[PATCH] w1: Userspace communication protocol over connector.
[linux-2.6/verdex.git] / net / ipv4 / tcp_input.c
blobe08245bdda3a384ebd4e2583ca366d3048643482
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps = 1;
77 int sysctl_tcp_window_scaling = 1;
78 int sysctl_tcp_sack = 1;
79 int sysctl_tcp_fack = 1;
80 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn;
82 int sysctl_tcp_dsack = 1;
83 int sysctl_tcp_app_win = 31;
84 int sysctl_tcp_adv_win_scale = 2;
86 int sysctl_tcp_stdurg;
87 int sysctl_tcp_rfc1337;
88 int sysctl_tcp_max_orphans = NR_FILE;
89 int sysctl_tcp_frto;
90 int sysctl_tcp_nometrics_save;
92 int sysctl_tcp_moderate_rcvbuf = 1;
93 int sysctl_tcp_abc = 1;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
111 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
112 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 /* Adapt the MSS value used to make delayed ack decision to the
117 * real world.
119 static void tcp_measure_rcv_mss(struct sock *sk,
120 const struct sk_buff *skb)
122 struct inet_connection_sock *icsk = inet_csk(sk);
123 const unsigned int lss = icsk->icsk_ack.last_seg_size;
124 unsigned int len;
126 icsk->icsk_ack.last_seg_size = 0;
128 /* skb->len may jitter because of SACKs, even if peer
129 * sends good full-sized frames.
131 len = skb->len;
132 if (len >= icsk->icsk_ack.rcv_mss) {
133 icsk->icsk_ack.rcv_mss = len;
134 } else {
135 /* Otherwise, we make more careful check taking into account,
136 * that SACKs block is variable.
138 * "len" is invariant segment length, including TCP header.
140 len += skb->data - skb->h.raw;
141 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
142 /* If PSH is not set, packet should be
143 * full sized, provided peer TCP is not badly broken.
144 * This observation (if it is correct 8)) allows
145 * to handle super-low mtu links fairly.
147 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
148 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
149 /* Subtract also invariant (if peer is RFC compliant),
150 * tcp header plus fixed timestamp option length.
151 * Resulting "len" is MSS free of SACK jitter.
153 len -= tcp_sk(sk)->tcp_header_len;
154 icsk->icsk_ack.last_seg_size = len;
155 if (len == lss) {
156 icsk->icsk_ack.rcv_mss = len;
157 return;
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 static void tcp_incr_quickack(struct sock *sk)
166 struct inet_connection_sock *icsk = inet_csk(sk);
167 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169 if (quickacks==0)
170 quickacks=2;
171 if (quickacks > icsk->icsk_ack.quick)
172 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
175 void tcp_enter_quickack_mode(struct sock *sk)
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 tcp_incr_quickack(sk);
179 icsk->icsk_ack.pingpong = 0;
180 icsk->icsk_ack.ato = TCP_ATO_MIN;
183 /* Send ACKs quickly, if "quick" count is not exhausted
184 * and the session is not interactive.
187 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 const struct inet_connection_sock *icsk = inet_csk(sk);
190 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
193 /* Buffer size and advertised window tuning.
195 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
198 static void tcp_fixup_sndbuf(struct sock *sk)
200 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
201 sizeof(struct sk_buff);
203 if (sk->sk_sndbuf < 3 * sndmem)
204 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
207 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 * All tcp_full_space() is split to two parts: "network" buffer, allocated
210 * forward and advertised in receiver window (tp->rcv_wnd) and
211 * "application buffer", required to isolate scheduling/application
212 * latencies from network.
213 * window_clamp is maximal advertised window. It can be less than
214 * tcp_full_space(), in this case tcp_full_space() - window_clamp
215 * is reserved for "application" buffer. The less window_clamp is
216 * the smoother our behaviour from viewpoint of network, but the lower
217 * throughput and the higher sensitivity of the connection to losses. 8)
219 * rcv_ssthresh is more strict window_clamp used at "slow start"
220 * phase to predict further behaviour of this connection.
221 * It is used for two goals:
222 * - to enforce header prediction at sender, even when application
223 * requires some significant "application buffer". It is check #1.
224 * - to prevent pruning of receive queue because of misprediction
225 * of receiver window. Check #2.
227 * The scheme does not work when sender sends good segments opening
228 * window and then starts to feed us spaghetti. But it should work
229 * in common situations. Otherwise, we have to rely on queue collapsing.
232 /* Slow part of check#2. */
233 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
234 const struct sk_buff *skb)
236 /* Optimize this! */
237 int truesize = tcp_win_from_space(skb->truesize)/2;
238 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240 while (tp->rcv_ssthresh <= window) {
241 if (truesize <= skb->len)
242 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244 truesize >>= 1;
245 window >>= 1;
247 return 0;
250 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
251 struct sk_buff *skb)
253 /* Check #1 */
254 if (tp->rcv_ssthresh < tp->window_clamp &&
255 (int)tp->rcv_ssthresh < tcp_space(sk) &&
256 !tcp_memory_pressure) {
257 int incr;
259 /* Check #2. Increase window, if skb with such overhead
260 * will fit to rcvbuf in future.
262 if (tcp_win_from_space(skb->truesize) <= skb->len)
263 incr = 2*tp->advmss;
264 else
265 incr = __tcp_grow_window(sk, tp, skb);
267 if (incr) {
268 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
269 inet_csk(sk)->icsk_ack.quick |= 1;
274 /* 3. Tuning rcvbuf, when connection enters established state. */
276 static void tcp_fixup_rcvbuf(struct sock *sk)
278 struct tcp_sock *tp = tcp_sk(sk);
279 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281 /* Try to select rcvbuf so that 4 mss-sized segments
282 * will fit to window and corresponding skbs will fit to our rcvbuf.
283 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 while (tcp_win_from_space(rcvmem) < tp->advmss)
286 rcvmem += 128;
287 if (sk->sk_rcvbuf < 4 * rcvmem)
288 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
291 /* 4. Try to fixup all. It is made immediately after connection enters
292 * established state.
294 static void tcp_init_buffer_space(struct sock *sk)
296 struct tcp_sock *tp = tcp_sk(sk);
297 int maxwin;
299 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
300 tcp_fixup_rcvbuf(sk);
301 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
302 tcp_fixup_sndbuf(sk);
304 tp->rcvq_space.space = tp->rcv_wnd;
306 maxwin = tcp_full_space(sk);
308 if (tp->window_clamp >= maxwin) {
309 tp->window_clamp = maxwin;
311 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
312 tp->window_clamp = max(maxwin -
313 (maxwin >> sysctl_tcp_app_win),
314 4 * tp->advmss);
317 /* Force reservation of one segment. */
318 if (sysctl_tcp_app_win &&
319 tp->window_clamp > 2 * tp->advmss &&
320 tp->window_clamp + tp->advmss > maxwin)
321 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
324 tp->snd_cwnd_stamp = tcp_time_stamp;
327 /* 5. Recalculate window clamp after socket hit its memory bounds. */
328 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 struct inet_connection_sock *icsk = inet_csk(sk);
332 icsk->icsk_ack.quick = 0;
334 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
335 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
336 !tcp_memory_pressure &&
337 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
338 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
339 sysctl_tcp_rmem[2]);
341 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
342 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
346 /* Initialize RCV_MSS value.
347 * RCV_MSS is an our guess about MSS used by the peer.
348 * We haven't any direct information about the MSS.
349 * It's better to underestimate the RCV_MSS rather than overestimate.
350 * Overestimations make us ACKing less frequently than needed.
351 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 void tcp_initialize_rcv_mss(struct sock *sk)
355 struct tcp_sock *tp = tcp_sk(sk);
356 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358 hint = min(hint, tp->rcv_wnd/2);
359 hint = min(hint, TCP_MIN_RCVMSS);
360 hint = max(hint, TCP_MIN_MSS);
362 inet_csk(sk)->icsk_ack.rcv_mss = hint;
365 /* Receiver "autotuning" code.
367 * The algorithm for RTT estimation w/o timestamps is based on
368 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
369 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 * More detail on this code can be found at
372 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
373 * though this reference is out of date. A new paper
374 * is pending.
376 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 u32 new_sample = tp->rcv_rtt_est.rtt;
379 long m = sample;
381 if (m == 0)
382 m = 1;
384 if (new_sample != 0) {
385 /* If we sample in larger samples in the non-timestamp
386 * case, we could grossly overestimate the RTT especially
387 * with chatty applications or bulk transfer apps which
388 * are stalled on filesystem I/O.
390 * Also, since we are only going for a minimum in the
391 * non-timestamp case, we do not smooth things out
392 * else with timestamps disabled convergence takes too
393 * long.
395 if (!win_dep) {
396 m -= (new_sample >> 3);
397 new_sample += m;
398 } else if (m < new_sample)
399 new_sample = m << 3;
400 } else {
401 /* No previous measure. */
402 new_sample = m << 3;
405 if (tp->rcv_rtt_est.rtt != new_sample)
406 tp->rcv_rtt_est.rtt = new_sample;
409 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 if (tp->rcv_rtt_est.time == 0)
412 goto new_measure;
413 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
414 return;
415 tcp_rcv_rtt_update(tp,
416 jiffies - tp->rcv_rtt_est.time,
419 new_measure:
420 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
421 tp->rcv_rtt_est.time = tcp_time_stamp;
424 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 struct tcp_sock *tp = tcp_sk(sk);
427 if (tp->rx_opt.rcv_tsecr &&
428 (TCP_SKB_CB(skb)->end_seq -
429 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
430 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
434 * This function should be called every time data is copied to user space.
435 * It calculates the appropriate TCP receive buffer space.
437 void tcp_rcv_space_adjust(struct sock *sk)
439 struct tcp_sock *tp = tcp_sk(sk);
440 int time;
441 int space;
443 if (tp->rcvq_space.time == 0)
444 goto new_measure;
446 time = tcp_time_stamp - tp->rcvq_space.time;
447 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
448 tp->rcv_rtt_est.rtt == 0)
449 return;
451 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453 space = max(tp->rcvq_space.space, space);
455 if (tp->rcvq_space.space != space) {
456 int rcvmem;
458 tp->rcvq_space.space = space;
460 if (sysctl_tcp_moderate_rcvbuf &&
461 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
462 int new_clamp = space;
464 /* Receive space grows, normalize in order to
465 * take into account packet headers and sk_buff
466 * structure overhead.
468 space /= tp->advmss;
469 if (!space)
470 space = 1;
471 rcvmem = (tp->advmss + MAX_TCP_HEADER +
472 16 + sizeof(struct sk_buff));
473 while (tcp_win_from_space(rcvmem) < tp->advmss)
474 rcvmem += 128;
475 space *= rcvmem;
476 space = min(space, sysctl_tcp_rmem[2]);
477 if (space > sk->sk_rcvbuf) {
478 sk->sk_rcvbuf = space;
480 /* Make the window clamp follow along. */
481 tp->window_clamp = new_clamp;
486 new_measure:
487 tp->rcvq_space.seq = tp->copied_seq;
488 tp->rcvq_space.time = tcp_time_stamp;
491 /* There is something which you must keep in mind when you analyze the
492 * behavior of the tp->ato delayed ack timeout interval. When a
493 * connection starts up, we want to ack as quickly as possible. The
494 * problem is that "good" TCP's do slow start at the beginning of data
495 * transmission. The means that until we send the first few ACK's the
496 * sender will sit on his end and only queue most of his data, because
497 * he can only send snd_cwnd unacked packets at any given time. For
498 * each ACK we send, he increments snd_cwnd and transmits more of his
499 * queue. -DaveM
501 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 struct inet_connection_sock *icsk = inet_csk(sk);
504 u32 now;
506 inet_csk_schedule_ack(sk);
508 tcp_measure_rcv_mss(sk, skb);
510 tcp_rcv_rtt_measure(tp);
512 now = tcp_time_stamp;
514 if (!icsk->icsk_ack.ato) {
515 /* The _first_ data packet received, initialize
516 * delayed ACK engine.
518 tcp_incr_quickack(sk);
519 icsk->icsk_ack.ato = TCP_ATO_MIN;
520 } else {
521 int m = now - icsk->icsk_ack.lrcvtime;
523 if (m <= TCP_ATO_MIN/2) {
524 /* The fastest case is the first. */
525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
526 } else if (m < icsk->icsk_ack.ato) {
527 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
528 if (icsk->icsk_ack.ato > icsk->icsk_rto)
529 icsk->icsk_ack.ato = icsk->icsk_rto;
530 } else if (m > icsk->icsk_rto) {
531 /* Too long gap. Apparently sender failed to
532 * restart window, so that we send ACKs quickly.
534 tcp_incr_quickack(sk);
535 sk_stream_mem_reclaim(sk);
538 icsk->icsk_ack.lrcvtime = now;
540 TCP_ECN_check_ce(tp, skb);
542 if (skb->len >= 128)
543 tcp_grow_window(sk, tp, skb);
546 /* Called to compute a smoothed rtt estimate. The data fed to this
547 * routine either comes from timestamps, or from segments that were
548 * known _not_ to have been retransmitted [see Karn/Partridge
549 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
550 * piece by Van Jacobson.
551 * NOTE: the next three routines used to be one big routine.
552 * To save cycles in the RFC 1323 implementation it was better to break
553 * it up into three procedures. -- erics
555 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 struct tcp_sock *tp = tcp_sk(sk);
558 long m = mrtt; /* RTT */
560 /* The following amusing code comes from Jacobson's
561 * article in SIGCOMM '88. Note that rtt and mdev
562 * are scaled versions of rtt and mean deviation.
563 * This is designed to be as fast as possible
564 * m stands for "measurement".
566 * On a 1990 paper the rto value is changed to:
567 * RTO = rtt + 4 * mdev
569 * Funny. This algorithm seems to be very broken.
570 * These formulae increase RTO, when it should be decreased, increase
571 * too slowly, when it should be increased quickly, decrease too quickly
572 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
573 * does not matter how to _calculate_ it. Seems, it was trap
574 * that VJ failed to avoid. 8)
576 if(m == 0)
577 m = 1;
578 if (tp->srtt != 0) {
579 m -= (tp->srtt >> 3); /* m is now error in rtt est */
580 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
581 if (m < 0) {
582 m = -m; /* m is now abs(error) */
583 m -= (tp->mdev >> 2); /* similar update on mdev */
584 /* This is similar to one of Eifel findings.
585 * Eifel blocks mdev updates when rtt decreases.
586 * This solution is a bit different: we use finer gain
587 * for mdev in this case (alpha*beta).
588 * Like Eifel it also prevents growth of rto,
589 * but also it limits too fast rto decreases,
590 * happening in pure Eifel.
592 if (m > 0)
593 m >>= 3;
594 } else {
595 m -= (tp->mdev >> 2); /* similar update on mdev */
597 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
598 if (tp->mdev > tp->mdev_max) {
599 tp->mdev_max = tp->mdev;
600 if (tp->mdev_max > tp->rttvar)
601 tp->rttvar = tp->mdev_max;
603 if (after(tp->snd_una, tp->rtt_seq)) {
604 if (tp->mdev_max < tp->rttvar)
605 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
606 tp->rtt_seq = tp->snd_nxt;
607 tp->mdev_max = TCP_RTO_MIN;
609 } else {
610 /* no previous measure. */
611 tp->srtt = m<<3; /* take the measured time to be rtt */
612 tp->mdev = m<<1; /* make sure rto = 3*rtt */
613 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
614 tp->rtt_seq = tp->snd_nxt;
618 /* Calculate rto without backoff. This is the second half of Van Jacobson's
619 * routine referred to above.
621 static inline void tcp_set_rto(struct sock *sk)
623 const struct tcp_sock *tp = tcp_sk(sk);
624 /* Old crap is replaced with new one. 8)
626 * More seriously:
627 * 1. If rtt variance happened to be less 50msec, it is hallucination.
628 * It cannot be less due to utterly erratic ACK generation made
629 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
630 * to do with delayed acks, because at cwnd>2 true delack timeout
631 * is invisible. Actually, Linux-2.4 also generates erratic
632 * ACKs in some circumstances.
