[PATCH] w1: Userspace communication protocol over connector.
[linux-2.6/verdex.git] / arch / sparc64 / kernel / time.c
blob0f00a99927e9d8c1205e9e49f1979969d0ce1ed9
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/config.h>
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/init.h>
24 #include <linux/ioport.h>
25 #include <linux/mc146818rtc.h>
26 #include <linux/delay.h>
27 #include <linux/profile.h>
28 #include <linux/bcd.h>
29 #include <linux/jiffies.h>
30 #include <linux/cpufreq.h>
31 #include <linux/percpu.h>
32 #include <linux/profile.h>
33 #include <linux/miscdevice.h>
34 #include <linux/rtc.h>
36 #include <asm/oplib.h>
37 #include <asm/mostek.h>
38 #include <asm/timer.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/sbus.h>
42 #include <asm/fhc.h>
43 #include <asm/pbm.h>
44 #include <asm/ebus.h>
45 #include <asm/isa.h>
46 #include <asm/starfire.h>
47 #include <asm/smp.h>
48 #include <asm/sections.h>
49 #include <asm/cpudata.h>
50 #include <asm/uaccess.h>
52 DEFINE_SPINLOCK(mostek_lock);
53 DEFINE_SPINLOCK(rtc_lock);
54 void __iomem *mstk48t02_regs = NULL;
55 #ifdef CONFIG_PCI
56 unsigned long ds1287_regs = 0UL;
57 #endif
59 extern unsigned long wall_jiffies;
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
64 static int set_rtc_mmss(unsigned long);
66 #define TICK_PRIV_BIT (1UL << 63)
68 #ifdef CONFIG_SMP
69 unsigned long profile_pc(struct pt_regs *regs)
71 unsigned long pc = instruction_pointer(regs);
73 if (in_lock_functions(pc))
74 return regs->u_regs[UREG_RETPC];
75 return pc;
77 EXPORT_SYMBOL(profile_pc);
78 #endif
80 static void tick_disable_protection(void)
82 /* Set things up so user can access tick register for profiling
83 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
84 * read back of %tick after writing it.
86 __asm__ __volatile__(
87 " ba,pt %%xcc, 1f\n"
88 " nop\n"
89 " .align 64\n"
90 "1: rd %%tick, %%g2\n"
91 " add %%g2, 6, %%g2\n"
92 " andn %%g2, %0, %%g2\n"
93 " wrpr %%g2, 0, %%tick\n"
94 " rdpr %%tick, %%g0"
95 : /* no outputs */
96 : "r" (TICK_PRIV_BIT)
97 : "g2");
100 static void tick_init_tick(unsigned long offset)
102 tick_disable_protection();
104 __asm__ __volatile__(
105 " rd %%tick, %%g1\n"
106 " andn %%g1, %1, %%g1\n"
107 " ba,pt %%xcc, 1f\n"
108 " add %%g1, %0, %%g1\n"
109 " .align 64\n"
110 "1: wr %%g1, 0x0, %%tick_cmpr\n"
111 " rd %%tick_cmpr, %%g0"
112 : /* no outputs */
113 : "r" (offset), "r" (TICK_PRIV_BIT)
114 : "g1");
117 static unsigned long tick_get_tick(void)
119 unsigned long ret;
121 __asm__ __volatile__("rd %%tick, %0\n\t"
122 "mov %0, %0"
123 : "=r" (ret));
125 return ret & ~TICK_PRIV_BIT;
128 static unsigned long tick_get_compare(void)
130 unsigned long ret;
132 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
133 "mov %0, %0"
134 : "=r" (ret));
136 return ret;
139 static unsigned long tick_add_compare(unsigned long adj)
141 unsigned long new_compare;
143 /* Workaround for Spitfire Errata (#54 I think??), I discovered
144 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
145 * number 103640.
147 * On Blackbird writes to %tick_cmpr can fail, the
148 * workaround seems to be to execute the wr instruction
149 * at the start of an I-cache line, and perform a dummy
150 * read back from %tick_cmpr right after writing to it. -DaveM
152 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
153 "ba,pt %%xcc, 1f\n\t"
154 " add %0, %1, %0\n\t"
155 ".align 64\n"
156 "1:\n\t"
157 "wr %0, 0, %%tick_cmpr\n\t"
158 "rd %%tick_cmpr, %%g0"
159 : "=&r" (new_compare)
160 : "r" (adj));
162 return new_compare;
165 static unsigned long tick_add_tick(unsigned long adj, unsigned long offset)
167 unsigned long new_tick, tmp;
169 /* Also need to handle Blackbird bug here too. */
170 __asm__ __volatile__("rd %%tick, %0\n\t"
171 "add %0, %2, %0\n\t"
172 "wrpr %0, 0, %%tick\n\t"
173 "andn %0, %4, %1\n\t"
174 "ba,pt %%xcc, 1f\n\t"
175 " add %1, %3, %1\n\t"
176 ".align 64\n"
177 "1:\n\t"
178 "wr %1, 0, %%tick_cmpr\n\t"
179 "rd %%tick_cmpr, %%g0"
180 : "=&r" (new_tick), "=&r" (tmp)
181 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
183 return new_tick;
186 static struct sparc64_tick_ops tick_operations __read_mostly = {
187 .init_tick = tick_init_tick,
188 .get_tick = tick_get_tick,
189 .get_compare = tick_get_compare,
190 .add_tick = tick_add_tick,
191 .add_compare = tick_add_compare,
192 .softint_mask = 1UL << 0,
195 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
197 static void stick_init_tick(unsigned long offset)
199 /* Writes to the %tick and %stick register are not
200 * allowed on sun4v. The Hypervisor controls that
201 * bit, per-strand.
