2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
55 #include <linux/config.h>
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 int sysctl_tcp_tw_reuse
;
83 int sysctl_tcp_low_latency
;
85 /* Check TCP sequence numbers in ICMP packets. */
86 #define ICMP_MIN_LENGTH 8
88 /* Socket used for sending RSTs */
89 static struct socket
*tcp_socket
;
91 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
);
93 struct inet_hashinfo __cacheline_aligned tcp_hashinfo
= {
94 .lhash_lock
= RW_LOCK_UNLOCKED
,
95 .lhash_users
= ATOMIC_INIT(0),
96 .lhash_wait
= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo
.lhash_wait
),
99 static int tcp_v4_get_port(struct sock
*sk
, unsigned short snum
)
101 return inet_csk_get_port(&tcp_hashinfo
, sk
, snum
,
102 inet_csk_bind_conflict
);
105 static void tcp_v4_hash(struct sock
*sk
)
107 inet_hash(&tcp_hashinfo
, sk
);
110 void tcp_unhash(struct sock
*sk
)
112 inet_unhash(&tcp_hashinfo
, sk
);
115 static inline __u32
tcp_v4_init_sequence(struct sock
*sk
, struct sk_buff
*skb
)
117 return secure_tcp_sequence_number(skb
->nh
.iph
->daddr
,
123 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
125 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
126 struct tcp_sock
*tp
= tcp_sk(sk
);
128 /* With PAWS, it is safe from the viewpoint
129 of data integrity. Even without PAWS it is safe provided sequence
130 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
132 Actually, the idea is close to VJ's one, only timestamp cache is
133 held not per host, but per port pair and TW bucket is used as state
136 If TW bucket has been already destroyed we fall back to VJ's scheme
137 and use initial timestamp retrieved from peer table.
139 if (tcptw
->tw_ts_recent_stamp
&&
140 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
141 xtime
.tv_sec
- tcptw
->tw_ts_recent_stamp
> 1))) {
142 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
143 if (tp
->write_seq
== 0)
145 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
146 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
154 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
156 /* This will initiate an outgoing connection. */
157 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
159 struct inet_sock
*inet
= inet_sk(sk
);
160 struct tcp_sock
*tp
= tcp_sk(sk
);
161 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
167 if (addr_len
< sizeof(struct sockaddr_in
))
170 if (usin
->sin_family
!= AF_INET
)
171 return -EAFNOSUPPORT
;
173 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
174 if (inet
->opt
&& inet
->opt
->srr
) {
177 nexthop
= inet
->opt
->faddr
;
180 tmp
= ip_route_connect(&rt
, nexthop
, inet
->saddr
,
181 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
183 inet
->sport
, usin
->sin_port
, sk
);
187 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
192 if (!inet
->opt
|| !inet
->opt
->srr
)
196 inet
->saddr
= rt
->rt_src
;
197 inet
->rcv_saddr
= inet
->saddr
;
199 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->daddr
!= daddr
) {
200 /* Reset inherited state */
201 tp
->rx_opt
.ts_recent
= 0;
202 tp
->rx_opt
.ts_recent_stamp
= 0;
206 if (tcp_death_row
.sysctl_tw_recycle
&&
207 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
208 struct inet_peer
*peer
= rt_get_peer(rt
);
210 /* VJ's idea. We save last timestamp seen from
211 * the destination in peer table, when entering state TIME-WAIT
212 * and initialize rx_opt.ts_recent from it, when trying new connection.
215 if (peer
&& peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
>= xtime
.tv_sec
) {
216 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
217 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
221 inet
->dport
= usin
->sin_port
;
224 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
226 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
228 tp
->rx_opt
.mss_clamp
= 536;
230 /* Socket identity is still unknown (sport may be zero).
231 * However we set state to SYN-SENT and not releasing socket
232 * lock select source port, enter ourselves into the hash tables and
233 * complete initialization after this.
