2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps
= 1;
77 int sysctl_tcp_window_scaling
= 1;
78 int sysctl_tcp_sack
= 1;
79 int sysctl_tcp_fack
= 1;
80 int sysctl_tcp_reordering
= TCP_FASTRETRANS_THRESH
;
82 int sysctl_tcp_dsack
= 1;
83 int sysctl_tcp_app_win
= 31;
84 int sysctl_tcp_adv_win_scale
= 2;
86 int sysctl_tcp_stdurg
;
87 int sysctl_tcp_rfc1337
;
88 int sysctl_tcp_max_orphans
= NR_FILE
;
90 int sysctl_tcp_nometrics_save
;
92 int sysctl_tcp_moderate_rcvbuf
= 1;
93 int sysctl_tcp_abc
= 1;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
111 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
112 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 /* Adapt the MSS value used to make delayed ack decision to the
119 static void tcp_measure_rcv_mss(struct sock
*sk
,
120 const struct sk_buff
*skb
)
122 struct inet_connection_sock
*icsk
= inet_csk(sk
);
123 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
126 icsk
->icsk_ack
.last_seg_size
= 0;
128 /* skb->len may jitter because of SACKs, even if peer
129 * sends good full-sized frames.
132 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
133 icsk
->icsk_ack
.rcv_mss
= len
;
135 /* Otherwise, we make more careful check taking into account,
136 * that SACKs block is variable.
138 * "len" is invariant segment length, including TCP header.
140 len
+= skb
->data
- skb
->h
.raw
;
141 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
142 /* If PSH is not set, packet should be
143 * full sized, provided peer TCP is not badly broken.
144 * This observation (if it is correct 8)) allows
145 * to handle super-low mtu links fairly.
147 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
148 !(tcp_flag_word(skb
->h
.th
)&TCP_REMNANT
))) {
149 /* Subtract also invariant (if peer is RFC compliant),
150 * tcp header plus fixed timestamp option length.
151 * Resulting "len" is MSS free of SACK jitter.
153 len
-= tcp_sk(sk
)->tcp_header_len
;
154 icsk
->icsk_ack
.last_seg_size
= len
;
156 icsk
->icsk_ack
.rcv_mss
= len
;
160 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
164 static void tcp_incr_quickack(struct sock
*sk
)
166 struct inet_connection_sock
*icsk
= inet_csk(sk
);
167 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
171 if (quickacks
> icsk
->icsk_ack
.quick
)
172 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
175 void tcp_enter_quickack_mode(struct sock
*sk
)
177 struct inet_connection_sock
*icsk
= inet_csk(sk
);
178 tcp_incr_quickack(sk
);
179 icsk
->icsk_ack
.pingpong
= 0;
180 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
183 /* Send ACKs quickly, if "quick" count is not exhausted
184 * and the session is not interactive.
187 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
189 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
190 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
193 /* Buffer size and advertised window tuning.
195 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
198 static void tcp_fixup_sndbuf(struct sock
*sk
)
200 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
201 sizeof(struct sk_buff
);
203 if (sk
->sk_sndbuf
< 3 * sndmem
)
204 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
207 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 * All tcp_full_space() is split to two parts: "network" buffer, allocated
210 * forward and advertised in receiver window (tp->rcv_wnd) and
211 * "application buffer", required to isolate scheduling/application
212 * latencies from network.
213 * window_clamp is maximal advertised window. It can be less than
214 * tcp_full_space(), in this case tcp_full_space() - window_clamp
215 * is reserved for "application" buffer. The less window_clamp is
216 * the smoother our behaviour from viewpoint of network, but the lower
217 * throughput and the higher sensitivity of the connection to losses. 8)
219 * rcv_ssthresh is more strict window_clamp used at "slow start"
220 * phase to predict further behaviour of this connection.
221 * It is used for two goals:
222 * - to enforce header prediction at sender, even when application
223 * requires some significant "application buffer". It is check #1.
224 * - to prevent pruning of receive queue because of misprediction
225 * of receiver window. Check #2.
227 * The scheme does not work when sender sends good segments opening
228 * window and then starts to feed us spaghetti. But it should work
229 * in common situations. Otherwise, we have to rely on queue collapsing.
232 /* Slow part of check#2. */
233 static int __tcp_grow_window(const struct sock
*sk
, struct tcp_sock
*tp
,
234 const struct sk_buff
*skb
)
237 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
238 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2])/2;
240 while (tp
->rcv_ssthresh
<= window
) {
241 if (truesize
<= skb
->len
)
242 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
250 static void tcp_grow_window(struct sock
*sk
, struct tcp_sock
*tp
,
254 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
255 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
256 !tcp_memory_pressure
) {
259 /* Check #2. Increase window, if skb with such overhead
260 * will fit to rcvbuf in future.
262 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
265 incr
= __tcp_grow_window(sk
, tp
, skb
);
268 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
269 inet_csk(sk
)->icsk_ack
.quick
|= 1;
274 /* 3. Tuning rcvbuf, when connection enters established state. */
276 static void tcp_fixup_rcvbuf(struct sock
*sk
)
278 struct tcp_sock
*tp
= tcp_sk(sk
);
279 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
281 /* Try to select rcvbuf so that 4 mss-sized segments
282 * will fit to window and corresponding skbs will fit to our rcvbuf.
283 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
287 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
288 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
291 /* 4. Try to fixup all. It is made immediately after connection enters
294 static void tcp_init_buffer_space(struct sock
*sk
)
296 struct tcp_sock
*tp
= tcp_sk(sk
);
299 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
300 tcp_fixup_rcvbuf(sk
);
301 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
302 tcp_fixup_sndbuf(sk
);
304 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
306 maxwin
= tcp_full_space(sk
);
308 if (tp
->window_clamp
>= maxwin
) {
309 tp
->window_clamp
= maxwin
;
311 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
312 tp
->window_clamp
= max(maxwin
-
313 (maxwin
>> sysctl_tcp_app_win
),
317 /* Force reservation of one segment. */
318 if (sysctl_tcp_app_win
&&
319 tp
->window_clamp
> 2 * tp
->advmss
&&
320 tp
->window_clamp
+ tp
->advmss
> maxwin
)
321 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
323 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
324 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
327 /* 5. Recalculate window clamp after socket hit its memory bounds. */
328 static void tcp_clamp_window(struct sock
*sk
, struct tcp_sock
*tp
)
330 struct inet_connection_sock
*icsk
= inet_csk(sk
);
332 icsk
->icsk_ack
.quick
= 0;
334 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
335 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
336 !tcp_memory_pressure
&&
337 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
338 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
341 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
342 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
346 /* Initialize RCV_MSS value.
347 * RCV_MSS is an our guess about MSS used by the peer.
348 * We haven't any direct information about the MSS.
349 * It's better to underestimate the RCV_MSS rather than overestimate.
350 * Overestimations make us ACKing less frequently than needed.
351 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 void tcp_initialize_rcv_mss(struct sock
*sk
)
355 struct tcp_sock
*tp
= tcp_sk(sk
);
356 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
358 hint
= min(hint
, tp
->rcv_wnd
/2);
359 hint
= min(hint
, TCP_MIN_RCVMSS
);
360 hint
= max(hint
, TCP_MIN_MSS
);
362 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
365 /* Receiver "autotuning" code.
367 * The algorithm for RTT estimation w/o timestamps is based on
368 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
369 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 * More detail on this code can be found at
372 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
373 * though this reference is out of date. A new paper
376 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
378 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
384 if (new_sample
!= 0) {
385 /* If we sample in larger samples in the non-timestamp
386 * case, we could grossly overestimate the RTT especially
387 * with chatty applications or bulk transfer apps which
388 * are stalled on filesystem I/O.
390 * Also, since we are only going for a minimum in the
391 * non-timestamp case, we do not smooth things out
392 * else with timestamps disabled convergence takes too
396 m
-= (new_sample
>> 3);
398 } else if (m
< new_sample
)
401 /* No previous measure. */
405 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
406 tp
->rcv_rtt_est
.rtt
= new_sample
;
409 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
411 if (tp
->rcv_rtt_est
.time
== 0)
413 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
415 tcp_rcv_rtt_update(tp
,
416 jiffies
- tp
->rcv_rtt_est
.time
,
420 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
421 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
424 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
, const struct sk_buff
*skb
)
426 struct tcp_sock
*tp
= tcp_sk(sk
);
427 if (tp
->rx_opt
.rcv_tsecr
&&
428 (TCP_SKB_CB(skb
)->end_seq
-
429 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
430 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
434 * This function should be called every time data is copied to user space.
435 * It calculates the appropriate TCP receive buffer space.
437 void tcp_rcv_space_adjust(struct sock
*sk
)
439 struct tcp_sock
*tp
= tcp_sk(sk
);
443 if (tp
->rcvq_space
.time
== 0)
446 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
447 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
448 tp
->rcv_rtt_est
.rtt
== 0)
451 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
453 space
= max(tp
->rcvq_space
.space
, space
);
455 if (tp
->rcvq_space
.space
!= space
) {
458 tp
->rcvq_space
.space
= space
;
460 if (sysctl_tcp_moderate_rcvbuf
&&
461 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
462 int new_clamp
= space
;
464 /* Receive space grows, normalize in order to
465 * take into account packet headers and sk_buff
466 * structure overhead.
471 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
472 16 + sizeof(struct sk_buff
));
473 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
476 space
= min(space
, sysctl_tcp_rmem
[2]);
477 if (space
> sk
->sk_rcvbuf
) {
478 sk
->sk_rcvbuf
= space
;
480 /* Make the window clamp follow along. */
481 tp
->window_clamp
= new_clamp
;
487 tp
->rcvq_space
.seq
= tp
->copied_seq
;
488 tp
->rcvq_space
.time
= tcp_time_stamp
;
491 /* There is something which you must keep in mind when you analyze the
492 * behavior of the tp->ato delayed ack timeout interval. When a
493 * connection starts up, we want to ack as quickly as possible. The
494 * problem is that "good" TCP's do slow start at the beginning of data
495 * transmission. The means that until we send the first few ACK's the
496 * sender will sit on his end and only queue most of his data, because
497 * he can only send snd_cwnd unacked packets at any given time. For
498 * each ACK we send, he increments snd_cwnd and transmits more of his
501 static void tcp_event_data_recv(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
503 struct inet_connection_sock
*icsk
= inet_csk(sk
);
506 inet_csk_schedule_ack(sk
);
508 tcp_measure_rcv_mss(sk
, skb
);
510 tcp_rcv_rtt_measure(tp
);
512 now
= tcp_time_stamp
;
514 if (!icsk
->icsk_ack
.ato
) {
515 /* The _first_ data packet received, initialize
516 * delayed ACK engine.
518 tcp_incr_quickack(sk
);
519 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
521 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
523 if (m
<= TCP_ATO_MIN
/2) {
524 /* The fastest case is the first. */
525 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
526 } else if (m
< icsk
->icsk_ack
.ato
) {
527 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
528 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
529 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
530 } else if (m
> icsk
->icsk_rto
) {
531 /* Too long gap. Apparently sender failed to
532 * restart window, so that we send ACKs quickly.
534 tcp_incr_quickack(sk
);
535 sk_stream_mem_reclaim(sk
);
538 icsk
->icsk_ack
.lrcvtime
= now
;
540 TCP_ECN_check_ce(tp
, skb
);
543 tcp_grow_window(sk
, tp
, skb
);
546 /* Called to compute a smoothed rtt estimate. The data fed to this
547 * routine either comes from timestamps, or from segments that were
548 * known _not_ to have been retransmitted [see Karn/Partridge
549 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
550 * piece by Van Jacobson.
551 * NOTE: the next three routines used to be one big routine.
552 * To save cycles in the RFC 1323 implementation it was better to break
553 * it up into three procedures. -- erics
555 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
557 struct tcp_sock
*tp
= tcp_sk(sk
);
558 long m
= mrtt
; /* RTT */
560 /* The following amusing code comes from Jacobson's
561 * article in SIGCOMM '88. Note that rtt and mdev
562 * are scaled versions of rtt and mean deviation.
563 * This is designed to be as fast as possible
564 * m stands for "measurement".
566 * On a 1990 paper the rto value is changed to:
567 * RTO = rtt + 4 * mdev
569 * Funny. This algorithm seems to be very broken.
570 * These formulae increase RTO, when it should be decreased, increase
571 * too slowly, when it should be increased quickly, decrease too quickly
572 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
573 * does not matter how to _calculate_ it. Seems, it was trap
574 * that VJ failed to avoid. 8)
579 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
580 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
582 m
= -m
; /* m is now abs(error) */
583 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
584 /* This is similar to one of Eifel findings.
585 * Eifel blocks mdev updates when rtt decreases.
586 * This solution is a bit different: we use finer gain
587 * for mdev in this case (alpha*beta).
588 * Like Eifel it also prevents growth of rto,
589 * but also it limits too fast rto decreases,
590 * happening in pure Eifel.
595 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
597 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
598 if (tp
->mdev
> tp
->mdev_max
) {
599 tp
->mdev_max
= tp
->mdev
;
600 if (tp
->mdev_max
> tp
->rttvar
)
601 tp
->rttvar
= tp
->mdev_max
;
603 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
604 if (tp
->mdev_max
< tp
->rttvar
)
605 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
606 tp
->rtt_seq
= tp
->snd_nxt
;
607 tp
->mdev_max
= TCP_RTO_MIN
;
610 /* no previous measure. */
611 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
612 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
613 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
614 tp
->rtt_seq
= tp
->snd_nxt
;
618 /* Calculate rto without backoff. This is the second half of Van Jacobson's
619 * routine referred to above.
621 static inline void tcp_set_rto(struct sock
*sk
)
623 const struct tcp_sock
*tp
= tcp_sk(sk
);
624 /* Old crap is replaced with new one. 8)
627 * 1. If rtt variance happened to be less 50msec, it is hallucination.
628 * It cannot be less due to utterly erratic ACK generation made
629 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
630 * to do with delayed acks, because at cwnd>2 true delack timeout
631 * is invisible. Actually, Linux-2.4 also generates erratic
632 * ACKs in some circumstances.
634 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
636 /* 2. Fixups made earlier cannot be right.
637 * If we do not estimate RTO correctly without them,
638 * all the algo is pure shit and should be replaced
639 * with correct one. It is exactly, which we pretend to do.
643 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
644 * guarantees that rto is higher.
646 static inline void tcp_bound_rto(struct sock
*sk
)
648 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
649 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
652 /* Save metrics learned by this TCP session.
