2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
4 * This is from the implementation of CUBIC TCP in
5 * Injong Rhee, Lisong Xu.
6 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant
9 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
11 * Unless CUBIC is enabled and congestion window is large
12 * this behaves the same as the original Reno.
15 #include <linux/config.h>
17 #include <linux/module.h>
19 #include <asm/div64.h>
21 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
22 * max_cwnd = snd_cwnd * beta
26 * go to point (max+min)/N
28 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
30 static int fast_convergence
= 1;
31 static int max_increment
= 16;
32 static int beta
= 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
33 static int initial_ssthresh
= 100;
34 static int bic_scale
= 41;
35 static int tcp_friendliness
= 1;
37 static u32 cube_rtt_scale
;
38 static u32 beta_scale
;
39 static u64 cube_factor
;
41 /* Note parameters that are used for precomputing scale factors are read-only */
42 module_param(fast_convergence
, int, 0644);
43 MODULE_PARM_DESC(fast_convergence
, "turn on/off fast convergence");
44 module_param(max_increment
, int, 0644);
45 MODULE_PARM_DESC(max_increment
, "Limit on increment allowed during binary search");
46 module_param(beta
, int, 0444);
47 MODULE_PARM_DESC(beta
, "beta for multiplicative increase");
48 module_param(initial_ssthresh
, int, 0644);
49 MODULE_PARM_DESC(initial_ssthresh
, "initial value of slow start threshold");
50 module_param(bic_scale
, int, 0444);
51 MODULE_PARM_DESC(bic_scale
, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
52 module_param(tcp_friendliness
, int, 0644);
53 MODULE_PARM_DESC(tcp_friendliness
, "turn on/off tcp friendliness");
55 #include <asm/div64.h>
57 /* BIC TCP Parameters */
59 u32 cnt
; /* increase cwnd by 1 after ACKs */
60 u32 last_max_cwnd
; /* last maximum snd_cwnd */
61 u32 loss_cwnd
; /* congestion window at last loss */
62 u32 last_cwnd
; /* the last snd_cwnd */
63 u32 last_time
; /* time when updated last_cwnd */
64 u32 bic_origin_point
;/* origin point of bic function */
65 u32 bic_K
; /* time to origin point from the beginning of the current epoch */
66 u32 delay_min
; /* min delay */
67 u32 epoch_start
; /* beginning of an epoch */
68 u32 ack_cnt
; /* number of acks */
69 u32 tcp_cwnd
; /* estimated tcp cwnd */
70 #define ACK_RATIO_SHIFT 4
71 u32 delayed_ack
; /* estimate the ratio of Packets/ACKs << 4 */
74 static inline void bictcp_reset(struct bictcp
*ca
)
77 ca
->last_max_cwnd
= 0;
81 ca
->bic_origin_point
= 0;
85 ca
->delayed_ack
= 2 << ACK_RATIO_SHIFT
;
90 static void bictcp_init(struct sock
*sk
)
92 bictcp_reset(inet_csk_ca(sk
));
94 tcp_sk(sk
)->snd_ssthresh
= initial_ssthresh
;
97 /* 64bit divisor, dividend and result. dynamic precision */
98 static inline u_int64_t
div64_64(u_int64_t dividend
, u_int64_t divisor
)
100 u_int32_t d
= divisor
;
102 if (divisor
> 0xffffffffULL
) {
103 unsigned int shift
= fls(divisor
>> 32);
105 d
= divisor
>> shift
;
109 /* avoid 64 bit division if possible */
113 dividend
= (uint32_t) dividend
/ d
;
119 * calculate the cubic root of x using Newton-Raphson
121 static u32
cubic_root(u64 a
)
125 /* Initial estimate is based on:
126 * cbrt(x) = exp(log(x) / 3)
128 x
= 1u << (fls64(a
)/3);
131 * Iteration based on:
133 * x = ( 2 * x + a / x ) / 3
138 x
= (2 * x
+ (uint32_t) div64_64(a
, x
*x
)) / 3;
139 } while (abs(x1
- x
) > 1);
145 * Compute congestion window to use.