634 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636 /* 2. Fixups made earlier cannot be right.
637 * If we do not estimate RTO correctly without them,
638 * all the algo is pure shit and should be replaced
639 * with correct one. It is exactly, which we pretend to do.
643 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
644 * guarantees that rto is higher.
646 static inline void tcp_bound_rto(struct sock *sk)
648 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
649 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
652 /* Save metrics learned by this TCP session.
653 This function is called only, when TCP finishes successfully
654 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 void tcp_update_metrics(struct sock *sk)
658 struct tcp_sock *tp = tcp_sk(sk);
659 struct dst_entry *dst = __sk_dst_get(sk);
661 if (sysctl_tcp_nometrics_save)
662 return;
664 dst_confirm(dst);
666 if (dst && (dst->flags&DST_HOST)) {
667 const struct inet_connection_sock *icsk = inet_csk(sk);
668 int m;
670 if (icsk->icsk_backoff || !tp->srtt) {
671 /* This session failed to estimate rtt. Why?
672 * Probably, no packets returned in time.
673 * Reset our results.
675 if (!(dst_metric_locked(dst, RTAX_RTT)))
676 dst->metrics[RTAX_RTT-1] = 0;
677 return;
680 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682 /* If newly calculated rtt larger than stored one,
683 * store new one. Otherwise, use EWMA. Remember,
684 * rtt overestimation is always better than underestimation.
686 if (!(dst_metric_locked(dst, RTAX_RTT))) {
687 if (m <= 0)
688 dst->metrics[RTAX_RTT-1] = tp->srtt;
689 else
690 dst->metrics[RTAX_RTT-1] -= (m>>3);
693 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
694 if (m < 0)
695 m = -m;
697 /* Scale deviation to rttvar fixed point */
698 m >>= 1;
699 if (m < tp->mdev)
700 m = tp->mdev;
702 if (m >= dst_metric(dst, RTAX_RTTVAR))
703 dst->metrics[RTAX_RTTVAR-1] = m;
704 else
705 dst->metrics[RTAX_RTTVAR-1] -=
706 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
709 if (tp->snd_ssthresh >= 0xFFFF) {
710 /* Slow start still did not finish. */
711 if (dst_metric(dst, RTAX_SSTHRESH) &&
712 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
713 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
714 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
715 if (!dst_metric_locked(dst, RTAX_CWND) &&
716 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
717 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
718 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
719 icsk->icsk_ca_state == TCP_CA_Open) {
720 /* Cong. avoidance phase, cwnd is reliable. */
721 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
722 dst->metrics[RTAX_SSTHRESH-1] =
723 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
724 if (!dst_metric_locked(dst, RTAX_CWND))
725 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
726 } else {
727 /* Else slow start did not finish, cwnd is non-sense,
728 ssthresh may be also invalid.
730 if (!dst_metric_locked(dst, RTAX_CWND))
731 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
732 if (dst->metrics[RTAX_SSTHRESH-1] &&
733 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
734 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
735 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
738 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
739 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
740 tp->reordering != sysctl_tcp_reordering)
741 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
746 /* Numbers are taken from RFC2414. */
747 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751 if (!cwnd) {
752 if (tp->mss_cache > 1460)
753 cwnd = 2;
754 else
755 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
760 /* Set slow start threshold and cwnd not falling to slow start */
761 void tcp_enter_cwr(struct sock *sk)
763 struct tcp_sock *tp = tcp_sk(sk);
765 tp->prior_ssthresh = 0;
766 tp->bytes_acked = 0;
767 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
768 tp->undo_marker = 0;
769 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
770 tp->snd_cwnd = min(tp->snd_cwnd,
771 tcp_packets_in_flight(tp) + 1U);
772 tp->snd_cwnd_cnt = 0;
773 tp->high_seq = tp->snd_nxt;
774 tp->snd_cwnd_stamp = tcp_time_stamp;
775 TCP_ECN_queue_cwr(tp);
777 tcp_set_ca_state(sk, TCP_CA_CWR);
781 /* Initialize metrics on socket. */
783 static void tcp_init_metrics(struct sock *sk)
785 struct tcp_sock *tp = tcp_sk(sk);
786 struct dst_entry *dst = __sk_dst_get(sk);
788 if (dst == NULL)
789 goto reset;
791 dst_confirm(dst);
793 if (dst_metric_locked(dst, RTAX_CWND))
794 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
795 if (dst_metric(dst, RTAX_SSTHRESH)) {
796 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
797 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
798 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 if (dst_metric(dst, RTAX_REORDERING) &&
801 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
802 tp->rx_opt.sack_ok &= ~2;
803 tp->reordering = dst_metric(dst, RTAX_REORDERING);
806 if (dst_metric(dst, RTAX_RTT) == 0)
807 goto reset;
809 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
810 goto reset;
812 /* Initial rtt is determined from SYN,SYN-ACK.
813 * The segment is small and rtt may appear much
814 * less than real one. Use per-dst memory
815 * to make it more realistic.
817 * A bit of theory. RTT is time passed after "normal" sized packet
818 * is sent until it is ACKed. In normal circumstances sending small
819 * packets force peer to delay ACKs and calculation is correct too.
820 * The algorithm is adaptive and, provided we follow specs, it
821 * NEVER underestimate RTT. BUT! If peer tries to make some clever
822 * tricks sort of "quick acks" for time long enough to decrease RTT
823 * to low value, and then abruptly stops to do it and starts to delay
824 * ACKs, wait for troubles.
826 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
827 tp->srtt = dst_metric(dst, RTAX_RTT);
828 tp->rtt_seq = tp->snd_nxt;
830 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
831 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
832 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 tcp_set_rto(sk);
835 tcp_bound_rto(sk);
836 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
837 goto reset;
838 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
839 tp->snd_cwnd_stamp = tcp_time_stamp;
840 return;
842 reset:
843 /* Play conservative. If timestamps are not
844 * supported, TCP will fail to recalculate correct
845 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
848 tp->srtt = 0;
849 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
850 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
854 static void tcp_update_reordering(struct sock *sk, const int metric,
855 const int ts)
857 struct tcp_sock *tp = tcp_sk(sk);
858 if (metric > tp->reordering) {
859 tp->reordering = min(TCP_MAX_REORDERING, metric);
861 /* This exciting event is worth to be remembered. 8) */
862 if (ts)
863 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
864 else if (IsReno(tp))
865 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
866 else if (IsFack(tp))
867 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
868 else
869 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
870 #if FASTRETRANS_DEBUG > 1
871 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
873 tp->reordering,
874 tp->fackets_out,
875 tp->sacked_out,
876 tp->undo_marker ? tp->undo_retrans : 0);
877 #endif
878 /* Disable FACK yet. */
879 tp->rx_opt.sack_ok &= ~2;
883 /* This procedure tags the retransmission queue when SACKs arrive.
885 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
886 * Packets in queue with these bits set are counted in variables
887 * sacked_out, retrans_out and lost_out, correspondingly.
889 * Valid combinations are:
890 * Tag InFlight Description
891 * 0 1 - orig segment is in flight.
892 * S 0 - nothing flies, orig reached receiver.
893 * L 0 - nothing flies, orig lost by net.
894 * R 2 - both orig and retransmit are in flight.
895 * L|R 1 - orig is lost, retransmit is in flight.
896 * S|R 1 - orig reached receiver, retrans is still in flight.
897 * (L|S|R is logically valid, it could occur when L|R is sacked,
898 * but it is equivalent to plain S and code short-curcuits it to S.
899 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 * These 6 states form finite state machine, controlled by the following events:
902 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
903 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
904 * 3. Loss detection event of one of three flavors:
905 * A. Scoreboard estimator decided the packet is lost.
906 * A'. Reno "three dupacks" marks head of queue lost.
907 * A''. Its FACK modfication, head until snd.fack is lost.
908 * B. SACK arrives sacking data transmitted after never retransmitted
909 * hole was sent out.
910 * C. SACK arrives sacking SND.NXT at the moment, when the
911 * segment was retransmitted.
912 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 * It is pleasant to note, that state diagram turns out to be commutative,
915 * so that we are allowed not to be bothered by order of our actions,
916 * when multiple events arrive simultaneously. (see the function below).
918 * Reordering detection.
919 * --------------------
920 * Reordering metric is maximal distance, which a packet can be displaced
921 * in packet stream. With SACKs we can estimate it:
923 * 1. SACK fills old hole and the corresponding segment was not
924 * ever retransmitted -> reordering. Alas, we cannot use it
925 * when segment was retransmitted.
926 * 2. The last flaw is solved with D-SACK. D-SACK arrives
927 * for retransmitted and already SACKed segment -> reordering..
928 * Both of these heuristics are not used in Loss state, when we cannot
929 * account for retransmits accurately.
931 static int
932 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 const struct inet_connection_sock *icsk = inet_csk(sk);
935 struct tcp_sock *tp = tcp_sk(sk);
936 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
937 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
938 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
939 int reord = tp->packets_out;
940 int prior_fackets;
941 u32 lost_retrans = 0;
942 int flag = 0;
943 int dup_sack = 0;
944 int i;
946 if (!tp->sacked_out)
947 tp->fackets_out = 0;
948 prior_fackets = tp->fackets_out;
950 /* SACK fastpath:
951 * if the only SACK change is the increase of the end_seq of
952 * the first block then only apply that SACK block
953 * and use retrans queue hinting otherwise slowpath */
954 flag = 1;
955 for (i = 0; i< num_sacks; i++) {
956 __u32 start_seq = ntohl(sp[i].start_seq);
957 __u32 end_seq = ntohl(sp[i].end_seq);
959 if (i == 0){
960 if (tp->recv_sack_cache[i].start_seq != start_seq)
961 flag = 0;
962 } else {
963 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
964 (tp->recv_sack_cache[i].end_seq != end_seq))
965 flag = 0;
967 tp->recv_sack_cache[i].start_seq = start_seq;
968 tp->recv_sack_cache[i].end_seq = end_seq;
970 /* Check for D-SACK. */
971 if (i == 0) {
972 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
974 if (before(start_seq, ack)) {
975 dup_sack = 1;
976 tp->rx_opt.sack_ok |= 4;
977 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
978 } else if (num_sacks > 1 &&
979 !after(end_seq, ntohl(sp[1].end_seq)) &&
980 !before(start_seq, ntohl(sp[1].start_seq))) {
981 dup_sack = 1;
982 tp->rx_opt.sack_ok |= 4;
983 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
986 /* D-SACK for already forgotten data...
987 * Do dumb counting. */
988 if (dup_sack &&
989 !after(end_seq, prior_snd_una) &&
990 after(end_seq, tp->undo_marker))
991 tp->undo_retrans--;
993 /* Eliminate too old ACKs, but take into
994 * account more or less fresh ones, they can
995 * contain valid SACK info.
997 if (before(ack, prior_snd_una - tp->max_window))
998 return 0;
1002 if (flag)
1003 num_sacks = 1;
1004 else {
1005 int j;
1006 tp->fastpath_skb_hint = NULL;
1008 /* order SACK blocks to allow in order walk of the retrans queue */
1009 for (i = num_sacks-1; i > 0; i--) {
1010 for (j = 0; j < i; j++){
1011 if (after(ntohl(sp[j].start_seq),
1012 ntohl(sp[j+1].start_seq))){
1013 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1014 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1015 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1016 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1023 /* clear flag as used for different purpose in following code */
1024 flag = 0;
1026 for (i=0; i<num_sacks; i++, sp++) {
1027 struct sk_buff *skb;
1028 __u32 start_seq = ntohl(sp->start_seq);
1029 __u32 end_seq = ntohl(sp->end_seq);
1030 int fack_count;
1032 /* Use SACK fastpath hint if valid */
1033 if (tp->fastpath_skb_hint) {
1034 skb = tp->fastpath_skb_hint;
1035 fack_count = tp->fastpath_cnt_hint;
1036 } else {
1037 skb = sk->sk_write_queue.next;
1038 fack_count = 0;
1041 /* Event "B" in the comment above. */
1042 if (after(end_seq, tp->high_seq))
1043 flag |= FLAG_DATA_LOST;
1045 sk_stream_for_retrans_queue_from(skb, sk) {
1046 int in_sack, pcount;
1047 u8 sacked;
1049 tp->fastpath_skb_hint = skb;
1050 tp->fastpath_cnt_hint = fack_count;
1052 /* The retransmission queue is always in order, so
1053 * we can short-circuit the walk early.
1055 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1056 break;
1058 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1059 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1061 pcount = tcp_skb_pcount(skb);
1063 if (pcount > 1 && !in_sack &&
1064 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1065 unsigned int pkt_len;
1067 in_sack = !after(start_seq,
1068 TCP_SKB_CB(skb)->seq);
1070 if (!in_sack)
1071 pkt_len = (start_seq -
1072 TCP_SKB_CB(skb)->seq);
1073 else
1074 pkt_len = (end_seq -
1075 TCP_SKB_CB(skb)->seq);
1076 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1077 break;
1078 pcount = tcp_skb_pcount(skb);
1081 fack_count += pcount;
1083 sacked = TCP_SKB_CB(skb)->sacked;
1085 /* Account D-SACK for retransmitted packet. */
1086 if ((dup_sack && in_sack) &&
1087 (sacked & TCPCB_RETRANS) &&
1088 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1089 tp->undo_retrans--;
1091 /* The frame is ACKed. */
1092 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1093 if (sacked&TCPCB_RETRANS) {
1094 if ((dup_sack && in_sack) &&
1095 (sacked&TCPCB_SACKED_ACKED))
1096 reord = min(fack_count, reord);
1097 } else {
1098 /* If it was in a hole, we detected reordering. */
1099 if (fack_count < prior_fackets &&
1100 !(sacked&TCPCB_SACKED_ACKED))
1101 reord = min(fack_count, reord);
1104 /* Nothing to do; acked frame is about to be dropped. */
1105 continue;
1108 if ((sacked&TCPCB_SACKED_RETRANS) &&
1109 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1110 (!lost_retrans || after(end_seq, lost_retrans)))
1111 lost_retrans = end_seq;
1113 if (!in_sack)
1114 continue;
1116 if (!(sacked&TCPCB_SACKED_ACKED)) {
1117 if (sacked & TCPCB_SACKED_RETRANS) {
1118 /* If the segment is not tagged as lost,
1119 * we do not clear RETRANS, believing
1120 * that retransmission is still in flight.
1122 if (sacked & TCPCB_LOST) {
1123 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1124 tp->lost_out -= tcp_skb_pcount(skb);
1125 tp->retrans_out -= tcp_skb_pcount(skb);
1127 /* clear lost hint */
1128 tp->retransmit_skb_hint = NULL;
1130 } else {
1131 /* New sack for not retransmitted frame,
1132 * which was in hole. It is reordering.
1134 if (!(sacked & TCPCB_RETRANS) &&
1135 fack_count < prior_fackets)
1136 reord = min(fack_count, reord);
1138 if (sacked & TCPCB_LOST) {
1139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1140 tp->lost_out -= tcp_skb_pcount(skb);
1142 /* clear lost hint */
1143 tp->retransmit_skb_hint = NULL;
1147 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1148 flag |= FLAG_DATA_SACKED;
1149 tp->sacked_out += tcp_skb_pcount(skb);
1151 if (fack_count > tp->fackets_out)
1152 tp->fackets_out = fack_count;
1153 } else {
1154 if (dup_sack && (sacked&TCPCB_RETRANS))
1155 reord = min(fack_count, reord);
1158 /* D-SACK. We can detect redundant retransmission
1159 * in S|R and plain R frames and clear it.
1160 * undo_retrans is decreased above, L|R frames
1161 * are accounted above as well.
1163 if (dup_sack &&
1164 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1166 tp->retrans_out -= tcp_skb_pcount(skb);
1167 tp->retransmit_skb_hint = NULL;
1172 /* Check for lost retransmit. This superb idea is
1173 * borrowed from "ratehalving". Event "C".
1174 * Later note: FACK people cheated me again 8),
1175 * we have to account for reordering! Ugly,
1176 * but should help.
