[PATCH] w1: Userspace communication protocol over connector.
[linux-2.6/verdex.git] / fs / fuse / dev.c
blob104a62dadb94c9b8fa489963b51a97bc69b3dba2
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2006 Miklos Szeredi <miklos@szeredi.hu>
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
9 #include "fuse_i.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
22 static kmem_cache_t *fuse_req_cachep;
24 static struct fuse_conn *fuse_get_conn(struct file *file)
27 * Lockless access is OK, because file->private data is set
28 * once during mount and is valid until the file is released.
30 return file->private_data;
33 static void fuse_request_init(struct fuse_req *req)
35 memset(req, 0, sizeof(*req));
36 INIT_LIST_HEAD(&req->list);
37 init_waitqueue_head(&req->waitq);
38 atomic_set(&req->count, 1);
41 struct fuse_req *fuse_request_alloc(void)
43 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, SLAB_KERNEL);
44 if (req)
45 fuse_request_init(req);
46 return req;
49 void fuse_request_free(struct fuse_req *req)
51 kmem_cache_free(fuse_req_cachep, req);
54 static void block_sigs(sigset_t *oldset)
56 sigset_t mask;
58 siginitsetinv(&mask, sigmask(SIGKILL));
59 sigprocmask(SIG_BLOCK, &mask, oldset);
62 static void restore_sigs(sigset_t *oldset)
64 sigprocmask(SIG_SETMASK, oldset, NULL);
68 * Reset request, so that it can be reused
70 * The caller must be _very_ careful to make sure, that it is holding
71 * the only reference to req
73 void fuse_reset_request(struct fuse_req *req)
75 BUG_ON(atomic_read(&req->count) != 1);
76 fuse_request_init(req);
79 static void __fuse_get_request(struct fuse_req *req)
81 atomic_inc(&req->count);
84 /* Must be called with > 1 refcount */
85 static void __fuse_put_request(struct fuse_req *req)
87 BUG_ON(atomic_read(&req->count) < 2);
88 atomic_dec(&req->count);
91 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
93 struct fuse_req *req;
94 sigset_t oldset;
95 int intr;
96 int err;
98 atomic_inc(&fc->num_waiting);
99 block_sigs(&oldset);
100 intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
101 restore_sigs(&oldset);
102 err = -EINTR;
103 if (intr)
104 goto out;
106 req = fuse_request_alloc();
107 err = -ENOMEM;
108 if (!req)
109 goto out;
111 req->in.h.uid = current->fsuid;
112 req->in.h.gid = current->fsgid;
113 req->in.h.pid = current->pid;
114 req->waiting = 1;
115 return req;
117 out:
118 atomic_dec(&fc->num_waiting);
119 return ERR_PTR(err);
122 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
124 if (atomic_dec_and_test(&req->count)) {
125 if (req->waiting)
126 atomic_dec(&fc->num_waiting);
127 fuse_request_free(req);
132 * Called with sbput_sem held for read (request_end) or write
133 * (fuse_put_super). By the time fuse_put_super() is finished, all
134 * inodes belonging to background requests must be released, so the
135 * iputs have to be done within the locked region.
137 void fuse_release_background(struct fuse_conn *fc, struct fuse_req *req)
139 iput(req->inode);
140 iput(req->inode2);
141 spin_lock(&fc->lock);
142 list_del(&req->bg_entry);
143 if (fc->num_background == FUSE_MAX_BACKGROUND) {
144 fc->blocked = 0;
145 wake_up_all(&fc->blocked_waitq);
147 fc->num_background--;
148 spin_unlock(&fc->lock);
152 * This function is called when a request is finished. Either a reply
153 * has arrived or it was interrupted (and not yet sent) or some error
154 * occurred during communication with userspace, or the device file
155 * was closed. In case of a background request the reference to the
156 * stored objects are released. The requester thread is woken up (if
157 * still waiting), the 'end' callback is called if given, else the
158 * reference to the request is released
160 * Releasing extra reference for foreground requests must be done
161 * within the same locked region as setting state to finished. This
162 * is because fuse_reset_request() may be called after request is
163 * finished and it must be the sole possessor. If request is
164 * interrupted and put in the background, it will return with an error
165 * and hence never be reset and reused.
