[PATCH] w1: Userspace communication protocol over connector.
[linux-2.6/verdex.git] / include / asm-arm / pgtable.h
blobe85c08d78ddadf5e85f14818fc858c94692e40d2
1 /*
2 * linux/include/asm-arm/pgtable.h
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
13 #include <asm-generic/4level-fixup.h>
15 #include <asm/memory.h>
16 #include <asm/proc-fns.h>
17 #include <asm/arch/vmalloc.h>
20 * Just any arbitrary offset to the start of the vmalloc VM area: the
21 * current 8MB value just means that there will be a 8MB "hole" after the
22 * physical memory until the kernel virtual memory starts. That means that
23 * any out-of-bounds memory accesses will hopefully be caught.
24 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
25 * area for the same reason. ;)
27 * Note that platforms may override VMALLOC_START, but they must provide
28 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
29 * which may not overlap IO space.
31 #ifndef VMALLOC_START
32 #define VMALLOC_OFFSET (8*1024*1024)
33 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
34 #endif
37 * Hardware-wise, we have a two level page table structure, where the first
38 * level has 4096 entries, and the second level has 256 entries. Each entry
39 * is one 32-bit word. Most of the bits in the second level entry are used
40 * by hardware, and there aren't any "accessed" and "dirty" bits.
42 * Linux on the other hand has a three level page table structure, which can
43 * be wrapped to fit a two level page table structure easily - using the PGD
44 * and PTE only. However, Linux also expects one "PTE" table per page, and
45 * at least a "dirty" bit.
47 * Therefore, we tweak the implementation slightly - we tell Linux that we
48 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
49 * hardware pointers to the second level.) The second level contains two
50 * hardware PTE tables arranged contiguously, followed by Linux versions
51 * which contain the state information Linux needs. We, therefore, end up
52 * with 512 entries in the "PTE" level.
54 * This leads to the page tables having the following layout:
56 * pgd pte
57 * | |
58 * +--------+ +0
59 * | |-----> +------------+ +0
60 * +- - - - + +4 | h/w pt 0 |
61 * | |-----> +------------+ +1024
62 * +--------+ +8 | h/w pt 1 |
63 * | | +------------+ +2048
64 * +- - - - + | Linux pt 0 |
65 * | | +------------+ +3072
66 * +--------+ | Linux pt 1 |
67 * | | +------------+ +4096
69 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
70 * PTE_xxx for definitions of bits appearing in the "h/w pt".
72 * PMD_xxx definitions refer to bits in the first level page table.
74 * The "dirty" bit is emulated by only granting hardware write permission
75 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
76 * means that a write to a clean page will cause a permission fault, and
77 * the Linux MM layer will mark the page dirty via handle_pte_fault().
78 * For the hardware to notice the permission change, the TLB entry must
79 * be flushed, and ptep_establish() does that for us.
81 * The "accessed" or "young" bit is emulated by a similar method; we only
82 * allow accesses to the page if the "young" bit is set. Accesses to the
83 * page will cause a fault, and handle_pte_fault() will set the young bit
84 * for us as long as the page is marked present in the corresponding Linux
85 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
86 * date.
88 * However, when the "young" bit is cleared, we deny access to the page
89 * by clearing the hardware PTE. Currently Linux does not flush the TLB
90 * for us in this case, which means the TLB will retain the transation
91 * until either the TLB entry is evicted under pressure, or a context
92 * switch which changes the user space mapping occurs.
94 #define PTRS_PER_PTE 512
95 #define PTRS_PER_PMD 1
96 #define PTRS_PER_PGD 2048
99 * PMD_SHIFT determines the size of the area a second-level page table can map
100 * PGDIR_SHIFT determines what a third-level page table entry can map
102 #define PMD_SHIFT 21
103 #define PGDIR_SHIFT 21
105 #define LIBRARY_TEXT_START 0x0c000000
107 #ifndef __ASSEMBLY__
108 extern void __pte_error(const char *file, int line, unsigned long val);
109 extern void __pmd_error(const char *file, int line, unsigned long val);
110 extern void __pgd_error(const char *file, int line, unsigned long val);
112 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
113 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
114 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
115 #endif /* !__ASSEMBLY__ */
117 #define PMD_SIZE (1UL << PMD_SHIFT)
118 #define PMD_MASK (~(PMD_SIZE-1))
119 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
120 #define PGDIR_MASK (~(PGDIR_SIZE-1))
123 * This is the lowest virtual address we can permit any user space
124 * mapping to be mapped at. This is particularly important for
125 * non-high vector CPUs.
127 #define FIRST_USER_ADDRESS PAGE_SIZE
129 #define FIRST_USER_PGD_NR 1
130 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
133 * ARMv6 supersection address mask and size definitions.
135 #define SUPERSECTION_SHIFT 24
136 #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
137 #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
140 * "Linux" PTE definitions.
142 * We keep two sets of PTEs - the hardware and the linux version.
143 * This allows greater flexibility in the way we map the Linux bits
144 * onto the hardware tables, and allows us to have YOUNG and DIRTY
145 * bits.
147 * The PTE table pointer refers to the hardware entries; the "Linux"
148 * entries are stored 1024 bytes below.
150 #define L_PTE_PRESENT (1 << 0)
151 #define L_PTE_FILE (1 << 1) /* only when !PRESENT */
152 #define L_PTE_YOUNG (1 << 1)
153 #define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
154 #define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
155 #define L_PTE_USER (1 << 4)
156 #define L_PTE_WRITE (1 << 5)
157 #define L_PTE_EXEC (1 << 6)
158 #define L_PTE_DIRTY (1 << 7)
159 #define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
160 #define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
161 #define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
163 #ifndef __ASSEMBLY__
166 * The following macros handle the cache and bufferable bits...