235 tcp_set_state(sk
, TCP_SYN_SENT
);
236 err
= inet_hash_connect(&tcp_death_row
, sk
);
240 err
= ip_route_newports(&rt
, IPPROTO_TCP
, inet
->sport
, inet
->dport
, sk
);
244 /* OK, now commit destination to socket. */
245 sk_setup_caps(sk
, &rt
->u
.dst
);
248 tp
->write_seq
= secure_tcp_sequence_number(inet
->saddr
,
253 inet
->id
= tp
->write_seq
^ jiffies
;
255 err
= tcp_connect(sk
);
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk
, TCP_CLOSE
);
266 sk
->sk_route_caps
= 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
276 struct dst_entry
*dst
;
277 struct inet_sock
*inet
= inet_sk(sk
);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk
->sk_state
== TCP_LISTEN
)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
295 dst
->ops
->update_pmtu(dst
, mtu
);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
301 sk
->sk_err_soft
= EMSGSIZE
;
305 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
306 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
307 tcp_sync_mss(sk
, mtu
);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk
);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff
*skb
, u32 info
)
336 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
337 struct tcphdr
*th
= (struct tcphdr
*)(skb
->data
+ (iph
->ihl
<< 2));
339 struct inet_sock
*inet
;
340 int type
= skb
->h
.icmph
->type
;
341 int code
= skb
->h
.icmph
->code
;
346 if (skb
->len
< (iph
->ihl
<< 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
351 sk
= inet_lookup(&tcp_hashinfo
, iph
->daddr
, th
->dest
, iph
->saddr
,
352 th
->source
, inet_iif(skb
));
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
357 if (sk
->sk_state
== TCP_TIME_WAIT
) {
358 inet_twsk_put((struct inet_timewait_sock
*)sk
);
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
366 if (sock_owned_by_user(sk
))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS
);
369 if (sk
->sk_state
== TCP_CLOSE
)
373 seq
= ntohl(th
->seq
);
374 if (sk
->sk_state
!= TCP_LISTEN
&&
375 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
376 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS
);
381 case ICMP_SOURCE_QUENCH
:
382 /* Just silently ignore these. */
384 case ICMP_PARAMETERPROB
:
387 case ICMP_DEST_UNREACH
:
388 if (code
> NR_ICMP_UNREACH
)
391 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk
))
393 do_pmtu_discovery(sk
, iph
, info
);
397 err
= icmp_err_convert
[code
].errno
;
399 case ICMP_TIME_EXCEEDED
:
406 switch (sk
->sk_state
) {
407 struct request_sock
*req
, **prev
;
409 if (sock_owned_by_user(sk
))
412 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
413 iph
->daddr
, iph
->saddr
);
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
422 if (seq
!= tcp_rsk(req
)->snt_isn
) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
433 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
437 case TCP_SYN_RECV
: /* Cannot happen.
438 It can f.e. if SYNs crossed.
440 if (!sock_owned_by_user(sk
)) {
441 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS
);
444 sk
->sk_error_report(sk
);
448 sk
->sk_err_soft
= err
;
453 /* If we've already connected we will keep trying
454 * until we time out, or the user gives up.
456 * rfc1122 4.2.3.9 allows to consider as hard errors
457 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 * but it is obsoleted by pmtu discovery).
460 * Note, that in modern internet, where routing is unreliable
461 * and in each dark corner broken firewalls sit, sending random
462 * errors ordered by their masters even this two messages finally lose
463 * their original sense (even Linux sends invalid PORT_UNREACHs)
465 * Now we are in compliance with RFCs.
470 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
472 sk
->sk_error_report(sk
);
473 } else { /* Only an error on timeout */
474 sk
->sk_err_soft
= err
;
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
)
485 struct inet_sock
*inet
= inet_sk(sk
);
486 struct tcphdr
*th
= skb
->h
.th
;
488 if (skb
->ip_summed
== CHECKSUM_HW
) {
489 th
->check
= ~tcp_v4_check(th
, len
, inet
->saddr
, inet
->daddr
, 0);
490 skb
->csum
= offsetof(struct tcphdr
, check
);
492 th
->check
= tcp_v4_check(th
, len
, inet
->saddr
, inet
->daddr
,
493 csum_partial((char *)th
,
500 * This routine will send an RST to the other tcp.
502 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
504 * Answer: if a packet caused RST, it is not for a socket
505 * existing in our system, if it is matched to a socket,
506 * it is just duplicate segment or bug in other side's TCP.