653 This function is called only, when TCP finishes successfully
654 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 void tcp_update_metrics(struct sock
*sk
)
658 struct tcp_sock
*tp
= tcp_sk(sk
);
659 struct dst_entry
*dst
= __sk_dst_get(sk
);
661 if (sysctl_tcp_nometrics_save
)
666 if (dst
&& (dst
->flags
&DST_HOST
)) {
667 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
670 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
671 /* This session failed to estimate rtt. Why?
672 * Probably, no packets returned in time.
675 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
676 dst
->metrics
[RTAX_RTT
-1] = 0;
680 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
682 /* If newly calculated rtt larger than stored one,
683 * store new one. Otherwise, use EWMA. Remember,
684 * rtt overestimation is always better than underestimation.
686 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
688 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
690 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
693 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
697 /* Scale deviation to rttvar fixed point */
702 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
703 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
705 dst
->metrics
[RTAX_RTTVAR
-1] -=
706 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
709 if (tp
->snd_ssthresh
>= 0xFFFF) {
710 /* Slow start still did not finish. */
711 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
712 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
713 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
714 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
715 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
716 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
717 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
718 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
719 icsk
->icsk_ca_state
== TCP_CA_Open
) {
720 /* Cong. avoidance phase, cwnd is reliable. */
721 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
722 dst
->metrics
[RTAX_SSTHRESH
-1] =
723 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
724 if (!dst_metric_locked(dst
, RTAX_CWND
))
725 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
727 /* Else slow start did not finish, cwnd is non-sense,
728 ssthresh may be also invalid.
730 if (!dst_metric_locked(dst
, RTAX_CWND
))
731 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
732 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
733 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
734 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
735 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
738 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
739 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
740 tp
->reordering
!= sysctl_tcp_reordering
)
741 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
746 /* Numbers are taken from RFC2414. */
747 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
749 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
752 if (tp
->mss_cache
> 1460)
755 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
757 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
760 /* Set slow start threshold and cwnd not falling to slow start */
761 void tcp_enter_cwr(struct sock
*sk
)
763 struct tcp_sock
*tp
= tcp_sk(sk
);
765 tp
->prior_ssthresh
= 0;
767 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
769 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
770 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
771 tcp_packets_in_flight(tp
) + 1U);
772 tp
->snd_cwnd_cnt
= 0;
773 tp
->high_seq
= tp
->snd_nxt
;
774 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
775 TCP_ECN_queue_cwr(tp
);
777 tcp_set_ca_state(sk
, TCP_CA_CWR
);
781 /* Initialize metrics on socket. */
783 static void tcp_init_metrics(struct sock
*sk
)
785 struct tcp_sock
*tp
= tcp_sk(sk
);
786 struct dst_entry
*dst
= __sk_dst_get(sk
);
793 if (dst_metric_locked(dst
, RTAX_CWND
))
794 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
795 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
796 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
797 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
798 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
800 if (dst_metric(dst
, RTAX_REORDERING
) &&
801 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
802 tp
->rx_opt
.sack_ok
&= ~2;
803 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
806 if (dst_metric(dst
, RTAX_RTT
) == 0)
809 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
812 /* Initial rtt is determined from SYN,SYN-ACK.
813 * The segment is small and rtt may appear much
814 * less than real one. Use per-dst memory
815 * to make it more realistic.
817 * A bit of theory. RTT is time passed after "normal" sized packet
818 * is sent until it is ACKed. In normal circumstances sending small
819 * packets force peer to delay ACKs and calculation is correct too.
820 * The algorithm is adaptive and, provided we follow specs, it
821 * NEVER underestimate RTT. BUT! If peer tries to make some clever
822 * tricks sort of "quick acks" for time long enough to decrease RTT
823 * to low value, and then abruptly stops to do it and starts to delay
824 * ACKs, wait for troubles.
826 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
827 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
828 tp
->rtt_seq
= tp
->snd_nxt
;
830 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
831 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
832 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
836 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
838 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
839 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
843 /* Play conservative. If timestamps are not
844 * supported, TCP will fail to recalculate correct
845 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
849 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
850 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
854 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
857 struct tcp_sock
*tp
= tcp_sk(sk
);
858 if (metric
> tp
->reordering
) {
859 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
861 /* This exciting event is worth to be remembered. 8) */
863 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
865 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
867 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
869 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
870 #if FASTRETRANS_DEBUG > 1
871 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
872 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
876 tp
->undo_marker
? tp
->undo_retrans
: 0);
878 /* Disable FACK yet. */
879 tp
->rx_opt
.sack_ok
&= ~2;
883 /* This procedure tags the retransmission queue when SACKs arrive.
885 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
886 * Packets in queue with these bits set are counted in variables
887 * sacked_out, retrans_out and lost_out, correspondingly.
889 * Valid combinations are:
890 * Tag InFlight Description
891 * 0 1 - orig segment is in flight.
892 * S 0 - nothing flies, orig reached receiver.
893 * L 0 - nothing flies, orig lost by net.
894 * R 2 - both orig and retransmit are in flight.
895 * L|R 1 - orig is lost, retransmit is in flight.
896 * S|R 1 - orig reached receiver, retrans is still in flight.
897 * (L|S|R is logically valid, it could occur when L|R is sacked,
898 * but it is equivalent to plain S and code short-curcuits it to S.
899 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 * These 6 states form finite state machine, controlled by the following events:
902 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
903 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
904 * 3. Loss detection event of one of three flavors:
905 * A. Scoreboard estimator decided the packet is lost.
906 * A'. Reno "three dupacks" marks head of queue lost.
907 * A''. Its FACK modfication, head until snd.fack is lost.
908 * B. SACK arrives sacking data transmitted after never retransmitted
910 * C. SACK arrives sacking SND.NXT at the moment, when the
911 * segment was retransmitted.
912 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 * It is pleasant to note, that state diagram turns out to be commutative,
915 * so that we are allowed not to be bothered by order of our actions,
916 * when multiple events arrive simultaneously. (see the function below).
918 * Reordering detection.
919 * --------------------
920 * Reordering metric is maximal distance, which a packet can be displaced
921 * in packet stream. With SACKs we can estimate it:
923 * 1. SACK fills old hole and the corresponding segment was not
924 * ever retransmitted -> reordering. Alas, we cannot use it
925 * when segment was retransmitted.
926 * 2. The last flaw is solved with D-SACK. D-SACK arrives
927 * for retransmitted and already SACKed segment -> reordering..
928 * Both of these heuristics are not used in Loss state, when we cannot
929 * account for retransmits accurately.
932 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
934 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
935 struct tcp_sock
*tp
= tcp_sk(sk
);
936 unsigned char *ptr
= ack_skb
->h
.raw
+ TCP_SKB_CB(ack_skb
)->sacked
;
937 struct tcp_sack_block
*sp
= (struct tcp_sack_block
*)(ptr
+2);
938 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
939 int reord
= tp
->packets_out
;
941 u32 lost_retrans
= 0;
948 prior_fackets
= tp
->fackets_out
;
951 * if the only SACK change is the increase of the end_seq of
952 * the first block then only apply that SACK block
953 * and use retrans queue hinting otherwise slowpath */
955 for (i
= 0; i
< num_sacks
; i
++) {
956 __u32 start_seq
= ntohl(sp
[i
].start_seq
);
957 __u32 end_seq
= ntohl(sp
[i
].end_seq
);
960 if (tp
->recv_sack_cache
[i
].start_seq
!= start_seq
)
963 if ((tp
->recv_sack_cache
[i
].start_seq
!= start_seq
) ||
964 (tp
->recv_sack_cache
[i
].end_seq
!= end_seq
))
967 tp
->recv_sack_cache
[i
].start_seq
= start_seq
;
968 tp
->recv_sack_cache
[i
].end_seq
= end_seq
;
970 /* Check for D-SACK. */
972 u32 ack
= TCP_SKB_CB(ack_skb
)->ack_seq
;
974 if (before(start_seq
, ack
)) {
976 tp
->rx_opt
.sack_ok
|= 4;
977 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
978 } else if (num_sacks
> 1 &&
979 !after(end_seq
, ntohl(sp
[1].end_seq
)) &&
980 !before(start_seq
, ntohl(sp
[1].start_seq
))) {
982 tp
->rx_opt
.sack_ok
|= 4;
983 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
986 /* D-SACK for already forgotten data...
987 * Do dumb counting. */
989 !after(end_seq
, prior_snd_una
) &&
990 after(end_seq
, tp
->undo_marker
))
993 /* Eliminate too old ACKs, but take into
994 * account more or less fresh ones, they can
995 * contain valid SACK info.
997 if (before(ack
, prior_snd_una
- tp
->max_window
))
1006 tp
->fastpath_skb_hint
= NULL
;
1008 /* order SACK blocks to allow in order walk of the retrans queue */
1009 for (i
= num_sacks
-1; i
> 0; i
--) {
1010 for (j
= 0; j
< i
; j
++){
1011 if (after(ntohl(sp
[j
].start_seq
),
1012 ntohl(sp
[j
+1].start_seq
))){
1013 sp
[j
].start_seq
= htonl(tp
->recv_sack_cache
[j
+1].start_seq
);
1014 sp
[j
].end_seq
= htonl(tp
->recv_sack_cache
[j
+1].end_seq
);
1015 sp
[j
+1].start_seq
= htonl(tp
->recv_sack_cache
[j
].start_seq
);
1016 sp
[j
+1].end_seq
= htonl(tp
->recv_sack_cache
[j
].end_seq
);
1023 /* clear flag as used for different purpose in following code */
1026 for (i
=0; i
<num_sacks
; i
++, sp
++) {
1027 struct sk_buff
*skb
;
1028 __u32 start_seq
= ntohl(sp
->start_seq
);
1029 __u32 end_seq
= ntohl(sp
->end_seq
);
1032 /* Use SACK fastpath hint if valid */
1033 if (tp
->fastpath_skb_hint
) {
1034 skb
= tp
->fastpath_skb_hint
;
1035 fack_count
= tp
->fastpath_cnt_hint
;
1037 skb
= sk
->sk_write_queue
.next
;
1041 /* Event "B" in the comment above. */
1042 if (after(end_seq
, tp
->high_seq
))
1043 flag
|= FLAG_DATA_LOST
;
1045 sk_stream_for_retrans_queue_from(skb
, sk
) {
1046 int in_sack
, pcount
;
1049 tp
->fastpath_skb_hint
= skb
;
1050 tp
->fastpath_cnt_hint
= fack_count
;
1052 /* The retransmission queue is always in order, so
1053 * we can short-circuit the walk early.
1055 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1058 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1059 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1061 pcount
= tcp_skb_pcount(skb
);
1063 if (pcount
> 1 && !in_sack
&&
1064 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1065 unsigned int pkt_len
;
1067 in_sack
= !after(start_seq
,
1068 TCP_SKB_CB(skb
)->seq
);
1071 pkt_len
= (start_seq
-
1072 TCP_SKB_CB(skb
)->seq
);
1074 pkt_len
= (end_seq
-
1075 TCP_SKB_CB(skb
)->seq
);
1076 if (tcp_fragment(sk
, skb
, pkt_len
, skb_shinfo(skb
)->tso_size
))
1078 pcount
= tcp_skb_pcount(skb
);
1081 fack_count
+= pcount
;
1083 sacked
= TCP_SKB_CB(skb
)->sacked
;
1085 /* Account D-SACK for retransmitted packet. */
1086 if ((dup_sack
&& in_sack
) &&
1087 (sacked
& TCPCB_RETRANS
) &&
1088 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1091 /* The frame is ACKed. */
1092 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
)) {
1093 if (sacked
&TCPCB_RETRANS
) {
1094 if ((dup_sack
&& in_sack
) &&
1095 (sacked
&TCPCB_SACKED_ACKED
))
1096 reord
= min(fack_count
, reord
);
1098 /* If it was in a hole, we detected reordering. */
1099 if (fack_count
< prior_fackets
&&
1100 !(sacked
&TCPCB_SACKED_ACKED
))
1101 reord
= min(fack_count
, reord
);
1104 /* Nothing to do; acked frame is about to be dropped. */
1108 if ((sacked
&TCPCB_SACKED_RETRANS
) &&
1109 after(end_seq
, TCP_SKB_CB(skb
)->ack_seq
) &&
1110 (!lost_retrans
|| after(end_seq
, lost_retrans
)))
1111 lost_retrans
= end_seq
;
1116 if (!(sacked
&TCPCB_SACKED_ACKED
)) {
1117 if (sacked
& TCPCB_SACKED_RETRANS
) {
1118 /* If the segment is not tagged as lost,
1119 * we do not clear RETRANS, believing
1120 * that retransmission is still in flight.
1122 if (sacked
& TCPCB_LOST
) {
1123 TCP_SKB_CB(skb
)->sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1124 tp
->lost_out
-= tcp_skb_pcount(skb
);
1125 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1127 /* clear lost hint */
1128 tp
->retransmit_skb_hint
= NULL
;
1131 /* New sack for not retransmitted frame,
1132 * which was in hole. It is reordering.
1134 if (!(sacked
& TCPCB_RETRANS
) &&
1135 fack_count
< prior_fackets
)
1136 reord
= min(fack_count
, reord
);
1138 if (sacked
& TCPCB_LOST
) {
1139 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1140 tp
->lost_out
-= tcp_skb_pcount(skb
);
1142 /* clear lost hint */
1143 tp
->retransmit_skb_hint
= NULL
;
1147 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1148 flag
|= FLAG_DATA_SACKED
;
1149 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1151 if (fack_count
> tp
->fackets_out
)
1152 tp
->fackets_out
= fack_count
;
1154 if (dup_sack
&& (sacked
&TCPCB_RETRANS
))
1155 reord
= min(fack_count
, reord
);
1158 /* D-SACK. We can detect redundant retransmission
1159 * in S|R and plain R frames and clear it.
1160 * undo_retrans is decreased above, L|R frames
1161 * are accounted above as well.
1164 (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
)) {
1165 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1166 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1167 tp
->retransmit_skb_hint
= NULL
;
1172 /* Check for lost retransmit. This superb idea is
1173 * borrowed from "ratehalving". Event "C".