203 if (tlb_type != hypervisor) {
204 tick_disable_protection();
206 /* Let the user get at STICK too. */
207 __asm__ __volatile__(
208 " rd %%asr24, %%g2\n"
209 " andn %%g2, %0, %%g2\n"
210 " wr %%g2, 0, %%asr24"
211 : /* no outputs */
212 : "r" (TICK_PRIV_BIT)
213 : "g1", "g2");
216 __asm__ __volatile__(
217 " rd %%asr24, %%g1\n"
218 " andn %%g1, %1, %%g1\n"
219 " add %%g1, %0, %%g1\n"
220 " wr %%g1, 0x0, %%asr25"
221 : /* no outputs */
222 : "r" (offset), "r" (TICK_PRIV_BIT)
223 : "g1");
226 static unsigned long stick_get_tick(void)
228 unsigned long ret;
230 __asm__ __volatile__("rd %%asr24, %0"
231 : "=r" (ret));
233 return ret & ~TICK_PRIV_BIT;
236 static unsigned long stick_get_compare(void)
238 unsigned long ret;
240 __asm__ __volatile__("rd %%asr25, %0"
241 : "=r" (ret));
243 return ret;
246 static unsigned long stick_add_tick(unsigned long adj, unsigned long offset)
248 unsigned long new_tick, tmp;
250 __asm__ __volatile__("rd %%asr24, %0\n\t"
251 "add %0, %2, %0\n\t"
252 "wr %0, 0, %%asr24\n\t"
253 "andn %0, %4, %1\n\t"
254 "add %1, %3, %1\n\t"
255 "wr %1, 0, %%asr25"
256 : "=&r" (new_tick), "=&r" (tmp)
257 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
259 return new_tick;
262 static unsigned long stick_add_compare(unsigned long adj)
264 unsigned long new_compare;
266 __asm__ __volatile__("rd %%asr25, %0\n\t"
267 "add %0, %1, %0\n\t"
268 "wr %0, 0, %%asr25"
269 : "=&r" (new_compare)
270 : "r" (adj));
272 return new_compare;
275 static struct sparc64_tick_ops stick_operations __read_mostly = {
276 .init_tick = stick_init_tick,
277 .get_tick = stick_get_tick,
278 .get_compare = stick_get_compare,
279 .add_tick = stick_add_tick,
280 .add_compare = stick_add_compare,
281 .softint_mask = 1UL << 16,
284 /* On Hummingbird the STICK/STICK_CMPR register is implemented
285 * in I/O space. There are two 64-bit registers each, the
286 * first holds the low 32-bits of the value and the second holds
287 * the high 32-bits.
289 * Since STICK is constantly updating, we have to access it carefully.
291 * The sequence we use to read is:
292 * 1) read high
293 * 2) read low
294 * 3) read high again, if it rolled re-read both low and high again.
296 * Writing STICK safely is also tricky:
297 * 1) write low to zero
298 * 2) write high
299 * 3) write low
301 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
302 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
304 static unsigned long __hbird_read_stick(void)
306 unsigned long ret, tmp1, tmp2, tmp3;
307 unsigned long addr = HBIRD_STICK_ADDR+8;
309 __asm__ __volatile__("ldxa [%1] %5, %2\n"
310 "1:\n\t"
311 "sub %1, 0x8, %1\n\t"
312 "ldxa [%1] %5, %3\n\t"
313 "add %1, 0x8, %1\n\t"
314 "ldxa [%1] %5, %4\n\t"
315 "cmp %4, %2\n\t"
316 "bne,a,pn %%xcc, 1b\n\t"
317 " mov %4, %2\n\t"
318 "sllx %4, 32, %4\n\t"
319 "or %3, %4, %0\n\t"
320 : "=&r" (ret), "=&r" (addr),
321 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
322 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
324 return ret;
327 static unsigned long __hbird_read_compare(void)
329 unsigned long low, high;
330 unsigned long addr = HBIRD_STICKCMP_ADDR;
332 __asm__ __volatile__("ldxa [%2] %3, %0\n\t"
333 "add %2, 0x8, %2\n\t"
334 "ldxa [%2] %3, %1"
335 : "=&r" (low), "=&r" (high), "=&r" (addr)
336 : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr));
338 return (high << 32UL) | low;
341 static void __hbird_write_stick(unsigned long val)
343 unsigned long low = (val & 0xffffffffUL);
344 unsigned long high = (val >> 32UL);
345 unsigned long addr = HBIRD_STICK_ADDR;
347 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
348 "add %0, 0x8, %0\n\t"
349 "stxa %3, [%0] %4\n\t"
350 "sub %0, 0x8, %0\n\t"
351 "stxa %2, [%0] %4"
352 : "=&r" (addr)
353 : "0" (addr), "r" (low), "r" (high),
354 "i" (ASI_PHYS_BYPASS_EC_E));
357 static void __hbird_write_compare(unsigned long val)
359 unsigned long low = (val & 0xffffffffUL);
360 unsigned long high = (val >> 32UL);
361 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
363 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
364 "sub %0, 0x8, %0\n\t"
365 "stxa %2, [%0] %4"
366 : "=&r" (addr)
367 : "0" (addr), "r" (low), "r" (high),
368 "i" (ASI_PHYS_BYPASS_EC_E));
371 static void hbtick_init_tick(unsigned long offset)