1178 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1179 struct sk_buff *skb;
1181 sk_stream_for_retrans_queue(skb, sk) {
1182 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1183 break;
1184 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1185 continue;
1186 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1187 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1188 (IsFack(tp) ||
1189 !before(lost_retrans,
1190 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1191 tp->mss_cache))) {
1192 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1193 tp->retrans_out -= tcp_skb_pcount(skb);
1195 /* clear lost hint */
1196 tp->retransmit_skb_hint = NULL;
1198 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1199 tp->lost_out += tcp_skb_pcount(skb);
1200 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1201 flag |= FLAG_DATA_SACKED;
1202 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1208 tp->left_out = tp->sacked_out + tp->lost_out;
1210 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1211 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1213 #if FASTRETRANS_DEBUG > 0
1214 BUG_TRAP((int)tp->sacked_out >= 0);
1215 BUG_TRAP((int)tp->lost_out >= 0);
1216 BUG_TRAP((int)tp->retrans_out >= 0);
1217 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1218 #endif
1219 return flag;
1222 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1223 * segments to see from the next ACKs whether any data was really missing.
1224 * If the RTO was spurious, new ACKs should arrive.
1226 void tcp_enter_frto(struct sock *sk)
1228 const struct inet_connection_sock *icsk = inet_csk(sk);
1229 struct tcp_sock *tp = tcp_sk(sk);
1230 struct sk_buff *skb;
1232 tp->frto_counter = 1;
1234 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1235 tp->snd_una == tp->high_seq ||
1236 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1237 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1238 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1239 tcp_ca_event(sk, CA_EVENT_FRTO);
1242 /* Have to clear retransmission markers here to keep the bookkeeping
1243 * in shape, even though we are not yet in Loss state.
1244 * If something was really lost, it is eventually caught up
1245 * in tcp_enter_frto_loss.
1247 tp->retrans_out = 0;
1248 tp->undo_marker = tp->snd_una;
1249 tp->undo_retrans = 0;
1251 sk_stream_for_retrans_queue(skb, sk) {
1252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1254 tcp_sync_left_out(tp);
1256 tcp_set_ca_state(sk, TCP_CA_Open);
1257 tp->frto_highmark = tp->snd_nxt;
1260 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1261 * which indicates that we should follow the traditional RTO recovery,
1262 * i.e. mark everything lost and do go-back-N retransmission.
1264 static void tcp_enter_frto_loss(struct sock *sk)
1266 struct tcp_sock *tp = tcp_sk(sk);
1267 struct sk_buff *skb;
1268 int cnt = 0;
1270 tp->sacked_out = 0;
1271 tp->lost_out = 0;
1272 tp->fackets_out = 0;
1274 sk_stream_for_retrans_queue(skb, sk) {
1275 cnt += tcp_skb_pcount(skb);
1276 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1279 /* Do not mark those segments lost that were
1280 * forward transmitted after RTO
1282 if (!after(TCP_SKB_CB(skb)->end_seq,
1283 tp->frto_highmark)) {
1284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1285 tp->lost_out += tcp_skb_pcount(skb);
1287 } else {
1288 tp->sacked_out += tcp_skb_pcount(skb);
1289 tp->fackets_out = cnt;
1292 tcp_sync_left_out(tp);
1294 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1295 tp->snd_cwnd_cnt = 0;
1296 tp->snd_cwnd_stamp = tcp_time_stamp;
1297 tp->undo_marker = 0;
1298 tp->frto_counter = 0;
1300 tp->reordering = min_t(unsigned int, tp->reordering,
1301 sysctl_tcp_reordering);
1302 tcp_set_ca_state(sk, TCP_CA_Loss);
1303 tp->high_seq = tp->frto_highmark;
1304 TCP_ECN_queue_cwr(tp);
1306 clear_all_retrans_hints(tp);
1309 void tcp_clear_retrans(struct tcp_sock *tp)
1311 tp->left_out = 0;
1312 tp->retrans_out = 0;
1314 tp->fackets_out = 0;
1315 tp->sacked_out = 0;
1316 tp->lost_out = 0;
1318 tp->undo_marker = 0;
1319 tp->undo_retrans = 0;
1322 /* Enter Loss state. If "how" is not zero, forget all SACK information
1323 * and reset tags completely, otherwise preserve SACKs. If receiver
1324 * dropped its ofo queue, we will know this due to reneging detection.
1326 void tcp_enter_loss(struct sock *sk, int how)
1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct sk_buff *skb;
1331 int cnt = 0;
1333 /* Reduce ssthresh if it has not yet been made inside this window. */
1334 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1335 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1336 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 tcp_ca_event(sk, CA_EVENT_LOSS);
1340 tp->snd_cwnd = 1;
1341 tp->snd_cwnd_cnt = 0;
1342 tp->snd_cwnd_stamp = tcp_time_stamp;
1344 tp->bytes_acked = 0;
1345 tcp_clear_retrans(tp);
1347 /* Push undo marker, if it was plain RTO and nothing
1348 * was retransmitted. */
1349 if (!how)
1350 tp->undo_marker = tp->snd_una;
1352 sk_stream_for_retrans_queue(skb, sk) {
1353 cnt += tcp_skb_pcount(skb);
1354 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1355 tp->undo_marker = 0;
1356 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1357 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1359 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1360 tp->lost_out += tcp_skb_pcount(skb);
1361 } else {
1362 tp->sacked_out += tcp_skb_pcount(skb);
1363 tp->fackets_out = cnt;
1366 tcp_sync_left_out(tp);
1368 tp->reordering = min_t(unsigned int, tp->reordering,
1369 sysctl_tcp_reordering);
1370 tcp_set_ca_state(sk, TCP_CA_Loss);
1371 tp->high_seq = tp->snd_nxt;
1372 TCP_ECN_queue_cwr(tp);
1374 clear_all_retrans_hints(tp);
1377 static int tcp_check_sack_reneging(struct sock *sk)
1379 struct sk_buff *skb;
1381 /* If ACK arrived pointing to a remembered SACK,
1382 * it means that our remembered SACKs do not reflect
1383 * real state of receiver i.e.
1384 * receiver _host_ is heavily congested (or buggy).
1385 * Do processing similar to RTO timeout.
1387 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1388 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1389 struct inet_connection_sock *icsk = inet_csk(sk);
1390 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1392 tcp_enter_loss(sk, 1);
1393 icsk->icsk_retransmits++;
1394 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1395 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1396 icsk->icsk_rto, TCP_RTO_MAX);
1397 return 1;
1399 return 0;
1402 static inline int tcp_fackets_out(struct tcp_sock *tp)
1404 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1407 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1409 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1412 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1414 return tp->packets_out &&
1415 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1418 /* Linux NewReno/SACK/FACK/ECN state machine.
1419 * --------------------------------------
1421 * "Open" Normal state, no dubious events, fast path.
1422 * "Disorder" In all the respects it is "Open",
1423 * but requires a bit more attention. It is entered when
1424 * we see some SACKs or dupacks. It is split of "Open"
1425 * mainly to move some processing from fast path to slow one.
1426 * "CWR" CWND was reduced due to some Congestion Notification event.
1427 * It can be ECN, ICMP source quench, local device congestion.
1428 * "Recovery" CWND was reduced, we are fast-retransmitting.
1429 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1431 * tcp_fastretrans_alert() is entered:
1432 * - each incoming ACK, if state is not "Open"
1433 * - when arrived ACK is unusual, namely:
1434 * * SACK
1435 * * Duplicate ACK.
1436 * * ECN ECE.
1438 * Counting packets in flight is pretty simple.
1440 * in_flight = packets_out - left_out + retrans_out
1442 * packets_out is SND.NXT-SND.UNA counted in packets.
1444 * retrans_out is number of retransmitted segments.
1446 * left_out is number of segments left network, but not ACKed yet.
1448 * left_out = sacked_out + lost_out
1450 * sacked_out: Packets, which arrived to receiver out of order
1451 * and hence not ACKed. With SACKs this number is simply
1452 * amount of SACKed data. Even without SACKs
1453 * it is easy to give pretty reliable estimate of this number,
1454 * counting duplicate ACKs.
1456 * lost_out: Packets lost by network. TCP has no explicit
1457 * "loss notification" feedback from network (for now).
1458 * It means that this number can be only _guessed_.
1459 * Actually, it is the heuristics to predict lossage that
1460 * distinguishes different algorithms.
1462 * F.e. after RTO, when all the queue is considered as lost,
1463 * lost_out = packets_out and in_flight = retrans_out.
1465 * Essentially, we have now two algorithms counting
1466 * lost packets.
1468 * FACK: It is the simplest heuristics. As soon as we decided
1469 * that something is lost, we decide that _all_ not SACKed
1470 * packets until the most forward SACK are lost. I.e.
1471 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1472 * It is absolutely correct estimate, if network does not reorder
1473 * packets. And it loses any connection to reality when reordering
1474 * takes place. We use FACK by default until reordering
1475 * is suspected on the path to this destination.
1477 * NewReno: when Recovery is entered, we assume that one segment
1478 * is lost (classic Reno). While we are in Recovery and
1479 * a partial ACK arrives, we assume that one more packet
1480 * is lost (NewReno). This heuristics are the same in NewReno
1481 * and SACK.
1483 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1484 * deflation etc. CWND is real congestion window, never inflated, changes
1485 * only according to classic VJ rules.
1487 * Really tricky (and requiring careful tuning) part of algorithm
1488 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1489 * The first determines the moment _when_ we should reduce CWND and,
1490 * hence, slow down forward transmission. In fact, it determines the moment
1491 * when we decide that hole is caused by loss, rather than by a reorder.
1493 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1494 * holes, caused by lost packets.
1496 * And the most logically complicated part of algorithm is undo
1497 * heuristics. We detect false retransmits due to both too early
1498 * fast retransmit (reordering) and underestimated RTO, analyzing
1499 * timestamps and D-SACKs. When we detect that some segments were
1500 * retransmitted by mistake and CWND reduction was wrong, we undo
1501 * window reduction and abort recovery phase. This logic is hidden
1502 * inside several functions named tcp_try_undo_<something>.
1505 /* This function decides, when we should leave Disordered state
1506 * and enter Recovery phase, reducing congestion window.
1508 * Main question: may we further continue forward transmission
1509 * with the same cwnd?
1511 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1513 __u32 packets_out;
1515 /* Trick#1: The loss is proven. */
1516 if (tp->lost_out)
1517 return 1;
1519 /* Not-A-Trick#2 : Classic rule... */
1520 if (tcp_fackets_out(tp) > tp->reordering)
1521 return 1;
1523 /* Trick#3 : when we use RFC2988 timer restart, fast
1524 * retransmit can be triggered by timeout of queue head.
1526 if (tcp_head_timedout(sk, tp))
1527 return 1;
1529 /* Trick#4: It is still not OK... But will it be useful to delay
1530 * recovery more?
1532 packets_out = tp->packets_out;
1533 if (packets_out <= tp->reordering &&
1534 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1535 !tcp_may_send_now(sk, tp)) {
1536 /* We have nothing to send. This connection is limited
1537 * either by receiver window or by application.
1539 return 1;
1542 return 0;
1545 /* If we receive more dupacks than we expected counting segments
1546 * in assumption of absent reordering, interpret this as reordering.
1547 * The only another reason could be bug in receiver TCP.
1549 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1551 struct tcp_sock *tp = tcp_sk(sk);
1552 u32 holes;
1554 holes = max(tp->lost_out, 1U);
1555 holes = min(holes, tp->packets_out);
1557 if ((tp->sacked_out + holes) > tp->packets_out) {
1558 tp->sacked_out = tp->packets_out - holes;
1559 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1563 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1565 static void tcp_add_reno_sack(struct sock *sk)
1567 struct tcp_sock *tp = tcp_sk(sk);
1568 tp->sacked_out++;
1569 tcp_check_reno_reordering(sk, 0);
1570 tcp_sync_left_out(tp);
1573 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1575 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1577 if (acked > 0) {
1578 /* One ACK acked hole. The rest eat duplicate ACKs. */
1579 if (acked-1 >= tp->sacked_out)
1580 tp->sacked_out = 0;
1581 else
1582 tp->sacked_out -= acked-1;
1584 tcp_check_reno_reordering(sk, acked);
1585 tcp_sync_left_out(tp);
1588 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1590 tp->sacked_out = 0;
1591 tp->left_out = tp->lost_out;
1594 /* Mark head of queue up as lost. */
1595 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1596 int packets, u32 high_seq)
1598 struct sk_buff *skb;
1599 int cnt;
1601 BUG_TRAP(packets <= tp->packets_out);
1602 if (tp->lost_skb_hint) {
1603 skb = tp->lost_skb_hint;
1604 cnt = tp->lost_cnt_hint;
1605 } else {
1606 skb = sk->sk_write_queue.next;
1607 cnt = 0;
1610 sk_stream_for_retrans_queue_from(skb, sk) {
1611 /* TODO: do this better */
1612 /* this is not the most efficient way to do this... */
1613 tp->lost_skb_hint = skb;
1614 tp->lost_cnt_hint = cnt;
1615 cnt += tcp_skb_pcount(skb);
1616 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1617 break;
1618 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1619 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1620 tp->lost_out += tcp_skb_pcount(skb);
1622 /* clear xmit_retransmit_queue hints
1623 * if this is beyond hint */
1624 if(tp->retransmit_skb_hint != NULL &&
1625 before(TCP_SKB_CB(skb)->seq,
1626 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1628 tp->retransmit_skb_hint = NULL;
1632 tcp_sync_left_out(tp);
1635 /* Account newly detected lost packet(s) */
1637 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1639 if (IsFack(tp)) {
1640 int lost = tp->fackets_out - tp->reordering;
1641 if (lost <= 0)
1642 lost = 1;
1643 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1644 } else {
1645 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1648 /* New heuristics: it is possible only after we switched
1649 * to restart timer each time when something is ACKed.
1650 * Hence, we can detect timed out packets during fast
1651 * retransmit without falling to slow start.
1653 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1654 struct sk_buff *skb;
1656 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1657 : sk->sk_write_queue.next;
1659 sk_stream_for_retrans_queue_from(skb, sk) {
1660 if (!tcp_skb_timedout(sk, skb))
1661 break;
1663 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1664 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1665 tp->lost_out += tcp_skb_pcount(skb);
1667 /* clear xmit_retrans hint */
1668 if (tp->retransmit_skb_hint &&
1669 before(TCP_SKB_CB(skb)->seq,
1670 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1672 tp->retransmit_skb_hint = NULL;
1676 tp->scoreboard_skb_hint = skb;
1678 tcp_sync_left_out(tp);
1682 /* CWND moderation, preventing bursts due to too big ACKs
1683 * in dubious situations.
1685 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1687 tp->snd_cwnd = min(tp->snd_cwnd,
1688 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1689 tp->snd_cwnd_stamp = tcp_time_stamp;
1692 /* Lower bound on congestion window is slow start threshold
1693 * unless congestion avoidance choice decides to overide it.
1695 static inline u32 tcp_cwnd_min(const struct sock *sk)
1697 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1699 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1702 /* Decrease cwnd each second ack. */
1703 static void tcp_cwnd_down(struct sock *sk)
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 int decr = tp->snd_cwnd_cnt + 1;
1708 tp->snd_cwnd_cnt = decr&1;
1709 decr >>= 1;
1711 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1712 tp->snd_cwnd -= decr;
1714 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1715 tp->snd_cwnd_stamp = tcp_time_stamp;
1718 /* Nothing was retransmitted or returned timestamp is less
1719 * than timestamp of the first retransmission.