1174 * Later note: FACK people cheated me again 8),
1175 * we have to account for reordering! Ugly,
1178 if (lost_retrans
&& icsk
->icsk_ca_state
== TCP_CA_Recovery
) {
1179 struct sk_buff
*skb
;
1181 sk_stream_for_retrans_queue(skb
, sk
) {
1182 if (after(TCP_SKB_CB(skb
)->seq
, lost_retrans
))
1184 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1186 if ((TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) &&
1187 after(lost_retrans
, TCP_SKB_CB(skb
)->ack_seq
) &&
1189 !before(lost_retrans
,
1190 TCP_SKB_CB(skb
)->ack_seq
+ tp
->reordering
*
1192 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1193 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1195 /* clear lost hint */
1196 tp
->retransmit_skb_hint
= NULL
;
1198 if (!(TCP_SKB_CB(skb
)->sacked
&(TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1199 tp
->lost_out
+= tcp_skb_pcount(skb
);
1200 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1201 flag
|= FLAG_DATA_SACKED
;
1202 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1208 tp
->left_out
= tp
->sacked_out
+ tp
->lost_out
;
1210 if ((reord
< tp
->fackets_out
) && icsk
->icsk_ca_state
!= TCP_CA_Loss
)
1211 tcp_update_reordering(sk
, ((tp
->fackets_out
+ 1) - reord
), 0);
1213 #if FASTRETRANS_DEBUG > 0
1214 BUG_TRAP((int)tp
->sacked_out
>= 0);
1215 BUG_TRAP((int)tp
->lost_out
>= 0);
1216 BUG_TRAP((int)tp
->retrans_out
>= 0);
1217 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1222 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1223 * segments to see from the next ACKs whether any data was really missing.
1224 * If the RTO was spurious, new ACKs should arrive.
1226 void tcp_enter_frto(struct sock
*sk
)
1228 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1229 struct tcp_sock
*tp
= tcp_sk(sk
);
1230 struct sk_buff
*skb
;
1232 tp
->frto_counter
= 1;
1234 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1235 tp
->snd_una
== tp
->high_seq
||
1236 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1237 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1238 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1239 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1242 /* Have to clear retransmission markers here to keep the bookkeeping
1243 * in shape, even though we are not yet in Loss state.
1244 * If something was really lost, it is eventually caught up
1245 * in tcp_enter_frto_loss.
1247 tp
->retrans_out
= 0;
1248 tp
->undo_marker
= tp
->snd_una
;
1249 tp
->undo_retrans
= 0;
1251 sk_stream_for_retrans_queue(skb
, sk
) {
1252 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_RETRANS
;
1254 tcp_sync_left_out(tp
);
1256 tcp_set_ca_state(sk
, TCP_CA_Open
);
1257 tp
->frto_highmark
= tp
->snd_nxt
;
1260 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1261 * which indicates that we should follow the traditional RTO recovery,
1262 * i.e. mark everything lost and do go-back-N retransmission.
1264 static void tcp_enter_frto_loss(struct sock
*sk
)
1266 struct tcp_sock
*tp
= tcp_sk(sk
);
1267 struct sk_buff
*skb
;
1272 tp
->fackets_out
= 0;
1274 sk_stream_for_retrans_queue(skb
, sk
) {
1275 cnt
+= tcp_skb_pcount(skb
);
1276 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1277 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1279 /* Do not mark those segments lost that were
1280 * forward transmitted after RTO
1282 if (!after(TCP_SKB_CB(skb
)->end_seq
,
1283 tp
->frto_highmark
)) {
1284 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1285 tp
->lost_out
+= tcp_skb_pcount(skb
);
1288 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1289 tp
->fackets_out
= cnt
;
1292 tcp_sync_left_out(tp
);
1294 tp
->snd_cwnd
= tp
->frto_counter
+ tcp_packets_in_flight(tp
)+1;
1295 tp
->snd_cwnd_cnt
= 0;
1296 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1297 tp
->undo_marker
= 0;
1298 tp
->frto_counter
= 0;
1300 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1301 sysctl_tcp_reordering
);
1302 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1303 tp
->high_seq
= tp
->frto_highmark
;
1304 TCP_ECN_queue_cwr(tp
);
1306 clear_all_retrans_hints(tp
);
1309 void tcp_clear_retrans(struct tcp_sock
*tp
)
1312 tp
->retrans_out
= 0;
1314 tp
->fackets_out
= 0;
1318 tp
->undo_marker
= 0;
1319 tp
->undo_retrans
= 0;
1322 /* Enter Loss state. If "how" is not zero, forget all SACK information
1323 * and reset tags completely, otherwise preserve SACKs. If receiver
1324 * dropped its ofo queue, we will know this due to reneging detection.
1326 void tcp_enter_loss(struct sock
*sk
, int how
)
1328 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1329 struct tcp_sock
*tp
= tcp_sk(sk
);
1330 struct sk_buff
*skb
;
1333 /* Reduce ssthresh if it has not yet been made inside this window. */
1334 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1335 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1336 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1337 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1338 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1341 tp
->snd_cwnd_cnt
= 0;
1342 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1344 tp
->bytes_acked
= 0;
1345 tcp_clear_retrans(tp
);
1347 /* Push undo marker, if it was plain RTO and nothing
1348 * was retransmitted. */
1350 tp
->undo_marker
= tp
->snd_una
;
1352 sk_stream_for_retrans_queue(skb
, sk
) {
1353 cnt
+= tcp_skb_pcount(skb
);
1354 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1355 tp
->undo_marker
= 0;
1356 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1357 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1358 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1359 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1360 tp
->lost_out
+= tcp_skb_pcount(skb
);
1362 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1363 tp
->fackets_out
= cnt
;
1366 tcp_sync_left_out(tp
);
1368 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1369 sysctl_tcp_reordering
);
1370 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1371 tp
->high_seq
= tp
->snd_nxt
;
1372 TCP_ECN_queue_cwr(tp
);
1374 clear_all_retrans_hints(tp
);
1377 static int tcp_check_sack_reneging(struct sock
*sk
)
1379 struct sk_buff
*skb
;
1381 /* If ACK arrived pointing to a remembered SACK,
1382 * it means that our remembered SACKs do not reflect
1383 * real state of receiver i.e.
1384 * receiver _host_ is heavily congested (or buggy).
1385 * Do processing similar to RTO timeout.
1387 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
&&
1388 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1390 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1392 tcp_enter_loss(sk
, 1);
1393 icsk
->icsk_retransmits
++;
1394 tcp_retransmit_skb(sk
, skb_peek(&sk
->sk_write_queue
));
1395 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1396 icsk
->icsk_rto
, TCP_RTO_MAX
);
1402 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1404 return IsReno(tp
) ? tp
->sacked_out
+1 : tp
->fackets_out
;
1407 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
1409 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
1412 static inline int tcp_head_timedout(struct sock
*sk
, struct tcp_sock
*tp
)
1414 return tp
->packets_out
&&
1415 tcp_skb_timedout(sk
, skb_peek(&sk
->sk_write_queue
));
1418 /* Linux NewReno/SACK/FACK/ECN state machine.
1419 * --------------------------------------
1421 * "Open" Normal state, no dubious events, fast path.
1422 * "Disorder" In all the respects it is "Open",
1423 * but requires a bit more attention. It is entered when
1424 * we see some SACKs or dupacks. It is split of "Open"
1425 * mainly to move some processing from fast path to slow one.
1426 * "CWR" CWND was reduced due to some Congestion Notification event.
1427 * It can be ECN, ICMP source quench, local device congestion.
1428 * "Recovery" CWND was reduced, we are fast-retransmitting.
1429 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1431 * tcp_fastretrans_alert() is entered:
1432 * - each incoming ACK, if state is not "Open"
1433 * - when arrived ACK is unusual, namely:
1438 * Counting packets in flight is pretty simple.
1440 * in_flight = packets_out - left_out + retrans_out
1442 * packets_out is SND.NXT-SND.UNA counted in packets.
1444 * retrans_out is number of retransmitted segments.
1446 * left_out is number of segments left network, but not ACKed yet.
1448 * left_out = sacked_out + lost_out
1450 * sacked_out: Packets, which arrived to receiver out of order
1451 * and hence not ACKed. With SACKs this number is simply
1452 * amount of SACKed data. Even without SACKs
1453 * it is easy to give pretty reliable estimate of this number,
1454 * counting duplicate ACKs.
1456 * lost_out: Packets lost by network. TCP has no explicit
1457 * "loss notification" feedback from network (for now).
1458 * It means that this number can be only _guessed_.
1459 * Actually, it is the heuristics to predict lossage that
1460 * distinguishes different algorithms.
1462 * F.e. after RTO, when all the queue is considered as lost,
1463 * lost_out = packets_out and in_flight = retrans_out.
1465 * Essentially, we have now two algorithms counting
1468 * FACK: It is the simplest heuristics. As soon as we decided
1469 * that something is lost, we decide that _all_ not SACKed
1470 * packets until the most forward SACK are lost. I.e.
1471 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1472 * It is absolutely correct estimate, if network does not reorder
1473 * packets. And it loses any connection to reality when reordering
1474 * takes place. We use FACK by default until reordering
1475 * is suspected on the path to this destination.
1477 * NewReno: when Recovery is entered, we assume that one segment
1478 * is lost (classic Reno). While we are in Recovery and
1479 * a partial ACK arrives, we assume that one more packet
1480 * is lost (NewReno). This heuristics are the same in NewReno
1483 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1484 * deflation etc. CWND is real congestion window, never inflated, changes
1485 * only according to classic VJ rules.
1487 * Really tricky (and requiring careful tuning) part of algorithm
1488 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1489 * The first determines the moment _when_ we should reduce CWND and,
1490 * hence, slow down forward transmission. In fact, it determines the moment
1491 * when we decide that hole is caused by loss, rather than by a reorder.
1493 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1494 * holes, caused by lost packets.
1496 * And the most logically complicated part of algorithm is undo
1497 * heuristics. We detect false retransmits due to both too early
1498 * fast retransmit (reordering) and underestimated RTO, analyzing
1499 * timestamps and D-SACKs. When we detect that some segments were
1500 * retransmitted by mistake and CWND reduction was wrong, we undo
1501 * window reduction and abort recovery phase. This logic is hidden
1502 * inside several functions named tcp_try_undo_<something>.
1505 /* This function decides, when we should leave Disordered state
1506 * and enter Recovery phase, reducing congestion window.
1508 * Main question: may we further continue forward transmission
1509 * with the same cwnd?
1511 static int tcp_time_to_recover(struct sock
*sk
, struct tcp_sock
*tp
)
1515 /* Trick#1: The loss is proven. */
1519 /* Not-A-Trick#2 : Classic rule... */
1520 if (tcp_fackets_out(tp
) > tp
->reordering
)
1523 /* Trick#3 : when we use RFC2988 timer restart, fast
1524 * retransmit can be triggered by timeout of queue head.
1526 if (tcp_head_timedout(sk
, tp
))
1529 /* Trick#4: It is still not OK... But will it be useful to delay
1532 packets_out
= tp
->packets_out
;
1533 if (packets_out
<= tp
->reordering
&&
1534 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
1535 !tcp_may_send_now(sk
, tp
)) {
1536 /* We have nothing to send. This connection is limited
1537 * either by receiver window or by application.
1545 /* If we receive more dupacks than we expected counting segments
1546 * in assumption of absent reordering, interpret this as reordering.
1547 * The only another reason could be bug in receiver TCP.
1549 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1551 struct tcp_sock
*tp
= tcp_sk(sk
);
1554 holes
= max(tp
->lost_out
, 1U);
1555 holes
= min(holes
, tp
->packets_out
);
1557 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1558 tp
->sacked_out
= tp
->packets_out
- holes
;
1559 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1563 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1565 static void tcp_add_reno_sack(struct sock
*sk
)
1567 struct tcp_sock
*tp
= tcp_sk(sk
);
1569 tcp_check_reno_reordering(sk
, 0);
1570 tcp_sync_left_out(tp
);
1573 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1575 static void tcp_remove_reno_sacks(struct sock
*sk
, struct tcp_sock
*tp
, int acked
)
1578 /* One ACK acked hole. The rest eat duplicate ACKs. */
1579 if (acked
-1 >= tp
->sacked_out
)
1582 tp
->sacked_out
-= acked
-1;
1584 tcp_check_reno_reordering(sk
, acked
);
1585 tcp_sync_left_out(tp
);
1588 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1591 tp
->left_out
= tp
->lost_out
;
1594 /* Mark head of queue up as lost. */
1595 static void tcp_mark_head_lost(struct sock
*sk
, struct tcp_sock
*tp
,
1596 int packets
, u32 high_seq
)
1598 struct sk_buff
*skb
;
1601 BUG_TRAP(packets
<= tp
->packets_out
);
1602 if (tp
->lost_skb_hint
) {
1603 skb
= tp
->lost_skb_hint
;
1604 cnt
= tp
->lost_cnt_hint
;
1606 skb
= sk
->sk_write_queue
.next
;
1610 sk_stream_for_retrans_queue_from(skb
, sk
) {
1611 /* TODO: do this better */
1612 /* this is not the most efficient way to do this... */
1613 tp
->lost_skb_hint
= skb
;
1614 tp
->lost_cnt_hint
= cnt
;
1615 cnt
+= tcp_skb_pcount(skb
);
1616 if (cnt
> packets
|| after(TCP_SKB_CB(skb
)->end_seq
, high_seq
))
1618 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1619 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1620 tp
->lost_out
+= tcp_skb_pcount(skb
);
1622 /* clear xmit_retransmit_queue hints
1623 * if this is beyond hint */
1624 if(tp
->retransmit_skb_hint
!= NULL
&&
1625 before(TCP_SKB_CB(skb
)->seq
,
1626 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
)) {
1628 tp
->retransmit_skb_hint
= NULL
;
1632 tcp_sync_left_out(tp
);
1635 /* Account newly detected lost packet(s) */
1637 static void tcp_update_scoreboard(struct sock
*sk
, struct tcp_sock
*tp
)
1640 int lost
= tp
->fackets_out
- tp
->reordering
;
1643 tcp_mark_head_lost(sk
, tp
, lost
, tp
->high_seq
);
1645 tcp_mark_head_lost(sk
, tp
, 1, tp
->high_seq
);
1648 /* New heuristics: it is possible only after we switched
1649 * to restart timer each time when something is ACKed.
1650 * Hence, we can detect timed out packets during fast
1651 * retransmit without falling to slow start.
1653 if (!IsReno(tp
) && tcp_head_timedout(sk
, tp
)) {
1654 struct sk_buff
*skb
;
1656 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
1657 : sk
->sk_write_queue
.next
;
1659 sk_stream_for_retrans_queue_from(skb
, sk
) {
1660 if (!tcp_skb_timedout(sk
, skb
))
1663 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1664 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1665 tp
->lost_out
+= tcp_skb_pcount(skb
);
1667 /* clear xmit_retrans hint */
1668 if (tp
->retransmit_skb_hint
&&
1669 before(TCP_SKB_CB(skb
)->seq
,
1670 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
1672 tp
->retransmit_skb_hint
= NULL
;
1676 tp
->scoreboard_skb_hint
= skb
;
1678 tcp_sync_left_out(tp
);
1682 /* CWND moderation, preventing bursts due to too big ACKs
1683 * in dubious situations.
1685 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
1687 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
1688 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
1689 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1692 /* Lower bound on congestion window is slow start threshold
1693 * unless congestion avoidance choice decides to overide it.
