1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/config.h>
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/init.h>
24 #include <linux/ioport.h>
25 #include <linux/mc146818rtc.h>
26 #include <linux/delay.h>
27 #include <linux/profile.h>
28 #include <linux/bcd.h>
29 #include <linux/jiffies.h>
30 #include <linux/cpufreq.h>
31 #include <linux/percpu.h>
32 #include <linux/profile.h>
33 #include <linux/miscdevice.h>
34 #include <linux/rtc.h>
36 #include <asm/oplib.h>
37 #include <asm/mostek.h>
38 #include <asm/timer.h>
46 #include <asm/starfire.h>
48 #include <asm/sections.h>
49 #include <asm/cpudata.h>
50 #include <asm/uaccess.h>
52 DEFINE_SPINLOCK(mostek_lock
);
53 DEFINE_SPINLOCK(rtc_lock
);
54 void __iomem
*mstk48t02_regs
= NULL
;
56 unsigned long ds1287_regs
= 0UL;
59 extern unsigned long wall_jiffies
;
61 static void __iomem
*mstk48t08_regs
;
62 static void __iomem
*mstk48t59_regs
;
64 static int set_rtc_mmss(unsigned long);
66 #define TICK_PRIV_BIT (1UL << 63)
69 unsigned long profile_pc(struct pt_regs
*regs
)
71 unsigned long pc
= instruction_pointer(regs
);
73 if (in_lock_functions(pc
))
74 return regs
->u_regs
[UREG_RETPC
];
77 EXPORT_SYMBOL(profile_pc
);
80 static void tick_disable_protection(void)
82 /* Set things up so user can access tick register for profiling
83 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
84 * read back of %tick after writing it.
90 "1: rd %%tick, %%g2\n"
91 " add %%g2, 6, %%g2\n"
92 " andn %%g2, %0, %%g2\n"
93 " wrpr %%g2, 0, %%tick\n"
100 static void tick_init_tick(unsigned long offset
)
102 tick_disable_protection();
104 __asm__
__volatile__(
106 " andn %%g1, %1, %%g1\n"
108 " add %%g1, %0, %%g1\n"
110 "1: wr %%g1, 0x0, %%tick_cmpr\n"
111 " rd %%tick_cmpr, %%g0"
113 : "r" (offset
), "r" (TICK_PRIV_BIT
)
117 static unsigned long tick_get_tick(void)
121 __asm__
__volatile__("rd %%tick, %0\n\t"
125 return ret
& ~TICK_PRIV_BIT
;
128 static unsigned long tick_get_compare(void)
132 __asm__
__volatile__("rd %%tick_cmpr, %0\n\t"
139 static unsigned long tick_add_compare(unsigned long adj
)
141 unsigned long new_compare
;
143 /* Workaround for Spitfire Errata (#54 I think??), I discovered
144 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
147 * On Blackbird writes to %tick_cmpr can fail, the
148 * workaround seems to be to execute the wr instruction
149 * at the start of an I-cache line, and perform a dummy
150 * read back from %tick_cmpr right after writing to it. -DaveM
152 __asm__
__volatile__("rd %%tick_cmpr, %0\n\t"
153 "ba,pt %%xcc, 1f\n\t"
154 " add %0, %1, %0\n\t"
157 "wr %0, 0, %%tick_cmpr\n\t"
158 "rd %%tick_cmpr, %%g0"
159 : "=&r" (new_compare
)
165 static unsigned long tick_add_tick(unsigned long adj
, unsigned long offset
)
167 unsigned long new_tick
, tmp
;
169 /* Also need to handle Blackbird bug here too. */
170 __asm__
__volatile__("rd %%tick, %0\n\t"
172 "wrpr %0, 0, %%tick\n\t"
173 "andn %0, %4, %1\n\t"
174 "ba,pt %%xcc, 1f\n\t"
175 " add %1, %3, %1\n\t"
178 "wr %1, 0, %%tick_cmpr\n\t"
179 "rd %%tick_cmpr, %%g0"
180 : "=&r" (new_tick
), "=&r" (tmp
)
181 : "r" (adj
), "r" (offset
), "r" (TICK_PRIV_BIT
));
186 static struct sparc64_tick_ops tick_operations __read_mostly
= {
187 .init_tick
= tick_init_tick
,
188 .get_tick
= tick_get_tick
,
189 .get_compare
= tick_get_compare
,
190 .add_tick
= tick_add_tick
,
191 .add_compare
= tick_add_compare
,
192 .softint_mask
= 1UL << 0,
195 struct sparc64_tick_ops
*tick_ops __read_mostly
= &tick_operations
;
197 static void stick_init_tick(unsigned long offset
)
199 /* Writes to the %tick and %stick register are not
200 * allowed on sun4v. The Hypervisor controls that
203 if (tlb_type
!= hypervisor
) {
204 tick_disable_protection();
206 /* Let the user get at STICK too. */
207 __asm__
__volatile__(
208 " rd %%asr24, %%g2\n"
209 " andn %%g2, %0, %%g2\n"
210 " wr %%g2, 0, %%asr24"