1721 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1723 return !tp->retrans_stamp ||
1724 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1725 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1728 /* Undo procedures. */
1730 #if FASTRETRANS_DEBUG > 1
1731 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1733 struct inet_sock *inet = inet_sk(sk);
1734 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1735 msg,
1736 NIPQUAD(inet->daddr), ntohs(inet->dport),
1737 tp->snd_cwnd, tp->left_out,
1738 tp->snd_ssthresh, tp->prior_ssthresh,
1739 tp->packets_out);
1741 #else
1742 #define DBGUNDO(x...) do { } while (0)
1743 #endif
1745 static void tcp_undo_cwr(struct sock *sk, const int undo)
1747 struct tcp_sock *tp = tcp_sk(sk);
1749 if (tp->prior_ssthresh) {
1750 const struct inet_connection_sock *icsk = inet_csk(sk);
1752 if (icsk->icsk_ca_ops->undo_cwnd)
1753 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1754 else
1755 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1757 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1758 tp->snd_ssthresh = tp->prior_ssthresh;
1759 TCP_ECN_withdraw_cwr(tp);
1761 } else {
1762 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1764 tcp_moderate_cwnd(tp);
1765 tp->snd_cwnd_stamp = tcp_time_stamp;
1767 /* There is something screwy going on with the retrans hints after
1768 an undo */
1769 clear_all_retrans_hints(tp);
1772 static inline int tcp_may_undo(struct tcp_sock *tp)
1774 return tp->undo_marker &&
1775 (!tp->undo_retrans || tcp_packet_delayed(tp));
1778 /* People celebrate: "We love our President!" */
1779 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1781 if (tcp_may_undo(tp)) {
1782 /* Happy end! We did not retransmit anything
1783 * or our original transmission succeeded.
1785 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1786 tcp_undo_cwr(sk, 1);
1787 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1788 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1789 else
1790 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1791 tp->undo_marker = 0;
1793 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1794 /* Hold old state until something *above* high_seq
1795 * is ACKed. For Reno it is MUST to prevent false
1796 * fast retransmits (RFC2582). SACK TCP is safe. */
1797 tcp_moderate_cwnd(tp);
1798 return 1;
1800 tcp_set_ca_state(sk, TCP_CA_Open);
1801 return 0;
1804 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1805 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1807 if (tp->undo_marker && !tp->undo_retrans) {
1808 DBGUNDO(sk, tp, "D-SACK");
1809 tcp_undo_cwr(sk, 1);
1810 tp->undo_marker = 0;
1811 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1815 /* Undo during fast recovery after partial ACK. */
1817 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1818 int acked)
1820 /* Partial ACK arrived. Force Hoe's retransmit. */
1821 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1823 if (tcp_may_undo(tp)) {
1824 /* Plain luck! Hole if filled with delayed
1825 * packet, rather than with a retransmit.
1827 if (tp->retrans_out == 0)
1828 tp->retrans_stamp = 0;
1830 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1832 DBGUNDO(sk, tp, "Hoe");
1833 tcp_undo_cwr(sk, 0);
1834 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1836 /* So... Do not make Hoe's retransmit yet.
1837 * If the first packet was delayed, the rest
1838 * ones are most probably delayed as well.
1840 failed = 0;
1842 return failed;
1845 /* Undo during loss recovery after partial ACK. */
1846 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1848 if (tcp_may_undo(tp)) {
1849 struct sk_buff *skb;
1850 sk_stream_for_retrans_queue(skb, sk) {
1851 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1854 clear_all_retrans_hints(tp);
1856 DBGUNDO(sk, tp, "partial loss");
1857 tp->lost_out = 0;
1858 tp->left_out = tp->sacked_out;
1859 tcp_undo_cwr(sk, 1);
1860 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1861 inet_csk(sk)->icsk_retransmits = 0;
1862 tp->undo_marker = 0;
1863 if (!IsReno(tp))
1864 tcp_set_ca_state(sk, TCP_CA_Open);
1865 return 1;
1867 return 0;
1870 static inline void tcp_complete_cwr(struct sock *sk)
1872 struct tcp_sock *tp = tcp_sk(sk);
1873 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1874 tp->snd_cwnd_stamp = tcp_time_stamp;
1875 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1878 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1880 tp->left_out = tp->sacked_out;
1882 if (tp->retrans_out == 0)
1883 tp->retrans_stamp = 0;
1885 if (flag&FLAG_ECE)
1886 tcp_enter_cwr(sk);
1888 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1889 int state = TCP_CA_Open;
1891 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1892 state = TCP_CA_Disorder;
1894 if (inet_csk(sk)->icsk_ca_state != state) {
1895 tcp_set_ca_state(sk, state);
1896 tp->high_seq = tp->snd_nxt;
1898 tcp_moderate_cwnd(tp);
1899 } else {
1900 tcp_cwnd_down(sk);
1904 static void tcp_mtup_probe_failed(struct sock *sk)
1906 struct inet_connection_sock *icsk = inet_csk(sk);
1908 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1909 icsk->icsk_mtup.probe_size = 0;
1912 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 struct inet_connection_sock *icsk = inet_csk(sk);
1917 /* FIXME: breaks with very large cwnd */
1918 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1919 tp->snd_cwnd = tp->snd_cwnd *
1920 tcp_mss_to_mtu(sk, tp->mss_cache) /
1921 icsk->icsk_mtup.probe_size;
1922 tp->snd_cwnd_cnt = 0;
1923 tp->snd_cwnd_stamp = tcp_time_stamp;
1924 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1926 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1927 icsk->icsk_mtup.probe_size = 0;
1928 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1932 /* Process an event, which can update packets-in-flight not trivially.
1933 * Main goal of this function is to calculate new estimate for left_out,
1934 * taking into account both packets sitting in receiver's buffer and
1935 * packets lost by network.
1937 * Besides that it does CWND reduction, when packet loss is detected
1938 * and changes state of machine.
1940 * It does _not_ decide what to send, it is made in function
1941 * tcp_xmit_retransmit_queue().
1943 static void
1944 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1945 int prior_packets, int flag)
1947 struct inet_connection_sock *icsk = inet_csk(sk);
1948 struct tcp_sock *tp = tcp_sk(sk);
1949 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1951 /* Some technical things:
1952 * 1. Reno does not count dupacks (sacked_out) automatically. */
1953 if (!tp->packets_out)
1954 tp->sacked_out = 0;
1955 /* 2. SACK counts snd_fack in packets inaccurately. */
1956 if (tp->sacked_out == 0)
1957 tp->fackets_out = 0;
1959 /* Now state machine starts.
1960 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1961 if (flag&FLAG_ECE)
1962 tp->prior_ssthresh = 0;
1964 /* B. In all the states check for reneging SACKs. */
1965 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1966 return;
1968 /* C. Process data loss notification, provided it is valid. */
1969 if ((flag&FLAG_DATA_LOST) &&
1970 before(tp->snd_una, tp->high_seq) &&
1971 icsk->icsk_ca_state != TCP_CA_Open &&
1972 tp->fackets_out > tp->reordering) {
1973 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1974 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1977 /* D. Synchronize left_out to current state. */
1978 tcp_sync_left_out(tp);
1980 /* E. Check state exit conditions. State can be terminated
1981 * when high_seq is ACKed. */
1982 if (icsk->icsk_ca_state == TCP_CA_Open) {
1983 if (!sysctl_tcp_frto)
1984 BUG_TRAP(tp->retrans_out == 0);
1985 tp->retrans_stamp = 0;
1986 } else if (!before(tp->snd_una, tp->high_seq)) {
1987 switch (icsk->icsk_ca_state) {
1988 case TCP_CA_Loss:
1989 icsk->icsk_retransmits = 0;
1990 if (tcp_try_undo_recovery(sk, tp))
1991 return;
1992 break;
1994 case TCP_CA_CWR:
1995 /* CWR is to be held something *above* high_seq
1996 * is ACKed for CWR bit to reach receiver. */
1997 if (tp->snd_una != tp->high_seq) {
1998 tcp_complete_cwr(sk);
1999 tcp_set_ca_state(sk, TCP_CA_Open);
2001 break;
2003 case TCP_CA_Disorder:
2004 tcp_try_undo_dsack(sk, tp);
2005 if (!tp->undo_marker ||
2006 /* For SACK case do not Open to allow to undo
2007 * catching for all duplicate ACKs. */
2008 IsReno(tp) || tp->snd_una != tp->high_seq) {
2009 tp->undo_marker = 0;
2010 tcp_set_ca_state(sk, TCP_CA_Open);
2012 break;
2014 case TCP_CA_Recovery:
2015 if (IsReno(tp))
2016 tcp_reset_reno_sack(tp);
2017 if (tcp_try_undo_recovery(sk, tp))
2018 return;
2019 tcp_complete_cwr(sk);
2020 break;
2024 /* F. Process state. */
2025 switch (icsk->icsk_ca_state) {
2026 case TCP_CA_Recovery:
2027 if (prior_snd_una == tp->snd_una) {
2028 if (IsReno(tp) && is_dupack)
2029 tcp_add_reno_sack(sk);
2030 } else {
2031 int acked = prior_packets - tp->packets_out;
2032 if (IsReno(tp))
2033 tcp_remove_reno_sacks(sk, tp, acked);
2034 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2036 break;
2037 case TCP_CA_Loss:
2038 if (flag&FLAG_DATA_ACKED)
2039 icsk->icsk_retransmits = 0;
2040 if (!tcp_try_undo_loss(sk, tp)) {
2041 tcp_moderate_cwnd(tp);
2042 tcp_xmit_retransmit_queue(sk);
2043 return;
2045 if (icsk->icsk_ca_state != TCP_CA_Open)
2046 return;
2047 /* Loss is undone; fall through to processing in Open state. */
2048 default:
2049 if (IsReno(tp)) {
2050 if (tp->snd_una != prior_snd_una)
2051 tcp_reset_reno_sack(tp);
2052 if (is_dupack)
2053 tcp_add_reno_sack(sk);
2056 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2057 tcp_try_undo_dsack(sk, tp);
2059 if (!tcp_time_to_recover(sk, tp)) {
2060 tcp_try_to_open(sk, tp, flag);
2061 return;
2064 /* MTU probe failure: don't reduce cwnd */
2065 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2066 icsk->icsk_mtup.probe_size &&
2067 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2068 tcp_mtup_probe_failed(sk);
2069 /* Restores the reduction we did in tcp_mtup_probe() */
2070 tp->snd_cwnd++;
2071 tcp_simple_retransmit(sk);
2072 return;
2075 /* Otherwise enter Recovery state */
2077 if (IsReno(tp))
2078 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2079 else
2080 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2082 tp->high_seq = tp->snd_nxt;
2083 tp->prior_ssthresh = 0;
2084 tp->undo_marker = tp->snd_una;
2085 tp->undo_retrans = tp->retrans_out;
2087 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2088 if (!(flag&FLAG_ECE))
2089 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2090 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2091 TCP_ECN_queue_cwr(tp);
2094 tp->bytes_acked = 0;
2095 tp->snd_cwnd_cnt = 0;
2096 tcp_set_ca_state(sk, TCP_CA_Recovery);
2099 if (is_dupack || tcp_head_timedout(sk, tp))
2100 tcp_update_scoreboard(sk, tp);
2101 tcp_cwnd_down(sk);
2102 tcp_xmit_retransmit_queue(sk);
2105 /* Read draft-ietf-tcplw-high-performance before mucking
2106 * with this code. (Supersedes RFC1323)
2108 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2110 /* RTTM Rule: A TSecr value received in a segment is used to
2111 * update the averaged RTT measurement only if the segment
2112 * acknowledges some new data, i.e., only if it advances the
2113 * left edge of the send window.
2115 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2116 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2118 * Changed: reset backoff as soon as we see the first valid sample.
2119 * If we do not, we get strongly overestimated rto. With timestamps
2120 * samples are accepted even from very old segments: f.e., when rtt=1
2121 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2122 * answer arrives rto becomes 120 seconds! If at least one of segments
2123 * in window is lost... Voila. --ANK (010210)
2125 struct tcp_sock *tp = tcp_sk(sk);
2126 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2127 tcp_rtt_estimator(sk, seq_rtt);
2128 tcp_set_rto(sk);
2129 inet_csk(sk)->icsk_backoff = 0;
2130 tcp_bound_rto(sk);
2133 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2135 /* We don't have a timestamp. Can only use
2136 * packets that are not retransmitted to determine
2137 * rtt estimates. Also, we must not reset the
2138 * backoff for rto until we get a non-retransmitted
2139 * packet. This allows us to deal with a situation
2140 * where the network delay has increased suddenly.
2141 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2144 if (flag & FLAG_RETRANS_DATA_ACKED)
2145 return;
2147 tcp_rtt_estimator(sk, seq_rtt);
2148 tcp_set_rto(sk);
2149 inet_csk(sk)->icsk_backoff = 0;
2150 tcp_bound_rto(sk);
2153 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2154 const s32 seq_rtt)
2156 const struct tcp_sock *tp = tcp_sk(sk);
2157 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2158 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2159 tcp_ack_saw_tstamp(sk, flag);
2160 else if (seq_rtt >= 0)
2161 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2164 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2165 u32 in_flight, int good)
2167 const struct inet_connection_sock *icsk = inet_csk(sk);
2168 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2169 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2172 /* Restart timer after forward progress on connection.
2173 * RFC2988 recommends to restart timer to now+rto.
2176 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2178 if (!tp->packets_out) {
2179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2180 } else {
2181 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2185 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2186 __u32 now, __s32 *seq_rtt)
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2190 __u32 seq = tp->snd_una;
2191 __u32 packets_acked;
2192 int acked = 0;
2194 /* If we get here, the whole TSO packet has not been
2195 * acked.
2197 BUG_ON(!after(scb->end_seq, seq));
2199 packets_acked = tcp_skb_pcount(skb);
2200 if (tcp_trim_head(sk, skb, seq - scb->seq))
2201 return 0;
2202 packets_acked -= tcp_skb_pcount(skb);
2204 if (packets_acked) {
2205 __u8 sacked = scb->sacked;
2207 acked |= FLAG_DATA_ACKED;
2208 if (sacked) {
2209 if (sacked & TCPCB_RETRANS) {
2210 if (sacked & TCPCB_SACKED_RETRANS)
2211 tp->retrans_out -= packets_acked;
2212 acked |= FLAG_RETRANS_DATA_ACKED;
2213 *seq_rtt = -1;
2214 } else if (*seq_rtt < 0)
2215 *seq_rtt = now - scb->when;
2216 if (sacked & TCPCB_SACKED_ACKED)
2217 tp->sacked_out -= packets_acked;
2218 if (sacked & TCPCB_LOST)
2219 tp->lost_out -= packets_acked;
2220 if (sacked & TCPCB_URG) {
2221 if (tp->urg_mode &&
2222 !before(seq, tp->snd_up))
2223 tp->urg_mode = 0;
2225 } else if (*seq_rtt < 0)
2226 *seq_rtt = now - scb->when;
2228 if (tp->fackets_out) {
2229 __u32 dval = min(tp->fackets_out, packets_acked);
2230 tp->fackets_out -= dval;
2232 tp->packets_out -= packets_acked;
2234 BUG_ON(tcp_skb_pcount(skb) == 0);
2235 BUG_ON(!before(scb->seq, scb->end_seq));
2238 return acked;
2241 static u32 tcp_usrtt(const struct sk_buff *skb)
2243 struct timeval tv, now;
2245 do_gettimeofday(&now);
2246 skb_get_timestamp(skb, &tv);
2247 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2250 /* Remove acknowledged frames from the retransmission queue. */
2251 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2253 struct tcp_sock *tp = tcp_sk(sk);
2254 const struct inet_connection_sock *icsk = inet_csk(sk);
2255 struct sk_buff *skb;
2256 __u32 now = tcp_time_stamp;
2257 int acked = 0;
2258 __s32 seq_rtt = -1;
2259 u32 pkts_acked = 0;
2260 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2261 = icsk->icsk_ca_ops->rtt_sample;
2263 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2264 skb != sk->sk_send_head) {
2265 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2266 __u8 sacked = scb->sacked;
2268 /* If our packet is before the ack sequence we can
2269 * discard it as it's confirmed to have arrived at
2270 * the other end.
2272 if (after(scb->end_seq, tp->snd_una)) {
2273 if (tcp_skb_pcount(skb) > 1 &&
2274 after(tp->snd_una, scb->seq))
2275 acked |= tcp_tso_acked(sk, skb,
2276 now, &seq_rtt);
2277 break;
2280 /* Initial outgoing SYN's get put onto the write_queue
2281 * just like anything else we transmit. It is not
2282 * true data, and if we misinform our callers that
2283 * this ACK acks real data, we will erroneously exit
2284 * connection startup slow start one packet too
2285 * quickly. This is severely frowned upon behavior.