1695 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
1697 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1699 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
1702 /* Decrease cwnd each second ack. */
1703 static void tcp_cwnd_down(struct sock
*sk
)
1705 struct tcp_sock
*tp
= tcp_sk(sk
);
1706 int decr
= tp
->snd_cwnd_cnt
+ 1;
1708 tp
->snd_cwnd_cnt
= decr
&1;
1711 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
1712 tp
->snd_cwnd
-= decr
;
1714 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
1715 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1718 /* Nothing was retransmitted or returned timestamp is less
1719 * than timestamp of the first retransmission.
1721 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
1723 return !tp
->retrans_stamp
||
1724 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
1725 (__s32
)(tp
->rx_opt
.rcv_tsecr
- tp
->retrans_stamp
) < 0);
1728 /* Undo procedures. */
1730 #if FASTRETRANS_DEBUG > 1
1731 static void DBGUNDO(struct sock
*sk
, struct tcp_sock
*tp
, const char *msg
)
1733 struct inet_sock
*inet
= inet_sk(sk
);
1734 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1736 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
1737 tp
->snd_cwnd
, tp
->left_out
,
1738 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
1742 #define DBGUNDO(x...) do { } while (0)
1745 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
1747 struct tcp_sock
*tp
= tcp_sk(sk
);
1749 if (tp
->prior_ssthresh
) {
1750 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1752 if (icsk
->icsk_ca_ops
->undo_cwnd
)
1753 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
1755 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
1757 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
1758 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
1759 TCP_ECN_withdraw_cwr(tp
);
1762 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1764 tcp_moderate_cwnd(tp
);
1765 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1767 /* There is something screwy going on with the retrans hints after
1769 clear_all_retrans_hints(tp
);
1772 static inline int tcp_may_undo(struct tcp_sock
*tp
)
1774 return tp
->undo_marker
&&
1775 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
1778 /* People celebrate: "We love our President!" */
1779 static int tcp_try_undo_recovery(struct sock
*sk
, struct tcp_sock
*tp
)
1781 if (tcp_may_undo(tp
)) {
1782 /* Happy end! We did not retransmit anything
1783 * or our original transmission succeeded.
1785 DBGUNDO(sk
, tp
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
1786 tcp_undo_cwr(sk
, 1);
1787 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
1788 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1790 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
1791 tp
->undo_marker
= 0;
1793 if (tp
->snd_una
== tp
->high_seq
&& IsReno(tp
)) {
1794 /* Hold old state until something *above* high_seq
1795 * is ACKed. For Reno it is MUST to prevent false
1796 * fast retransmits (RFC2582). SACK TCP is safe. */
1797 tcp_moderate_cwnd(tp
);
1800 tcp_set_ca_state(sk
, TCP_CA_Open
);
1804 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1805 static void tcp_try_undo_dsack(struct sock
*sk
, struct tcp_sock
*tp
)
1807 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
1808 DBGUNDO(sk
, tp
, "D-SACK");
1809 tcp_undo_cwr(sk
, 1);
1810 tp
->undo_marker
= 0;
1811 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
1815 /* Undo during fast recovery after partial ACK. */
1817 static int tcp_try_undo_partial(struct sock
*sk
, struct tcp_sock
*tp
,
1820 /* Partial ACK arrived. Force Hoe's retransmit. */
1821 int failed
= IsReno(tp
) || tp
->fackets_out
>tp
->reordering
;
1823 if (tcp_may_undo(tp
)) {
1824 /* Plain luck! Hole if filled with delayed
1825 * packet, rather than with a retransmit.
1827 if (tp
->retrans_out
== 0)
1828 tp
->retrans_stamp
= 0;
1830 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
1832 DBGUNDO(sk
, tp
, "Hoe");
1833 tcp_undo_cwr(sk
, 0);
1834 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
1836 /* So... Do not make Hoe's retransmit yet.
1837 * If the first packet was delayed, the rest
1838 * ones are most probably delayed as well.
1845 /* Undo during loss recovery after partial ACK. */
1846 static int tcp_try_undo_loss(struct sock
*sk
, struct tcp_sock
*tp
)
1848 if (tcp_may_undo(tp
)) {
1849 struct sk_buff
*skb
;
1850 sk_stream_for_retrans_queue(skb
, sk
) {
1851 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1854 clear_all_retrans_hints(tp
);
1856 DBGUNDO(sk
, tp
, "partial loss");
1858 tp
->left_out
= tp
->sacked_out
;
1859 tcp_undo_cwr(sk
, 1);
1860 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1861 inet_csk(sk
)->icsk_retransmits
= 0;
1862 tp
->undo_marker
= 0;
1864 tcp_set_ca_state(sk
, TCP_CA_Open
);
1870 static inline void tcp_complete_cwr(struct sock
*sk
)
1872 struct tcp_sock
*tp
= tcp_sk(sk
);
1873 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1874 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1875 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
1878 static void tcp_try_to_open(struct sock
*sk
, struct tcp_sock
*tp
, int flag
)
1880 tp
->left_out
= tp
->sacked_out
;
1882 if (tp
->retrans_out
== 0)
1883 tp
->retrans_stamp
= 0;
1888 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
1889 int state
= TCP_CA_Open
;
1891 if (tp
->left_out
|| tp
->retrans_out
|| tp
->undo_marker
)
1892 state
= TCP_CA_Disorder
;
1894 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
1895 tcp_set_ca_state(sk
, state
);
1896 tp
->high_seq
= tp
->snd_nxt
;
1898 tcp_moderate_cwnd(tp
);
1904 static void tcp_mtup_probe_failed(struct sock
*sk
)
1906 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1908 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
1909 icsk
->icsk_mtup
.probe_size
= 0;
1912 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
1914 struct tcp_sock
*tp
= tcp_sk(sk
);
1915 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1917 /* FIXME: breaks with very large cwnd */
1918 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1919 tp
->snd_cwnd
= tp
->snd_cwnd
*
1920 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
1921 icsk
->icsk_mtup
.probe_size
;
1922 tp
->snd_cwnd_cnt
= 0;
1923 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1924 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
1926 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
1927 icsk
->icsk_mtup
.probe_size
= 0;
1928 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
1932 /* Process an event, which can update packets-in-flight not trivially.
1933 * Main goal of this function is to calculate new estimate for left_out,
1934 * taking into account both packets sitting in receiver's buffer and
1935 * packets lost by network.
1937 * Besides that it does CWND reduction, when packet loss is detected
1938 * and changes state of machine.
1940 * It does _not_ decide what to send, it is made in function
1941 * tcp_xmit_retransmit_queue().
1944 tcp_fastretrans_alert(struct sock
*sk
, u32 prior_snd_una
,
1945 int prior_packets
, int flag
)
1947 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1948 struct tcp_sock
*tp
= tcp_sk(sk
);
1949 int is_dupack
= (tp
->snd_una
== prior_snd_una
&& !(flag
&FLAG_NOT_DUP
));
1951 /* Some technical things:
1952 * 1. Reno does not count dupacks (sacked_out) automatically. */
1953 if (!tp
->packets_out
)
1955 /* 2. SACK counts snd_fack in packets inaccurately. */
1956 if (tp
->sacked_out
== 0)
1957 tp
->fackets_out
= 0;
1959 /* Now state machine starts.
1960 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1962 tp
->prior_ssthresh
= 0;
1964 /* B. In all the states check for reneging SACKs. */
1965 if (tp
->sacked_out
&& tcp_check_sack_reneging(sk
))
1968 /* C. Process data loss notification, provided it is valid. */
1969 if ((flag
&FLAG_DATA_LOST
) &&
1970 before(tp
->snd_una
, tp
->high_seq
) &&
1971 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
1972 tp
->fackets_out
> tp
->reordering
) {
1973 tcp_mark_head_lost(sk
, tp
, tp
->fackets_out
-tp
->reordering
, tp
->high_seq
);
1974 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
1977 /* D. Synchronize left_out to current state. */
1978 tcp_sync_left_out(tp
);
1980 /* E. Check state exit conditions. State can be terminated
1981 * when high_seq is ACKed. */
1982 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
1983 if (!sysctl_tcp_frto
)
1984 BUG_TRAP(tp
->retrans_out
== 0);
1985 tp
->retrans_stamp
= 0;
1986 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
1987 switch (icsk
->icsk_ca_state
) {
1989 icsk
->icsk_retransmits
= 0;
1990 if (tcp_try_undo_recovery(sk
, tp
))
1995 /* CWR is to be held something *above* high_seq
1996 * is ACKed for CWR bit to reach receiver. */
1997 if (tp
->snd_una
!= tp
->high_seq
) {
1998 tcp_complete_cwr(sk
);
1999 tcp_set_ca_state(sk
, TCP_CA_Open
);
2003 case TCP_CA_Disorder
:
2004 tcp_try_undo_dsack(sk
, tp
);
2005 if (!tp
->undo_marker
||
2006 /* For SACK case do not Open to allow to undo
2007 * catching for all duplicate ACKs. */
2008 IsReno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2009 tp
->undo_marker
= 0;
2010 tcp_set_ca_state(sk
, TCP_CA_Open
);
2014 case TCP_CA_Recovery
:
2016 tcp_reset_reno_sack(tp
);
2017 if (tcp_try_undo_recovery(sk
, tp
))
2019 tcp_complete_cwr(sk
);
2024 /* F. Process state. */
2025 switch (icsk
->icsk_ca_state
) {
2026 case TCP_CA_Recovery
:
2027 if (prior_snd_una
== tp
->snd_una
) {
2028 if (IsReno(tp
) && is_dupack
)
2029 tcp_add_reno_sack(sk
);
2031 int acked
= prior_packets
- tp
->packets_out
;
2033 tcp_remove_reno_sacks(sk
, tp
, acked
);
2034 is_dupack
= tcp_try_undo_partial(sk
, tp
, acked
);
2038 if (flag
&FLAG_DATA_ACKED
)
2039 icsk
->icsk_retransmits
= 0;
2040 if (!tcp_try_undo_loss(sk
, tp
)) {
2041 tcp_moderate_cwnd(tp
);
2042 tcp_xmit_retransmit_queue(sk
);
2045 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2047 /* Loss is undone; fall through to processing in Open state. */
2050 if (tp
->snd_una
!= prior_snd_una
)
2051 tcp_reset_reno_sack(tp
);
2053 tcp_add_reno_sack(sk
);
2056 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
2057 tcp_try_undo_dsack(sk
, tp
);
2059 if (!tcp_time_to_recover(sk
, tp
)) {
2060 tcp_try_to_open(sk
, tp
, flag
);
2064 /* MTU probe failure: don't reduce cwnd */
2065 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2066 icsk
->icsk_mtup
.probe_size
&&
2067 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2068 tcp_mtup_probe_failed(sk
);
2069 /* Restores the reduction we did in tcp_mtup_probe() */
2071 tcp_simple_retransmit(sk
);
2075 /* Otherwise enter Recovery state */
2078 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
2080 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
2082 tp
->high_seq
= tp
->snd_nxt
;
2083 tp
->prior_ssthresh
= 0;
2084 tp
->undo_marker
= tp
->snd_una
;
2085 tp
->undo_retrans
= tp
->retrans_out
;
2087 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
2088 if (!(flag
&FLAG_ECE
))
2089 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2090 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2091 TCP_ECN_queue_cwr(tp
);
2094 tp
->bytes_acked
= 0;
2095 tp
->snd_cwnd_cnt
= 0;
2096 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2099 if (is_dupack
|| tcp_head_timedout(sk
, tp
))
2100 tcp_update_scoreboard(sk
, tp
);
2102 tcp_xmit_retransmit_queue(sk
);
2105 /* Read draft-ietf-tcplw-high-performance before mucking
2106 * with this code. (Supersedes RFC1323)
2108 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
2110 /* RTTM Rule: A TSecr value received in a segment is used to
2111 * update the averaged RTT measurement only if the segment
2112 * acknowledges some new data, i.e., only if it advances the
2113 * left edge of the send window.
2115 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2116 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2118 * Changed: reset backoff as soon as we see the first valid sample.
2119 * If we do not, we get strongly overestimated rto. With timestamps
2120 * samples are accepted even from very old segments: f.e., when rtt=1
2121 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2122 * answer arrives rto becomes 120 seconds! If at least one of segments
2123 * in window is lost... Voila. --ANK (010210)
2125 struct tcp_sock
*tp
= tcp_sk(sk
);
2126 const __u32 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
2127 tcp_rtt_estimator(sk
, seq_rtt
);
2129 inet_csk(sk
)->icsk_backoff
= 0;
2133 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
2135 /* We don't have a timestamp. Can only use
2136 * packets that are not retransmitted to determine
2137 * rtt estimates. Also, we must not reset the
2138 * backoff for rto until we get a non-retransmitted
2139 * packet. This allows us to deal with a situation
2140 * where the network delay has increased suddenly.
2141 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2144 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2147 tcp_rtt_estimator(sk
, seq_rtt
);
2149 inet_csk(sk
)->icsk_backoff
= 0;
2153 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2156 const struct tcp_sock
*tp
= tcp_sk(sk
);
2157 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2158 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
2159 tcp_ack_saw_tstamp(sk
, flag
);
2160 else if (seq_rtt
>= 0)
2161 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
2164 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 rtt
,
2165 u32 in_flight
, int good
)
2167 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2168 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, rtt
, in_flight
, good
);
2169 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2172 /* Restart timer after forward progress on connection.
2173 * RFC2988 recommends to restart timer to now+rto.