212 : "r" (TICK_PRIV_BIT
)
216 __asm__
__volatile__(
217 " rd %%asr24, %%g1\n"
218 " andn %%g1, %1, %%g1\n"
219 " add %%g1, %0, %%g1\n"
220 " wr %%g1, 0x0, %%asr25"
222 : "r" (offset
), "r" (TICK_PRIV_BIT
)
226 static unsigned long stick_get_tick(void)
230 __asm__
__volatile__("rd %%asr24, %0"
233 return ret
& ~TICK_PRIV_BIT
;
236 static unsigned long stick_get_compare(void)
240 __asm__
__volatile__("rd %%asr25, %0"
246 static unsigned long stick_add_tick(unsigned long adj
, unsigned long offset
)
248 unsigned long new_tick
, tmp
;
250 __asm__
__volatile__("rd %%asr24, %0\n\t"
252 "wr %0, 0, %%asr24\n\t"
253 "andn %0, %4, %1\n\t"
256 : "=&r" (new_tick
), "=&r" (tmp
)
257 : "r" (adj
), "r" (offset
), "r" (TICK_PRIV_BIT
));
262 static unsigned long stick_add_compare(unsigned long adj
)
264 unsigned long new_compare
;
266 __asm__
__volatile__("rd %%asr25, %0\n\t"
269 : "=&r" (new_compare
)
275 static struct sparc64_tick_ops stick_operations __read_mostly
= {
276 .init_tick
= stick_init_tick
,
277 .get_tick
= stick_get_tick
,
278 .get_compare
= stick_get_compare
,
279 .add_tick
= stick_add_tick
,
280 .add_compare
= stick_add_compare
,
281 .softint_mask
= 1UL << 16,
284 /* On Hummingbird the STICK/STICK_CMPR register is implemented
285 * in I/O space. There are two 64-bit registers each, the
286 * first holds the low 32-bits of the value and the second holds
289 * Since STICK is constantly updating, we have to access it carefully.
291 * The sequence we use to read is:
294 * 3) read high again, if it rolled re-read both low and high again.
296 * Writing STICK safely is also tricky:
297 * 1) write low to zero
301 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
302 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
304 static unsigned long __hbird_read_stick(void)
306 unsigned long ret
, tmp1
, tmp2
, tmp3
;
307 unsigned long addr
= HBIRD_STICK_ADDR
+8;
309 __asm__
__volatile__("ldxa [%1] %5, %2\n"
311 "sub %1, 0x8, %1\n\t"
312 "ldxa [%1] %5, %3\n\t"
313 "add %1, 0x8, %1\n\t"
314 "ldxa [%1] %5, %4\n\t"
316 "bne,a,pn %%xcc, 1b\n\t"
318 "sllx %4, 32, %4\n\t"
320 : "=&r" (ret
), "=&r" (addr
),
321 "=&r" (tmp1
), "=&r" (tmp2
), "=&r" (tmp3
)
322 : "i" (ASI_PHYS_BYPASS_EC_E
), "1" (addr
));
327 static unsigned long __hbird_read_compare(void)
329 unsigned long low
, high
;
330 unsigned long addr
= HBIRD_STICKCMP_ADDR
;
332 __asm__
__volatile__("ldxa [%2] %3, %0\n\t"
333 "add %2, 0x8, %2\n\t"
335 : "=&r" (low
), "=&r" (high
), "=&r" (addr
)
336 : "i" (ASI_PHYS_BYPASS_EC_E
), "2" (addr
));
338 return (high
<< 32UL) | low
;
341 static void __hbird_write_stick(unsigned long val
)
343 unsigned long low
= (val
& 0xffffffffUL
);
344 unsigned long high
= (val
>> 32UL);
345 unsigned long addr
= HBIRD_STICK_ADDR
;
347 __asm__
__volatile__("stxa %%g0, [%0] %4\n\t"
348 "add %0, 0x8, %0\n\t"
349 "stxa %3, [%0] %4\n\t"
350 "sub %0, 0x8, %0\n\t"
353 : "0" (addr
), "r" (low
), "r" (high
),
354 "i" (ASI_PHYS_BYPASS_EC_E
));
357 static void __hbird_write_compare(unsigned long val
)
359 unsigned long low
= (val
& 0xffffffffUL
);
360 unsigned long high
= (val
>> 32UL);
361 unsigned long addr
= HBIRD_STICKCMP_ADDR
+ 0x8UL
;
363 __asm__
__volatile__("stxa %3, [%0] %4\n\t"
364 "sub %0, 0x8, %0\n\t"
367 : "0" (addr
), "r" (low
), "r" (high
),
368 "i" (ASI_PHYS_BYPASS_EC_E
));
371 static void hbtick_init_tick(unsigned long offset
)
375 tick_disable_protection();
377 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
378 * XXX into actually sending STICK interrupts. I think because
379 * XXX of how we store %tick_cmpr in head.S this somehow resets the
380 * XXX {TICK + STICK} interrupt mux. -DaveM
382 __hbird_write_stick(__hbird_read_stick());
384 val
= __hbird_read_stick() & ~TICK_PRIV_BIT
;
385 __hbird_write_compare(val
+ offset
);
388 static unsigned long hbtick_get_tick(void)
390 return __hbird_read_stick() & ~TICK_PRIV_BIT