373 unsigned long val;
375 tick_disable_protection();
377 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
378 * XXX into actually sending STICK interrupts. I think because
379 * XXX of how we store %tick_cmpr in head.S this somehow resets the
380 * XXX {TICK + STICK} interrupt mux. -DaveM
382 __hbird_write_stick(__hbird_read_stick());
384 val = __hbird_read_stick() & ~TICK_PRIV_BIT;
385 __hbird_write_compare(val + offset);
388 static unsigned long hbtick_get_tick(void)
390 return __hbird_read_stick() & ~TICK_PRIV_BIT;
393 static unsigned long hbtick_get_compare(void)
395 return __hbird_read_compare();
398 static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset)
400 unsigned long val;
402 val = __hbird_read_stick() + adj;
403 __hbird_write_stick(val);
405 val &= ~TICK_PRIV_BIT;
406 __hbird_write_compare(val + offset);
408 return val;
411 static unsigned long hbtick_add_compare(unsigned long adj)
413 unsigned long val = __hbird_read_compare() + adj;
415 val &= ~TICK_PRIV_BIT;
416 __hbird_write_compare(val);
418 return val;
421 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
422 .init_tick = hbtick_init_tick,
423 .get_tick = hbtick_get_tick,
424 .get_compare = hbtick_get_compare,
425 .add_tick = hbtick_add_tick,
426 .add_compare = hbtick_add_compare,
427 .softint_mask = 1UL << 0,
430 /* timer_interrupt() needs to keep up the real-time clock,
431 * as well as call the "do_timer()" routine every clocktick
433 * NOTE: On SUN5 systems the ticker interrupt comes in using 2
434 * interrupts, one at level14 and one with softint bit 0.
436 unsigned long timer_tick_offset __read_mostly;
438 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
440 #define TICK_SIZE (tick_nsec / 1000)
442 static inline void timer_check_rtc(void)
444 /* last time the cmos clock got updated */
445 static long last_rtc_update;
447 /* Determine when to update the Mostek clock. */
448 if (ntp_synced() &&
449 xtime.tv_sec > last_rtc_update + 660 &&
450 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
451 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
452 if (set_rtc_mmss(xtime.tv_sec) == 0)
453 last_rtc_update = xtime.tv_sec;
454 else
455 last_rtc_update = xtime.tv_sec - 600;
456 /* do it again in 60 s */
460 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
462 unsigned long ticks, compare, pstate;
464 write_seqlock(&xtime_lock);
466 do {
467 #ifndef CONFIG_SMP
468 profile_tick(CPU_PROFILING, regs);
469 update_process_times(user_mode(regs));
470 #endif
471 do_timer(regs);
473 /* Guarantee that the following sequences execute
474 * uninterrupted.
476 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
477 "wrpr %0, %1, %%pstate"
478 : "=r" (pstate)
479 : "i" (PSTATE_IE));
481 compare = tick_ops->add_compare(timer_tick_offset);
482 ticks = tick_ops->get_tick();
484 /* Restore PSTATE_IE. */
485 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
486 : /* no outputs */
487 : "r" (pstate));
488 } while (time_after_eq(ticks, compare));
490 timer_check_rtc();
492 write_sequnlock(&xtime_lock);
494 return IRQ_HANDLED;
497 #ifdef CONFIG_SMP
498 void timer_tick_interrupt(struct pt_regs *regs)
500 write_seqlock(&xtime_lock);
502 do_timer(regs);
504 timer_check_rtc();
506 write_sequnlock(&xtime_lock);
508 #endif
510 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
511 static void __init kick_start_clock(void)
513 void __iomem *regs = mstk48t02_regs;
514 u8 sec, tmp;
515 int i, count;
517 prom_printf("CLOCK: Clock was stopped. Kick start ");
519 spin_lock_irq(&mostek_lock);
521 /* Turn on the kick start bit to start the oscillator. */
522 tmp = mostek_read(regs + MOSTEK_CREG);
523 tmp |= MSTK_CREG_WRITE;
524 mostek_write(regs + MOSTEK_CREG, tmp);
525 tmp = mostek_read(regs + MOSTEK_SEC);
526 tmp &= ~MSTK_STOP;
527 mostek_write(regs + MOSTEK_SEC, tmp);
528 tmp = mostek_read(regs + MOSTEK_HOUR);
529 tmp |= MSTK_KICK_START;
530 mostek_write(regs + MOSTEK_HOUR, tmp);
531 tmp = mostek_read(regs + MOSTEK_CREG);
532 tmp &= ~MSTK_CREG_WRITE;
533 mostek_write(regs + MOSTEK_CREG, tmp);
535 spin_unlock_irq(&mostek_lock);
537 /* Delay to allow the clock oscillator to start. */
538 sec = MSTK_REG_SEC(regs);
539 for (i = 0; i < 3; i++) {