2176 static void tcp_ack_packets_out(struct sock
*sk
, struct tcp_sock
*tp
)
2178 if (!tp
->packets_out
) {
2179 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2181 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2185 static int tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
,
2186 __u32 now
, __s32
*seq_rtt
)
2188 struct tcp_sock
*tp
= tcp_sk(sk
);
2189 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2190 __u32 seq
= tp
->snd_una
;
2191 __u32 packets_acked
;
2194 /* If we get here, the whole TSO packet has not been
2197 BUG_ON(!after(scb
->end_seq
, seq
));
2199 packets_acked
= tcp_skb_pcount(skb
);
2200 if (tcp_trim_head(sk
, skb
, seq
- scb
->seq
))
2202 packets_acked
-= tcp_skb_pcount(skb
);
2204 if (packets_acked
) {
2205 __u8 sacked
= scb
->sacked
;
2207 acked
|= FLAG_DATA_ACKED
;
2209 if (sacked
& TCPCB_RETRANS
) {
2210 if (sacked
& TCPCB_SACKED_RETRANS
)
2211 tp
->retrans_out
-= packets_acked
;
2212 acked
|= FLAG_RETRANS_DATA_ACKED
;
2214 } else if (*seq_rtt
< 0)
2215 *seq_rtt
= now
- scb
->when
;
2216 if (sacked
& TCPCB_SACKED_ACKED
)
2217 tp
->sacked_out
-= packets_acked
;
2218 if (sacked
& TCPCB_LOST
)
2219 tp
->lost_out
-= packets_acked
;
2220 if (sacked
& TCPCB_URG
) {
2222 !before(seq
, tp
->snd_up
))
2225 } else if (*seq_rtt
< 0)
2226 *seq_rtt
= now
- scb
->when
;
2228 if (tp
->fackets_out
) {
2229 __u32 dval
= min(tp
->fackets_out
, packets_acked
);
2230 tp
->fackets_out
-= dval
;
2232 tp
->packets_out
-= packets_acked
;
2234 BUG_ON(tcp_skb_pcount(skb
) == 0);
2235 BUG_ON(!before(scb
->seq
, scb
->end_seq
));
2241 static u32
tcp_usrtt(const struct sk_buff
*skb
)
2243 struct timeval tv
, now
;
2245 do_gettimeofday(&now
);
2246 skb_get_timestamp(skb
, &tv
);
2247 return (now
.tv_sec
- tv
.tv_sec
) * 1000000 + (now
.tv_usec
- tv
.tv_usec
);
2250 /* Remove acknowledged frames from the retransmission queue. */
2251 static int tcp_clean_rtx_queue(struct sock
*sk
, __s32
*seq_rtt_p
)
2253 struct tcp_sock
*tp
= tcp_sk(sk
);
2254 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2255 struct sk_buff
*skb
;
2256 __u32 now
= tcp_time_stamp
;
2260 void (*rtt_sample
)(struct sock
*sk
, u32 usrtt
)
2261 = icsk
->icsk_ca_ops
->rtt_sample
;
2263 while ((skb
= skb_peek(&sk
->sk_write_queue
)) &&
2264 skb
!= sk
->sk_send_head
) {
2265 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2266 __u8 sacked
= scb
->sacked
;
2268 /* If our packet is before the ack sequence we can
2269 * discard it as it's confirmed to have arrived at
2272 if (after(scb
->end_seq
, tp
->snd_una
)) {
2273 if (tcp_skb_pcount(skb
) > 1 &&
2274 after(tp
->snd_una
, scb
->seq
))
2275 acked
|= tcp_tso_acked(sk
, skb
,
2280 /* Initial outgoing SYN's get put onto the write_queue
2281 * just like anything else we transmit. It is not
2282 * true data, and if we misinform our callers that
2283 * this ACK acks real data, we will erroneously exit
2284 * connection startup slow start one packet too
2285 * quickly. This is severely frowned upon behavior.
2287 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2288 acked
|= FLAG_DATA_ACKED
;
2291 acked
|= FLAG_SYN_ACKED
;
2292 tp
->retrans_stamp
= 0;
2295 /* MTU probing checks */
2296 if (icsk
->icsk_mtup
.probe_size
) {
2297 if (!after(tp
->mtu_probe
.probe_seq_end
, TCP_SKB_CB(skb
)->end_seq
)) {
2298 tcp_mtup_probe_success(sk
, skb
);
2303 if (sacked
& TCPCB_RETRANS
) {
2304 if(sacked
& TCPCB_SACKED_RETRANS
)
2305 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2306 acked
|= FLAG_RETRANS_DATA_ACKED
;
2308 } else if (seq_rtt
< 0) {
2309 seq_rtt
= now
- scb
->when
;
2311 (*rtt_sample
)(sk
, tcp_usrtt(skb
));
2313 if (sacked
& TCPCB_SACKED_ACKED
)
2314 tp
->sacked_out
-= tcp_skb_pcount(skb
);
2315 if (sacked
& TCPCB_LOST
)
2316 tp
->lost_out
-= tcp_skb_pcount(skb
);
2317 if (sacked
& TCPCB_URG
) {
2319 !before(scb
->end_seq
, tp
->snd_up
))
2322 } else if (seq_rtt
< 0) {
2323 seq_rtt
= now
- scb
->when
;
2325 (*rtt_sample
)(sk
, tcp_usrtt(skb
));
2327 tcp_dec_pcount_approx(&tp
->fackets_out
, skb
);
2328 tcp_packets_out_dec(tp
, skb
);
2329 __skb_unlink(skb
, &sk
->sk_write_queue
);
2330 sk_stream_free_skb(sk
, skb
);
2331 clear_all_retrans_hints(tp
);
2334 if (acked
&FLAG_ACKED
) {
2335 tcp_ack_update_rtt(sk
, acked
, seq_rtt
);
2336 tcp_ack_packets_out(sk
, tp
);
2338 if (icsk
->icsk_ca_ops
->pkts_acked
)
2339 icsk
->icsk_ca_ops
->pkts_acked(sk
, pkts_acked
);
2342 #if FASTRETRANS_DEBUG > 0
2343 BUG_TRAP((int)tp
->sacked_out
>= 0);
2344 BUG_TRAP((int)tp
->lost_out
>= 0);
2345 BUG_TRAP((int)tp
->retrans_out
>= 0);
2346 if (!tp
->packets_out
&& tp
->rx_opt
.sack_ok
) {
2347 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2349 printk(KERN_DEBUG
"Leak l=%u %d\n",
2350 tp
->lost_out
, icsk
->icsk_ca_state
);
2353 if (tp
->sacked_out
) {
2354 printk(KERN_DEBUG
"Leak s=%u %d\n",
2355 tp
->sacked_out
, icsk
->icsk_ca_state
);
2358 if (tp
->retrans_out
) {
2359 printk(KERN_DEBUG
"Leak r=%u %d\n",
2360 tp
->retrans_out
, icsk
->icsk_ca_state
);
2361 tp
->retrans_out
= 0;
2365 *seq_rtt_p
= seq_rtt
;
2369 static void tcp_ack_probe(struct sock
*sk
)
2371 const struct tcp_sock
*tp
= tcp_sk(sk
);
2372 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2374 /* Was it a usable window open? */
2376 if (!after(TCP_SKB_CB(sk
->sk_send_head
)->end_seq
,
2377 tp
->snd_una
+ tp
->snd_wnd
)) {
2378 icsk
->icsk_backoff
= 0;
2379 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
2380 /* Socket must be waked up by subsequent tcp_data_snd_check().
2381 * This function is not for random using!
2384 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2385 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2390 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
2392 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2393 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
2396 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
2398 const struct tcp_sock
*tp
= tcp_sk(sk
);
2399 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2400 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
2403 /* Check that window update is acceptable.
2404 * The function assumes that snd_una<=ack<=snd_next.
2406 static inline int tcp_may_update_window(const struct tcp_sock
*tp
, const u32 ack
,
2407 const u32 ack_seq
, const u32 nwin
)
2409 return (after(ack
, tp
->snd_una
) ||
2410 after(ack_seq
, tp
->snd_wl1
) ||
2411 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2414 /* Update our send window.
2416 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2417 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2419 static int tcp_ack_update_window(struct sock
*sk
, struct tcp_sock
*tp
,
2420 struct sk_buff
*skb
, u32 ack
, u32 ack_seq
)
2423 u32 nwin
= ntohs(skb
->h
.th
->window
);
2425 if (likely(!skb
->h
.th
->syn
))
2426 nwin
<<= tp
->rx_opt
.snd_wscale
;
2428 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2429 flag
|= FLAG_WIN_UPDATE
;
2430 tcp_update_wl(tp
, ack
, ack_seq
);
2432 if (tp
->snd_wnd
!= nwin
) {
2435 /* Note, it is the only place, where
2436 * fast path is recovered for sending TCP.
2439 tcp_fast_path_check(sk
, tp
);
2441 if (nwin
> tp
->max_window
) {
2442 tp
->max_window
= nwin
;
2443 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
2453 static void tcp_process_frto(struct sock
*sk
, u32 prior_snd_una
)
2455 struct tcp_sock
*tp
= tcp_sk(sk
);
2457 tcp_sync_left_out(tp
);
2459 if (tp
->snd_una
== prior_snd_una
||
2460 !before(tp
->snd_una
, tp
->frto_highmark
)) {
2461 /* RTO was caused by loss, start retransmitting in
2462 * go-back-N slow start
2464 tcp_enter_frto_loss(sk
);
2468 if (tp
->frto_counter
== 1) {
2469 /* First ACK after RTO advances the window: allow two new
2472 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
2474 /* Also the second ACK after RTO advances the window.
2475 * The RTO was likely spurious. Reduce cwnd and continue
2476 * in congestion avoidance
2478 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2479 tcp_moderate_cwnd(tp
);
2482 /* F-RTO affects on two new ACKs following RTO.
2483 * At latest on third ACK the TCP behavior is back to normal.
2485 tp
->frto_counter
= (tp
->frto_counter
+ 1) % 3;
2488 /* This routine deals with incoming acks, but not outgoing ones. */
2489 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
2491 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2492 struct tcp_sock
*tp
= tcp_sk(sk
);
2493 u32 prior_snd_una
= tp
->snd_una
;
2494 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
2495 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2496 u32 prior_in_flight
;
2500 /* If the ack is newer than sent or older than previous acks
2501 * then we can probably ignore it.
2503 if (after(ack
, tp
->snd_nxt
))
2504 goto uninteresting_ack
;
2506 if (before(ack
, prior_snd_una
))
2509 if (sysctl_tcp_abc
&& icsk
->icsk_ca_state
< TCP_CA_CWR
)
2510 tp
->bytes_acked
+= ack
- prior_snd_una
;
2512 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
2513 /* Window is constant, pure forward advance.
2514 * No more checks are required.
2515 * Note, we use the fact that SND.UNA>=SND.WL2.
2517 tcp_update_wl(tp
, ack
, ack_seq
);
2519 flag
|= FLAG_WIN_UPDATE
;
2521 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
2523 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
2525 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
2528 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
2530 flag
|= tcp_ack_update_window(sk
, tp
, skb
, ack
, ack_seq
);
2532 if (TCP_SKB_CB(skb
)->sacked
)
2533 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2535 if (TCP_ECN_rcv_ecn_echo(tp
, skb
->h
.th
))
2538 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
2541 /* We passed data and got it acked, remove any soft error
2542 * log. Something worked...
2544 sk
->sk_err_soft
= 0;
2545 tp
->rcv_tstamp
= tcp_time_stamp
;
2546 prior_packets
= tp
->packets_out
;
2550 prior_in_flight
= tcp_packets_in_flight(tp
);
2552 /* See if we can take anything off of the retransmit queue. */
2553 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
);
2555 if (tp
->frto_counter
)
2556 tcp_process_frto(sk
, prior_snd_una
);
2558 if (tcp_ack_is_dubious(sk
, flag
)) {
2559 /* Advance CWND, if state allows this. */
2560 if ((flag
& FLAG_DATA_ACKED
) && tcp_may_raise_cwnd(sk
, flag
))
2561 tcp_cong_avoid(sk
, ack
, seq_rtt
, prior_in_flight
, 0);
2562 tcp_fastretrans_alert(sk
, prior_snd_una
, prior_packets
, flag
);
2564 if ((flag
& FLAG_DATA_ACKED
))
2565 tcp_cong_avoid(sk
, ack
, seq_rtt
, prior_in_flight
, 1);
2568 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
2569 dst_confirm(sk
->sk_dst_cache
);
2574 icsk
->icsk_probes_out
= 0;
2576 /* If this ack opens up a zero window, clear backoff. It was
2577 * being used to time the probes, and is probably far higher than
2578 * it needs to be for normal retransmission.
2580 if (sk
->sk_send_head
)
2585 if (TCP_SKB_CB(skb
)->sacked
)
2586 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2589 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
2594 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2595 * But, this can also be called on packets in the established flow when
2596 * the fast version below fails.
2598 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
, int estab
)
2601 struct tcphdr
*th
= skb
->h
.th
;
2602 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
2604 ptr
= (unsigned char *)(th
+ 1);
2605 opt_rx
->saw_tstamp
= 0;
2614 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
2619 if (opsize
< 2) /* "silly options" */
2621 if (opsize
> length
)
2622 return; /* don't parse partial options */
2625 if(opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
2626 u16 in_mss
= ntohs(get_unaligned((__u16
*)ptr
));
2628 if (opt_rx
->user_mss
&& opt_rx
->user_mss
< in_mss
)
2629 in_mss
= opt_rx
->user_mss
;
2630 opt_rx
->mss_clamp
= in_mss
;
2635 if(opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
2636 if (sysctl_tcp_window_scaling
) {
2637 __u8 snd_wscale
= *(__u8
*) ptr
;
2638 opt_rx
->wscale_ok
= 1;
2639 if (snd_wscale
> 14) {
2641 printk(KERN_INFO
"tcp_parse_options: Illegal window "
2642 "scaling value %d >14 received.\n",
2646 opt_rx
->snd_wscale
= snd_wscale
;
2649 case TCPOPT_TIMESTAMP
:
2650 if(opsize
==TCPOLEN_TIMESTAMP
) {
2651 if ((estab
&& opt_rx
->tstamp_ok
) ||
2652 (!estab
&& sysctl_tcp_timestamps
)) {
2653 opt_rx
->saw_tstamp
= 1;
2654 opt_rx
->rcv_tsval
= ntohl(get_unaligned((__u32
*)ptr
));
2655 opt_rx
->rcv_tsecr
= ntohl(get_unaligned((__u32
*)(ptr
+4)));
2659 case TCPOPT_SACK_PERM
:
2660 if(opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
2661 if (sysctl_tcp_sack
) {
2662 opt_rx
->sack_ok
= 1;
2663 tcp_sack_reset(opt_rx
);
2669 if((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
2670 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
2672 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
2681 /* Fast parse options. This hopes to only see timestamps.
2682 * If it is wrong it falls back on tcp_parse_options().
2684 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
2685 struct tcp_sock
*tp
)
2687 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
2688 tp
->rx_opt
.saw_tstamp
= 0;
2690 } else if (tp
->rx_opt
.tstamp_ok
&&
2691 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
2692 __u32
*ptr
= (__u32
*)(th
+ 1);
2693 if (*ptr
== ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
2694 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
2695 tp
->rx_opt
.saw_tstamp
= 1;
2697 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
2699 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
2703 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
2707 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
2709 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
2710 tp
->rx_opt
.ts_recent_stamp
= xtime
.tv_sec
;
2713 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
2715 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
2716 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2717 * extra check below makes sure this can only happen
2718 * for pure ACK frames. -DaveM
2720 * Not only, also it occurs for expired timestamps.
2723 if((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
2724 xtime
.tv_sec
>= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
2725 tcp_store_ts_recent(tp
);
2729 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2731 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2732 * it can pass through stack. So, the following predicate verifies that
2733 * this segment is not used for anything but congestion avoidance or
2734 * fast retransmit. Moreover, we even are able to eliminate most of such
2735 * second order effects, if we apply some small "replay" window (~RTO)
2736 * to timestamp space.