;
393 static unsigned long hbtick_get_compare(void)
395 return __hbird_read_compare();
398 static unsigned long hbtick_add_tick(unsigned long adj
, unsigned long offset
)
402 val
= __hbird_read_stick() + adj
;
403 __hbird_write_stick(val
);
405 val
&= ~TICK_PRIV_BIT
;
406 __hbird_write_compare(val
+ offset
);
411 static unsigned long hbtick_add_compare(unsigned long adj
)
413 unsigned long val
= __hbird_read_compare() + adj
;
415 val
&= ~TICK_PRIV_BIT
;
416 __hbird_write_compare(val
);
421 static struct sparc64_tick_ops hbtick_operations __read_mostly
= {
422 .init_tick
= hbtick_init_tick
,
423 .get_tick
= hbtick_get_tick
,
424 .get_compare
= hbtick_get_compare
,
425 .add_tick
= hbtick_add_tick
,
426 .add_compare
= hbtick_add_compare
,
427 .softint_mask
= 1UL << 0,
430 /* timer_interrupt() needs to keep up the real-time clock,
431 * as well as call the "do_timer()" routine every clocktick
433 * NOTE: On SUN5 systems the ticker interrupt comes in using 2
434 * interrupts, one at level14 and one with softint bit 0.
436 unsigned long timer_tick_offset __read_mostly
;
438 static unsigned long timer_ticks_per_nsec_quotient __read_mostly
;
440 #define TICK_SIZE (tick_nsec / 1000)
442 static inline void timer_check_rtc(void)
444 /* last time the cmos clock got updated */
445 static long last_rtc_update
;
447 /* Determine when to update the Mostek clock. */
449 xtime
.tv_sec
> last_rtc_update
+ 660 &&
450 (xtime
.tv_nsec
/ 1000) >= 500000 - ((unsigned) TICK_SIZE
) / 2 &&
451 (xtime
.tv_nsec
/ 1000) <= 500000 + ((unsigned) TICK_SIZE
) / 2) {
452 if (set_rtc_mmss(xtime
.tv_sec
) == 0)
453 last_rtc_update
= xtime
.tv_sec
;
455 last_rtc_update
= xtime
.tv_sec
- 600;
456 /* do it again in 60 s */
460 irqreturn_t
timer_interrupt(int irq
, void *dev_id
, struct pt_regs
* regs
)
462 unsigned long ticks
, compare
, pstate
;
464 write_seqlock(&xtime_lock
);
468 profile_tick(CPU_PROFILING
, regs
);
469 update_process_times(user_mode(regs
));
473 /* Guarantee that the following sequences execute
476 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
477 "wrpr %0, %1, %%pstate"
481 compare
= tick_ops
->add_compare(timer_tick_offset
);
482 ticks
= tick_ops
->get_tick();
484 /* Restore PSTATE_IE. */
485 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
488 } while (time_after_eq(ticks
, compare
));
492 write_sequnlock(&xtime_lock
);
498 void timer_tick_interrupt(struct pt_regs
*regs
)
500 write_seqlock(&xtime_lock
);
506 write_sequnlock(&xtime_lock
);
510 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
511 static void __init
kick_start_clock(void)
513 void __iomem
*regs
= mstk48t02_regs
;
517 prom_printf("CLOCK: Clock was stopped. Kick start ");
519 spin_lock_irq(&mostek_lock
);
521 /* Turn on the kick start bit to start the oscillator. */
522 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
523 tmp
|= MSTK_CREG_WRITE
;
524 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
525 tmp
= mostek_read(regs
+ MOSTEK_SEC
);
527 mostek_write(regs
+ MOSTEK_SEC
, tmp
);
528 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
529 tmp
|= MSTK_KICK_START
;
530 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
531 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
532 tmp
&= ~MSTK_CREG_WRITE
;
533 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
535 spin_unlock_irq(&mostek_lock
);
537 /* Delay to allow the clock oscillator to start. */
538 sec
= MSTK_REG_SEC(regs
);
539 for (i
= 0; i
< 3; i
++) {
540 while (sec
== MSTK_REG_SEC(regs
))
541 for (count
= 0; count
< 100000; count
++)
544 sec
= MSTK_REG_SEC(regs
);
548 spin_lock_irq(&mostek_lock
);
550 /* Turn off kick start and set a "valid" time and date. */
551 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
552 tmp
|= MSTK_CREG_WRITE
;
553 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
554 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