2287 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2288 acked |= FLAG_DATA_ACKED;
2289 ++pkts_acked;
2290 } else {
2291 acked |= FLAG_SYN_ACKED;
2292 tp->retrans_stamp = 0;
2295 /* MTU probing checks */
2296 if (icsk->icsk_mtup.probe_size) {
2297 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2298 tcp_mtup_probe_success(sk, skb);
2302 if (sacked) {
2303 if (sacked & TCPCB_RETRANS) {
2304 if(sacked & TCPCB_SACKED_RETRANS)
2305 tp->retrans_out -= tcp_skb_pcount(skb);
2306 acked |= FLAG_RETRANS_DATA_ACKED;
2307 seq_rtt = -1;
2308 } else if (seq_rtt < 0) {
2309 seq_rtt = now - scb->when;
2310 if (rtt_sample)
2311 (*rtt_sample)(sk, tcp_usrtt(skb));
2313 if (sacked & TCPCB_SACKED_ACKED)
2314 tp->sacked_out -= tcp_skb_pcount(skb);
2315 if (sacked & TCPCB_LOST)
2316 tp->lost_out -= tcp_skb_pcount(skb);
2317 if (sacked & TCPCB_URG) {
2318 if (tp->urg_mode &&
2319 !before(scb->end_seq, tp->snd_up))
2320 tp->urg_mode = 0;
2322 } else if (seq_rtt < 0) {
2323 seq_rtt = now - scb->when;
2324 if (rtt_sample)
2325 (*rtt_sample)(sk, tcp_usrtt(skb));
2327 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2328 tcp_packets_out_dec(tp, skb);
2329 __skb_unlink(skb, &sk->sk_write_queue);
2330 sk_stream_free_skb(sk, skb);
2331 clear_all_retrans_hints(tp);
2334 if (acked&FLAG_ACKED) {
2335 tcp_ack_update_rtt(sk, acked, seq_rtt);
2336 tcp_ack_packets_out(sk, tp);
2338 if (icsk->icsk_ca_ops->pkts_acked)
2339 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2342 #if FASTRETRANS_DEBUG > 0
2343 BUG_TRAP((int)tp->sacked_out >= 0);
2344 BUG_TRAP((int)tp->lost_out >= 0);
2345 BUG_TRAP((int)tp->retrans_out >= 0);
2346 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2347 const struct inet_connection_sock *icsk = inet_csk(sk);
2348 if (tp->lost_out) {
2349 printk(KERN_DEBUG "Leak l=%u %d\n",
2350 tp->lost_out, icsk->icsk_ca_state);
2351 tp->lost_out = 0;
2353 if (tp->sacked_out) {
2354 printk(KERN_DEBUG "Leak s=%u %d\n",
2355 tp->sacked_out, icsk->icsk_ca_state);
2356 tp->sacked_out = 0;
2358 if (tp->retrans_out) {
2359 printk(KERN_DEBUG "Leak r=%u %d\n",
2360 tp->retrans_out, icsk->icsk_ca_state);
2361 tp->retrans_out = 0;
2364 #endif
2365 *seq_rtt_p = seq_rtt;
2366 return acked;
2369 static void tcp_ack_probe(struct sock *sk)
2371 const struct tcp_sock *tp = tcp_sk(sk);
2372 struct inet_connection_sock *icsk = inet_csk(sk);
2374 /* Was it a usable window open? */
2376 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2377 tp->snd_una + tp->snd_wnd)) {
2378 icsk->icsk_backoff = 0;
2379 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2380 /* Socket must be waked up by subsequent tcp_data_snd_check().
2381 * This function is not for random using!
2383 } else {
2384 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2385 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2386 TCP_RTO_MAX);
2390 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2392 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2393 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2396 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2398 const struct tcp_sock *tp = tcp_sk(sk);
2399 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2400 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2403 /* Check that window update is acceptable.
2404 * The function assumes that snd_una<=ack<=snd_next.
2406 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2407 const u32 ack_seq, const u32 nwin)
2409 return (after(ack, tp->snd_una) ||
2410 after(ack_seq, tp->snd_wl1) ||
2411 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2414 /* Update our send window.
2416 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2417 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2419 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2420 struct sk_buff *skb, u32 ack, u32 ack_seq)
2422 int flag = 0;
2423 u32 nwin = ntohs(skb->h.th->window);
2425 if (likely(!skb->h.th->syn))
2426 nwin <<= tp->rx_opt.snd_wscale;
2428 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2429 flag |= FLAG_WIN_UPDATE;
2430 tcp_update_wl(tp, ack, ack_seq);
2432 if (tp->snd_wnd != nwin) {
2433 tp->snd_wnd = nwin;
2435 /* Note, it is the only place, where
2436 * fast path is recovered for sending TCP.
2438 tp->pred_flags = 0;
2439 tcp_fast_path_check(sk, tp);
2441 if (nwin > tp->max_window) {
2442 tp->max_window = nwin;
2443 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2448 tp->snd_una = ack;
2450 return flag;
2453 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2455 struct tcp_sock *tp = tcp_sk(sk);
2457 tcp_sync_left_out(tp);
2459 if (tp->snd_una == prior_snd_una ||
2460 !before(tp->snd_una, tp->frto_highmark)) {
2461 /* RTO was caused by loss, start retransmitting in
2462 * go-back-N slow start
2464 tcp_enter_frto_loss(sk);
2465 return;
2468 if (tp->frto_counter == 1) {
2469 /* First ACK after RTO advances the window: allow two new
2470 * segments out.
2472 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2473 } else {
2474 /* Also the second ACK after RTO advances the window.
2475 * The RTO was likely spurious. Reduce cwnd and continue
2476 * in congestion avoidance
2478 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2479 tcp_moderate_cwnd(tp);
2482 /* F-RTO affects on two new ACKs following RTO.
2483 * At latest on third ACK the TCP behavior is back to normal.
2485 tp->frto_counter = (tp->frto_counter + 1) % 3;
2488 /* This routine deals with incoming acks, but not outgoing ones. */
2489 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2491 struct inet_connection_sock *icsk = inet_csk(sk);
2492 struct tcp_sock *tp = tcp_sk(sk);
2493 u32 prior_snd_una = tp->snd_una;
2494 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2495 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2496 u32 prior_in_flight;
2497 s32 seq_rtt;
2498 int prior_packets;
2500 /* If the ack is newer than sent or older than previous acks
2501 * then we can probably ignore it.
2503 if (after(ack, tp->snd_nxt))
2504 goto uninteresting_ack;
2506 if (before(ack, prior_snd_una))
2507 goto old_ack;
2509 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2510 tp->bytes_acked += ack - prior_snd_una;
2512 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2513 /* Window is constant, pure forward advance.
2514 * No more checks are required.
2515 * Note, we use the fact that SND.UNA>=SND.WL2.
2517 tcp_update_wl(tp, ack, ack_seq);
2518 tp->snd_una = ack;
2519 flag |= FLAG_WIN_UPDATE;
2521 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2523 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2524 } else {
2525 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2526 flag |= FLAG_DATA;
2527 else
2528 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2530 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2532 if (TCP_SKB_CB(skb)->sacked)
2533 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2535 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2536 flag |= FLAG_ECE;
2538 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2541 /* We passed data and got it acked, remove any soft error
2542 * log. Something worked...
2544 sk->sk_err_soft = 0;
2545 tp->rcv_tstamp = tcp_time_stamp;
2546 prior_packets = tp->packets_out;
2547 if (!prior_packets)
2548 goto no_queue;
2550 prior_in_flight = tcp_packets_in_flight(tp);
2552 /* See if we can take anything off of the retransmit queue. */
2553 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2555 if (tp->frto_counter)
2556 tcp_process_frto(sk, prior_snd_una);
2558 if (tcp_ack_is_dubious(sk, flag)) {
2559 /* Advance CWND, if state allows this. */
2560 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2561 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2562 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2563 } else {
2564 if ((flag & FLAG_DATA_ACKED))
2565 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2568 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2569 dst_confirm(sk->sk_dst_cache);
2571 return 1;
2573 no_queue:
2574 icsk->icsk_probes_out = 0;
2576 /* If this ack opens up a zero window, clear backoff. It was
2577 * being used to time the probes, and is probably far higher than
2578 * it needs to be for normal retransmission.
2580 if (sk->sk_send_head)
2581 tcp_ack_probe(sk);
2582 return 1;
2584 old_ack:
2585 if (TCP_SKB_CB(skb)->sacked)
2586 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2588 uninteresting_ack:
2589 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2590 return 0;
2594 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2595 * But, this can also be called on packets in the established flow when
2596 * the fast version below fails.
2598 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2600 unsigned char *ptr;
2601 struct tcphdr *th = skb->h.th;
2602 int length=(th->doff*4)-sizeof(struct tcphdr);
2604 ptr = (unsigned char *)(th + 1);
2605 opt_rx->saw_tstamp = 0;
2607 while(length>0) {
2608 int opcode=*ptr++;
2609 int opsize;
2611 switch (opcode) {
2612 case TCPOPT_EOL:
2613 return;
2614 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2615 length--;
2616 continue;
2617 default:
2618 opsize=*ptr++;
2619 if (opsize < 2) /* "silly options" */
2620 return;
2621 if (opsize > length)
2622 return; /* don't parse partial options */
2623 switch(opcode) {
2624 case TCPOPT_MSS:
2625 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2626 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2627 if (in_mss) {
2628 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2629 in_mss = opt_rx->user_mss;
2630 opt_rx->mss_clamp = in_mss;
2633 break;
2634 case TCPOPT_WINDOW:
2635 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2636 if (sysctl_tcp_window_scaling) {
2637 __u8 snd_wscale = *(__u8 *) ptr;
2638 opt_rx->wscale_ok = 1;
2639 if (snd_wscale > 14) {
2640 if(net_ratelimit())
2641 printk(KERN_INFO "tcp_parse_options: Illegal window "
2642 "scaling value %d >14 received.\n",
2643 snd_wscale);
2644 snd_wscale = 14;
2646 opt_rx->snd_wscale = snd_wscale;
2648 break;
2649 case TCPOPT_TIMESTAMP:
2650 if(opsize==TCPOLEN_TIMESTAMP) {
2651 if ((estab && opt_rx->tstamp_ok) ||
2652 (!estab && sysctl_tcp_timestamps)) {
2653 opt_rx->saw_tstamp = 1;
2654 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2655 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2658 break;
2659 case TCPOPT_SACK_PERM:
2660 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2661 if (sysctl_tcp_sack) {
2662 opt_rx->sack_ok = 1;
2663 tcp_sack_reset(opt_rx);
2666 break;
2668 case TCPOPT_SACK:
2669 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2670 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2671 opt_rx->sack_ok) {
2672 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2675 ptr+=opsize-2;
2676 length-=opsize;
2681 /* Fast parse options. This hopes to only see timestamps.
2682 * If it is wrong it falls back on tcp_parse_options().
2684 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2685 struct tcp_sock *tp)
2687 if (th->doff == sizeof(struct tcphdr)>>2) {
2688 tp->rx_opt.saw_tstamp = 0;
2689 return 0;
2690 } else if (tp->rx_opt.tstamp_ok &&
2691 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2692 __u32 *ptr = (__u32 *)(th + 1);
2693 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2694 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2695 tp->rx_opt.saw_tstamp = 1;
2696 ++ptr;
2697 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2698 ++ptr;
2699 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2700 return 1;
2703 tcp_parse_options(skb, &tp->rx_opt, 1);
2704 return 1;
2707 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2709 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2710 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2713 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2715 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2716 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2717 * extra check below makes sure this can only happen
2718 * for pure ACK frames. -DaveM
2720 * Not only, also it occurs for expired timestamps.
2723 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2724 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2725 tcp_store_ts_recent(tp);
2729 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2731 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2732 * it can pass through stack. So, the following predicate verifies that
2733 * this segment is not used for anything but congestion avoidance or
2734 * fast retransmit. Moreover, we even are able to eliminate most of such
2735 * second order effects, if we apply some small "replay" window (~RTO)
2736 * to timestamp space.
2738 * All these measures still do not guarantee that we reject wrapped ACKs
2739 * on networks with high bandwidth, when sequence space is recycled fastly,
2740 * but it guarantees that such events will be very rare and do not affect
2741 * connection seriously. This doesn't look nice, but alas, PAWS is really
2742 * buggy extension.
2744 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2745 * states that events when retransmit arrives after original data are rare.
2746 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2747 * the biggest problem on large power networks even with minor reordering.
2748 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2749 * up to bandwidth of 18Gigabit/sec. 8) ]
2752 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2754 struct tcp_sock *tp = tcp_sk(sk);
2755 struct tcphdr *th = skb->h.th;
2756 u32 seq = TCP_SKB_CB(skb)->seq;
2757 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2759 return (/* 1. Pure ACK with correct sequence number. */
2760 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2762 /* 2. ... and duplicate ACK. */
2763 ack == tp->snd_una &&
2765 /* 3. ... and does not update window. */
2766 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2768 /* 4. ... and sits in replay window. */
2769 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2772 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2774 const struct tcp_sock *tp = tcp_sk(sk);
2775 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2776 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2777 !tcp_disordered_ack(sk, skb));
2780 /* Check segment sequence number for validity.
2782 * Segment controls are considered valid, if the segment
2783 * fits to the window after truncation to the window. Acceptability
2784 * of data (and SYN, FIN, of course) is checked separately.
2785 * See tcp_data_queue(), for example.
2787 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2788 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2789 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2790 * (borrowed from freebsd)
2793 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2795 return !before(end_seq, tp->rcv_wup) &&
2796 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2799 /* When we get a reset we do this. */
2800 static void tcp_reset(struct sock *sk)
2802 /* We want the right error as BSD sees it (and indeed as we do). */
2803 switch (sk->sk_state) {
2804 case TCP_SYN_SENT:
2805 sk->sk_err = ECONNREFUSED;
2806 break;
2807 case TCP_CLOSE_WAIT:
2808 sk->sk_err = EPIPE;
2809 break;
2810 case TCP_CLOSE:
2811 return;
2812 default:
2813 sk->sk_err = ECONNRESET;
2816 if (!sock_flag(sk, SOCK_DEAD))
2817 sk->sk_error_report(sk);
2819 tcp_done(sk);
2823 * Process the FIN bit. This now behaves as it is supposed to work
2824 * and the FIN takes effect when it is validly part of sequence
2825 * space. Not before when we get holes.
2827 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2828 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2829 * TIME-WAIT)
2831 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2832 * close and we go into CLOSING (and later onto TIME-WAIT)
2834 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2836 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2838 struct tcp_sock *tp = tcp_sk(sk);
2840 inet_csk_schedule_ack(sk);
2842 sk->sk_shutdown |= RCV_SHUTDOWN;
2843 sock_set_flag(sk, SOCK_DONE);
2845 switch (sk->sk_state) {
2846 case TCP_SYN_RECV:
2847 case TCP_ESTABLISHED:
2848 /* Move to CLOSE_WAIT */
2849 tcp_set_state(sk, TCP_CLOSE_WAIT);
2850 inet_csk(sk)->icsk_ack.pingpong = 1;
2851 break;
2853 case TCP_CLOSE_WAIT:
2854 case TCP_CLOSING:
2855 /* Received a retransmission of the FIN, do
2856 * nothing.
2858 break;
2859 case TCP_LAST_ACK:
2860 /* RFC793: Remain in the LAST-ACK state. */
2861 break;
2863 case TCP_FIN_WAIT1:
2864 /* This case occurs when a simultaneous close
2865 * happens, we must ack the received FIN and
2866 * enter the CLOSING state.
2868 tcp_send_ack(sk);
2869 tcp_set_state(sk, TCP_CLOSING);
2870 break;
2871 case TCP_FIN_WAIT2:
2872 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2873 tcp_send_ack(sk);
2874 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2875 break;
2876 default:
2877 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2878 * cases we should never reach this piece of code.
