_data = pd;
2921 disk->queue = blk_alloc_queue(GFP_KERNEL);
2922 if (!disk->queue)
2923 goto out_mem2;
2925 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2926 ret = pkt_new_dev(pd, dev);
2927 if (ret)
2928 goto out_new_dev;
2930 add_disk(disk);
2932 pkt_sysfs_dev_new(pd);
2933 pkt_debugfs_dev_new(pd);
2935 pkt_devs[idx] = pd;
2936 if (pkt_dev)
2937 *pkt_dev = pd->pkt_dev;
2939 mutex_unlock(&ctl_mutex);
2940 return 0;
2942 out_new_dev:
2943 blk_cleanup_queue(disk->queue);
2944 out_mem2:
2945 put_disk(disk);
2946 out_mem:
2947 if (pd->rb_pool)
2948 mempool_destroy(pd->rb_pool);
2949 kfree(pd);
2950 out_mutex:
2951 mutex_unlock(&ctl_mutex);
2952 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2953 return ret;
2957 * Tear down mapping from pktcdvd device to CD-ROM device.
2959 static int pkt_remove_dev(dev_t pkt_dev)
2961 struct pktcdvd_device *pd;
2962 int idx;
2963 int ret = 0;
2965 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2967 for (idx = 0; idx < MAX_WRITERS; idx++) {
2968 pd = pkt_devs[idx];
2969 if (pd && (pd->pkt_dev == pkt_dev))
2970 break;
2972 if (idx == MAX_WRITERS) {
2973 DPRINTK(DRIVER_NAME": dev not setup\n");
2974 ret = -ENXIO;
2975 goto out;
2978 if (pd->refcnt > 0) {
2979 ret = -EBUSY;
2980 goto out;
2982 if (!IS_ERR(pd->cdrw.thread))
2983 kthread_stop(pd->cdrw.thread);
2985 pkt_devs[idx] = NULL;
2987 pkt_debugfs_dev_remove(pd);
2988 pkt_sysfs_dev_remove(pd);
2990 blkdev_put(pd->bdev);
2992 remove_proc_entry(pd->name, pkt_proc);
2993 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2995 del_gendisk(pd->disk);
2996 blk_cleanup_queue(pd->disk->queue);
2997 put_disk(pd->disk);
2999 mempool_destroy(pd->rb_pool);
3000 kfree(pd);
3002 /* This is safe: open() is still holding a reference. */
3003 module_put(THIS_MODULE);
3005 out:
3006 mutex_unlock(&ctl_mutex);
3007 return ret;
3010 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3012 struct pktcdvd_device *pd;
3014 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3016 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3017 if (pd) {
3018 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3019 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3020 } else {
3021 ctrl_cmd->dev = 0;
3022 ctrl_cmd->pkt_dev = 0;
3024 ctrl_cmd->num_devices = MAX_WRITERS;
3026 mutex_unlock(&ctl_mutex);
3029 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3031 void __user *argp = (void __user *)arg;
3032 struct pkt_ctrl_command ctrl_cmd;
3033 int ret = 0;
3034 dev_t pkt_dev = 0;
3036 if (cmd != PACKET_CTRL_CMD)
3037 return -ENOTTY;
3039 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3040 return -EFAULT;
3042 switch (ctrl_cmd.command) {
3043 case PKT_CTRL_CMD_SETUP:
3044 if (!capable(CAP_SYS_ADMIN))
3045 return -EPERM;
3046 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3047 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3048 break;
3049 case PKT_CTRL_CMD_TEARDOWN:
3050 if (!capable(CAP_SYS_ADMIN))
3051 return -EPERM;
3052 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3053 break;
3054 case PKT_CTRL_CMD_STATUS:
3055 pkt_get_status(&ctrl_cmd);
3056 break;
3057 default:
3058 return -ENOTTY;
3061 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3062 return -EFAULT;
3063 return ret;
3067 static struct file_operations pkt_ctl_fops = {
3068 .ioctl = pkt_ctl_ioctl,
3069 .owner = THIS_MODULE,
3072 static struct miscdevice pkt_misc = {
3073 .minor = MISC_DYNAMIC_MINOR,
3074 .name = DRIVER_NAME,
3075 .fops = &pkt_ctl_fops
3078 static int __init pkt_init(void)
3080 int ret;
3082 mutex_init(&ctl_mutex);
3084 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3085 sizeof(struct packet_stacked_data));
3086 if (!psd_pool)
3087 return -ENOMEM;
3089 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3090 if (ret < 0) {
3091 printk(DRIVER_NAME": Unable to register block device\n");
3092 goto out2;
3094 if (!pktdev_major)
3095 pktdev_major = ret;
3097 ret = pkt_sysfs_init();
3098 if (ret)
3099 goto out;
3101 pkt_debugfs_init();
3103 ret = misc_register(&pkt_misc);
3104 if (ret) {
3105 printk(DRIVER_NAME": Unable to register misc device\n");
3106 goto out_misc;
3109 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3111 return 0;
3113 out_misc:
3114 pkt_debugfs_cleanup();
3115 pkt_sysfs_cleanup();
3116 out:
3117 unregister_blkdev(pktdev_major, DRIVER_NAME);
3118 out2:
3119 mempool_destroy(psd_pool);
3120 return ret;
3123 static void __exit pkt_exit(void)
3125 remove_proc_entry(DRIVER_NAME, proc_root_driver);
3126 misc_deregister(&pkt_misc);
3128 pkt_debugfs_cleanup();
3129 pkt_sysfs_cleanup();
3131 unregister_blkdev(pktdev_major, DRIVER_NAME);
3132 mempool_destroy(psd_pool);
3135 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3136 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3137 MODULE_LICENSE("GPL");
3139 module_init(pkt_init);
3140 module_exit(pkt_exit);