555 tmp
&= ~MSTK_KICK_START
;
556 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
557 MSTK_SET_REG_SEC(regs
,0);
558 MSTK_SET_REG_MIN(regs
,0);
559 MSTK_SET_REG_HOUR(regs
,0);
560 MSTK_SET_REG_DOW(regs
,5);
561 MSTK_SET_REG_DOM(regs
,1);
562 MSTK_SET_REG_MONTH(regs
,8);
563 MSTK_SET_REG_YEAR(regs
,1996 - MSTK_YEAR_ZERO
);
564 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
565 tmp
&= ~MSTK_CREG_WRITE
;
566 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
568 spin_unlock_irq(&mostek_lock
);
570 /* Ensure the kick start bit is off. If it isn't, turn it off. */
571 while (mostek_read(regs
+ MOSTEK_HOUR
) & MSTK_KICK_START
) {
572 prom_printf("CLOCK: Kick start still on!\n");
574 spin_lock_irq(&mostek_lock
);
576 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
577 tmp
|= MSTK_CREG_WRITE
;
578 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
580 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
581 tmp
&= ~MSTK_KICK_START
;
582 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
584 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
585 tmp
&= ~MSTK_CREG_WRITE
;
586 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
588 spin_unlock_irq(&mostek_lock
);
591 prom_printf("CLOCK: Kick start procedure successful.\n");
594 /* Return nonzero if the clock chip battery is low. */
595 static int __init
has_low_battery(void)
597 void __iomem
*regs
= mstk48t02_regs
;
600 spin_lock_irq(&mostek_lock
);
602 data1
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read some data. */
603 mostek_write(regs
+ MOSTEK_EEPROM
, ~data1
); /* Write back the complement. */
604 data2
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read back the complement. */
605 mostek_write(regs
+ MOSTEK_EEPROM
, data1
); /* Restore original value. */
607 spin_unlock_irq(&mostek_lock
);
609 return (data1
== data2
); /* Was the write blocked? */
612 /* Probe for the real time clock chip. */
613 static void __init
set_system_time(void)
615 unsigned int year
, mon
, day
, hour
, min
, sec
;
616 void __iomem
*mregs
= mstk48t02_regs
;
618 unsigned long dregs
= ds1287_regs
;
620 unsigned long dregs
= 0UL;
624 if (!mregs
&& !dregs
) {
625 prom_printf("Something wrong, clock regs not mapped yet.\n");
630 spin_lock_irq(&mostek_lock
);
632 /* Traditional Mostek chip. */
633 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
634 tmp
|= MSTK_CREG_READ
;
635 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
637 sec
= MSTK_REG_SEC(mregs
);
638 min
= MSTK_REG_MIN(mregs
);
639 hour
= MSTK_REG_HOUR(mregs
);
640 day
= MSTK_REG_DOM(mregs
);
641 mon
= MSTK_REG_MONTH(mregs
);
642 year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs
) );
644 /* Dallas 12887 RTC chip. */
647 sec
= CMOS_READ(RTC_SECONDS
);
648 min
= CMOS_READ(RTC_MINUTES
);
649 hour
= CMOS_READ(RTC_HOURS
);
650 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
651 mon
= CMOS_READ(RTC_MONTH
);
652 year
= CMOS_READ(RTC_YEAR
);
653 } while (sec
!= CMOS_READ(RTC_SECONDS
));
655 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
663 if ((year
+= 1900) < 1970)
667 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
668 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
669 set_normalized_timespec(&wall_to_monotonic
,
670 -xtime
.tv_sec
, -xtime
.tv_nsec
);
673 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
674 tmp
&= ~MSTK_CREG_READ
;
675 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
677 spin_unlock_irq(&mostek_lock
);
681 /* davem suggests we keep this within the 4M locked kernel image */
682 static u32
starfire_get_time(void)
684 static char obp_gettod
[32];
687 sprintf(obp_gettod
, "h# %08x unix-gettod",
688 (unsigned int) (long) &unix_tod
);
689 prom_feval(obp_gettod
);
694 static int starfire_set_time(u32 val
)
696 /* Do nothing, time is set using the service processor
697 * console on this platform.