540 while (sec == MSTK_REG_SEC(regs))
541 for (count = 0; count < 100000; count++)
542 /* nothing */ ;
543 prom_printf(".");
544 sec = MSTK_REG_SEC(regs);
546 prom_printf("\n");
548 spin_lock_irq(&mostek_lock);
550 /* Turn off kick start and set a "valid" time and date. */
551 tmp = mostek_read(regs + MOSTEK_CREG);
552 tmp |= MSTK_CREG_WRITE;
553 mostek_write(regs + MOSTEK_CREG, tmp);
554 tmp = mostek_read(regs + MOSTEK_HOUR);
555 tmp &= ~MSTK_KICK_START;
556 mostek_write(regs + MOSTEK_HOUR, tmp);
557 MSTK_SET_REG_SEC(regs,0);
558 MSTK_SET_REG_MIN(regs,0);
559 MSTK_SET_REG_HOUR(regs,0);
560 MSTK_SET_REG_DOW(regs,5);
561 MSTK_SET_REG_DOM(regs,1);
562 MSTK_SET_REG_MONTH(regs,8);
563 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
564 tmp = mostek_read(regs + MOSTEK_CREG);
565 tmp &= ~MSTK_CREG_WRITE;
566 mostek_write(regs + MOSTEK_CREG, tmp);
568 spin_unlock_irq(&mostek_lock);
570 /* Ensure the kick start bit is off. If it isn't, turn it off. */
571 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
572 prom_printf("CLOCK: Kick start still on!\n");
574 spin_lock_irq(&mostek_lock);
576 tmp = mostek_read(regs + MOSTEK_CREG);
577 tmp |= MSTK_CREG_WRITE;
578 mostek_write(regs + MOSTEK_CREG, tmp);
580 tmp = mostek_read(regs + MOSTEK_HOUR);
581 tmp &= ~MSTK_KICK_START;
582 mostek_write(regs + MOSTEK_HOUR, tmp);
584 tmp = mostek_read(regs + MOSTEK_CREG);
585 tmp &= ~MSTK_CREG_WRITE;
586 mostek_write(regs + MOSTEK_CREG, tmp);
588 spin_unlock_irq(&mostek_lock);
591 prom_printf("CLOCK: Kick start procedure successful.\n");
594 /* Return nonzero if the clock chip battery is low. */
595 static int __init has_low_battery(void)
597 void __iomem *regs = mstk48t02_regs;
598 u8 data1, data2;
600 spin_lock_irq(&mostek_lock);
602 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
603 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
604 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
605 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
607 spin_unlock_irq(&mostek_lock);
609 return (data1 == data2); /* Was the write blocked? */
612 /* Probe for the real time clock chip. */
613 static void __init set_system_time(void)
615 unsigned int year, mon, day, hour, min, sec;
616 void __iomem *mregs = mstk48t02_regs;
617 #ifdef CONFIG_PCI
618 unsigned long dregs = ds1287_regs;
619 #else
620 unsigned long dregs = 0UL;
621 #endif
622 u8 tmp;
624 if (!mregs && !dregs) {
625 prom_printf("Something wrong, clock regs not mapped yet.\n");
626 prom_halt();
629 if (mregs) {
630 spin_lock_irq(&mostek_lock);
632 /* Traditional Mostek chip. */
633 tmp = mostek_read(mregs + MOSTEK_CREG);
634 tmp |= MSTK_CREG_READ;
635 mostek_write(mregs + MOSTEK_CREG, tmp);
637 sec = MSTK_REG_SEC(mregs);
638 min = MSTK_REG_MIN(mregs);
639 hour = MSTK_REG_HOUR(mregs);
640 day = MSTK_REG_DOM(mregs);
641 mon = MSTK_REG_MONTH(mregs);
642 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
643 } else {
644 /* Dallas 12887 RTC chip. */
646 do {
647 sec = CMOS_READ(RTC_SECONDS);
648 min = CMOS_READ(RTC_MINUTES);
649 hour = CMOS_READ(RTC_HOURS);
650 day = CMOS_READ(RTC_DAY_OF_MONTH);
651 mon = CMOS_READ(RTC_MONTH);
652 year = CMOS_READ(RTC_YEAR);
653 } while (sec != CMOS_READ(RTC_SECONDS));
655 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
656 BCD_TO_BIN(sec);
657 BCD_TO_BIN(min);
658 BCD_TO_BIN(hour);
659 BCD_TO_BIN(day);
660 BCD_TO_BIN(mon);
661 BCD_TO_BIN(year);
663 if ((year += 1900) < 1970)
664 year += 100;
667 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
668 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
669 set_normalized_timespec(&wall_to_monotonic,
670 -xtime.tv_sec, -xtime.tv_nsec);
672 if (mregs) {
673 tmp = mostek_read(mregs + MOSTEK_CREG);
674 tmp &= ~MSTK_CREG_READ;
675 mostek_write(mregs + MOSTEK_CREG, tmp);
677 spin_unlock_irq(&mostek_lock);
681 /* davem suggests we keep this within the 4M locked kernel image */
682 static u32 starfire_get_time(void)
684 static char obp_gettod[32];
685 static u32 unix_tod;
687 sprintf(obp_gettod, "h# %08x unix-gettod",
688 (unsigned int) (long) &unix_tod);
689 prom_feval(obp_gettod);
691 return unix_tod;
694 static int starfire_set_time(u32 val)
696 /* Do nothing, time is set using the service processor
697 * console on this platform.