2738 * All these measures still do not guarantee that we reject wrapped ACKs
2739 * on networks with high bandwidth, when sequence space is recycled fastly,
2740 * but it guarantees that such events will be very rare and do not affect
2741 * connection seriously. This doesn't look nice, but alas, PAWS is really
2744 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2745 * states that events when retransmit arrives after original data are rare.
2746 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2747 * the biggest problem on large power networks even with minor reordering.
2748 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2749 * up to bandwidth of 18Gigabit/sec. 8) ]
2752 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
2754 struct tcp_sock
*tp
= tcp_sk(sk
);
2755 struct tcphdr
*th
= skb
->h
.th
;
2756 u32 seq
= TCP_SKB_CB(skb
)->seq
;
2757 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2759 return (/* 1. Pure ACK with correct sequence number. */
2760 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
2762 /* 2. ... and duplicate ACK. */
2763 ack
== tp
->snd_una
&&
2765 /* 3. ... and does not update window. */
2766 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
2768 /* 4. ... and sits in replay window. */
2769 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
2772 static inline int tcp_paws_discard(const struct sock
*sk
, const struct sk_buff
*skb
)
2774 const struct tcp_sock
*tp
= tcp_sk(sk
);
2775 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
2776 xtime
.tv_sec
< tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
2777 !tcp_disordered_ack(sk
, skb
));
2780 /* Check segment sequence number for validity.
2782 * Segment controls are considered valid, if the segment
2783 * fits to the window after truncation to the window. Acceptability
2784 * of data (and SYN, FIN, of course) is checked separately.
2785 * See tcp_data_queue(), for example.
2787 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2788 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2789 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2790 * (borrowed from freebsd)
2793 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2795 return !before(end_seq
, tp
->rcv_wup
) &&
2796 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
2799 /* When we get a reset we do this. */
2800 static void tcp_reset(struct sock
*sk
)
2802 /* We want the right error as BSD sees it (and indeed as we do). */
2803 switch (sk
->sk_state
) {
2805 sk
->sk_err
= ECONNREFUSED
;
2807 case TCP_CLOSE_WAIT
:
2813 sk
->sk_err
= ECONNRESET
;
2816 if (!sock_flag(sk
, SOCK_DEAD
))
2817 sk
->sk_error_report(sk
);
2823 * Process the FIN bit. This now behaves as it is supposed to work
2824 * and the FIN takes effect when it is validly part of sequence
2825 * space. Not before when we get holes.
2827 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2828 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2831 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2832 * close and we go into CLOSING (and later onto TIME-WAIT)
2834 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2836 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
2838 struct tcp_sock
*tp
= tcp_sk(sk
);
2840 inet_csk_schedule_ack(sk
);
2842 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
2843 sock_set_flag(sk
, SOCK_DONE
);
2845 switch (sk
->sk_state
) {
2847 case TCP_ESTABLISHED
:
2848 /* Move to CLOSE_WAIT */
2849 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
2850 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
2853 case TCP_CLOSE_WAIT
:
2855 /* Received a retransmission of the FIN, do
2860 /* RFC793: Remain in the LAST-ACK state. */
2864 /* This case occurs when a simultaneous close
2865 * happens, we must ack the received FIN and
2866 * enter the CLOSING state.
2869 tcp_set_state(sk
, TCP_CLOSING
);
2872 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2874 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
2877 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2878 * cases we should never reach this piece of code.
2880 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
2881 __FUNCTION__
, sk
->sk_state
);
2885 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2886 * Probably, we should reset in this case. For now drop them.
2888 __skb_queue_purge(&tp
->out_of_order_queue
);
2889 if (tp
->rx_opt
.sack_ok
)
2890 tcp_sack_reset(&tp
->rx_opt
);
2891 sk_stream_mem_reclaim(sk
);
2893 if (!sock_flag(sk
, SOCK_DEAD
)) {
2894 sk
->sk_state_change(sk
);
2896 /* Do not send POLL_HUP for half duplex close. */
2897 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
2898 sk
->sk_state
== TCP_CLOSE
)
2899 sk_wake_async(sk
, 1, POLL_HUP
);
2901 sk_wake_async(sk
, 1, POLL_IN
);
2905 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
2907 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
2908 if (before(seq
, sp
->start_seq
))
2909 sp
->start_seq
= seq
;
2910 if (after(end_seq
, sp
->end_seq
))
2911 sp
->end_seq
= end_seq
;
2917 static void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2919 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2920 if (before(seq
, tp
->rcv_nxt
))
2921 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
2923 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
2925 tp
->rx_opt
.dsack
= 1;
2926 tp
->duplicate_sack
[0].start_seq
= seq
;
2927 tp
->duplicate_sack
[0].end_seq
= end_seq
;
2928 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1, 4 - tp
->rx_opt
.tstamp_ok
);
2932 static void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2934 if (!tp
->rx_opt
.dsack
)
2935 tcp_dsack_set(tp
, seq
, end_seq
);
2937 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
2940 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
2942 struct tcp_sock
*tp
= tcp_sk(sk
);
2944 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
2945 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
2946 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
2947 tcp_enter_quickack_mode(sk
);
2949 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2950 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
2952 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
2953 end_seq
= tp
->rcv_nxt
;
2954 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
2961 /* These routines update the SACK block as out-of-order packets arrive or
2962 * in-order packets close up the sequence space.
2964 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
2967 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
2968 struct tcp_sack_block
*swalk
= sp
+1;
2970 /* See if the recent change to the first SACK eats into
2971 * or hits the sequence space of other SACK blocks, if so coalesce.
2973 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
; ) {
2974 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
2977 /* Zap SWALK, by moving every further SACK up by one slot.
2978 * Decrease num_sacks.
2980 tp
->rx_opt
.num_sacks
--;
2981 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
2982 for(i
=this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
2986 this_sack
++, swalk
++;
2990 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
2994 tmp
= sack1
->start_seq
;
2995 sack1
->start_seq
= sack2
->start_seq
;
2996 sack2
->start_seq
= tmp
;
2998 tmp
= sack1
->end_seq
;
2999 sack1
->end_seq
= sack2
->end_seq
;
3000 sack2
->end_seq
= tmp
;
3003 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3005 struct tcp_sock
*tp
= tcp_sk(sk
);
3006 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3007 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3013 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
3014 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3015 /* Rotate this_sack to the first one. */
3016 for (; this_sack
>0; this_sack
--, sp
--)
3017 tcp_sack_swap(sp
, sp
-1);
3019 tcp_sack_maybe_coalesce(tp
);
3024 /* Could not find an adjacent existing SACK, build a new one,
3025 * put it at the front, and shift everyone else down. We
3026 * always know there is at least one SACK present already here.
3028 * If the sack array is full, forget about the last one.
3030 if (this_sack
>= 4) {
3032 tp
->rx_opt
.num_sacks
--;
3035 for(; this_sack
> 0; this_sack
--, sp
--)
3039 /* Build the new head SACK, and we're done. */
3040 sp
->start_seq
= seq
;
3041 sp
->end_seq
= end_seq
;
3042 tp
->rx_opt
.num_sacks
++;
3043 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3046 /* RCV.NXT advances, some SACKs should be eaten. */
3048 static void tcp_sack_remove(struct tcp_sock
*tp
)
3050 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3051 int num_sacks
= tp
->rx_opt
.num_sacks
;
3054 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3055 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
3056 tp
->rx_opt
.num_sacks
= 0;
3057 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
3061 for(this_sack
= 0; this_sack
< num_sacks
; ) {
3062 /* Check if the start of the sack is covered by RCV.NXT. */
3063 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3066 /* RCV.NXT must cover all the block! */
3067 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3069 /* Zap this SACK, by moving forward any other SACKS. */
3070 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3071 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3078 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
3079 tp
->rx_opt
.num_sacks
= num_sacks
;
3080 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3084 /* This one checks to see if we can put data from the
3085 * out_of_order queue into the receive_queue.
3087 static void tcp_ofo_queue(struct sock
*sk
)
3089 struct tcp_sock
*tp
= tcp_sk(sk
);
3090 __u32 dsack_high
= tp
->rcv_nxt
;
3091 struct sk_buff
*skb
;
3093 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3094 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3097 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3098 __u32 dsack
= dsack_high
;
3099 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3100 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3101 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3104 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3105 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3106 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3110 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3111 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3112 TCP_SKB_CB(skb
)->end_seq
);
3114 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3115 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3116 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3118 tcp_fin(skb
, sk
, skb
->h
.th
);
3122 static int tcp_prune_queue(struct sock
*sk
);
3124 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3126 struct tcphdr
*th
= skb
->h
.th
;
3127 struct tcp_sock
*tp
= tcp_sk(sk
);
3130 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3133 __skb_pull(skb
, th
->doff
*4);
3135 TCP_ECN_accept_cwr(tp
, skb
);
3137 if (tp
->rx_opt
.dsack
) {
3138 tp
->rx_opt
.dsack
= 0;
3139 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
3140 4 - tp
->rx_opt
.tstamp_ok
);
3143 /* Queue data for delivery to the user.
3144 * Packets in sequence go to the receive queue.
3145 * Out of sequence packets to the out_of_order_queue.
3147 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3148 if (tcp_receive_window(tp
) == 0)
3151 /* Ok. In sequence. In window. */
3152 if (tp
->ucopy
.task
== current
&&
3153 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3154 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3155 int chunk
= min_t(unsigned int, skb
->len
,
3158 __set_current_state(TASK_RUNNING
);
3161 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3162 tp
->ucopy
.len
-= chunk
;
3163 tp
->copied_seq
+= chunk
;
3164 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3165 tcp_rcv_space_adjust(sk
);
3173 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3174 !sk_stream_rmem_schedule(sk
, skb
))) {
3175 if (tcp_prune_queue(sk
) < 0 ||
3176 !sk_stream_rmem_schedule(sk
, skb
))
3179 sk_stream_set_owner_r(skb
, sk
);
3180 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3182 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3184 tcp_event_data_recv(sk
, tp
, skb
);
3186 tcp_fin(skb
, sk
, th
);
3188 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3191 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3192 * gap in queue is filled.
3194 if (skb_queue_empty(&tp
->out_of_order_queue
))
3195 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
3198 if (tp
->rx_opt
.num_sacks
)
3199 tcp_sack_remove(tp
);
3201 tcp_fast_path_check(sk
, tp
);
3205 else if (!sock_flag(sk
, SOCK_DEAD
))
3206 sk
->sk_data_ready(sk
, 0);
3210 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3211 /* A retransmit, 2nd most common case. Force an immediate ack. */
3212 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3213 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3216 tcp_enter_quickack_mode(sk
);
3217 inet_csk_schedule_ack(sk
);
3223 /* Out of window. F.e. zero window probe. */
3224 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3227 tcp_enter_quickack_mode(sk
);
3229 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3230 /* Partial packet, seq < rcv_next < end_seq */
3231 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3232 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3233 TCP_SKB_CB(skb
)->end_seq
);
3235 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
3237 /* If window is closed, drop tail of packet. But after
3238 * remembering D-SACK for its head made in previous line.
3240 if (!tcp_receive_window(tp
))
3245 TCP_ECN_check_ce(tp
, skb
);
3247 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3248 !sk_stream_rmem_schedule(sk
, skb
)) {
3249 if (tcp_prune_queue(sk
) < 0 ||
3250 !sk_stream_rmem_schedule(sk
, skb
))
3254 /* Disable header prediction. */
3256 inet_csk_schedule_ack(sk
);
3258 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3259 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3261 sk_stream_set_owner_r(skb
, sk
);
3263 if (!skb_peek(&tp
->out_of_order_queue
)) {
3264 /* Initial out of order segment, build 1 SACK. */
3265 if (tp
->rx_opt
.sack_ok
) {
3266 tp
->rx_opt
.num_sacks
= 1;
3267 tp
->rx_opt
.dsack
= 0;
3268 tp
->rx_opt
.eff_sacks
= 1;
3269 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3270 tp
->selective_acks
[0].end_seq
=
3271 TCP_SKB_CB(skb
)->end_seq
;
3273 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3275 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3276 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3277 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3279 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3280 __skb_append(skb1
, skb
, &tp
->out_of_order_queue
);
3282 if (!tp
->rx_opt
.num_sacks
||
3283 tp
->selective_acks
[0].end_seq
!= seq
)
3286 /* Common case: data arrive in order after hole. */
3287 tp
->selective_acks
[0].end_seq
= end_seq
;
3291 /* Find place to insert this segment. */
3293 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3295 } while ((skb1
= skb1
->prev
) !=
3296 (struct sk_buff
*)&tp
->out_of_order_queue
);
3298 /* Do skb overlap to previous one? */
3299 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3300 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3301 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3302 /* All the bits are present. Drop. */
3304 tcp_dsack_set(tp
, seq
, end_seq
);
3307 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3308 /* Partial overlap. */
3309 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3314 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3316 /* And clean segments covered by new one as whole. */
3317 while ((skb1
= skb
->next
) !=
3318 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3319 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3320 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3321 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3324 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
3325 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3330 if (tp
->rx_opt
.sack_ok
)
3331 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3335 /* Collapse contiguous sequence of skbs head..tail with
3336 * sequence numbers start..end.
3337 * Segments with FIN/SYN are not collapsed (only because this
3341 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
3342 struct sk_buff
*head
, struct sk_buff
*tail
,
3345 struct sk_buff
*skb
;
3347 /* First, check that queue is collapsible and find
3348 * the point where collapsing can be useful. */
3349 for (skb
= head
; skb
!= tail
; ) {
3350 /* No new bits? It is possible on ofo queue. */
3351 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3352 struct sk_buff
*next
= skb
->next
;
3353 __skb_unlink(skb
, list
);
3355 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3360 /* The first skb to collapse is:
3362 * - bloated or contains data before "start" or
3363 * overlaps to the next one.