702 static u32
hypervisor_get_time(void)
704 register unsigned long func
asm("%o5");
705 register unsigned long arg0
asm("%o0");
706 register unsigned long arg1
asm("%o1");
710 func
= HV_FAST_TOD_GET
;
713 __asm__
__volatile__("ta %6"
714 : "=&r" (func
), "=&r" (arg0
), "=&r" (arg1
)
715 : "0" (func
), "1" (arg0
), "2" (arg1
),
719 if (arg0
== HV_EWOULDBLOCK
) {
724 printk(KERN_WARNING
"SUN4V: tod_get() timed out.\n");
727 printk(KERN_WARNING
"SUN4V: tod_get() not supported.\n");
731 static int hypervisor_set_time(u32 secs
)
733 register unsigned long func
asm("%o5");
734 register unsigned long arg0
asm("%o0");
738 func
= HV_FAST_TOD_SET
;
740 __asm__
__volatile__("ta %4"
741 : "=&r" (func
), "=&r" (arg0
)
742 : "0" (func
), "1" (arg0
),
746 if (arg0
== HV_EWOULDBLOCK
) {
751 printk(KERN_WARNING
"SUN4V: tod_set() timed out.\n");
754 printk(KERN_WARNING
"SUN4V: tod_set() not supported.\n");
758 void __init
clock_probe(void)
760 struct linux_prom_registers clk_reg
[2];
762 int node
, busnd
= -1, err
;
764 struct linux_central
*cbus
;
766 struct linux_ebus
*ebus
= NULL
;
767 struct sparc_isa_bridge
*isa_br
= NULL
;
776 if (this_is_starfire
) {
777 xtime
.tv_sec
= starfire_get_time();
778 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
779 set_normalized_timespec(&wall_to_monotonic
,
780 -xtime
.tv_sec
, -xtime
.tv_nsec
);
783 if (tlb_type
== hypervisor
) {
784 xtime
.tv_sec
= hypervisor_get_time();
785 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
786 set_normalized_timespec(&wall_to_monotonic
,
787 -xtime
.tv_sec
, -xtime
.tv_nsec
);
791 local_irq_save(flags
);
795 busnd
= central_bus
->child
->prom_node
;
797 /* Check FHC Central then EBUSs then ISA bridges then SBUSs.
798 * That way we handle the presence of multiple properly.
800 * As a special case, machines with Central must provide the
804 if (ebus_chain
!= NULL
) {
807 busnd
= ebus
->prom_node
;
809 if (isa_chain
!= NULL
) {
812 busnd
= isa_br
->prom_node
;
815 if (sbus_root
!= NULL
&& busnd
== -1)
816 busnd
= sbus_root
->prom_node
;
819 prom_printf("clock_probe: problem, cannot find bus to search.\n");
823 node
= prom_getchild(busnd
);
829 prom_getstring(node
, "model", model
, sizeof(model
));
830 if (strcmp(model
, "mk48t02") &&
831 strcmp(model
, "mk48t08") &&
832 strcmp(model
, "mk48t59") &&
833 strcmp(model
, "m5819") &&
834 strcmp(model
, "m5819p") &&
835 strcmp(model
, "m5823") &&
836 strcmp(model
, "ds1287")) {
838 prom_printf("clock_probe: Central bus lacks timer chip.\n");
843 node
= prom_getsibling(node
);
845 while ((node
== 0) && ebus
!= NULL
) {
848 busnd
= ebus
->prom_node
;
849 node
= prom_getchild(busnd
);
852 while ((node
== 0) && isa_br
!= NULL
) {
853 isa_br
= isa_br
->next
;
854 if (isa_br
!= NULL
) {
855 busnd
= isa_br
->prom_node
;
856 node
= prom_getchild(busnd
);
861 prom_printf("clock_probe: Cannot find timer chip\n");
867 err
= prom_getproperty(node
, "reg", (char *)clk_reg
,
870 prom_printf("clock_probe: Cannot get Mostek reg property\n");
875 apply_fhc_ranges(central_bus
->child
, clk_reg
, 1);
876 apply_central_ranges(central_bus
, clk_reg
, 1);
879 else if (ebus
!= NULL
) {
880 struct linux_ebus_device
*edev
;
882 for_each_ebusdev(edev
, ebus
)
883 if (edev
->prom_node
== node
)
886 if (isa_chain
!= NULL
)
888 prom_printf("%s: Mostek not probed by EBUS\n",
893 if (!strcmp(model
, "ds1287") ||
894 !strcmp(model
, "m5819") ||
895 !strcmp(model
, "m5819p") ||
896 !strcmp(model
, "m5823")) {
897 ds1287_regs
= edev
->resource
[0].start
;
899 mstk48t59_regs
= (void __iomem
*)
900 edev
->resource
[0].start
;
901 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
905 else if (isa_br
!= NULL
) {
906 struct sparc_isa_device
*isadev
;
909 for_each_isadev(isadev
, isa_br
)
910 if (isadev
->prom_node
== node
)
912 if (isadev
== NULL
) {
913 prom_printf("%s: Mostek not probed by ISA\n");
916 if (!strcmp(model
, "ds1287") ||
917 !strcmp(model
, "m5819") ||
918 !strcmp(model
, "m5819p") ||
919 !strcmp(model
, "m5823")) {
920 ds1287_regs
= isadev
->resource
.start
;
922 mstk48t59_regs
= (void __iomem
*)
923 isadev
->resource
.start
;
924 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