699 return 0;
702 static u32 hypervisor_get_time(void)
704 register unsigned long func asm("%o5");
705 register unsigned long arg0 asm("%o0");
706 register unsigned long arg1 asm("%o1");
707 int retries = 10000;
709 retry:
710 func = HV_FAST_TOD_GET;
711 arg0 = 0;
712 arg1 = 0;
713 __asm__ __volatile__("ta %6"
714 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
715 : "0" (func), "1" (arg0), "2" (arg1),
716 "i" (HV_FAST_TRAP));
717 if (arg0 == HV_EOK)
718 return arg1;
719 if (arg0 == HV_EWOULDBLOCK) {
720 if (--retries > 0) {
721 udelay(100);
722 goto retry;
724 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
725 return 0;
727 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
728 return 0;
731 static int hypervisor_set_time(u32 secs)
733 register unsigned long func asm("%o5");
734 register unsigned long arg0 asm("%o0");
735 int retries = 10000;
737 retry:
738 func = HV_FAST_TOD_SET;
739 arg0 = secs;
740 __asm__ __volatile__("ta %4"
741 : "=&r" (func), "=&r" (arg0)
742 : "0" (func), "1" (arg0),
743 "i" (HV_FAST_TRAP));
744 if (arg0 == HV_EOK)
745 return 0;
746 if (arg0 == HV_EWOULDBLOCK) {
747 if (--retries > 0) {
748 udelay(100);
749 goto retry;
751 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
752 return -EAGAIN;
754 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
755 return -EOPNOTSUPP;
758 void __init clock_probe(void)
760 struct linux_prom_registers clk_reg[2];
761 char model[128];
762 int node, busnd = -1, err;
763 unsigned long flags;
764 struct linux_central *cbus;
765 #ifdef CONFIG_PCI
766 struct linux_ebus *ebus = NULL;
767 struct sparc_isa_bridge *isa_br = NULL;
768 #endif
769 static int invoked;
771 if (invoked)
772 return;
773 invoked = 1;
776 if (this_is_starfire) {
777 xtime.tv_sec = starfire_get_time();
778 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
779 set_normalized_timespec(&wall_to_monotonic,
780 -xtime.tv_sec, -xtime.tv_nsec);
781 return;
783 if (tlb_type == hypervisor) {
784 xtime.tv_sec = hypervisor_get_time();
785 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
786 set_normalized_timespec(&wall_to_monotonic,
787 -xtime.tv_sec, -xtime.tv_nsec);
788 return;
791 local_irq_save(flags);
793 cbus = central_bus;
794 if (cbus != NULL)
795 busnd = central_bus->child->prom_node;
797 /* Check FHC Central then EBUSs then ISA bridges then SBUSs.
798 * That way we handle the presence of multiple properly.
800 * As a special case, machines with Central must provide the
801 * timer chip there.
803 #ifdef CONFIG_PCI
804 if (ebus_chain != NULL) {
805 ebus = ebus_chain;
806 if (busnd == -1)
807 busnd = ebus->prom_node;
809 if (isa_chain != NULL) {
810 isa_br = isa_chain;
811 if (busnd == -1)
812 busnd = isa_br->prom_node;
814 #endif
815 if (sbus_root != NULL && busnd == -1)
816 busnd = sbus_root->prom_node;
818 if (busnd == -1) {
819 prom_printf("clock_probe: problem, cannot find bus to search.\n");
820 prom_halt();
823 node = prom_getchild(busnd);
825 while (1) {
826 if (!node)
827 model[0] = 0;
828 else
829 prom_getstring(node, "model", model, sizeof(model));
830 if (strcmp(model, "mk48t02") &&
831 strcmp(model, "mk48t08") &&
832 strcmp(model, "mk48t59") &&
833 strcmp(model, "m5819") &&
834 strcmp(model, "m5819p") &&
835 strcmp(model, "m5823") &&
836 strcmp(model, "ds1287")) {
837 if (cbus != NULL) {
838 prom_printf("clock_probe: Central bus lacks timer chip.\n");
839 prom_halt();
842 if (node != 0)
843 node = prom_getsibling(node);
844 #ifdef CONFIG_PCI
845 while ((node == 0) && ebus != NULL) {
846 ebus = ebus->next;
847 if (ebus != NULL) {
848 busnd = ebus->prom_node;
849 node = prom_getchild(busnd);
852 while ((node == 0) && isa_br != NULL) {
853 isa_br = isa_br->next;
854 if (isa_br != NULL) {
855 busnd = isa_br->prom_node;
856 node = prom_getchild(busnd);
859 #endif
860 if (node == 0) {
861 prom_printf("clock_probe: Cannot find timer chip\n");
862 prom_halt();
864 continue;
867 err = prom_getproperty(node, "reg", (char *)clk_reg,
868 sizeof(clk_reg));
869 if(err == -1) {
870 prom_printf("clock_probe: Cannot get Mostek reg property\n");
871 prom_halt();
874 if (cbus != NULL) {
875 apply_fhc_ranges(central_bus->child, clk_reg, 1);
876 apply_central_ranges(central_bus, clk_reg, 1);
878 #ifdef CONFIG_PCI
879 else if (ebus != NULL) {
880 struct linux_ebus_device *edev;
882 for_each_ebusdev(edev, ebus)
883 if (edev->prom_node == node)
884 break;
885 if (edev == NULL) {
886 if (isa_chain != NULL)
887 goto try_isa_clock;
888 prom_printf("%s: Mostek not probed by EBUS\n",
889 __FUNCTION__);
890 prom_halt();
893 if (!strcmp(model, "ds1287") ||
894 !strcmp(model, "m5819") ||
895 !strcmp(model, "m5819p") ||
896 !strcmp(model, "m5823")) {
897 ds1287_regs = edev->resource[0].start;
898 } else {
899 mstk48t59_regs = (void __iomem *)
900 edev->resource[0].start;
901 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
903 break;
905 else if (isa_br != NULL) {
906 struct sparc_isa_device *isadev;
908 try_isa_clock:
909 for_each_isadev(isadev, isa_br)
910 if (isadev->prom_node == node)
911 break;