3365 if (!skb
->h
.th
->syn
&& !skb
->h
.th
->fin
&&
3366 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3367 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3368 (skb
->next
!= tail
&&
3369 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3372 /* Decided to skip this, advance start seq. */
3373 start
= TCP_SKB_CB(skb
)->end_seq
;
3376 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3379 while (before(start
, end
)) {
3380 struct sk_buff
*nskb
;
3381 int header
= skb_headroom(skb
);
3382 int copy
= SKB_MAX_ORDER(header
, 0);
3384 /* Too big header? This can happen with IPv6. */
3387 if (end
-start
< copy
)
3389 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
3392 skb_reserve(nskb
, header
);
3393 memcpy(nskb
->head
, skb
->head
, header
);
3394 nskb
->nh
.raw
= nskb
->head
+ (skb
->nh
.raw
-skb
->head
);
3395 nskb
->h
.raw
= nskb
->head
+ (skb
->h
.raw
-skb
->head
);
3396 nskb
->mac
.raw
= nskb
->head
+ (skb
->mac
.raw
-skb
->head
);
3397 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
3398 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
3399 __skb_insert(nskb
, skb
->prev
, skb
, list
);
3400 sk_stream_set_owner_r(nskb
, sk
);
3402 /* Copy data, releasing collapsed skbs. */
3404 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
3405 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
3409 size
= min(copy
, size
);
3410 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
3412 TCP_SKB_CB(nskb
)->end_seq
+= size
;
3416 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3417 struct sk_buff
*next
= skb
->next
;
3418 __skb_unlink(skb
, list
);
3420 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3422 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3429 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3430 * and tcp_collapse() them until all the queue is collapsed.
3432 static void tcp_collapse_ofo_queue(struct sock
*sk
)
3434 struct tcp_sock
*tp
= tcp_sk(sk
);
3435 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
3436 struct sk_buff
*head
;
3442 start
= TCP_SKB_CB(skb
)->seq
;
3443 end
= TCP_SKB_CB(skb
)->end_seq
;
3449 /* Segment is terminated when we see gap or when
3450 * we are at the end of all the queue. */
3451 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
3452 after(TCP_SKB_CB(skb
)->seq
, end
) ||
3453 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
3454 tcp_collapse(sk
, &tp
->out_of_order_queue
,
3455 head
, skb
, start
, end
);
3457 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
3459 /* Start new segment */
3460 start
= TCP_SKB_CB(skb
)->seq
;
3461 end
= TCP_SKB_CB(skb
)->end_seq
;
3463 if (before(TCP_SKB_CB(skb
)->seq
, start
))
3464 start
= TCP_SKB_CB(skb
)->seq
;
3465 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
3466 end
= TCP_SKB_CB(skb
)->end_seq
;
3471 /* Reduce allocated memory if we can, trying to get
3472 * the socket within its memory limits again.
3474 * Return less than zero if we should start dropping frames
3475 * until the socket owning process reads some of the data
3476 * to stabilize the situation.
3478 static int tcp_prune_queue(struct sock
*sk
)
3480 struct tcp_sock
*tp
= tcp_sk(sk
);
3482 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
3484 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
3486 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
3487 tcp_clamp_window(sk
, tp
);
3488 else if (tcp_memory_pressure
)
3489 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
3491 tcp_collapse_ofo_queue(sk
);
3492 tcp_collapse(sk
, &sk
->sk_receive_queue
,
3493 sk
->sk_receive_queue
.next
,
3494 (struct sk_buff
*)&sk
->sk_receive_queue
,
3495 tp
->copied_seq
, tp
->rcv_nxt
);
3496 sk_stream_mem_reclaim(sk
);
3498 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3501 /* Collapsing did not help, destructive actions follow.
3502 * This must not ever occur. */
3504 /* First, purge the out_of_order queue. */
3505 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3506 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED
);
3507 __skb_queue_purge(&tp
->out_of_order_queue
);
3509 /* Reset SACK state. A conforming SACK implementation will
3510 * do the same at a timeout based retransmit. When a connection
3511 * is in a sad state like this, we care only about integrity
3512 * of the connection not performance.
3514 if (tp
->rx_opt
.sack_ok
)
3515 tcp_sack_reset(&tp
->rx_opt
);
3516 sk_stream_mem_reclaim(sk
);
3519 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3522 /* If we are really being abused, tell the caller to silently
3523 * drop receive data on the floor. It will get retransmitted
3524 * and hopefully then we'll have sufficient space.
3526 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
3528 /* Massive buffer overcommit. */
3534 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3535 * As additional protections, we do not touch cwnd in retransmission phases,
3536 * and if application hit its sndbuf limit recently.
3538 void tcp_cwnd_application_limited(struct sock
*sk
)
3540 struct tcp_sock
*tp
= tcp_sk(sk
);
3542 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
3543 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
3544 /* Limited by application or receiver window. */
3545 u32 win_used
= max(tp
->snd_cwnd_used
, 2U);
3546 if (win_used
< tp
->snd_cwnd
) {
3547 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
3548 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
3550 tp
->snd_cwnd_used
= 0;
3552 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3555 static int tcp_should_expand_sndbuf(struct sock
*sk
, struct tcp_sock
*tp
)
3557 /* If the user specified a specific send buffer setting, do
3560 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
3563 /* If we are under global TCP memory pressure, do not expand. */
3564 if (tcp_memory_pressure
)
3567 /* If we are under soft global TCP memory pressure, do not expand. */
3568 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
3571 /* If we filled the congestion window, do not expand. */
3572 if (tp
->packets_out
>= tp
->snd_cwnd
)
3578 /* When incoming ACK allowed to free some skb from write_queue,
3579 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3580 * on the exit from tcp input handler.
3582 * PROBLEM: sndbuf expansion does not work well with largesend.
3584 static void tcp_new_space(struct sock
*sk
)
3586 struct tcp_sock
*tp
= tcp_sk(sk
);
3588 if (tcp_should_expand_sndbuf(sk
, tp
)) {
3589 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
3590 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
3591 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
3592 tp
->reordering
+ 1);
3593 sndmem
*= 2*demanded
;
3594 if (sndmem
> sk
->sk_sndbuf
)
3595 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
3596 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3599 sk
->sk_write_space(sk
);
3602 static void tcp_check_space(struct sock
*sk
)
3604 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
3605 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
3606 if (sk
->sk_socket
&&
3607 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
3612 static inline void tcp_data_snd_check(struct sock
*sk
, struct tcp_sock
*tp
)
3614 tcp_push_pending_frames(sk
, tp
);
3615 tcp_check_space(sk
);
3619 * Check if sending an ack is needed.
3621 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
3623 struct tcp_sock
*tp
= tcp_sk(sk
);
3625 /* More than one full frame received... */
3626 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
3627 /* ... and right edge of window advances far enough.
3628 * (tcp_recvmsg() will send ACK otherwise). Or...
3630 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
3631 /* We ACK each frame or... */
3632 tcp_in_quickack_mode(sk
) ||
3633 /* We have out of order data. */
3635 skb_peek(&tp
->out_of_order_queue
))) {
3636 /* Then ack it now */
3639 /* Else, send delayed ack. */
3640 tcp_send_delayed_ack(sk
);
3644 static inline void tcp_ack_snd_check(struct sock
*sk
)
3646 if (!inet_csk_ack_scheduled(sk
)) {
3647 /* We sent a data segment already. */
3650 __tcp_ack_snd_check(sk
, 1);
3654 * This routine is only called when we have urgent data
3655 * signaled. Its the 'slow' part of tcp_urg. It could be
3656 * moved inline now as tcp_urg is only called from one
3657 * place. We handle URGent data wrong. We have to - as
3658 * BSD still doesn't use the correction from RFC961.
3659 * For 1003.1g we should support a new option TCP_STDURG to permit
3660 * either form (or just set the sysctl tcp_stdurg).
3663 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
3665 struct tcp_sock
*tp
= tcp_sk(sk
);
3666 u32 ptr
= ntohs(th
->urg_ptr
);
3668 if (ptr
&& !sysctl_tcp_stdurg
)
3670 ptr
+= ntohl(th
->seq
);
3672 /* Ignore urgent data that we've already seen and read. */
3673 if (after(tp
->copied_seq
, ptr
))
3676 /* Do not replay urg ptr.
3678 * NOTE: interesting situation not covered by specs.
3679 * Misbehaving sender may send urg ptr, pointing to segment,
3680 * which we already have in ofo queue. We are not able to fetch
3681 * such data and will stay in TCP_URG_NOTYET until will be eaten
3682 * by recvmsg(). Seems, we are not obliged to handle such wicked
3683 * situations. But it is worth to think about possibility of some
3684 * DoSes using some hypothetical application level deadlock.
3686 if (before(ptr
, tp
->rcv_nxt
))
3689 /* Do we already have a newer (or duplicate) urgent pointer? */
3690 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
3693 /* Tell the world about our new urgent pointer. */
3696 /* We may be adding urgent data when the last byte read was
3697 * urgent. To do this requires some care. We cannot just ignore
3698 * tp->copied_seq since we would read the last urgent byte again
3699 * as data, nor can we alter copied_seq until this data arrives
3700 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3702 * NOTE. Double Dutch. Rendering to plain English: author of comment
3703 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3704 * and expect that both A and B disappear from stream. This is _wrong_.
3705 * Though this happens in BSD with high probability, this is occasional.
3706 * Any application relying on this is buggy. Note also, that fix "works"
3707 * only in this artificial test. Insert some normal data between A and B and we will
3708 * decline of BSD again. Verdict: it is better to remove to trap
3711 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
3712 !sock_flag(sk
, SOCK_URGINLINE
) &&
3713 tp
->copied_seq
!= tp
->rcv_nxt
) {
3714 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
3716 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
3717 __skb_unlink(skb
, &sk
->sk_receive_queue
);
3722 tp
->urg_data
= TCP_URG_NOTYET
;
3725 /* Disable header prediction. */
3729 /* This is the 'fast' part of urgent handling. */
3730 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
3732 struct tcp_sock
*tp
= tcp_sk(sk
);
3734 /* Check if we get a new urgent pointer - normally not. */
3736 tcp_check_urg(sk
,th
);
3738 /* Do we wait for any urgent data? - normally not... */
3739 if (tp
->urg_data
== TCP_URG_NOTYET
) {
3740 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
3743 /* Is the urgent pointer pointing into this packet? */
3744 if (ptr
< skb
->len
) {
3746 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
3748 tp
->urg_data
= TCP_URG_VALID
| tmp
;
3749 if (!sock_flag(sk
, SOCK_DEAD
))
3750 sk
->sk_data_ready(sk
, 0);
3755 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
3757 struct tcp_sock
*tp
= tcp_sk(sk
);
3758 int chunk
= skb
->len
- hlen
;
3762 if (skb
->ip_summed
==CHECKSUM_UNNECESSARY
)
3763 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
3765 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
3769 tp
->ucopy
.len
-= chunk
;
3770 tp
->copied_seq
+= chunk
;
3771 tcp_rcv_space_adjust(sk
);
3778 static int __tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3782 if (sock_owned_by_user(sk
)) {
3784 result
= __tcp_checksum_complete(skb
);
3787 result
= __tcp_checksum_complete(skb
);
3792 static inline int tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3794 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
3795 __tcp_checksum_complete_user(sk
, skb
);
3798 #ifdef CONFIG_NET_DMA
3799 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
3801 struct tcp_sock
*tp
= tcp_sk(sk
);
3802 int chunk
= skb
->len
- hlen
;
3804 int copied_early
= 0;
3806 if (tp
->ucopy
.wakeup
)
3809 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
3810 tp
->ucopy
.dma_chan
= get_softnet_dma();
3812 if (tp
->ucopy
.dma_chan
&& skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3814 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
3815 skb
, hlen
, tp
->ucopy
.iov
, chunk
, tp
->ucopy
.pinned_list
);
3820 tp
->ucopy
.dma_cookie
= dma_cookie
;
3823 tp
->ucopy
.len
-= chunk
;
3824 tp
->copied_seq
+= chunk
;
3825 tcp_rcv_space_adjust(sk
);
3827 if ((tp
->ucopy
.len
== 0) ||
3828 (tcp_flag_word(skb
->h
.th
) & TCP_FLAG_PSH
) ||
3829 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
3830 tp
->ucopy
.wakeup
= 1;
3831 sk
->sk_data_ready(sk
, 0);
3833 } else if (chunk
> 0) {
3834 tp
->ucopy
.wakeup
= 1;
3835 sk
->sk_data_ready(sk
, 0);
3838 return copied_early
;
3840 #endif /* CONFIG_NET_DMA */
3843 * TCP receive function for the ESTABLISHED state.
3845 * It is split into a fast path and a slow path. The fast path is
3847 * - A zero window was announced from us - zero window probing
3848 * is only handled properly in the slow path.
3849 * - Out of order segments arrived.
3850 * - Urgent data is expected.
3851 * - There is no buffer space left
3852 * - Unexpected TCP flags/window values/header lengths are received
3853 * (detected by checking the TCP header against pred_flags)
3854 * - Data is sent in both directions. Fast path only supports pure senders
3855 * or pure receivers (this means either the sequence number or the ack
3856 * value must stay constant)
3857 * - Unexpected TCP option.
3859 * When these conditions are not satisfied it drops into a standard
3860 * receive procedure patterned after RFC793 to handle all cases.
3861 * The first three cases are guaranteed by proper pred_flags setting,
3862 * the rest is checked inline. Fast processing is turned on in
3863 * tcp_data_queue when everything is OK.
3865 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
3866 struct tcphdr
*th
, unsigned len
)
3868 struct tcp_sock
*tp
= tcp_sk(sk
);
3871 * Header prediction.
3872 * The code loosely follows the one in the famous
3873 * "30 instruction TCP receive" Van Jacobson mail.
3875 * Van's trick is to deposit buffers into socket queue
3876 * on a device interrupt, to call tcp_recv function
3877 * on the receive process context and checksum and copy
3878 * the buffer to user space. smart...
3880 * Our current scheme is not silly either but we take the
3881 * extra cost of the net_bh soft interrupt processing...
3882 * We do checksum and copy also but from device to kernel.
3885 tp
->rx_opt
.saw_tstamp
= 0;
3887 /* pred_flags is 0xS?10 << 16 + snd_wnd
3888 * if header_prediction is to be made
3889 * 'S' will always be tp->tcp_header_len >> 2
3890 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3891 * turn it off (when there are holes in the receive
3892 * space for instance)
3893 * PSH flag is ignored.
3896 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
3897 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3898 int tcp_header_len
= tp
->tcp_header_len
;
3900 /* Timestamp header prediction: tcp_header_len
3901 * is automatically equal to th->doff*4 due to pred_flags
3905 /* Check timestamp */
3906 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
3907 __u32
*ptr
= (__u32
*)(th
+ 1);
3909 /* No? Slow path! */
3910 if (*ptr
!= ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3911 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
3914 tp
->rx_opt
.saw_tstamp
= 1;
3916 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3918 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3920 /* If PAWS failed, check it more carefully in slow path */
3921 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
3924 /* DO NOT update ts_recent here, if checksum fails
3925 * and timestamp was corrupted part, it will result
3926 * in a hung connection since we will drop all
3927 * future packets due to the PAWS test.
3931 if (len
<= tcp_header_len
) {
3932 /* Bulk data transfer: sender */
3933 if (len
== tcp_header_len
) {
3934 /* Predicted packet is in window by definition.