167 * Called with fc->lock, unlocks it
169 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
171 list_del(&req->list);
172 req->state = FUSE_REQ_FINISHED;
173 if (!req->background) {
174 spin_unlock(&fc->lock);
175 wake_up(&req->waitq);
176 fuse_put_request(fc, req);
177 } else {
178 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
179 req->end = NULL;
180 spin_unlock(&fc->lock);
181 down_read(&fc->sbput_sem);
182 if (fc->mounted)
183 fuse_release_background(fc, req);
184 up_read(&fc->sbput_sem);
186 /* fput must go outside sbput_sem, otherwise it can deadlock */
187 if (req->file)
188 fput(req->file);
190 if (end)
191 end(fc, req);
192 else
193 fuse_put_request(fc, req);
198 * Unfortunately request interruption not just solves the deadlock
199 * problem, it causes problems too. These stem from the fact, that an
200 * interrupted request is continued to be processed in userspace,
201 * while all the locks and object references (inode and file) held
202 * during the operation are released.
204 * To release the locks is exactly why there's a need to interrupt the
205 * request, so there's not a lot that can be done about this, except
206 * introduce additional locking in userspace.
208 * More important is to keep inode and file references until userspace
209 * has replied, otherwise FORGET and RELEASE could be sent while the
210 * inode/file is still used by the filesystem.
212 * For this reason the concept of "background" request is introduced.
213 * An interrupted request is backgrounded if it has been already sent
214 * to userspace. Backgrounding involves getting an extra reference to
215 * inode(s) or file used in the request, and adding the request to
216 * fc->background list. When a reply is received for a background
217 * request, the object references are released, and the request is
218 * removed from the list. If the filesystem is unmounted while there
219 * are still background requests, the list is walked and references
220 * are released as if a reply was received.
222 * There's one more use for a background request. The RELEASE message is
223 * always sent as background, since it doesn't return an error or
224 * data.
226 static void background_request(struct fuse_conn *fc, struct fuse_req *req)
228 req->background = 1;
229 list_add(&req->bg_entry, &fc->background);
230 fc->num_background++;
231 if (fc->num_background == FUSE_MAX_BACKGROUND)
232 fc->blocked = 1;
233 if (req->inode)
234 req->inode = igrab(req->inode);
235 if (req->inode2)
236 req->inode2 = igrab(req->inode2);
237 if (req->file)
238 get_file(req->file);
241 /* Called with fc->lock held. Releases, and then reacquires it. */
242 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
244 sigset_t oldset;
246 spin_unlock(&fc->lock);
247 block_sigs(&oldset);
248 wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
249 restore_sigs(&oldset);
250 spin_lock(&fc->lock);
251 if (req->state == FUSE_REQ_FINISHED && !req->interrupted)
252 return;
254 if (!req->interrupted) {
255 req->out.h.error = -EINTR;
256 req->interrupted = 1;
258 if (req->locked) {
259 /* This is uninterruptible sleep, because data is
260 being copied to/from the buffers of req. During
261 locked state, there mustn't be any filesystem
262 operation (e.g. page fault), since that could lead
263 to deadlock */
264 spin_unlock(&fc->lock);
265 wait_event(req->waitq, !req->locked);
266 spin_lock(&fc->lock);
268 if (req->state == FUSE_REQ_PENDING) {
269 list_del(&req->list);
270 __fuse_put_request(req);
271 } else if (req->state == FUSE_REQ_SENT)
272 background_request(fc, req);
275 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
277 unsigned nbytes = 0;
278 unsigned i;
280 for (i = 0; i < numargs; i++)
281 nbytes += args[i].size;
283 return nbytes;