930 if (sbus_root
->num_sbus_ranges
) {
931 int nranges
= sbus_root
->num_sbus_ranges
;
934 for (rngc
= 0; rngc
< nranges
; rngc
++)
935 if (clk_reg
[0].which_io
==
936 sbus_root
->sbus_ranges
[rngc
].ot_child_space
)
938 if (rngc
== nranges
) {
939 prom_printf("clock_probe: Cannot find ranges for "
943 clk_reg
[0].which_io
=
944 sbus_root
->sbus_ranges
[rngc
].ot_parent_space
;
945 clk_reg
[0].phys_addr
+=
946 sbus_root
->sbus_ranges
[rngc
].ot_parent_base
;
950 if(model
[5] == '0' && model
[6] == '2') {
951 mstk48t02_regs
= (void __iomem
*)
952 (((u64
)clk_reg
[0].phys_addr
) |
953 (((u64
)clk_reg
[0].which_io
)<<32UL));
954 } else if(model
[5] == '0' && model
[6] == '8') {
955 mstk48t08_regs
= (void __iomem
*)
956 (((u64
)clk_reg
[0].phys_addr
) |
957 (((u64
)clk_reg
[0].which_io
)<<32UL));
958 mstk48t02_regs
= mstk48t08_regs
+ MOSTEK_48T08_48T02
;
960 mstk48t59_regs
= (void __iomem
*)
961 (((u64
)clk_reg
[0].phys_addr
) |
962 (((u64
)clk_reg
[0].which_io
)<<32UL));
963 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
968 if (mstk48t02_regs
!= NULL
) {
969 /* Report a low battery voltage condition. */
970 if (has_low_battery())
971 prom_printf("NVRAM: Low battery voltage!\n");
973 /* Kick start the clock if it is completely stopped. */
974 if (mostek_read(mstk48t02_regs
+ MOSTEK_SEC
) & MSTK_STOP
)
980 local_irq_restore(flags
);
983 /* This is gets the master TICK_INT timer going. */
984 static unsigned long sparc64_init_timers(void)
989 extern void smp_tick_init(void);
992 if (tlb_type
== spitfire
) {
993 unsigned long ver
, manuf
, impl
;
995 __asm__
__volatile__ ("rdpr %%ver, %0"
997 manuf
= ((ver
>> 48) & 0xffff);
998 impl
= ((ver
>> 32) & 0xffff);
999 if (manuf
== 0x17 && impl
== 0x13) {
1000 /* Hummingbird, aka Ultra-IIe */
1001 tick_ops
= &hbtick_operations
;
1002 node
= prom_root_node
;
1003 clock
= prom_getint(node
, "stick-frequency");
1005 tick_ops
= &tick_operations
;
1006 cpu_find_by_instance(0, &node
, NULL
);
1007 clock
= prom_getint(node
, "clock-frequency");
1010 tick_ops
= &stick_operations
;
1011 node
= prom_root_node
;
1012 clock
= prom_getint(node
, "stick-frequency");
1014 timer_tick_offset
= clock
/ HZ
;
1023 static void sparc64_start_timers(void)
1025 unsigned long pstate
;
1027 /* Guarantee that the following sequences execute
1030 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
1031 "wrpr %0, %1, %%pstate"
1035 tick_ops
->init_tick(timer_tick_offset
);
1037 /* Restore PSTATE_IE. */
1038 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
1046 unsigned long clock_tick_ref
;
1047 unsigned int ref_freq
;
1049 static DEFINE_PER_CPU(struct freq_table
, sparc64_freq_table
) = { 0, 0 };
1051 unsigned long sparc64_get_clock_tick(unsigned int cpu
)
1053 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
1055 if (ft
->clock_tick_ref
)
1056 return ft
->clock_tick_ref
;
1057 return cpu_data(cpu
).clock_tick
;
1060 #ifdef CONFIG_CPU_FREQ
1062 static int sparc64_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
1065 struct cpufreq_freqs
*freq
= data
;
1066 unsigned int cpu
= freq
->cpu
;
1067 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
1069 if (!ft
->ref_freq
) {
1070 ft
->ref_freq
= freq
->old
;
1071 ft
->clock_tick_ref
= cpu_data(cpu
).clock_tick
;
1073 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
1074 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
1075 (val
== CPUFREQ_RESUMECHANGE
)) {
1076 cpu_data(cpu
).clock_tick
=
1077 cpufreq_scale(ft
->clock_tick_ref
,
1085 static struct notifier_block sparc64_cpufreq_notifier_block
= {
1086 .notifier_call
= sparc64_cpufreq_notifier
1089 #endif /* CONFIG_CPU_FREQ */
1091 static struct time_interpolator sparc64_cpu_interpolator
= {
1092 .source
= TIME_SOURCE_CPU
,
1094 .mask
= 0xffffffffffffffffLL
1097 /* The quotient formula is taken from the IA64 port. */
1098 #define SPARC64_NSEC_PER_CYC_SHIFT 30UL
1099 void __init
time_init(void)
1101 unsigned long clock
= sparc64_init_timers();
1103 sparc64_cpu_interpolator
.frequency
= clock
;
1104 register_time_interpolator(&sparc64_cpu_interpolator
);
1106 /* Now that the interpolator is registered, it is
1107 * safe to start the timer ticking.