2880 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2881 __FUNCTION__, sk->sk_state);
2882 break;
2885 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2886 * Probably, we should reset in this case. For now drop them.
2888 __skb_queue_purge(&tp->out_of_order_queue);
2889 if (tp->rx_opt.sack_ok)
2890 tcp_sack_reset(&tp->rx_opt);
2891 sk_stream_mem_reclaim(sk);
2893 if (!sock_flag(sk, SOCK_DEAD)) {
2894 sk->sk_state_change(sk);
2896 /* Do not send POLL_HUP for half duplex close. */
2897 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2898 sk->sk_state == TCP_CLOSE)
2899 sk_wake_async(sk, 1, POLL_HUP);
2900 else
2901 sk_wake_async(sk, 1, POLL_IN);
2905 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2907 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2908 if (before(seq, sp->start_seq))
2909 sp->start_seq = seq;
2910 if (after(end_seq, sp->end_seq))
2911 sp->end_seq = end_seq;
2912 return 1;
2914 return 0;
2917 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2919 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2920 if (before(seq, tp->rcv_nxt))
2921 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2922 else
2923 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2925 tp->rx_opt.dsack = 1;
2926 tp->duplicate_sack[0].start_seq = seq;
2927 tp->duplicate_sack[0].end_seq = end_seq;
2928 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2932 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2934 if (!tp->rx_opt.dsack)
2935 tcp_dsack_set(tp, seq, end_seq);
2936 else
2937 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2940 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2942 struct tcp_sock *tp = tcp_sk(sk);
2944 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2945 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2946 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2947 tcp_enter_quickack_mode(sk);
2949 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2950 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2952 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2953 end_seq = tp->rcv_nxt;
2954 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2958 tcp_send_ack(sk);
2961 /* These routines update the SACK block as out-of-order packets arrive or
2962 * in-order packets close up the sequence space.
2964 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2966 int this_sack;
2967 struct tcp_sack_block *sp = &tp->selective_acks[0];
2968 struct tcp_sack_block *swalk = sp+1;
2970 /* See if the recent change to the first SACK eats into
2971 * or hits the sequence space of other SACK blocks, if so coalesce.
2973 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2974 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2975 int i;
2977 /* Zap SWALK, by moving every further SACK up by one slot.
2978 * Decrease num_sacks.
2980 tp->rx_opt.num_sacks--;
2981 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2982 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2983 sp[i] = sp[i+1];
2984 continue;
2986 this_sack++, swalk++;
2990 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2992 __u32 tmp;
2994 tmp = sack1->start_seq;
2995 sack1->start_seq = sack2->start_seq;
2996 sack2->start_seq = tmp;
2998 tmp = sack1->end_seq;
2999 sack1->end_seq = sack2->end_seq;
3000 sack2->end_seq = tmp;
3003 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3005 struct tcp_sock *tp = tcp_sk(sk);
3006 struct tcp_sack_block *sp = &tp->selective_acks[0];
3007 int cur_sacks = tp->rx_opt.num_sacks;
3008 int this_sack;
3010 if (!cur_sacks)
3011 goto new_sack;
3013 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3014 if (tcp_sack_extend(sp, seq, end_seq)) {
3015 /* Rotate this_sack to the first one. */
3016 for (; this_sack>0; this_sack--, sp--)
3017 tcp_sack_swap(sp, sp-1);
3018 if (cur_sacks > 1)
3019 tcp_sack_maybe_coalesce(tp);
3020 return;
3024 /* Could not find an adjacent existing SACK, build a new one,
3025 * put it at the front, and shift everyone else down. We
3026 * always know there is at least one SACK present already here.
3028 * If the sack array is full, forget about the last one.
3030 if (this_sack >= 4) {
3031 this_sack--;
3032 tp->rx_opt.num_sacks--;
3033 sp--;
3035 for(; this_sack > 0; this_sack--, sp--)
3036 *sp = *(sp-1);
3038 new_sack:
3039 /* Build the new head SACK, and we're done. */
3040 sp->start_seq = seq;
3041 sp->end_seq = end_seq;
3042 tp->rx_opt.num_sacks++;
3043 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3046 /* RCV.NXT advances, some SACKs should be eaten. */
3048 static void tcp_sack_remove(struct tcp_sock *tp)
3050 struct tcp_sack_block *sp = &tp->selective_acks[0];
3051 int num_sacks = tp->rx_opt.num_sacks;
3052 int this_sack;
3054 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3055 if (skb_queue_empty(&tp->out_of_order_queue)) {
3056 tp->rx_opt.num_sacks = 0;
3057 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3058 return;
3061 for(this_sack = 0; this_sack < num_sacks; ) {
3062 /* Check if the start of the sack is covered by RCV.NXT. */
3063 if (!before(tp->rcv_nxt, sp->start_seq)) {
3064 int i;
3066 /* RCV.NXT must cover all the block! */
3067 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3069 /* Zap this SACK, by moving forward any other SACKS. */
3070 for (i=this_sack+1; i < num_sacks; i++)
3071 tp->selective_acks[i-1] = tp->selective_acks[i];
3072 num_sacks--;
3073 continue;
3075 this_sack++;
3076 sp++;
3078 if (num_sacks != tp->rx_opt.num_sacks) {
3079 tp->rx_opt.num_sacks = num_sacks;
3080 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3084 /* This one checks to see if we can put data from the
3085 * out_of_order queue into the receive_queue.
3087 static void tcp_ofo_queue(struct sock *sk)
3089 struct tcp_sock *tp = tcp_sk(sk);
3090 __u32 dsack_high = tp->rcv_nxt;
3091 struct sk_buff *skb;
3093 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3094 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3095 break;
3097 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3098 __u32 dsack = dsack_high;
3099 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3100 dsack_high = TCP_SKB_CB(skb)->end_seq;
3101 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3104 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3105 SOCK_DEBUG(sk, "ofo packet was already received \n");
3106 __skb_unlink(skb, &tp->out_of_order_queue);
3107 __kfree_skb(skb);
3108 continue;
3110 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3111 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3112 TCP_SKB_CB(skb)->end_seq);
3114 __skb_unlink(skb, &tp->out_of_order_queue);
3115 __skb_queue_tail(&sk->sk_receive_queue, skb);
3116 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3117 if(skb->h.th->fin)
3118 tcp_fin(skb, sk, skb->h.th);
3122 static int tcp_prune_queue(struct sock *sk);
3124 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3126 struct tcphdr *th = skb->h.th;
3127 struct tcp_sock *tp = tcp_sk(sk);
3128 int eaten = -1;
3130 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3131 goto drop;
3133 __skb_pull(skb, th->doff*4);
3135 TCP_ECN_accept_cwr(tp, skb);
3137 if (tp->rx_opt.dsack) {
3138 tp->rx_opt.dsack = 0;
3139 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3140 4 - tp->rx_opt.tstamp_ok);
3143 /* Queue data for delivery to the user.
3144 * Packets in sequence go to the receive queue.
3145 * Out of sequence packets to the out_of_order_queue.
3147 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3148 if (tcp_receive_window(tp) == 0)
3149 goto out_of_window;
3151 /* Ok. In sequence. In window. */
3152 if (tp->ucopy.task == current &&
3153 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3154 sock_owned_by_user(sk) && !tp->urg_data) {
3155 int chunk = min_t(unsigned int, skb->len,
3156 tp->ucopy.len);
3158 __set_current_state(TASK_RUNNING);
3160 local_bh_enable();
3161 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3162 tp->ucopy.len -= chunk;
3163 tp->copied_seq += chunk;
3164 eaten = (chunk == skb->len && !th->fin);
3165 tcp_rcv_space_adjust(sk);
3167 local_bh_disable();
3170 if (eaten <= 0) {
3171 queue_and_out:
3172 if (eaten < 0 &&
3173 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3174 !sk_stream_rmem_schedule(sk, skb))) {
3175 if (tcp_prune_queue(sk) < 0 ||
3176 !sk_stream_rmem_schedule(sk, skb))
3177 goto drop;
3179 sk_stream_set_owner_r(skb, sk);
3180 __skb_queue_tail(&sk->sk_receive_queue, skb);
3182 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3183 if(skb->len)
3184 tcp_event_data_recv(sk, tp, skb);
3185 if(th->fin)
3186 tcp_fin(skb, sk, th);
3188 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3189 tcp_ofo_queue(sk);
3191 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3192 * gap in queue is filled.
3194 if (skb_queue_empty(&tp->out_of_order_queue))
3195 inet_csk(sk)->icsk_ack.pingpong = 0;
3198 if (tp->rx_opt.num_sacks)
3199 tcp_sack_remove(tp);
3201 tcp_fast_path_check(sk, tp);
3203 if (eaten > 0)
3204 __kfree_skb(skb);
3205 else if (!sock_flag(sk, SOCK_DEAD))
3206 sk->sk_data_ready(sk, 0);
3207 return;
3210 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3211 /* A retransmit, 2nd most common case. Force an immediate ack. */
3212 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3213 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3215 out_of_window:
3216 tcp_enter_quickack_mode(sk);
3217 inet_csk_schedule_ack(sk);
3218 drop:
3219 __kfree_skb(skb);
3220 return;
3223 /* Out of window. F.e. zero window probe. */
3224 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3225 goto out_of_window;
3227 tcp_enter_quickack_mode(sk);
3229 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3230 /* Partial packet, seq < rcv_next < end_seq */
3231 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3232 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3233 TCP_SKB_CB(skb)->end_seq);
3235 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3237 /* If window is closed, drop tail of packet. But after
3238 * remembering D-SACK for its head made in previous line.
3240 if (!tcp_receive_window(tp))
3241 goto out_of_window;
3242 goto queue_and_out;
3245 TCP_ECN_check_ce(tp, skb);
3247 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3248 !sk_stream_rmem_schedule(sk, skb)) {
3249 if (tcp_prune_queue(sk) < 0 ||
3250 !sk_stream_rmem_schedule(sk, skb))
3251 goto drop;
3254 /* Disable header prediction. */
3255 tp->pred_flags = 0;
3256 inet_csk_schedule_ack(sk);
3258 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3259 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3261 sk_stream_set_owner_r(skb, sk);
3263 if (!skb_peek(&tp->out_of_order_queue)) {
3264 /* Initial out of order segment, build 1 SACK. */
3265 if (tp->rx_opt.sack_ok) {
3266 tp->rx_opt.num_sacks = 1;
3267 tp->rx_opt.dsack = 0;
3268 tp->rx_opt.eff_sacks = 1;
3269 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3270 tp->selective_acks[0].end_seq =
3271 TCP_SKB_CB(skb)->end_seq;
3273 __skb_queue_head(&tp->out_of_order_queue,skb);
3274 } else {
3275 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3276 u32 seq = TCP_SKB_CB(skb)->seq;
3277 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3279 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3280 __skb_append(skb1, skb, &tp->out_of_order_queue);
3282 if (!tp->rx_opt.num_sacks ||
3283 tp->selective_acks[0].end_seq != seq)
3284 goto add_sack;
3286 /* Common case: data arrive in order after hole. */
3287 tp->selective_acks[0].end_seq = end_seq;
3288 return;
3291 /* Find place to insert this segment. */
3292 do {
3293 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3294 break;
3295 } while ((skb1 = skb1->prev) !=
3296 (struct sk_buff*)&tp->out_of_order_queue);
3298 /* Do skb overlap to previous one? */
3299 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3300 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3301 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3302 /* All the bits are present. Drop. */
3303 __kfree_skb(skb);
3304 tcp_dsack_set(tp, seq, end_seq);
3305 goto add_sack;
3307 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3308 /* Partial overlap. */
3309 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3310 } else {
3311 skb1 = skb1->prev;
3314 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3316 /* And clean segments covered by new one as whole. */
3317 while ((skb1 = skb->next) !=
3318 (struct sk_buff*)&tp->out_of_order_queue &&
3319 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3320 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3321 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3322 break;
3324 __skb_unlink(skb1, &tp->out_of_order_queue);
3325 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3326 __kfree_skb(skb1);
3329 add_sack:
3330 if (tp->rx_opt.sack_ok)
3331 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3335 /* Collapse contiguous sequence of skbs head..tail with
3336 * sequence numbers start..end.
3337 * Segments with FIN/SYN are not collapsed (only because this
3338 * simplifies code)
3340 static void
3341 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3342 struct sk_buff *head, struct sk_buff *tail,
3343 u32 start, u32 end)
3345 struct sk_buff *skb;
3347 /* First, check that queue is collapsible and find
3348 * the point where collapsing can be useful. */
3349 for (skb = head; skb != tail; ) {
3350 /* No new bits? It is possible on ofo queue. */
3351 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3352 struct sk_buff *next = skb->next;
3353 __skb_unlink(skb, list);
3354 __kfree_skb(skb);
3355 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3356 skb = next;
3357 continue;
3360 /* The first skb to collapse is:
3361 * - not SYN/FIN and
3362 * - bloated or contains data before "start" or
3363 * overlaps to the next one.
3365 if (!skb->h.th->syn && !skb->h.th->fin &&
3366 (tcp_win_from_space(skb->truesize) > skb->len ||
3367 before(TCP_SKB_CB(skb)->seq, start) ||
3368 (skb->next != tail &&
3369 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3370 break;
3372 /* Decided to skip this, advance start seq. */
3373 start = TCP_SKB_CB(skb)->end_seq;
3374 skb = skb->next;
3376 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3377 return;
3379 while (before(start, end)) {
3380 struct sk_buff *nskb;
3381 int header = skb_headroom(skb);
3382 int copy = SKB_MAX_ORDER(header, 0);
3384 /* Too big header? This can happen with IPv6. */
3385 if (copy < 0)
3386 return;
3387 if (end-start < copy)
3388 copy = end-start;
3389 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3390 if (!nskb)
3391 return;
3392 skb_reserve(nskb, header);
3393 memcpy(nskb->head, skb->head, header);
3394 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3395 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3396 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3397 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3398 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3399 __skb_insert(nskb, skb->prev, skb, list);
3400 sk_stream_set_owner_r(nskb, sk);
3402 /* Copy data, releasing collapsed skbs. */
3403 while (copy > 0) {
3404 int offset = start - TCP_SKB_CB(skb)->seq;
3405 int size = TCP_SKB_CB(skb)->end_seq - start;
3407 BUG_ON(offset < 0);
3408 if (size > 0) {
3409 size = min(copy, size);
3410 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3411 BUG();
3412 TCP_SKB_CB(nskb)->end_seq += size;
3413 copy -= size;
3414 start += size;
3416 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3417 struct sk_buff *next = skb->next;
3418 __skb_unlink(skb, list);
3419 __kfree_skb(skb);
3420 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3421 skb = next;
3422 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3423 return;
3429 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3430 * and tcp_collapse() them until all the queue is collapsed.
3432 static void tcp_collapse_ofo_queue(struct sock *sk)
3434 struct tcp_sock *tp = tcp_sk(sk);
3435 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3436 struct sk_buff *head;
3437 u32 start, end;
3439 if (skb == NULL)
3440 return;
3442 start = TCP_SKB_CB(skb)->seq;
3443 end = TCP_SKB_CB(skb)->end_seq;
3444 head = skb;
3446 for (;;) {
3447 skb = skb->next;
3449 /* Segment is terminated when we see gap or when
3450 * we are at the end of all the queue. */
3451 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3452 after(TCP_SKB_CB(skb)->seq, end) ||
3453 before(TCP_SKB_CB(skb)->end_seq, start)) {
3454 tcp_collapse(sk, &tp->out_of_order_queue,
3455 head, skb, start, end);
3456 head = skb;
3457 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3458 break;
3459 /* Start new segment */
3460 start = TCP_SKB_CB(skb)->seq;
3461 end = TCP_SKB_CB(skb)->end_seq;
3462 } else {
3463 if (before(TCP_SKB_CB(skb)->seq, start))
3464 start = TCP_SKB_CB(skb)->seq;
3465 if (after(TCP_SKB_CB(skb)->end_seq, end))
3466 end = TCP_SKB_CB(skb)->end_seq;
3471 /* Reduce allocated memory if we can, trying to get
3472 * the socket within its memory limits again.