147 static inline void bictcp_update(struct bictcp
*ca
, u32 cwnd
)
150 u32 delta
, t
, bic_target
, min_cnt
, max_cnt
;
152 ca
->ack_cnt
++; /* count the number of ACKs */
154 if (ca
->last_cwnd
== cwnd
&&
155 (s32
)(tcp_time_stamp
- ca
->last_time
) <= HZ
/ 32)
158 ca
->last_cwnd
= cwnd
;
159 ca
->last_time
= tcp_time_stamp
;
161 if (ca
->epoch_start
== 0) {
162 ca
->epoch_start
= tcp_time_stamp
; /* record the beginning of an epoch */
163 ca
->ack_cnt
= 1; /* start counting */
164 ca
->tcp_cwnd
= cwnd
; /* syn with cubic */
166 if (ca
->last_max_cwnd
<= cwnd
) {
168 ca
->bic_origin_point
= cwnd
;
170 /* Compute new K based on
171 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
173 ca
->bic_K
= cubic_root(cube_factor
174 * (ca
->last_max_cwnd
- cwnd
));
175 ca
->bic_origin_point
= ca
->last_max_cwnd
;
179 /* cubic function - calc*/
180 /* calculate c * time^3 / rtt,
181 * while considering overflow in calculation of time^3
182 * (so time^3 is done by using 64 bit)
183 * and without the support of division of 64bit numbers
184 * (so all divisions are done by using 32 bit)
185 * also NOTE the unit of those veriables
186 * time = (t - K) / 2^bictcp_HZ
187 * c = bic_scale >> 10
188 * rtt = (srtt >> 3) / HZ
189 * !!! The following code does not have overflow problems,
190 * if the cwnd < 1 million packets !!!
193 /* change the unit from HZ to bictcp_HZ */
194 t
= ((tcp_time_stamp
+ ca
->delay_min
- ca
->epoch_start
)
197 if (t
< ca
->bic_K
) /* t - K */
198 offs
= ca
->bic_K
- t
;
200 offs
= t
- ca
->bic_K
;
202 /* c/rtt * (t-K)^3 */
203 delta
= (cube_rtt_scale
* offs
* offs
* offs
) >> (10+3*BICTCP_HZ
);
204 if (t
< ca
->bic_K
) /* below origin*/
205 bic_target
= ca
->bic_origin_point
- delta
;
206 else /* above origin*/
207 bic_target
= ca
->bic_origin_point
+ delta
;
209 /* cubic function - calc bictcp_cnt*/
210 if (bic_target
> cwnd
) {
211 ca
->cnt
= cwnd
/ (bic_target
- cwnd
);
213 ca
->cnt
= 100 * cwnd
; /* very small increment*/
216 if (ca
->delay_min
> 0) {
217 /* max increment = Smax * rtt / 0.1 */
218 min_cnt
= (cwnd
* HZ
* 8)/(10 * max_increment
* ca
->delay_min
);
219 if (ca
->cnt
< min_cnt
)
223 /* slow start and low utilization */
224 if (ca
->loss_cwnd
== 0) /* could be aggressive in slow start */
228 if (tcp_friendliness
) {
229 u32 scale
= beta_scale
;
230 delta
= (cwnd
* scale
) >> 3;
231 while (ca
->ack_cnt
> delta
) { /* update tcp cwnd */
232 ca
->ack_cnt
-= delta
;
236 if (ca
->tcp_cwnd
> cwnd
){ /* if bic is slower than tcp */
237 delta
= ca
->tcp_cwnd
- cwnd
;
238 max_cnt
= cwnd
/ delta
;
239 if (ca
->cnt
> max_cnt
)
244 ca
->cnt
= (ca
->cnt
<< ACK_RATIO_SHIFT
) / ca
->delayed_ack
;
245 if (ca
->cnt
== 0) /* cannot be zero */
250 /* Keep track of minimum rtt */
251 static inline void measure_delay(struct sock
*sk
)
253 const struct tcp_sock
*tp
= tcp_sk(sk
);
254 struct bictcp
*ca
= inet_csk_ca(sk
);
258 if (!(tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
) ||
259 /* Discard delay samples right after fast recovery */
260 (s32
)(tcp_time_stamp
- ca
->epoch_start
) < HZ
)
263 delay
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
267 /* first time call or link delay decreases */
268 if (ca
->delay_min
== 0 || ca
->delay_min
> delay
)
269 ca
->delay_min
= delay
;
272 static void bictcp_cong_avoid(struct sock
*sk
, u32 ack
,
273 u32 seq_rtt
, u32 in_flight
, int data_acked
)
275 struct tcp_sock
*tp
= tcp_sk(sk
);
276 struct bictcp
*ca
= inet_csk_ca(sk
);
281 if (!tcp_is_cwnd_limited(sk
, in_flight
))
284 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
)
287 bictcp_update(ca
, tp
->snd_cwnd
);
289 /* In dangerous area, increase slowly.