1109 sparc64_start_timers();
1111 timer_ticks_per_nsec_quotient
=
1112 (((NSEC_PER_SEC
<< SPARC64_NSEC_PER_CYC_SHIFT
) +
1113 (clock
/ 2)) / clock
);
1115 #ifdef CONFIG_CPU_FREQ
1116 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block
,
1117 CPUFREQ_TRANSITION_NOTIFIER
);
1121 unsigned long long sched_clock(void)
1123 unsigned long ticks
= tick_ops
->get_tick();
1125 return (ticks
* timer_ticks_per_nsec_quotient
)
1126 >> SPARC64_NSEC_PER_CYC_SHIFT
;
1129 static int set_rtc_mmss(unsigned long nowtime
)
1131 int real_seconds
, real_minutes
, chip_minutes
;
1132 void __iomem
*mregs
= mstk48t02_regs
;
1134 unsigned long dregs
= ds1287_regs
;
1136 unsigned long dregs
= 0UL;
1138 unsigned long flags
;
1142 * Not having a register set can lead to trouble.
1143 * Also starfire doesn't have a tod clock.
1145 if (!mregs
&& !dregs
)
1149 spin_lock_irqsave(&mostek_lock
, flags
);
1151 /* Read the current RTC minutes. */
1152 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1153 tmp
|= MSTK_CREG_READ
;
1154 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1156 chip_minutes
= MSTK_REG_MIN(mregs
);
1158 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1159 tmp
&= ~MSTK_CREG_READ
;
1160 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1163 * since we're only adjusting minutes and seconds,
1164 * don't interfere with hour overflow. This avoids
1165 * messing with unknown time zones but requires your
1166 * RTC not to be off by more than 15 minutes
1168 real_seconds
= nowtime
% 60;
1169 real_minutes
= nowtime
/ 60;
1170 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1171 real_minutes
+= 30; /* correct for half hour time zone */
1174 if (abs(real_minutes
- chip_minutes
) < 30) {
1175 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1176 tmp
|= MSTK_CREG_WRITE
;
1177 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1179 MSTK_SET_REG_SEC(mregs
,real_seconds
);
1180 MSTK_SET_REG_MIN(mregs
,real_minutes
);
1182 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1183 tmp
&= ~MSTK_CREG_WRITE
;
1184 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1186 spin_unlock_irqrestore(&mostek_lock
, flags
);
1190 spin_unlock_irqrestore(&mostek_lock
, flags
);
1196 unsigned char save_control
, save_freq_select
;
1198 /* Stolen from arch/i386/kernel/time.c, see there for
1199 * credits and descriptive comments.
1201 spin_lock_irqsave(&rtc_lock
, flags
);
1202 save_control
= CMOS_READ(RTC_CONTROL
); /* tell the clock it's being set */
1203 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1205 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
); /* stop and reset prescaler */
1206 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1208 chip_minutes
= CMOS_READ(RTC_MINUTES
);
1209 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1210 BCD_TO_BIN(chip_minutes
);
1211 real_seconds
= nowtime
% 60;
1212 real_minutes
= nowtime
/ 60;
1213 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1217 if (abs(real_minutes
- chip_minutes
) < 30) {
1218 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1219 BIN_TO_BCD(real_seconds
);
1220 BIN_TO_BCD(real_minutes
);
1222 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
1223 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
1226 "set_rtc_mmss: can't update from %d to %d\n",
1227 chip_minutes
, real_minutes
);
1231 CMOS_WRITE(save_control
, RTC_CONTROL
);
1232 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1233 spin_unlock_irqrestore(&rtc_lock
, flags
);
1239 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1240 static unsigned char mini_rtc_status
; /* bitmapped status byte. */
1242 /* months start at 0 now */
1243 static unsigned char days_in_mo
[] =
1244 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
1247 #define STARTOFTIME 1970
1248 #define SECDAY 86400L
1249 #define SECYR (SECDAY * 365)
1250 #define leapyear(year) ((year) % 4 == 0 && \
1251 ((year) % 100 != 0 || (year) % 400 == 0))
1252 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1253 #define days_in_month(a) (month_days[(a) - 1])
1255 static int month_days
[12] = {
1256 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1260 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1262 static void GregorianDay(struct rtc_time
* tm
)
1267 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1269 lastYear
= tm
->tm_year
- 1;
1272 * Number of leap corrections to apply up to end of last year
1274 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1277 * This year is a leap year if it is divisible by 4 except when it is
1278 * divisible by 100 unless it is divisible by 400
1280 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1282 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1284 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1287 tm
->tm_wday
= day
% 7;
1290 static void to_tm(int tim
, struct rtc_time
*tm
)
1293 register long hms
, day
;
1298 /* Hours, minutes, seconds are easy */
1299 tm
->tm_hour
= hms
/ 3600;
1300 tm
->tm_min
= (hms
% 3600) / 60;
1301 tm
->tm_sec
= (hms
% 3600) % 60;
1303 /* Number of years in days */
1304 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1305 day
-= days_in_year(i
);
1308 /* Number of months in days left */
1309 if (leapyear(tm
->tm_year
))
1310 days_in_month(FEBRUARY
) = 29;
1311 for (i
= 1; day
>= days_in_month(i
); i
++)
1312 day
-= days_in_month(i
);
1313 days_in_month(FEBRUARY
) = 28;
1316 /* Days are what is left over (+1) from all that. */
1317 tm
->tm_mday
= day
+ 1;
1320 * Determine the day of week
1325 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1326 * aka Unix time. So we have to convert to/from rtc_time.