3474 * Return less than zero if we should start dropping frames
3475 * until the socket owning process reads some of the data
3476 * to stabilize the situation.
3478 static int tcp_prune_queue(struct sock *sk)
3480 struct tcp_sock *tp = tcp_sk(sk);
3482 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3484 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3486 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3487 tcp_clamp_window(sk, tp);
3488 else if (tcp_memory_pressure)
3489 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3491 tcp_collapse_ofo_queue(sk);
3492 tcp_collapse(sk, &sk->sk_receive_queue,
3493 sk->sk_receive_queue.next,
3494 (struct sk_buff*)&sk->sk_receive_queue,
3495 tp->copied_seq, tp->rcv_nxt);
3496 sk_stream_mem_reclaim(sk);
3498 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3499 return 0;
3501 /* Collapsing did not help, destructive actions follow.
3502 * This must not ever occur. */
3504 /* First, purge the out_of_order queue. */
3505 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3506 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3507 __skb_queue_purge(&tp->out_of_order_queue);
3509 /* Reset SACK state. A conforming SACK implementation will
3510 * do the same at a timeout based retransmit. When a connection
3511 * is in a sad state like this, we care only about integrity
3512 * of the connection not performance.
3514 if (tp->rx_opt.sack_ok)
3515 tcp_sack_reset(&tp->rx_opt);
3516 sk_stream_mem_reclaim(sk);
3519 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3520 return 0;
3522 /* If we are really being abused, tell the caller to silently
3523 * drop receive data on the floor. It will get retransmitted
3524 * and hopefully then we'll have sufficient space.
3526 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3528 /* Massive buffer overcommit. */
3529 tp->pred_flags = 0;
3530 return -1;
3534 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3535 * As additional protections, we do not touch cwnd in retransmission phases,
3536 * and if application hit its sndbuf limit recently.
3538 void tcp_cwnd_application_limited(struct sock *sk)
3540 struct tcp_sock *tp = tcp_sk(sk);
3542 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3543 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3544 /* Limited by application or receiver window. */
3545 u32 win_used = max(tp->snd_cwnd_used, 2U);
3546 if (win_used < tp->snd_cwnd) {
3547 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3548 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3550 tp->snd_cwnd_used = 0;
3552 tp->snd_cwnd_stamp = tcp_time_stamp;
3555 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3557 /* If the user specified a specific send buffer setting, do
3558 * not modify it.
3560 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3561 return 0;
3563 /* If we are under global TCP memory pressure, do not expand. */
3564 if (tcp_memory_pressure)
3565 return 0;
3567 /* If we are under soft global TCP memory pressure, do not expand. */
3568 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3569 return 0;
3571 /* If we filled the congestion window, do not expand. */
3572 if (tp->packets_out >= tp->snd_cwnd)
3573 return 0;
3575 return 1;
3578 /* When incoming ACK allowed to free some skb from write_queue,
3579 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3580 * on the exit from tcp input handler.
3582 * PROBLEM: sndbuf expansion does not work well with largesend.
3584 static void tcp_new_space(struct sock *sk)
3586 struct tcp_sock *tp = tcp_sk(sk);
3588 if (tcp_should_expand_sndbuf(sk, tp)) {
3589 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3590 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3591 demanded = max_t(unsigned int, tp->snd_cwnd,
3592 tp->reordering + 1);
3593 sndmem *= 2*demanded;
3594 if (sndmem > sk->sk_sndbuf)
3595 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3596 tp->snd_cwnd_stamp = tcp_time_stamp;
3599 sk->sk_write_space(sk);
3602 static void tcp_check_space(struct sock *sk)
3604 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3605 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3606 if (sk->sk_socket &&
3607 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3608 tcp_new_space(sk);
3612 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3614 tcp_push_pending_frames(sk, tp);
3615 tcp_check_space(sk);
3619 * Check if sending an ack is needed.
3621 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3623 struct tcp_sock *tp = tcp_sk(sk);
3625 /* More than one full frame received... */
3626 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3627 /* ... and right edge of window advances far enough.
3628 * (tcp_recvmsg() will send ACK otherwise). Or...
3630 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3631 /* We ACK each frame or... */
3632 tcp_in_quickack_mode(sk) ||
3633 /* We have out of order data. */
3634 (ofo_possible &&
3635 skb_peek(&tp->out_of_order_queue))) {
3636 /* Then ack it now */
3637 tcp_send_ack(sk);
3638 } else {
3639 /* Else, send delayed ack. */
3640 tcp_send_delayed_ack(sk);
3644 static inline void tcp_ack_snd_check(struct sock *sk)
3646 if (!inet_csk_ack_scheduled(sk)) {
3647 /* We sent a data segment already. */
3648 return;
3650 __tcp_ack_snd_check(sk, 1);
3654 * This routine is only called when we have urgent data
3655 * signaled. Its the 'slow' part of tcp_urg. It could be
3656 * moved inline now as tcp_urg is only called from one
3657 * place. We handle URGent data wrong. We have to - as
3658 * BSD still doesn't use the correction from RFC961.
3659 * For 1003.1g we should support a new option TCP_STDURG to permit
3660 * either form (or just set the sysctl tcp_stdurg).
3663 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3665 struct tcp_sock *tp = tcp_sk(sk);
3666 u32 ptr = ntohs(th->urg_ptr);
3668 if (ptr && !sysctl_tcp_stdurg)
3669 ptr--;
3670 ptr += ntohl(th->seq);
3672 /* Ignore urgent data that we've already seen and read. */
3673 if (after(tp->copied_seq, ptr))
3674 return;
3676 /* Do not replay urg ptr.
3678 * NOTE: interesting situation not covered by specs.
3679 * Misbehaving sender may send urg ptr, pointing to segment,
3680 * which we already have in ofo queue. We are not able to fetch
3681 * such data and will stay in TCP_URG_NOTYET until will be eaten
3682 * by recvmsg(). Seems, we are not obliged to handle such wicked
3683 * situations. But it is worth to think about possibility of some
3684 * DoSes using some hypothetical application level deadlock.
3686 if (before(ptr, tp->rcv_nxt))
3687 return;
3689 /* Do we already have a newer (or duplicate) urgent pointer? */
3690 if (tp->urg_data && !after(ptr, tp->urg_seq))
3691 return;
3693 /* Tell the world about our new urgent pointer. */
3694 sk_send_sigurg(sk);
3696 /* We may be adding urgent data when the last byte read was
3697 * urgent. To do this requires some care. We cannot just ignore
3698 * tp->copied_seq since we would read the last urgent byte again
3699 * as data, nor can we alter copied_seq until this data arrives
3700 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3702 * NOTE. Double Dutch. Rendering to plain English: author of comment
3703 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3704 * and expect that both A and B disappear from stream. This is _wrong_.
3705 * Though this happens in BSD with high probability, this is occasional.
3706 * Any application relying on this is buggy. Note also, that fix "works"
3707 * only in this artificial test. Insert some normal data between A and B and we will
3708 * decline of BSD again. Verdict: it is better to remove to trap
3709 * buggy users.
3711 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3712 !sock_flag(sk, SOCK_URGINLINE) &&
3713 tp->copied_seq != tp->rcv_nxt) {
3714 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3715 tp->copied_seq++;
3716 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3717 __skb_unlink(skb, &sk->sk_receive_queue);
3718 __kfree_skb(skb);
3722 tp->urg_data = TCP_URG_NOTYET;
3723 tp->urg_seq = ptr;
3725 /* Disable header prediction. */
3726 tp->pred_flags = 0;
3729 /* This is the 'fast' part of urgent handling. */
3730 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3732 struct tcp_sock *tp = tcp_sk(sk);
3734 /* Check if we get a new urgent pointer - normally not. */
3735 if (th->urg)
3736 tcp_check_urg(sk,th);
3738 /* Do we wait for any urgent data? - normally not... */
3739 if (tp->urg_data == TCP_URG_NOTYET) {
3740 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3741 th->syn;
3743 /* Is the urgent pointer pointing into this packet? */
3744 if (ptr < skb->len) {
3745 u8 tmp;
3746 if (skb_copy_bits(skb, ptr, &tmp, 1))
3747 BUG();
3748 tp->urg_data = TCP_URG_VALID | tmp;
3749 if (!sock_flag(sk, SOCK_DEAD))
3750 sk->sk_data_ready(sk, 0);
3755 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3757 struct tcp_sock *tp = tcp_sk(sk);
3758 int chunk = skb->len - hlen;
3759 int err;
3761 local_bh_enable();
3762 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3763 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3764 else
3765 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3766 tp->ucopy.iov);
3768 if (!err) {
3769 tp->ucopy.len -= chunk;
3770 tp->copied_seq += chunk;
3771 tcp_rcv_space_adjust(sk);
3774 local_bh_disable();
3775 return err;
3778 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3780 int result;
3782 if (sock_owned_by_user(sk)) {
3783 local_bh_enable();
3784 result = __tcp_checksum_complete(skb);
3785 local_bh_disable();
3786 } else {
3787 result = __tcp_checksum_complete(skb);
3789 return result;
3792 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3794 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3795 __tcp_checksum_complete_user(sk, skb);
3798 #ifdef CONFIG_NET_DMA
3799 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3801 struct tcp_sock *tp = tcp_sk(sk);
3802 int chunk = skb->len - hlen;
3803 int dma_cookie;
3804 int copied_early = 0;
3806 if (tp->ucopy.wakeup)
3807 return 0;
3809 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3810 tp->ucopy.dma_chan = get_softnet_dma();
3812 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3814 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3815 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3817 if (dma_cookie < 0)
3818 goto out;
3820 tp->ucopy.dma_cookie = dma_cookie;
3821 copied_early = 1;
3823 tp->ucopy.len -= chunk;
3824 tp->copied_seq += chunk;
3825 tcp_rcv_space_adjust(sk);
3827 if ((tp->ucopy.len == 0) ||
3828 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3829 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3830 tp->ucopy.wakeup = 1;
3831 sk->sk_data_ready(sk, 0);
3833 } else if (chunk > 0) {
3834 tp->ucopy.wakeup = 1;
3835 sk->sk_data_ready(sk, 0);
3837 out:
3838 return copied_early;
3840 #endif /* CONFIG_NET_DMA */
3843 * TCP receive function for the ESTABLISHED state.
3845 * It is split into a fast path and a slow path. The fast path is
3846 * disabled when:
3847 * - A zero window was announced from us - zero window probing
3848 * is only handled properly in the slow path.
3849 * - Out of order segments arrived.
3850 * - Urgent data is expected.
3851 * - There is no buffer space left
3852 * - Unexpected TCP flags/window values/header lengths are received
3853 * (detected by checking the TCP header against pred_flags)
3854 * - Data is sent in both directions. Fast path only supports pure senders
3855 * or pure receivers (this means either the sequence number or the ack
3856 * value must stay constant)
3857 * - Unexpected TCP option.
3859 * When these conditions are not satisfied it drops into a standard
3860 * receive procedure patterned after RFC793 to handle all cases.
3861 * The first three cases are guaranteed by proper pred_flags setting,
3862 * the rest is checked inline. Fast processing is turned on in
3863 * tcp_data_queue when everything is OK.
3865 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3866 struct tcphdr *th, unsigned len)
3868 struct tcp_sock *tp = tcp_sk(sk);
3871 * Header prediction.
3872 * The code loosely follows the one in the famous
3873 * "30 instruction TCP receive" Van Jacobson mail.
3875 * Van's trick is to deposit buffers into socket queue
3876 * on a device interrupt, to call tcp_recv function
3877 * on the receive process context and checksum and copy
3878 * the buffer to user space. smart...
3880 * Our current scheme is not silly either but we take the
3881 * extra cost of the net_bh soft interrupt processing...
3882 * We do checksum and copy also but from device to kernel.
3885 tp->rx_opt.saw_tstamp = 0;
3887 /* pred_flags is 0xS?10 << 16 + snd_wnd
3888 * if header_prediction is to be made
3889 * 'S' will always be tp->tcp_header_len >> 2
3890 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3891 * turn it off (when there are holes in the receive
3892 * space for instance)
3893 * PSH flag is ignored.
3896 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3897 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3898 int tcp_header_len = tp->tcp_header_len;
3900 /* Timestamp header prediction: tcp_header_len
3901 * is automatically equal to th->doff*4 due to pred_flags
3902 * match.
3905 /* Check timestamp */
3906 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3907 __u32 *ptr = (__u32 *)(th + 1);
3909 /* No? Slow path! */
3910 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3911 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3912 goto slow_path;
3914 tp->rx_opt.saw_tstamp = 1;
3915 ++ptr;
3916 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3917 ++ptr;
3918 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3920 /* If PAWS failed, check it more carefully in slow path */
3921 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3922 goto slow_path;
3924 /* DO NOT update ts_recent here, if checksum fails
3925 * and timestamp was corrupted part, it will result
3926 * in a hung connection since we will drop all
3927 * future packets due to the PAWS test.
3931 if (len <= tcp_header_len) {
3932 /* Bulk data transfer: sender */
3933 if (len == tcp_header_len) {
3934 /* Predicted packet is in window by definition.
3935 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3936 * Hence, check seq<=rcv_wup reduces to:
3938 if (tcp_header_len ==
3939 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3940 tp->rcv_nxt == tp->rcv_wup)
3941 tcp_store_ts_recent(tp);
3943 /* We know that such packets are checksummed
3944 * on entry.
3946 tcp_ack(sk, skb, 0);
3947 __kfree_skb(skb);
3948 tcp_data_snd_check(sk, tp);
3949 return 0;
3950 } else { /* Header too small */
3951 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3952 goto discard;
3954 } else {
3955 int eaten = 0;
3956 int copied_early = 0;
3958 if (tp->copied_seq == tp->rcv_nxt &&
3959 len - tcp_header_len <= tp->ucopy.len) {
3960 #ifdef CONFIG_NET_DMA
3961 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3962 copied_early = 1;
3963 eaten = 1;
3965 #endif
3966 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3967 __set_current_state(TASK_RUNNING);
3969 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3970 eaten = 1;
3972 if (eaten) {
3973 /* Predicted packet is in window by definition.
3974 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3975 * Hence, check seq<=rcv_wup reduces to:
3977 if (tcp_header_len ==
3978 (sizeof(struct tcphdr) +
3979 TCPOLEN_TSTAMP_ALIGNED) &&
3980 tp->rcv_nxt == tp->rcv_wup)
3981 tcp_store_ts_recent(tp);
3983 tcp_rcv_rtt_measure_ts(sk, skb);
3985 __skb_pull(skb, tcp_header_len);
3986 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3987 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3989 if (copied_early)
3990 tcp_cleanup_rbuf(sk, skb->len);
3992 if (!eaten) {
3993 if (tcp_checksum_complete_user(sk, skb))
3994 goto csum_error;
3996 /* Predicted packet is in window by definition.
3997 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3998 * Hence, check seq<=rcv_wup reduces to:
4000 if (tcp_header_len ==
4001 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4002 tp->rcv_nxt == tp->rcv_wup)
4003 tcp_store_ts_recent(tp);
4005 tcp_rcv_rtt_measure_ts(sk, skb);
4007 if ((int)skb->truesize > sk->sk_forward_alloc)
4008 goto step5;
4010 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4012 /* Bulk data transfer: receiver */
4013 __skb_pull(skb,tcp_header_len);
4014 __skb_queue_tail(&sk->sk_receive_queue, skb);
4015 sk_stream_set_owner_r(skb, sk);
4016 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4019 tcp_event_data_recv(sk, tp, skb);
4021 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4022 /* Well, only one small jumplet in fast path... */
4023 tcp_ack(sk, skb, FLAG_DATA);
4024 tcp_data_snd_check(sk, tp);
4025 if (!inet_csk_ack_scheduled(sk))
4026 goto no_ack;
4029 __tcp_ack_snd_check(sk, 0);
4030 no_ack:
4031 #ifdef CONFIG_NET_DMA
4032 if (copied_early)
4033 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4034 else
4035 #endif
4036 if (eaten)
4037 __kfree_skb(skb);
4038 else
4039 sk->sk_data_ready(sk, 0);
4040 return 0;
4044 slow_path:
4045 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4046 goto csum_error;
4049 * RFC1323: H1. Apply PAWS check first.