290 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
292 if (tp
->snd_cwnd_cnt
>= ca
->cnt
) {
293 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
295 tp
->snd_cwnd_cnt
= 0;
302 static u32
bictcp_recalc_ssthresh(struct sock
*sk
)
304 const struct tcp_sock
*tp
= tcp_sk(sk
);
305 struct bictcp
*ca
= inet_csk_ca(sk
);
307 ca
->epoch_start
= 0; /* end of epoch */
309 /* Wmax and fast convergence */
310 if (tp
->snd_cwnd
< ca
->last_max_cwnd
&& fast_convergence
)
311 ca
->last_max_cwnd
= (tp
->snd_cwnd
* (BICTCP_BETA_SCALE
+ beta
))
312 / (2 * BICTCP_BETA_SCALE
);
314 ca
->last_max_cwnd
= tp
->snd_cwnd
;
316 ca
->loss_cwnd
= tp
->snd_cwnd
;
318 return max((tp
->snd_cwnd
* beta
) / BICTCP_BETA_SCALE
, 2U);
321 static u32
bictcp_undo_cwnd(struct sock
*sk
)
323 struct bictcp
*ca
= inet_csk_ca(sk
);
325 return max(tcp_sk(sk
)->snd_cwnd
, ca
->last_max_cwnd
);
328 static void bictcp_state(struct sock
*sk
, u8 new_state
)
330 if (new_state
== TCP_CA_Loss
)
331 bictcp_reset(inet_csk_ca(sk
));
334 /* Track delayed acknowledgment ratio using sliding window
335 * ratio = (15*ratio + sample) / 16
337 static void bictcp_acked(struct sock
*sk
, u32 cnt
)
339 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
341 if (cnt
> 0 && icsk
->icsk_ca_state
== TCP_CA_Open
) {
342 struct bictcp
*ca
= inet_csk_ca(sk
);
343 cnt
-= ca
->delayed_ack
>> ACK_RATIO_SHIFT
;
344 ca
->delayed_ack
+= cnt
;
349 static struct tcp_congestion_ops cubictcp
= {
351 .ssthresh
= bictcp_recalc_ssthresh
,
352 .cong_avoid
= bictcp_cong_avoid
,
353 .set_state
= bictcp_state
,
354 .undo_cwnd
= bictcp_undo_cwnd
,
355 .pkts_acked
= bictcp_acked
,
356 .owner
= THIS_MODULE
,
360 static int __init
cubictcp_register(void)
362 BUG_ON(sizeof(struct bictcp
) > ICSK_CA_PRIV_SIZE
);
364 /* Precompute a bunch of the scaling factors that are used per-packet
365 * based on SRTT of 100ms
368 beta_scale
= 8*(BICTCP_BETA_SCALE
+beta
)/ 3 / (BICTCP_BETA_SCALE
- beta
);
370 cube_rtt_scale
= (bic_scale
<< 3) / 10; /* 1024*c/rtt */
372 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
373 * so K = cubic_root( (wmax-cwnd)*rtt/c )
374 * the unit of K is bictcp_HZ=2^10, not HZ
376 * c = bic_scale >> 10
379 * the following code has been designed and tested for
380 * cwnd < 1 million packets
382 * HZ < 1,000,00 (corresponding to 10 nano-second)
385 /* 1/c * 2^2*bictcp_HZ * srtt */
386 cube_factor
= 1ull << (10+3*BICTCP_HZ
); /* 2^40 */
388 /* divide by bic_scale and by constant Srtt (100ms) */
389 do_div(cube_factor
, bic_scale
* 10);
391 return tcp_register_congestion_control(&cubictcp
);
394 static void __exit
cubictcp_unregister(void)
396 tcp_unregister_congestion_control(&cubictcp
);
399 module_init(cubictcp_register
);
400 module_exit(cubictcp_unregister
);
402 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
403 MODULE_LICENSE("GPL");
404 MODULE_DESCRIPTION("CUBIC TCP");
405 MODULE_VERSION("2.0");