286 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
288 fc->reqctr++;
289 /* zero is special */
290 if (fc->reqctr == 0)
291 fc->reqctr = 1;
292 req->in.h.unique = fc->reqctr;
293 req->in.h.len = sizeof(struct fuse_in_header) +
294 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
295 list_add_tail(&req->list, &fc->pending);
296 req->state = FUSE_REQ_PENDING;
297 if (!req->waiting) {
298 req->waiting = 1;
299 atomic_inc(&fc->num_waiting);
301 wake_up(&fc->waitq);
302 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
306 * This can only be interrupted by a SIGKILL
308 void request_send(struct fuse_conn *fc, struct fuse_req *req)
310 req->isreply = 1;
311 spin_lock(&fc->lock);
312 if (!fc->connected)
313 req->out.h.error = -ENOTCONN;
314 else if (fc->conn_error)
315 req->out.h.error = -ECONNREFUSED;
316 else {
317 queue_request(fc, req);
318 /* acquire extra reference, since request is still needed
319 after request_end() */
320 __fuse_get_request(req);
322 request_wait_answer(fc, req);
324 spin_unlock(&fc->lock);
327 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
329 spin_lock(&fc->lock);
330 background_request(fc, req);
331 if (fc->connected) {
332 queue_request(fc, req);
333 spin_unlock(&fc->lock);
334 } else {
335 req->out.h.error = -ENOTCONN;
336 request_end(fc, req);
340 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
342 req->isreply = 0;
343 request_send_nowait(fc, req);
346 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
348 req->isreply = 1;
349 request_send_nowait(fc, req);
353 * Lock the request. Up to the next unlock_request() there mustn't be
354 * anything that could cause a page-fault. If the request was already
355 * interrupted bail out.
357 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
359 int err = 0;
360 if (req) {
361 spin_lock(&fc->lock);
362 if (req->interrupted)
363 err = -ENOENT;
364 else
365 req->locked = 1;
366 spin_unlock(&fc->lock);
368 return err;
372 * Unlock request. If it was interrupted during being locked, the
373 * requester thread is currently waiting for it to be unlocked, so
374 * wake it up.
376 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
378 if (req) {
379 spin_lock(&fc->lock);
380 req->locked = 0;
381 if (req->interrupted)
382 wake_up(&req->waitq);
383 spin_unlock(&fc->lock);
387 struct fuse_copy_state {
388 struct fuse_conn *fc;
389 int write;
390 struct fuse_req *req;
391 const struct iovec *iov;
392 unsigned long nr_segs;
393 unsigned long seglen;
394 unsigned long addr;
395 struct page *pg;
396 void *mapaddr;
397 void *buf;
398 unsigned len;
401 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
402 int write, struct fuse_req *req,
403 const struct iovec *iov, unsigned long nr_segs)
405 memset(cs, 0, sizeof(*cs));
406 cs->fc = fc;
407 cs->write = write;
408 cs->req = req;
409 cs->iov = iov;
410 cs->nr_segs = nr_segs;
413 /* Unmap and put previous page of userspace buffer */
414 static void fuse_copy_finish(struct fuse_copy_state *cs)
416 if (cs->mapaddr) {
417 kunmap_atomic(cs->mapaddr, KM_USER0);
418 if (cs->write) {
419 flush_dcache_page(cs->pg);
420 set_page_dirty_lock(cs->pg);
422 put_page(cs->pg);
423 cs->mapaddr = NULL;
428 * Get another pagefull of userspace buffer, and map it to kernel
429 * address space, and lock request
431 static int fuse_copy_fill(struct fuse_copy_state *cs)
433 unsigned long offset;
434 int err;
436 unlock_request(cs->fc, cs->req);
437 fuse_copy_finish(cs);
438 if (!cs->seglen) {
439 BUG_ON(!cs->nr_segs);
440 cs->seglen = cs->iov[0].iov_len;
441 cs->addr = (unsigned long) cs->iov[0].iov_base;
442 cs->iov ++;
443 cs->nr_segs --;
445 down_read(&current->mm->mmap_sem);
446 err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
447 &cs->pg, NULL);