168 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
169 #define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
171 extern pgprot_t pgprot_kernel;
173 #define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
174 #define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
175 #define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
176 #define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
177 #define PAGE_KERNEL pgprot_kernel
179 #endif /* __ASSEMBLY__ */
182 * The table below defines the page protection levels that we insert into our
183 * Linux page table version. These get translated into the best that the
184 * architecture can perform. Note that on most ARM hardware:
185 * 1) We cannot do execute protection
186 * 2) If we could do execute protection, then read is implied
187 * 3) write implies read permissions
189 #define __P000 PAGE_NONE
190 #define __P001 PAGE_READONLY
191 #define __P010 PAGE_COPY
192 #define __P011 PAGE_COPY
193 #define __P100 PAGE_READONLY
194 #define __P101 PAGE_READONLY
195 #define __P110 PAGE_COPY
196 #define __P111 PAGE_COPY
198 #define __S000 PAGE_NONE
199 #define __S001 PAGE_READONLY
200 #define __S010 PAGE_SHARED
201 #define __S011 PAGE_SHARED
202 #define __S100 PAGE_READONLY
203 #define __S101 PAGE_READONLY
204 #define __S110 PAGE_SHARED
205 #define __S111 PAGE_SHARED
207 #ifndef __ASSEMBLY__
209 * ZERO_PAGE is a global shared page that is always zero: used
210 * for zero-mapped memory areas etc..
212 extern struct page *empty_zero_page;
213 #define ZERO_PAGE(vaddr) (empty_zero_page)
215 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
216 #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
218 #define pte_none(pte) (!pte_val(pte))
219 #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
220 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
221 #define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
222 #define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
223 #define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
224 #define pte_unmap(pte) do { } while (0)
225 #define pte_unmap_nested(pte) do { } while (0)
227 #define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
228 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
231 * The following only work if pte_present() is true.
232 * Undefined behaviour if not..
234 #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
235 #define pte_read(pte) (pte_val(pte) & L_PTE_USER)
236 #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
237 #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
238 #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
239 #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
242 * The following only works if pte_present() is not true.
244 #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
245 #define pte_to_pgoff(x) (pte_val(x) >> 2)
246 #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
248 #define PTE_FILE_MAX_BITS 30
250 #define PTE_BIT_FUNC(fn,op) \
251 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
253 /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
254 /*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
255 PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
256 PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
257 PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
258 PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
259 PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
260 PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
261 PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
262 PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
265 * Mark the prot value as uncacheable and unbufferable.
267 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
268 #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
270 #define pmd_none(pmd) (!pmd_val(pmd))
271 #define pmd_present(pmd) (pmd_val(pmd))
272 #define pmd_bad(pmd) (pmd_val(pmd) & 2)
274 #define copy_pmd(pmdpd,pmdps) \
275 do { \
276 pmdpd[0] = pmdps[0]; \
277 pmdpd[1] = pmdps[1]; \
278 flush_pmd_entry(pmdpd); \
279 } while (0)
281 #define pmd_clear(pmdp) \
282 do { \
283 pmdp[0] = __pmd(0); \
284 pmdp[1] = __pmd(0); \
285 clean_pmd_entry(pmdp); \
286 } while (0)
288 static inline pte_t *pmd_page_kernel(pmd_t pmd)
290 unsigned long ptr;
292 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
293 ptr += PTRS_PER_PTE * sizeof(void *);
295 return __va(ptr);
298 #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
301 * Permanent address of a page. We never have highmem, so this is trivial.
303 #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
306 * Conversion functions: convert a page and protection to a page entry,
307 * and a page entry and page directory to the page they refer to.
309 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
312 * The "pgd_xxx()" functions here are trivial for a folded two-level
313 * setup: the pgd is never bad, and a pmd always exists (as it's folded
314 * into the pgd entry)
316 #define pgd_none(pgd) (0)
317 #define pgd_bad(pgd) (0)
318 #define pgd_present(pgd) (1)
319 #define pgd_clear(pgdp) do { } while (0)
320 #define set_pgd(pgd,pgdp) do { } while (0)
322 /* to find an entry in a page-table-directory */
323 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
325 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
327 /* to find an entry in a kernel page-table-directory */
328 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
330 /* Find an entry in the second-level page table.. */
331 #define pmd_offset(dir, addr) ((pmd_t *)(dir))
333 /* Find an entry in the third-level page table.. */
334 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
336 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
338 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
339 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
340 return pte;
343 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
345 /* Encode and decode a swap entry.
347 * We support up to 32GB of swap on 4k machines
349 #define __swp_type(x) (((x).val >> 2) & 0x7f)
350 #define __swp_offset(x) ((x).val >> 9)
351 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
352 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
353 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
355 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
356 /* FIXME: this is not correct */
357 #define kern_addr_valid(addr) (1)
359 #include <asm-generic/pgtable.h>
362 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
364 #define HAVE_ARCH_UNMAPPED_AREA
367 * remap a physical page `pfn' of size `size' with page protection `prot'
368 * into virtual address `from'
370 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
371 remap_pfn_range(vma, from, pfn, size, prot)
373 #define MK_IOSPACE_PFN(space, pfn) (pfn)
374 #define GET_IOSPACE(pfn) 0
375 #define GET_PFN(pfn) (pfn)
377 #define pgtable_cache_init() do { } while (0)
379 #endif /* !__ASSEMBLY__ */
381 #endif /* _ASMARM_PGTABLE_H */