912 if (isadev == NULL) {
913 prom_printf("%s: Mostek not probed by ISA\n");
914 prom_halt();
916 if (!strcmp(model, "ds1287") ||
917 !strcmp(model, "m5819") ||
918 !strcmp(model, "m5819p") ||
919 !strcmp(model, "m5823")) {
920 ds1287_regs = isadev->resource.start;
921 } else {
922 mstk48t59_regs = (void __iomem *)
923 isadev->resource.start;
924 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
926 break;
928 #endif
929 else {
930 if (sbus_root->num_sbus_ranges) {
931 int nranges = sbus_root->num_sbus_ranges;
932 int rngc;
934 for (rngc = 0; rngc < nranges; rngc++)
935 if (clk_reg[0].which_io ==
936 sbus_root->sbus_ranges[rngc].ot_child_space)
937 break;
938 if (rngc == nranges) {
939 prom_printf("clock_probe: Cannot find ranges for "
940 "clock regs.\n");
941 prom_halt();
943 clk_reg[0].which_io =
944 sbus_root->sbus_ranges[rngc].ot_parent_space;
945 clk_reg[0].phys_addr +=
946 sbus_root->sbus_ranges[rngc].ot_parent_base;
950 if(model[5] == '0' && model[6] == '2') {
951 mstk48t02_regs = (void __iomem *)
952 (((u64)clk_reg[0].phys_addr) |
953 (((u64)clk_reg[0].which_io)<<32UL));
954 } else if(model[5] == '0' && model[6] == '8') {
955 mstk48t08_regs = (void __iomem *)
956 (((u64)clk_reg[0].phys_addr) |
957 (((u64)clk_reg[0].which_io)<<32UL));
958 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
959 } else {
960 mstk48t59_regs = (void __iomem *)
961 (((u64)clk_reg[0].phys_addr) |
962 (((u64)clk_reg[0].which_io)<<32UL));
963 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
965 break;
968 if (mstk48t02_regs != NULL) {
969 /* Report a low battery voltage condition. */
970 if (has_low_battery())
971 prom_printf("NVRAM: Low battery voltage!\n");
973 /* Kick start the clock if it is completely stopped. */
974 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
975 kick_start_clock();
978 set_system_time();
980 local_irq_restore(flags);
983 /* This is gets the master TICK_INT timer going. */
984 static unsigned long sparc64_init_timers(void)
986 unsigned long clock;
987 int node;
988 #ifdef CONFIG_SMP
989 extern void smp_tick_init(void);
990 #endif
992 if (tlb_type == spitfire) {
993 unsigned long ver, manuf, impl;
995 __asm__ __volatile__ ("rdpr %%ver, %0"
996 : "=&r" (ver));
997 manuf = ((ver >> 48) & 0xffff);
998 impl = ((ver >> 32) & 0xffff);
999 if (manuf == 0x17 && impl == 0x13) {
1000 /* Hummingbird, aka Ultra-IIe */
1001 tick_ops = &hbtick_operations;
1002 node = prom_root_node;
1003 clock = prom_getint(node, "stick-frequency");
1004 } else {
1005 tick_ops = &tick_operations;
1006 cpu_find_by_instance(0, &node, NULL);
1007 clock = prom_getint(node, "clock-frequency");
1009 } else {
1010 tick_ops = &stick_operations;
1011 node = prom_root_node;
1012 clock = prom_getint(node, "stick-frequency");
1014 timer_tick_offset = clock / HZ;
1016 #ifdef CONFIG_SMP
1017 smp_tick_init();
1018 #endif
1020 return clock;
1023 static void sparc64_start_timers(void)
1025 unsigned long pstate;
1027 /* Guarantee that the following sequences execute
1028 * uninterrupted.
1030 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1031 "wrpr %0, %1, %%pstate"
1032 : "=r" (pstate)
1033 : "i" (PSTATE_IE));
1035 tick_ops->init_tick(timer_tick_offset);
1037 /* Restore PSTATE_IE. */
1038 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1039 : /* no outputs */
1040 : "r" (pstate));
1042 local_irq_enable();
1045 struct freq_table {
1046 unsigned long clock_tick_ref;
1047 unsigned int ref_freq;
1049 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
1051 unsigned long sparc64_get_clock_tick(unsigned int cpu)
1053 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
1055 if (ft->clock_tick_ref)
1056 return ft->clock_tick_ref;
1057 return cpu_data(cpu).clock_tick;
1060 #ifdef CONFIG_CPU_FREQ
1062 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1063 void *data)
1065 struct cpufreq_freqs *freq = data;
1066 unsigned int cpu = freq->cpu;
1067 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
1069 if (!ft->ref_freq) {
1070 ft->ref_freq = freq->old;
1071 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
1073 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1074 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
1075 (val == CPUFREQ_RESUMECHANGE)) {
1076 cpu_data(cpu).clock_tick =
1077 cpufreq_scale(ft->clock_tick_ref,
1078 ft->ref_freq,
1079 freq->new);
1082 return 0;
1085 static struct notifier_block sparc64_cpufreq_notifier_block = {
1086 .notifier_call = sparc64_cpufreq_notifier
1089 #endif /* CONFIG_CPU_FREQ */
1091 static struct time_interpolator sparc64_cpu_interpolator = {
1092 .source = TIME_SOURCE_CPU,
1093 .shift = 16,
1094 .mask = 0xffffffffffffffffLL
1097 /* The quotient formula is taken from the IA64 port. */
1098 #define SPARC64_NSEC_PER_CYC_SHIFT 30UL
1099 void __init time_init(void)
1101 unsigned long clock = sparc64_init_timers();
1103 sparc64_cpu_interpolator.frequency = clock;
1104 register_time_interpolator(&sparc64_cpu_interpolator);
1106 /* Now that the interpolator is registered, it is
1107 * safe to start the timer ticking.