448 up_read(&current->mm->mmap_sem);
449 if (err < 0)
450 return err;
451 BUG_ON(err != 1);
452 offset = cs->addr % PAGE_SIZE;
453 cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
454 cs->buf = cs->mapaddr + offset;
455 cs->len = min(PAGE_SIZE - offset, cs->seglen);
456 cs->seglen -= cs->len;
457 cs->addr += cs->len;
459 return lock_request(cs->fc, cs->req);
462 /* Do as much copy to/from userspace buffer as we can */
463 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
465 unsigned ncpy = min(*size, cs->len);
466 if (val) {
467 if (cs->write)
468 memcpy(cs->buf, *val, ncpy);
469 else
470 memcpy(*val, cs->buf, ncpy);
471 *val += ncpy;
473 *size -= ncpy;
474 cs->len -= ncpy;
475 cs->buf += ncpy;
476 return ncpy;
480 * Copy a page in the request to/from the userspace buffer. Must be
481 * done atomically
483 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
484 unsigned offset, unsigned count, int zeroing)
486 if (page && zeroing && count < PAGE_SIZE) {
487 void *mapaddr = kmap_atomic(page, KM_USER1);
488 memset(mapaddr, 0, PAGE_SIZE);
489 kunmap_atomic(mapaddr, KM_USER1);
491 while (count) {
492 int err;
493 if (!cs->len && (err = fuse_copy_fill(cs)))
494 return err;
495 if (page) {
496 void *mapaddr = kmap_atomic(page, KM_USER1);
497 void *buf = mapaddr + offset;
498 offset += fuse_copy_do(cs, &buf, &count);
499 kunmap_atomic(mapaddr, KM_USER1);
500 } else
501 offset += fuse_copy_do(cs, NULL, &count);
503 if (page && !cs->write)
504 flush_dcache_page(page);
505 return 0;
508 /* Copy pages in the request to/from userspace buffer */
509 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
510 int zeroing)
512 unsigned i;
513 struct fuse_req *req = cs->req;
514 unsigned offset = req->page_offset;
515 unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
517 for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
518 struct page *page = req->pages[i];
519 int err = fuse_copy_page(cs, page, offset, count, zeroing);
520 if (err)
521 return err;
523 nbytes -= count;
524 count = min(nbytes, (unsigned) PAGE_SIZE);
525 offset = 0;
527 return 0;
530 /* Copy a single argument in the request to/from userspace buffer */
531 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
533 while (size) {
534 int err;
535 if (!cs->len && (err = fuse_copy_fill(cs)))
536 return err;
537 fuse_copy_do(cs, &val, &size);
539 return 0;
542 /* Copy request arguments to/from userspace buffer */
543 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
544 unsigned argpages, struct fuse_arg *args,
545 int zeroing)
547 int err = 0;
548 unsigned i;
550 for (i = 0; !err && i < numargs; i++) {
551 struct fuse_arg *arg = &args[i];
552 if (i == numargs - 1 && argpages)
553 err = fuse_copy_pages(cs, arg->size, zeroing);
554 else
555 err = fuse_copy_one(cs, arg->value, arg->size);
557 return err;
560 /* Wait until a request is available on the pending list */
561 static void request_wait(struct fuse_conn *fc)
563 DECLARE_WAITQUEUE(wait, current);
565 add_wait_queue_exclusive(&fc->waitq, &wait);
566 while (fc->connected && list_empty(&fc->pending)) {
567 set_current_state(TASK_INTERRUPTIBLE);
568 if (signal_pending(current))
569 break;
571 spin_unlock(&fc->lock);
572 schedule();
573 spin_lock(&fc->lock);
575 set_current_state(TASK_RUNNING);
576 remove_wait_queue(&fc->waitq, &wait);
580 * Read a single request into the userspace filesystem's buffer. This
581 * function waits until a request is available, then removes it from
582 * the pending list and copies request data to userspace buffer. If
583 * no reply is needed (FORGET) or request has been interrupted or
584 * there was an error during the copying then it's finished by calling
585 * request_end(). Otherwise add it to the processing list, and set
586 * the 'sent' flag.