4051 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4052 tcp_paws_discard(sk, skb)) {
4053 if (!th->rst) {
4054 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4055 tcp_send_dupack(sk, skb);
4056 goto discard;
4058 /* Resets are accepted even if PAWS failed.
4060 ts_recent update must be made after we are sure
4061 that the packet is in window.
4066 * Standard slow path.
4069 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4070 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4071 * (RST) segments are validated by checking their SEQ-fields."
4072 * And page 69: "If an incoming segment is not acceptable,
4073 * an acknowledgment should be sent in reply (unless the RST bit
4074 * is set, if so drop the segment and return)".
4076 if (!th->rst)
4077 tcp_send_dupack(sk, skb);
4078 goto discard;
4081 if(th->rst) {
4082 tcp_reset(sk);
4083 goto discard;
4086 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4088 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4089 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4090 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4091 tcp_reset(sk);
4092 return 1;
4095 step5:
4096 if(th->ack)
4097 tcp_ack(sk, skb, FLAG_SLOWPATH);
4099 tcp_rcv_rtt_measure_ts(sk, skb);
4101 /* Process urgent data. */
4102 tcp_urg(sk, skb, th);
4104 /* step 7: process the segment text */
4105 tcp_data_queue(sk, skb);
4107 tcp_data_snd_check(sk, tp);
4108 tcp_ack_snd_check(sk);
4109 return 0;
4111 csum_error:
4112 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4114 discard:
4115 __kfree_skb(skb);
4116 return 0;
4119 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4120 struct tcphdr *th, unsigned len)
4122 struct tcp_sock *tp = tcp_sk(sk);
4123 struct inet_connection_sock *icsk = inet_csk(sk);
4124 int saved_clamp = tp->rx_opt.mss_clamp;
4126 tcp_parse_options(skb, &tp->rx_opt, 0);
4128 if (th->ack) {
4129 /* rfc793:
4130 * "If the state is SYN-SENT then
4131 * first check the ACK bit
4132 * If the ACK bit is set
4133 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4134 * a reset (unless the RST bit is set, if so drop
4135 * the segment and return)"
4137 * We do not send data with SYN, so that RFC-correct
4138 * test reduces to:
4140 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4141 goto reset_and_undo;
4143 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4144 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4145 tcp_time_stamp)) {
4146 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4147 goto reset_and_undo;
4150 /* Now ACK is acceptable.
4152 * "If the RST bit is set
4153 * If the ACK was acceptable then signal the user "error:
4154 * connection reset", drop the segment, enter CLOSED state,
4155 * delete TCB, and return."
4158 if (th->rst) {
4159 tcp_reset(sk);
4160 goto discard;
4163 /* rfc793:
4164 * "fifth, if neither of the SYN or RST bits is set then
4165 * drop the segment and return."
4167 * See note below!
4168 * --ANK(990513)
4170 if (!th->syn)
4171 goto discard_and_undo;
4173 /* rfc793:
4174 * "If the SYN bit is on ...
4175 * are acceptable then ...
4176 * (our SYN has been ACKed), change the connection
4177 * state to ESTABLISHED..."
4180 TCP_ECN_rcv_synack(tp, th);
4181 if (tp->ecn_flags&TCP_ECN_OK)
4182 sock_set_flag(sk, SOCK_NO_LARGESEND);
4184 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4185 tcp_ack(sk, skb, FLAG_SLOWPATH);
4187 /* Ok.. it's good. Set up sequence numbers and
4188 * move to established.
4190 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4191 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4193 /* RFC1323: The window in SYN & SYN/ACK segments is
4194 * never scaled.
4196 tp->snd_wnd = ntohs(th->window);
4197 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4199 if (!tp->rx_opt.wscale_ok) {
4200 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4201 tp->window_clamp = min(tp->window_clamp, 65535U);
4204 if (tp->rx_opt.saw_tstamp) {
4205 tp->rx_opt.tstamp_ok = 1;
4206 tp->tcp_header_len =
4207 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4208 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4209 tcp_store_ts_recent(tp);
4210 } else {
4211 tp->tcp_header_len = sizeof(struct tcphdr);
4214 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4215 tp->rx_opt.sack_ok |= 2;
4217 tcp_mtup_init(sk);
4218 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4219 tcp_initialize_rcv_mss(sk);
4221 /* Remember, tcp_poll() does not lock socket!
4222 * Change state from SYN-SENT only after copied_seq
4223 * is initialized. */
4224 tp->copied_seq = tp->rcv_nxt;
4225 mb();
4226 tcp_set_state(sk, TCP_ESTABLISHED);
4228 /* Make sure socket is routed, for correct metrics. */
4229 icsk->icsk_af_ops->rebuild_header(sk);
4231 tcp_init_metrics(sk);
4233 tcp_init_congestion_control(sk);
4235 /* Prevent spurious tcp_cwnd_restart() on first data
4236 * packet.
4238 tp->lsndtime = tcp_time_stamp;
4240 tcp_init_buffer_space(sk);
4242 if (sock_flag(sk, SOCK_KEEPOPEN))
4243 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4245 if (!tp->rx_opt.snd_wscale)
4246 __tcp_fast_path_on(tp, tp->snd_wnd);
4247 else
4248 tp->pred_flags = 0;
4250 if (!sock_flag(sk, SOCK_DEAD)) {
4251 sk->sk_state_change(sk);
4252 sk_wake_async(sk, 0, POLL_OUT);
4255 if (sk->sk_write_pending ||
4256 icsk->icsk_accept_queue.rskq_defer_accept ||
4257 icsk->icsk_ack.pingpong) {
4258 /* Save one ACK. Data will be ready after
4259 * several ticks, if write_pending is set.
4261 * It may be deleted, but with this feature tcpdumps
4262 * look so _wonderfully_ clever, that I was not able
4263 * to stand against the temptation 8) --ANK
4265 inet_csk_schedule_ack(sk);
4266 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4267 icsk->icsk_ack.ato = TCP_ATO_MIN;
4268 tcp_incr_quickack(sk);
4269 tcp_enter_quickack_mode(sk);
4270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4271 TCP_DELACK_MAX, TCP_RTO_MAX);
4273 discard:
4274 __kfree_skb(skb);
4275 return 0;
4276 } else {
4277 tcp_send_ack(sk);
4279 return -1;
4282 /* No ACK in the segment */
4284 if (th->rst) {
4285 /* rfc793:
4286 * "If the RST bit is set
4288 * Otherwise (no ACK) drop the segment and return."
4291 goto discard_and_undo;
4294 /* PAWS check. */
4295 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4296 goto discard_and_undo;
4298 if (th->syn) {
4299 /* We see SYN without ACK. It is attempt of
4300 * simultaneous connect with crossed SYNs.
4301 * Particularly, it can be connect to self.
4303 tcp_set_state(sk, TCP_SYN_RECV);
4305 if (tp->rx_opt.saw_tstamp) {
4306 tp->rx_opt.tstamp_ok = 1;
4307 tcp_store_ts_recent(tp);
4308 tp->tcp_header_len =
4309 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4310 } else {
4311 tp->tcp_header_len = sizeof(struct tcphdr);
4314 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4315 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4317 /* RFC1323: The window in SYN & SYN/ACK segments is
4318 * never scaled.
4320 tp->snd_wnd = ntohs(th->window);
4321 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4322 tp->max_window = tp->snd_wnd;
4324 TCP_ECN_rcv_syn(tp, th);
4325 if (tp->ecn_flags&TCP_ECN_OK)
4326 sock_set_flag(sk, SOCK_NO_LARGESEND);
4328 tcp_mtup_init(sk);
4329 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4330 tcp_initialize_rcv_mss(sk);
4333 tcp_send_synack(sk);
4334 #if 0
4335 /* Note, we could accept data and URG from this segment.
4336 * There are no obstacles to make this.
4338 * However, if we ignore data in ACKless segments sometimes,
4339 * we have no reasons to accept it sometimes.
4340 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4341 * is not flawless. So, discard packet for sanity.
4342 * Uncomment this return to process the data.
4344 return -1;
4345 #else
4346 goto discard;
4347 #endif
4349 /* "fifth, if neither of the SYN or RST bits is set then
4350 * drop the segment and return."
4353 discard_and_undo:
4354 tcp_clear_options(&tp->rx_opt);
4355 tp->rx_opt.mss_clamp = saved_clamp;
4356 goto discard;
4358 reset_and_undo:
4359 tcp_clear_options(&tp->rx_opt);
4360 tp->rx_opt.mss_clamp = saved_clamp;
4361 return 1;
4366 * This function implements the receiving procedure of RFC 793 for
4367 * all states except ESTABLISHED and TIME_WAIT.
4368 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4369 * address independent.
4372 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4373 struct tcphdr *th, unsigned len)
4375 struct tcp_sock *tp = tcp_sk(sk);
4376 struct inet_connection_sock *icsk = inet_csk(sk);
4377 int queued = 0;
4379 tp->rx_opt.saw_tstamp = 0;
4381 switch (sk->sk_state) {
4382 case TCP_CLOSE:
4383 goto discard;
4385 case TCP_LISTEN:
4386 if(th->ack)
4387 return 1;
4389 if(th->rst)
4390 goto discard;
4392 if(th->syn) {
4393 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4394 return 1;
4396 /* Now we have several options: In theory there is
4397 * nothing else in the frame. KA9Q has an option to
4398 * send data with the syn, BSD accepts data with the
4399 * syn up to the [to be] advertised window and
4400 * Solaris 2.1 gives you a protocol error. For now
4401 * we just ignore it, that fits the spec precisely
4402 * and avoids incompatibilities. It would be nice in
4403 * future to drop through and process the data.
4405 * Now that TTCP is starting to be used we ought to
4406 * queue this data.
4407 * But, this leaves one open to an easy denial of
4408 * service attack, and SYN cookies can't defend
4409 * against this problem. So, we drop the data
4410 * in the interest of security over speed.
4412 goto discard;
4414 goto discard;
4416 case TCP_SYN_SENT:
4417 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4418 if (queued >= 0)
4419 return queued;
4421 /* Do step6 onward by hand. */
4422 tcp_urg(sk, skb, th);
4423 __kfree_skb(skb);
4424 tcp_data_snd_check(sk, tp);
4425 return 0;
4428 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4429 tcp_paws_discard(sk, skb)) {
4430 if (!th->rst) {
4431 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4432 tcp_send_dupack(sk, skb);
4433 goto discard;
4435 /* Reset is accepted even if it did not pass PAWS. */
4438 /* step 1: check sequence number */
4439 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4440 if (!th->rst)
4441 tcp_send_dupack(sk, skb);
4442 goto discard;
4445 /* step 2: check RST bit */
4446 if(th->rst) {
4447 tcp_reset(sk);
4448 goto discard;
4451 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4453 /* step 3: check security and precedence [ignored] */
4455 /* step 4:
4457 * Check for a SYN in window.
4459 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4460 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4461 tcp_reset(sk);
4462 return 1;
4465 /* step 5: check the ACK field */
4466 if (th->ack) {
4467 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4469 switch(sk->sk_state) {
4470 case TCP_SYN_RECV:
4471 if (acceptable) {
4472 tp->copied_seq = tp->rcv_nxt;
4473 mb();
4474 tcp_set_state(sk, TCP_ESTABLISHED);
4475 sk->sk_state_change(sk);
4477 /* Note, that this wakeup is only for marginal
4478 * crossed SYN case. Passively open sockets
4479 * are not waked up, because sk->sk_sleep ==
4480 * NULL and sk->sk_socket == NULL.
4482 if (sk->sk_socket) {
4483 sk_wake_async(sk,0,POLL_OUT);
4486 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4487 tp->snd_wnd = ntohs(th->window) <<
4488 tp->rx_opt.snd_wscale;
4489 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4490 TCP_SKB_CB(skb)->seq);
4492 /* tcp_ack considers this ACK as duplicate
4493 * and does not calculate rtt.
4494 * Fix it at least with timestamps.
4496 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4497 !tp->srtt)
4498 tcp_ack_saw_tstamp(sk, 0);
4500 if (tp->rx_opt.tstamp_ok)
4501 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4503 /* Make sure socket is routed, for
4504 * correct metrics.
4506 icsk->icsk_af_ops->rebuild_header(sk);
4508 tcp_init_metrics(sk);
4510 tcp_init_congestion_control(sk);
4512 /* Prevent spurious tcp_cwnd_restart() on
4513 * first data packet.
4515 tp->lsndtime = tcp_time_stamp;
4517 tcp_mtup_init(sk);
4518 tcp_initialize_rcv_mss(sk);
4519 tcp_init_buffer_space(sk);
4520 tcp_fast_path_on(tp);
4521 } else {
4522 return 1;
4524 break;
4526 case TCP_FIN_WAIT1:
4527 if (tp->snd_una == tp->write_seq) {
4528 tcp_set_state(sk, TCP_FIN_WAIT2);
4529 sk->sk_shutdown |= SEND_SHUTDOWN;
4530 dst_confirm(sk->sk_dst_cache);
4532 if (!sock_flag(sk, SOCK_DEAD))
4533 /* Wake up lingering close() */
4534 sk->sk_state_change(sk);
4535 else {
4536 int tmo;
4538 if (tp->linger2 < 0 ||
4539 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4540 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4541 tcp_done(sk);
4542 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4543 return 1;
4546 tmo = tcp_fin_time(sk);
4547 if (tmo > TCP_TIMEWAIT_LEN) {
4548 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4549 } else if (th->fin || sock_owned_by_user(sk)) {
4550 /* Bad case. We could lose such FIN otherwise.
4551 * It is not a big problem, but it looks confusing
4552 * and not so rare event. We still can lose it now,
4553 * if it spins in bh_lock_sock(), but it is really
4554 * marginal case.
4556 inet_csk_reset_keepalive_timer(sk, tmo);
4557 } else {
4558 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4559 goto discard;
4563 break;
4565 case TCP_CLOSING:
4566 if (tp->snd_una == tp->write_seq) {
4567 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4568 goto discard;
4570 break;
4572 case TCP_LAST_ACK:
4573 if (tp->snd_una == tp->write_seq) {
4574 tcp_update_metrics(sk);
4575 tcp_done(sk);
4576 goto discard;
4578 break;
4580 } else
4581 goto discard;
4583 /* step 6: check the URG bit */
4584 tcp_urg(sk, skb, th);
4586 /* step 7: process the segment text */
4587 switch (sk->sk_state) {
4588 case TCP_CLOSE_WAIT:
4589 case TCP_CLOSING:
4590 case TCP_LAST_ACK:
4591 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4592 break;
4593 case TCP_FIN_WAIT1:
4594 case TCP_FIN_WAIT2:
4595 /* RFC 793 says to queue data in these states,
4596 * RFC 1122 says we MUST send a reset.
4597 * BSD 4.4 also does reset.
4599 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4600 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4601 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4602 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4603 tcp_reset(sk);
4604 return 1;
4607 /* Fall through */
4608 case TCP_ESTABLISHED:
4609 tcp_data_queue(sk, skb);
4610 queued = 1;
4611 break;
4614 /* tcp_data could move socket to TIME-WAIT */
4615 if (sk->sk_state != TCP_CLOSE) {
4616 tcp_data_snd_check(sk, tp);
4617 tcp_ack_snd_check(sk);
4620 if (!queued) {
4621 discard:
4622 __kfree_skb(skb);
4624 return 0;
4627 EXPORT_SYMBOL(sysctl_tcp_ecn);
4628 EXPORT_SYMBOL(sysctl_tcp_reordering);
4629 EXPORT_SYMBOL(tcp_parse_options);
4630 EXPORT_SYMBOL(tcp_rcv_established);
4631 EXPORT_SYMBOL(tcp_rcv_state_process);
4632 EXPORT_SYMBOL(tcp_initialize_rcv_mss);