1109 sparc64_start_timers();
1111 timer_ticks_per_nsec_quotient =
1112 (((NSEC_PER_SEC << SPARC64_NSEC_PER_CYC_SHIFT) +
1113 (clock / 2)) / clock);
1115 #ifdef CONFIG_CPU_FREQ
1116 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1117 CPUFREQ_TRANSITION_NOTIFIER);
1118 #endif
1121 unsigned long long sched_clock(void)
1123 unsigned long ticks = tick_ops->get_tick();
1125 return (ticks * timer_ticks_per_nsec_quotient)
1126 >> SPARC64_NSEC_PER_CYC_SHIFT;
1129 static int set_rtc_mmss(unsigned long nowtime)
1131 int real_seconds, real_minutes, chip_minutes;
1132 void __iomem *mregs = mstk48t02_regs;
1133 #ifdef CONFIG_PCI
1134 unsigned long dregs = ds1287_regs;
1135 #else
1136 unsigned long dregs = 0UL;
1137 #endif
1138 unsigned long flags;
1139 u8 tmp;
1142 * Not having a register set can lead to trouble.
1143 * Also starfire doesn't have a tod clock.
1145 if (!mregs && !dregs)
1146 return -1;
1148 if (mregs) {
1149 spin_lock_irqsave(&mostek_lock, flags);
1151 /* Read the current RTC minutes. */
1152 tmp = mostek_read(mregs + MOSTEK_CREG);
1153 tmp |= MSTK_CREG_READ;
1154 mostek_write(mregs + MOSTEK_CREG, tmp);
1156 chip_minutes = MSTK_REG_MIN(mregs);
1158 tmp = mostek_read(mregs + MOSTEK_CREG);
1159 tmp &= ~MSTK_CREG_READ;
1160 mostek_write(mregs + MOSTEK_CREG, tmp);
1163 * since we're only adjusting minutes and seconds,
1164 * don't interfere with hour overflow. This avoids
1165 * messing with unknown time zones but requires your
1166 * RTC not to be off by more than 15 minutes
1168 real_seconds = nowtime % 60;
1169 real_minutes = nowtime / 60;
1170 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1171 real_minutes += 30; /* correct for half hour time zone */
1172 real_minutes %= 60;
1174 if (abs(real_minutes - chip_minutes) < 30) {
1175 tmp = mostek_read(mregs + MOSTEK_CREG);
1176 tmp |= MSTK_CREG_WRITE;
1177 mostek_write(mregs + MOSTEK_CREG, tmp);
1179 MSTK_SET_REG_SEC(mregs,real_seconds);
1180 MSTK_SET_REG_MIN(mregs,real_minutes);
1182 tmp = mostek_read(mregs + MOSTEK_CREG);
1183 tmp &= ~MSTK_CREG_WRITE;
1184 mostek_write(mregs + MOSTEK_CREG, tmp);
1186 spin_unlock_irqrestore(&mostek_lock, flags);
1188 return 0;
1189 } else {
1190 spin_unlock_irqrestore(&mostek_lock, flags);
1192 return -1;
1194 } else {
1195 int retval = 0;
1196 unsigned char save_control, save_freq_select;
1198 /* Stolen from arch/i386/kernel/time.c, see there for
1199 * credits and descriptive comments.
1201 spin_lock_irqsave(&rtc_lock, flags);
1202 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1203 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1205 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1206 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1208 chip_minutes = CMOS_READ(RTC_MINUTES);
1209 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1210 BCD_TO_BIN(chip_minutes);
1211 real_seconds = nowtime % 60;
1212 real_minutes = nowtime / 60;
1213 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1214 real_minutes += 30;
1215 real_minutes %= 60;
1217 if (abs(real_minutes - chip_minutes) < 30) {
1218 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1219 BIN_TO_BCD(real_seconds);
1220 BIN_TO_BCD(real_minutes);
1222 CMOS_WRITE(real_seconds,RTC_SECONDS);
1223 CMOS_WRITE(real_minutes,RTC_MINUTES);
1224 } else {
1225 printk(KERN_WARNING
1226 "set_rtc_mmss: can't update from %d to %d\n",
1227 chip_minutes, real_minutes);
1228 retval = -1;
1231 CMOS_WRITE(save_control, RTC_CONTROL);
1232 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1233 spin_unlock_irqrestore(&rtc_lock, flags);
1235 return retval;
1239 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1240 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1242 /* months start at 0 now */
1243 static unsigned char days_in_mo[] =
1244 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
1246 #define FEBRUARY 2
1247 #define STARTOFTIME 1970
1248 #define SECDAY 86400L
1249 #define SECYR (SECDAY * 365)
1250 #define leapyear(year) ((year) % 4 == 0 && \
1251 ((year) % 100 != 0 || (year) % 400 == 0))
1252 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1253 #define days_in_month(a) (month_days[(a) - 1])
1255 static int month_days[12] = {
1256 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1260 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1262 static void GregorianDay(struct rtc_time * tm)
1264 int leapsToDate;
1265 int lastYear;
1266 int day;
1267 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1269 lastYear = tm->tm_year - 1;
1272 * Number of leap corrections to apply up to end of last year
1274 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1277 * This year is a leap year if it is divisible by 4 except when it is
1278 * divisible by 100 unless it is divisible by 400
1280 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1282 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1284 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1285 tm->tm_mday;
1287 tm->tm_wday = day % 7;
1290 static void to_tm(int tim, struct rtc_time *tm)
1292 register int i;
1293 register long hms, day;
1295 day = tim / SECDAY;
1296 hms = tim % SECDAY;
1298 /* Hours, minutes, seconds are easy */
1299 tm->tm_hour = hms / 3600;
1300 tm->tm_min = (hms % 3600) / 60;
1301 tm->tm_sec = (hms % 3600) % 60;
1303 /* Number of years in days */
1304 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1305 day -= days_in_year(i);
1306 tm->tm_year = i;
1308 /* Number of months in days left */
1309 if (leapyear(tm->tm_year))
1310 days_in_month(FEBRUARY) = 29;
1311 for (i = 1; day >= days_in_month(i); i++)
1312 day -= days_in_month(i);
1313 days_in_month(FEBRUARY) = 28;
1314 tm->tm_mon = i;
1316 /* Days are what is left over (+1) from all that. */
1317 tm->tm_mday = day + 1;
1320 * Determine the day of week
1322 GregorianDay(tm);
1325 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1326 * aka Unix time. So we have to convert to/from rtc_time.