588 static ssize_t fuse_dev_readv(struct file *file, const struct iovec *iov,
589 unsigned long nr_segs, loff_t *off)
591 int err;
592 struct fuse_req *req;
593 struct fuse_in *in;
594 struct fuse_copy_state cs;
595 unsigned reqsize;
596 struct fuse_conn *fc = fuse_get_conn(file);
597 if (!fc)
598 return -EPERM;
600 restart:
601 spin_lock(&fc->lock);
602 err = -EAGAIN;
603 if ((file->f_flags & O_NONBLOCK) && fc->connected &&
604 list_empty(&fc->pending))
605 goto err_unlock;
607 request_wait(fc);
608 err = -ENODEV;
609 if (!fc->connected)
610 goto err_unlock;
611 err = -ERESTARTSYS;
612 if (list_empty(&fc->pending))
613 goto err_unlock;
615 req = list_entry(fc->pending.next, struct fuse_req, list);
616 req->state = FUSE_REQ_READING;
617 list_move(&req->list, &fc->io);
619 in = &req->in;
620 reqsize = in->h.len;
621 /* If request is too large, reply with an error and restart the read */
622 if (iov_length(iov, nr_segs) < reqsize) {
623 req->out.h.error = -EIO;
624 /* SETXATTR is special, since it may contain too large data */
625 if (in->h.opcode == FUSE_SETXATTR)
626 req->out.h.error = -E2BIG;
627 request_end(fc, req);
628 goto restart;
630 spin_unlock(&fc->lock);
631 fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
632 err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
633 if (!err)
634 err = fuse_copy_args(&cs, in->numargs, in->argpages,
635 (struct fuse_arg *) in->args, 0);
636 fuse_copy_finish(&cs);
637 spin_lock(&fc->lock);
638 req->locked = 0;
639 if (!err && req->interrupted)
640 err = -ENOENT;
641 if (err) {
642 if (!req->interrupted)
643 req->out.h.error = -EIO;
644 request_end(fc, req);
645 return err;
647 if (!req->isreply)
648 request_end(fc, req);
649 else {
650 req->state = FUSE_REQ_SENT;
651 list_move_tail(&req->list, &fc->processing);
652 spin_unlock(&fc->lock);
654 return reqsize;
656 err_unlock:
657 spin_unlock(&fc->lock);
658 return err;
661 static ssize_t fuse_dev_read(struct file *file, char __user *buf,
662 size_t nbytes, loff_t *off)
664 struct iovec iov;
665 iov.iov_len = nbytes;
666 iov.iov_base = buf;
667 return fuse_dev_readv(file, &iov, 1, off);
670 /* Look up request on processing list by unique ID */
671 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
673 struct list_head *entry;
675 list_for_each(entry, &fc->processing) {
676 struct fuse_req *req;
677 req = list_entry(entry, struct fuse_req, list);
678 if (req->in.h.unique == unique)
679 return req;
681 return NULL;
684 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
685 unsigned nbytes)
687 unsigned reqsize = sizeof(struct fuse_out_header);
689 if (out->h.error)
690 return nbytes != reqsize ? -EINVAL : 0;
692 reqsize += len_args(out->numargs, out->args);
694 if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
695 return -EINVAL;
696 else if (reqsize > nbytes) {
697 struct fuse_arg *lastarg = &out->args[out->numargs-1];
698 unsigned diffsize = reqsize - nbytes;
699 if (diffsize > lastarg->size)
700 return -EINVAL;
701 lastarg->size -= diffsize;
703 return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
704 out->page_zeroing);
708 * Write a single reply to a request. First the header is copied from
709 * the write buffer. The request is then searched on the processing
710 * list by the unique ID found in the header. If found, then remove
711 * it from the list and copy the rest of the buffer to the request.