1328 static inline void mini_get_rtc_time(struct rtc_time
*time
)
1330 unsigned long flags
;
1333 spin_lock_irqsave(&rtc_lock
, flags
);
1335 if (this_is_starfire
)
1336 seconds
= starfire_get_time();
1337 else if (tlb_type
== hypervisor
)
1338 seconds
= hypervisor_get_time();
1339 spin_unlock_irqrestore(&rtc_lock
, flags
);
1341 to_tm(seconds
, time
);
1342 time
->tm_year
-= 1900;
1346 static inline int mini_set_rtc_time(struct rtc_time
*time
)
1348 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1349 time
->tm_mday
, time
->tm_hour
,
1350 time
->tm_min
, time
->tm_sec
);
1351 unsigned long flags
;
1354 spin_lock_irqsave(&rtc_lock
, flags
);
1356 if (this_is_starfire
)
1357 err
= starfire_set_time(seconds
);
1358 else if (tlb_type
== hypervisor
)
1359 err
= hypervisor_set_time(seconds
);
1360 spin_unlock_irqrestore(&rtc_lock
, flags
);
1365 static int mini_rtc_ioctl(struct inode
*inode
, struct file
*file
,
1366 unsigned int cmd
, unsigned long arg
)
1368 struct rtc_time wtime
;
1369 void __user
*argp
= (void __user
*)arg
;
1379 case RTC_UIE_OFF
: /* disable ints from RTC updates. */
1382 case RTC_UIE_ON
: /* enable ints for RTC updates. */
1385 case RTC_RD_TIME
: /* Read the time/date from RTC */
1386 /* this doesn't get week-day, who cares */
1387 memset(&wtime
, 0, sizeof(wtime
));
1388 mini_get_rtc_time(&wtime
);
1390 return copy_to_user(argp
, &wtime
, sizeof(wtime
)) ? -EFAULT
: 0;
1392 case RTC_SET_TIME
: /* Set the RTC */
1395 unsigned char leap_yr
;
1397 if (!capable(CAP_SYS_TIME
))
1400 if (copy_from_user(&wtime
, argp
, sizeof(wtime
)))
1403 year
= wtime
.tm_year
+ 1900;
1404 leap_yr
= ((!(year
% 4) && (year
% 100)) ||
1407 if ((wtime
.tm_mon
< 0 || wtime
.tm_mon
> 11) || (wtime
.tm_mday
< 1))
1410 if (wtime
.tm_mday
< 0 || wtime
.tm_mday
>
1411 (days_in_mo
[wtime
.tm_mon
] + ((wtime
.tm_mon
== 1) && leap_yr
)))
1414 if (wtime
.tm_hour
< 0 || wtime
.tm_hour
>= 24 ||
1415 wtime
.tm_min
< 0 || wtime
.tm_min
>= 60 ||
1416 wtime
.tm_sec
< 0 || wtime
.tm_sec
>= 60)
1419 return mini_set_rtc_time(&wtime
);
1426 static int mini_rtc_open(struct inode
*inode
, struct file
*file
)
1428 if (mini_rtc_status
& RTC_IS_OPEN
)
1431 mini_rtc_status
|= RTC_IS_OPEN
;
1436 static int mini_rtc_release(struct inode
*inode
, struct file
*file
)
1438 mini_rtc_status
&= ~RTC_IS_OPEN
;
1443 static struct file_operations mini_rtc_fops
= {
1444 .owner
= THIS_MODULE
,
1445 .ioctl
= mini_rtc_ioctl
,
1446 .open
= mini_rtc_open
,
1447 .release
= mini_rtc_release
,
1450 static struct miscdevice rtc_mini_dev
=
1454 .fops
= &mini_rtc_fops
,
1457 static int __init
rtc_mini_init(void)
1461 if (tlb_type
!= hypervisor
&& !this_is_starfire
)
1464 printk(KERN_INFO
"Mini RTC Driver\n");
1466 retval
= misc_register(&rtc_mini_dev
);
1473 static void __exit
rtc_mini_exit(void)
1475 misc_deregister(&rtc_mini_dev
);
1479 module_init(rtc_mini_init
);
1480 module_exit(rtc_mini_exit
);