1328 static inline void mini_get_rtc_time(struct rtc_time *time)
1330 unsigned long flags;
1331 u32 seconds;
1333 spin_lock_irqsave(&rtc_lock, flags);
1334 seconds = 0;
1335 if (this_is_starfire)
1336 seconds = starfire_get_time();
1337 else if (tlb_type == hypervisor)
1338 seconds = hypervisor_get_time();
1339 spin_unlock_irqrestore(&rtc_lock, flags);
1341 to_tm(seconds, time);
1342 time->tm_year -= 1900;
1343 time->tm_mon -= 1;
1346 static inline int mini_set_rtc_time(struct rtc_time *time)
1348 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1349 time->tm_mday, time->tm_hour,
1350 time->tm_min, time->tm_sec);
1351 unsigned long flags;
1352 int err;
1354 spin_lock_irqsave(&rtc_lock, flags);
1355 err = -ENODEV;
1356 if (this_is_starfire)
1357 err = starfire_set_time(seconds);
1358 else if (tlb_type == hypervisor)
1359 err = hypervisor_set_time(seconds);
1360 spin_unlock_irqrestore(&rtc_lock, flags);
1362 return err;
1365 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1366 unsigned int cmd, unsigned long arg)
1368 struct rtc_time wtime;
1369 void __user *argp = (void __user *)arg;
1371 switch (cmd) {
1373 case RTC_PLL_GET:
1374 return -EINVAL;
1376 case RTC_PLL_SET:
1377 return -EINVAL;
1379 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1380 return 0;
1382 case RTC_UIE_ON: /* enable ints for RTC updates. */
1383 return -EINVAL;
1385 case RTC_RD_TIME: /* Read the time/date from RTC */
1386 /* this doesn't get week-day, who cares */
1387 memset(&wtime, 0, sizeof(wtime));
1388 mini_get_rtc_time(&wtime);
1390 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1392 case RTC_SET_TIME: /* Set the RTC */
1394 int year;
1395 unsigned char leap_yr;
1397 if (!capable(CAP_SYS_TIME))
1398 return -EACCES;
1400 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1401 return -EFAULT;
1403 year = wtime.tm_year + 1900;
1404 leap_yr = ((!(year % 4) && (year % 100)) ||
1405 !(year % 400));
1407 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1))
1408 return -EINVAL;
1410 if (wtime.tm_mday < 0 || wtime.tm_mday >
1411 (days_in_mo[wtime.tm_mon] + ((wtime.tm_mon == 1) && leap_yr)))
1412 return -EINVAL;
1414 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1415 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1416 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1417 return -EINVAL;
1419 return mini_set_rtc_time(&wtime);
1423 return -EINVAL;
1426 static int mini_rtc_open(struct inode *inode, struct file *file)
1428 if (mini_rtc_status & RTC_IS_OPEN)
1429 return -EBUSY;
1431 mini_rtc_status |= RTC_IS_OPEN;
1433 return 0;
1436 static int mini_rtc_release(struct inode *inode, struct file *file)
1438 mini_rtc_status &= ~RTC_IS_OPEN;
1439 return 0;
1443 static struct file_operations mini_rtc_fops = {
1444 .owner = THIS_MODULE,
1445 .ioctl = mini_rtc_ioctl,
1446 .open = mini_rtc_open,
1447 .release = mini_rtc_release,
1450 static struct miscdevice rtc_mini_dev =
1452 .minor = RTC_MINOR,
1453 .name = "rtc",
1454 .fops = &mini_rtc_fops,
1457 static int __init rtc_mini_init(void)
1459 int retval;
1461 if (tlb_type != hypervisor && !this_is_starfire)
1462 return -ENODEV;
1464 printk(KERN_INFO "Mini RTC Driver\n");
1466 retval = misc_register(&rtc_mini_dev);
1467 if (retval < 0)
1468 return retval;
1470 return 0;
1473 static void __exit rtc_mini_exit(void)
1475 misc_deregister(&rtc_mini_dev);
1479 module_init(rtc_mini_init);
1480 module_exit(rtc_mini_exit);