712 * The request is finished by calling request_end()
714 static ssize_t fuse_dev_writev(struct file *file, const struct iovec *iov,
715 unsigned long nr_segs, loff_t *off)
717 int err;
718 unsigned nbytes = iov_length(iov, nr_segs);
719 struct fuse_req *req;
720 struct fuse_out_header oh;
721 struct fuse_copy_state cs;
722 struct fuse_conn *fc = fuse_get_conn(file);
723 if (!fc)
724 return -EPERM;
726 fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
727 if (nbytes < sizeof(struct fuse_out_header))
728 return -EINVAL;
730 err = fuse_copy_one(&cs, &oh, sizeof(oh));
731 if (err)
732 goto err_finish;
733 err = -EINVAL;
734 if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
735 oh.len != nbytes)
736 goto err_finish;
738 spin_lock(&fc->lock);
739 err = -ENOENT;
740 if (!fc->connected)
741 goto err_unlock;
743 req = request_find(fc, oh.unique);
744 err = -EINVAL;
745 if (!req)
746 goto err_unlock;
748 if (req->interrupted) {
749 spin_unlock(&fc->lock);
750 fuse_copy_finish(&cs);
751 spin_lock(&fc->lock);
752 request_end(fc, req);
753 return -ENOENT;
755 list_move(&req->list, &fc->io);
756 req->out.h = oh;
757 req->locked = 1;
758 cs.req = req;
759 spin_unlock(&fc->lock);
761 err = copy_out_args(&cs, &req->out, nbytes);
762 fuse_copy_finish(&cs);
764 spin_lock(&fc->lock);
765 req->locked = 0;
766 if (!err) {
767 if (req->interrupted)
768 err = -ENOENT;
769 } else if (!req->interrupted)
770 req->out.h.error = -EIO;
771 request_end(fc, req);
773 return err ? err : nbytes;
775 err_unlock:
776 spin_unlock(&fc->lock);
777 err_finish:
778 fuse_copy_finish(&cs);
779 return err;
782 static ssize_t fuse_dev_write(struct file *file, const char __user *buf,
783 size_t nbytes, loff_t *off)
785 struct iovec iov;
786 iov.iov_len = nbytes;
787 iov.iov_base = (char __user *) buf;
788 return fuse_dev_writev(file, &iov, 1, off);
791 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
793 unsigned mask = POLLOUT | POLLWRNORM;
794 struct fuse_conn *fc = fuse_get_conn(file);
795 if (!fc)
796 return POLLERR;
798 poll_wait(file, &fc->waitq, wait);
800 spin_lock(&fc->lock);
801 if (!fc->connected)
802 mask = POLLERR;
803 else if (!list_empty(&fc->pending))
804 mask |= POLLIN | POLLRDNORM;
805 spin_unlock(&fc->lock);
807 return mask;
811 * Abort all requests on the given list (pending or processing)
813 * This function releases and reacquires fc->lock
815 static void end_requests(struct fuse_conn *fc, struct list_head *head)
817 while (!list_empty(head)) {
818 struct fuse_req *req;
819 req = list_entry(head->next, struct fuse_req, list);
820 req->out.h.error = -ECONNABORTED;
821 request_end(fc, req);
822 spin_lock(&fc->lock);
827 * Abort requests under I/O
829 * The requests are set to interrupted and finished, and the request
830 * waiter is woken up. This will make request_wait_answer() wait
831 * until the request is unlocked and then return.
833 * If the request is asynchronous, then the end function needs to be
834 * called after waiting for the request to be unlocked (if it was
835 * locked).