3935 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3936 * Hence, check seq<=rcv_wup reduces to:
3938 if (tcp_header_len
==
3939 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
3940 tp
->rcv_nxt
== tp
->rcv_wup
)
3941 tcp_store_ts_recent(tp
);
3943 /* We know that such packets are checksummed
3946 tcp_ack(sk
, skb
, 0);
3948 tcp_data_snd_check(sk
, tp
);
3950 } else { /* Header too small */
3951 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
3956 int copied_early
= 0;
3958 if (tp
->copied_seq
== tp
->rcv_nxt
&&
3959 len
- tcp_header_len
<= tp
->ucopy
.len
) {
3960 #ifdef CONFIG_NET_DMA
3961 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
3966 if (tp
->ucopy
.task
== current
&& sock_owned_by_user(sk
) && !copied_early
) {
3967 __set_current_state(TASK_RUNNING
);
3969 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
3973 /* Predicted packet is in window by definition.
3974 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3975 * Hence, check seq<=rcv_wup reduces to:
3977 if (tcp_header_len
==
3978 (sizeof(struct tcphdr
) +
3979 TCPOLEN_TSTAMP_ALIGNED
) &&
3980 tp
->rcv_nxt
== tp
->rcv_wup
)
3981 tcp_store_ts_recent(tp
);
3983 tcp_rcv_rtt_measure_ts(sk
, skb
);
3985 __skb_pull(skb
, tcp_header_len
);
3986 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3987 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
3990 tcp_cleanup_rbuf(sk
, skb
->len
);
3993 if (tcp_checksum_complete_user(sk
, skb
))
3996 /* Predicted packet is in window by definition.
3997 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3998 * Hence, check seq<=rcv_wup reduces to:
4000 if (tcp_header_len
==
4001 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4002 tp
->rcv_nxt
== tp
->rcv_wup
)
4003 tcp_store_ts_recent(tp
);
4005 tcp_rcv_rtt_measure_ts(sk
, skb
);
4007 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4010 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4012 /* Bulk data transfer: receiver */
4013 __skb_pull(skb
,tcp_header_len
);
4014 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4015 sk_stream_set_owner_r(skb
, sk
);
4016 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4019 tcp_event_data_recv(sk
, tp
, skb
);
4021 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4022 /* Well, only one small jumplet in fast path... */
4023 tcp_ack(sk
, skb
, FLAG_DATA
);
4024 tcp_data_snd_check(sk
, tp
);
4025 if (!inet_csk_ack_scheduled(sk
))
4029 __tcp_ack_snd_check(sk
, 0);
4031 #ifdef CONFIG_NET_DMA
4033 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
4039 sk
->sk_data_ready(sk
, 0);
4045 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
4049 * RFC1323: H1. Apply PAWS check first.
4051 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4052 tcp_paws_discard(sk
, skb
)) {
4054 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4055 tcp_send_dupack(sk
, skb
);
4058 /* Resets are accepted even if PAWS failed.
4060 ts_recent update must be made after we are sure
4061 that the packet is in window.
4066 * Standard slow path.
4069 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4070 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4071 * (RST) segments are validated by checking their SEQ-fields."
4072 * And page 69: "If an incoming segment is not acceptable,
4073 * an acknowledgment should be sent in reply (unless the RST bit
4074 * is set, if so drop the segment and return)".
4077 tcp_send_dupack(sk
, skb
);
4086 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4088 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4089 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4090 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4097 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4099 tcp_rcv_rtt_measure_ts(sk
, skb
);
4101 /* Process urgent data. */
4102 tcp_urg(sk
, skb
, th
);
4104 /* step 7: process the segment text */
4105 tcp_data_queue(sk
, skb
);
4107 tcp_data_snd_check(sk
, tp
);
4108 tcp_ack_snd_check(sk
);
4112 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4119 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4120 struct tcphdr
*th
, unsigned len
)
4122 struct tcp_sock
*tp
= tcp_sk(sk
);
4123 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4124 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
4126 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
4130 * "If the state is SYN-SENT then
4131 * first check the ACK bit
4132 * If the ACK bit is set
4133 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4134 * a reset (unless the RST bit is set, if so drop
4135 * the segment and return)"
4137 * We do not send data with SYN, so that RFC-correct
4140 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4141 goto reset_and_undo
;
4143 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4144 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
4146 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4147 goto reset_and_undo
;
4150 /* Now ACK is acceptable.
4152 * "If the RST bit is set
4153 * If the ACK was acceptable then signal the user "error:
4154 * connection reset", drop the segment, enter CLOSED state,
4155 * delete TCB, and return."
4164 * "fifth, if neither of the SYN or RST bits is set then
4165 * drop the segment and return."
4171 goto discard_and_undo
;
4174 * "If the SYN bit is on ...
4175 * are acceptable then ...
4176 * (our SYN has been ACKed), change the connection
4177 * state to ESTABLISHED..."
4180 TCP_ECN_rcv_synack(tp
, th
);
4181 if (tp
->ecn_flags
&TCP_ECN_OK
)
4182 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
4184 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4185 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4187 /* Ok.. it's good. Set up sequence numbers and
4188 * move to established.
4190 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4191 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4193 /* RFC1323: The window in SYN & SYN/ACK segments is
4196 tp
->snd_wnd
= ntohs(th
->window
);
4197 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
4199 if (!tp
->rx_opt
.wscale_ok
) {
4200 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
4201 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
4204 if (tp
->rx_opt
.saw_tstamp
) {
4205 tp
->rx_opt
.tstamp_ok
= 1;
4206 tp
->tcp_header_len
=
4207 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4208 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4209 tcp_store_ts_recent(tp
);
4211 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4214 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_fack
)
4215 tp
->rx_opt
.sack_ok
|= 2;
4218 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4219 tcp_initialize_rcv_mss(sk
);
4221 /* Remember, tcp_poll() does not lock socket!
4222 * Change state from SYN-SENT only after copied_seq
4223 * is initialized. */
4224 tp
->copied_seq
= tp
->rcv_nxt
;
4226 tcp_set_state(sk
, TCP_ESTABLISHED
);
4228 /* Make sure socket is routed, for correct metrics. */
4229 icsk
->icsk_af_ops
->rebuild_header(sk
);
4231 tcp_init_metrics(sk
);
4233 tcp_init_congestion_control(sk
);
4235 /* Prevent spurious tcp_cwnd_restart() on first data
4238 tp
->lsndtime
= tcp_time_stamp
;
4240 tcp_init_buffer_space(sk
);
4242 if (sock_flag(sk
, SOCK_KEEPOPEN
))
4243 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
4245 if (!tp
->rx_opt
.snd_wscale
)
4246 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
4250 if (!sock_flag(sk
, SOCK_DEAD
)) {
4251 sk
->sk_state_change(sk
);
4252 sk_wake_async(sk
, 0, POLL_OUT
);
4255 if (sk
->sk_write_pending
||
4256 icsk
->icsk_accept_queue
.rskq_defer_accept
||
4257 icsk
->icsk_ack
.pingpong
) {
4258 /* Save one ACK. Data will be ready after
4259 * several ticks, if write_pending is set.
4261 * It may be deleted, but with this feature tcpdumps
4262 * look so _wonderfully_ clever, that I was not able
4263 * to stand against the temptation 8) --ANK
4265 inet_csk_schedule_ack(sk
);
4266 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
4267 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
4268 tcp_incr_quickack(sk
);
4269 tcp_enter_quickack_mode(sk
);
4270 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
4271 TCP_DELACK_MAX
, TCP_RTO_MAX
);
4282 /* No ACK in the segment */
4286 * "If the RST bit is set
4288 * Otherwise (no ACK) drop the segment and return."
4291 goto discard_and_undo
;
4295 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&& tcp_paws_check(&tp
->rx_opt
, 0))
4296 goto discard_and_undo
;
4299 /* We see SYN without ACK. It is attempt of
4300 * simultaneous connect with crossed SYNs.
4301 * Particularly, it can be connect to self.
4303 tcp_set_state(sk
, TCP_SYN_RECV
);
4305 if (tp
->rx_opt
.saw_tstamp
) {
4306 tp
->rx_opt
.tstamp_ok
= 1;
4307 tcp_store_ts_recent(tp
);
4308 tp
->tcp_header_len
=
4309 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4311 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4314 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4315 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4317 /* RFC1323: The window in SYN & SYN/ACK segments is
4320 tp
->snd_wnd
= ntohs(th
->window
);
4321 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4322 tp
->max_window
= tp
->snd_wnd
;
4324 TCP_ECN_rcv_syn(tp
, th
);
4325 if (tp
->ecn_flags
&TCP_ECN_OK
)
4326 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
4329 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4330 tcp_initialize_rcv_mss(sk
);
4333 tcp_send_synack(sk
);
4335 /* Note, we could accept data and URG from this segment.
4336 * There are no obstacles to make this.
4338 * However, if we ignore data in ACKless segments sometimes,
4339 * we have no reasons to accept it sometimes.
4340 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4341 * is not flawless. So, discard packet for sanity.
4342 * Uncomment this return to process the data.
4349 /* "fifth, if neither of the SYN or RST bits is set then
4350 * drop the segment and return."
4354 tcp_clear_options(&tp
->rx_opt
);
4355 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4359 tcp_clear_options(&tp
->rx_opt
);
4360 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4366 * This function implements the receiving procedure of RFC 793 for
4367 * all states except ESTABLISHED and TIME_WAIT.
4368 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4369 * address independent.
4372 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4373 struct tcphdr
*th
, unsigned len
)
4375 struct tcp_sock
*tp
= tcp_sk(sk
);
4376 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4379 tp
->rx_opt
.saw_tstamp
= 0;
4381 switch (sk
->sk_state
) {
4393 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
4396 /* Now we have several options: In theory there is
4397 * nothing else in the frame. KA9Q has an option to
4398 * send data with the syn, BSD accepts data with the
4399 * syn up to the [to be] advertised window and
4400 * Solaris 2.1 gives you a protocol error. For now
4401 * we just ignore it, that fits the spec precisely
4402 * and avoids incompatibilities. It would be nice in
4403 * future to drop through and process the data.
4405 * Now that TTCP is starting to be used we ought to
4407 * But, this leaves one open to an easy denial of
4408 * service attack, and SYN cookies can't defend
4409 * against this problem. So, we drop the data
4410 * in the interest of security over speed.
4417 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
4421 /* Do step6 onward by hand. */
4422 tcp_urg(sk
, skb
, th
);
4424 tcp_data_snd_check(sk
, tp
);
4428 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4429 tcp_paws_discard(sk
, skb
)) {
4431 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4432 tcp_send_dupack(sk
, skb
);
4435 /* Reset is accepted even if it did not pass PAWS. */
4438 /* step 1: check sequence number */
4439 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4441 tcp_send_dupack(sk
, skb
);
4445 /* step 2: check RST bit */
4451 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4453 /* step 3: check security and precedence [ignored] */
4457 * Check for a SYN in window.
4459 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4460 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4465 /* step 5: check the ACK field */
4467 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4469 switch(sk
->sk_state
) {
4472 tp
->copied_seq
= tp
->rcv_nxt
;
4474 tcp_set_state(sk
, TCP_ESTABLISHED
);
4475 sk
->sk_state_change(sk
);
4477 /* Note, that this wakeup is only for marginal
4478 * crossed SYN case. Passively open sockets
4479 * are not waked up, because sk->sk_sleep ==
4480 * NULL and sk->sk_socket == NULL.
4482 if (sk
->sk_socket
) {
4483 sk_wake_async(sk
,0,POLL_OUT
);
4486 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
4487 tp
->snd_wnd
= ntohs(th
->window
) <<
4488 tp
->rx_opt
.snd_wscale
;
4489 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
4490 TCP_SKB_CB(skb
)->seq
);
4492 /* tcp_ack considers this ACK as duplicate
4493 * and does not calculate rtt.
4494 * Fix it at least with timestamps.
4496 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4498 tcp_ack_saw_tstamp(sk
, 0);
4500 if (tp
->rx_opt
.tstamp_ok
)
4501 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4503 /* Make sure socket is routed, for
4506 icsk
->icsk_af_ops
->rebuild_header(sk
);
4508 tcp_init_metrics(sk
);
4510 tcp_init_congestion_control(sk
);
4512 /* Prevent spurious tcp_cwnd_restart() on
4513 * first data packet.
4515 tp
->lsndtime
= tcp_time_stamp
;
4518 tcp_initialize_rcv_mss(sk
);
4519 tcp_init_buffer_space(sk
);
4520 tcp_fast_path_on(tp
);
4527 if (tp
->snd_una
== tp
->write_seq
) {
4528 tcp_set_state(sk
, TCP_FIN_WAIT2
);
4529 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
4530 dst_confirm(sk
->sk_dst_cache
);
4532 if (!sock_flag(sk
, SOCK_DEAD
))
4533 /* Wake up lingering close() */
4534 sk
->sk_state_change(sk
);
4538 if (tp
->linger2
< 0 ||
4539 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4540 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
4542 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4546 tmo
= tcp_fin_time(sk
);
4547 if (tmo
> TCP_TIMEWAIT_LEN
) {
4548 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
4549 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
4550 /* Bad case. We could lose such FIN otherwise.
4551 * It is not a big problem, but it looks confusing
4552 * and not so rare event. We still can lose it now,
4553 * if it spins in bh_lock_sock(), but it is really
4556 inet_csk_reset_keepalive_timer(sk
, tmo
);
4558 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
4566 if (tp
->snd_una
== tp
->write_seq
) {
4567 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4573 if (tp
->snd_una
== tp
->write_seq
) {
4574 tcp_update_metrics(sk
);
4583 /* step 6: check the URG bit */
4584 tcp_urg(sk
, skb
, th
);
4586 /* step 7: process the segment text */
4587 switch (sk
->sk_state
) {
4588 case TCP_CLOSE_WAIT
:
4591 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4595 /* RFC 793 says to queue data in these states,
4596 * RFC 1122 says we MUST send a reset.
4597 * BSD 4.4 also does reset.
4599 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
4600 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4601 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
4602 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4608 case TCP_ESTABLISHED
:
4609 tcp_data_queue(sk
, skb
);
4614 /* tcp_data could move socket to TIME-WAIT */
4615 if (sk
->sk_state
!= TCP_CLOSE
) {
4616 tcp_data_snd_check(sk
, tp
);
4617 tcp_ack_snd_check(sk
);
4627 EXPORT_SYMBOL(sysctl_tcp_ecn
);
4628 EXPORT_SYMBOL(sysctl_tcp_reordering
);
4629 EXPORT_SYMBOL(tcp_parse_options
);
4630 EXPORT_SYMBOL(tcp_rcv_established
);
4631 EXPORT_SYMBOL(tcp_rcv_state_process
);
4632 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);