837 static void end_io_requests(struct fuse_conn *fc)
839 while (!list_empty(&fc->io)) {
840 struct fuse_req *req =
841 list_entry(fc->io.next, struct fuse_req, list);
842 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
844 req->interrupted = 1;
845 req->out.h.error = -ECONNABORTED;
846 req->state = FUSE_REQ_FINISHED;
847 list_del_init(&req->list);
848 wake_up(&req->waitq);
849 if (end) {
850 req->end = NULL;
851 /* The end function will consume this reference */
852 __fuse_get_request(req);
853 spin_unlock(&fc->lock);
854 wait_event(req->waitq, !req->locked);
855 end(fc, req);
856 spin_lock(&fc->lock);
862 * Abort all requests.
864 * Emergency exit in case of a malicious or accidental deadlock, or
865 * just a hung filesystem.
867 * The same effect is usually achievable through killing the
868 * filesystem daemon and all users of the filesystem. The exception
869 * is the combination of an asynchronous request and the tricky
870 * deadlock (see Documentation/filesystems/fuse.txt).
872 * During the aborting, progression of requests from the pending and
873 * processing lists onto the io list, and progression of new requests
874 * onto the pending list is prevented by req->connected being false.
876 * Progression of requests under I/O to the processing list is
877 * prevented by the req->interrupted flag being true for these
878 * requests. For this reason requests on the io list must be aborted
879 * first.
881 void fuse_abort_conn(struct fuse_conn *fc)
883 spin_lock(&fc->lock);
884 if (fc->connected) {
885 fc->connected = 0;
886 end_io_requests(fc);
887 end_requests(fc, &fc->pending);
888 end_requests(fc, &fc->processing);
889 wake_up_all(&fc->waitq);
890 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
892 spin_unlock(&fc->lock);
895 static int fuse_dev_release(struct inode *inode, struct file *file)
897 struct fuse_conn *fc = fuse_get_conn(file);
898 if (fc) {
899 spin_lock(&fc->lock);
900 fc->connected = 0;
901 end_requests(fc, &fc->pending);
902 end_requests(fc, &fc->processing);
903 spin_unlock(&fc->lock);
904 fasync_helper(-1, file, 0, &fc->fasync);
905 kobject_put(&fc->kobj);
908 return 0;
911 static int fuse_dev_fasync(int fd, struct file *file, int on)
913 struct fuse_conn *fc = fuse_get_conn(file);
914 if (!fc)
915 return -EPERM;
917 /* No locking - fasync_helper does its own locking */
918 return fasync_helper(fd, file, on, &fc->fasync);
921 const struct file_operations fuse_dev_operations = {
922 .owner = THIS_MODULE,
923 .llseek = no_llseek,
924 .read = fuse_dev_read,
925 .readv = fuse_dev_readv,
926 .write = fuse_dev_write,
927 .writev = fuse_dev_writev,
928 .poll = fuse_dev_poll,
929 .release = fuse_dev_release,
930 .fasync = fuse_dev_fasync,
933 static struct miscdevice fuse_miscdevice = {
934 .minor = FUSE_MINOR,
935 .name = "fuse",
936 .fops = &fuse_dev_operations,
939 int __init fuse_dev_init(void)
941 int err = -ENOMEM;
942 fuse_req_cachep = kmem_cache_create("fuse_request",
943 sizeof(struct fuse_req),
944 0, 0, NULL, NULL);
945 if (!fuse_req_cachep)
946 goto out;
948 err = misc_register(&fuse_miscdevice);
949 if (err)
950 goto out_cache_clean;
952 return 0;
954 out_cache_clean:
955 kmem_cache_destroy(fuse_req_cachep);
956 out:
957 return err;
960 void fuse_dev_cleanup(void)
962 misc_deregister(&fuse_miscdevice);
963 kmem_cache_destroy(fuse_req_cachep);