507 * So that we build reply only basing on parameters
508 * arrived with segment.
509 * Exception: precedence violation. We do not implement it in any case.
512 static void tcp_v4_send_reset(struct sk_buff
*skb
)
514 struct tcphdr
*th
= skb
->h
.th
;
516 struct ip_reply_arg arg
;
518 /* Never send a reset in response to a reset. */
522 if (((struct rtable
*)skb
->dst
)->rt_type
!= RTN_LOCAL
)
525 /* Swap the send and the receive. */
526 memset(&rth
, 0, sizeof(struct tcphdr
));
527 rth
.dest
= th
->source
;
528 rth
.source
= th
->dest
;
529 rth
.doff
= sizeof(struct tcphdr
) / 4;
533 rth
.seq
= th
->ack_seq
;
536 rth
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
537 skb
->len
- (th
->doff
<< 2));
540 memset(&arg
, 0, sizeof arg
);
541 arg
.iov
[0].iov_base
= (unsigned char *)&rth
;
542 arg
.iov
[0].iov_len
= sizeof rth
;
543 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
544 skb
->nh
.iph
->saddr
, /*XXX*/
545 sizeof(struct tcphdr
), IPPROTO_TCP
, 0);
546 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
548 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, sizeof rth
);
550 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
551 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS
);
554 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
555 outside socket context is ugly, certainly. What can I do?
558 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
561 struct tcphdr
*th
= skb
->h
.th
;
566 struct ip_reply_arg arg
;
568 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
569 memset(&arg
, 0, sizeof arg
);
571 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
572 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
574 rep
.tsopt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
575 (TCPOPT_TIMESTAMP
<< 8) |
577 rep
.tsopt
[1] = htonl(tcp_time_stamp
);
578 rep
.tsopt
[2] = htonl(ts
);
579 arg
.iov
[0].iov_len
= sizeof(rep
);
582 /* Swap the send and the receive. */
583 rep
.th
.dest
= th
->source
;
584 rep
.th
.source
= th
->dest
;
585 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
586 rep
.th
.seq
= htonl(seq
);
587 rep
.th
.ack_seq
= htonl(ack
);
589 rep
.th
.window
= htons(win
);
591 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
592 skb
->nh
.iph
->saddr
, /*XXX*/
593 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
594 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
596 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
598 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
601 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
603 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
604 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
606 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
607 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
, tcptw
->tw_ts_recent
);
612 static void tcp_v4_reqsk_send_ack(struct sk_buff
*skb
, struct request_sock
*req
)
614 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1, tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
619 * Send a SYN-ACK after having received an ACK.
620 * This still operates on a request_sock only, not on a big
623 static int tcp_v4_send_synack(struct sock
*sk
, struct request_sock
*req
,
624 struct dst_entry
*dst
)
626 const struct inet_request_sock
*ireq
= inet_rsk(req
);
628 struct sk_buff
* skb
;
630 /* First, grab a route. */
631 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
634 skb
= tcp_make_synack(sk
, dst
, req
);
637 struct tcphdr
*th
= skb
->h
.th
;
639 th
->check
= tcp_v4_check(th
, skb
->len
,
642 csum_partial((char *)th
, skb
->len
,
645 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
648 if (err
== NET_XMIT_CN
)
658 * IPv4 request_sock destructor.
660 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
662 kfree(inet_rsk(req
)->opt
);
665 #ifdef CONFIG_SYN_COOKIES
666 static void syn_flood_warning(struct sk_buff
*skb
)
668 static unsigned long warntime
;
670 if (time_after(jiffies
, (warntime
+ HZ
* 60))) {
673 "possible SYN flooding on port %d. Sending cookies.\n",
674 ntohs(skb
->h
.th
->dest
));
680 * Save and compile IPv4 options into the request_sock if needed.
682 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
685 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
686 struct ip_options
*dopt
= NULL
;
688 if (opt
&& opt
->optlen
) {
689 int opt_size
= optlength(opt
);
690 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
692 if (ip_options_echo(dopt
, skb
)) {
701 struct request_sock_ops tcp_request_sock_ops
= {
703 .obj_size
= sizeof(struct tcp_request_sock
),
704 .rtx_syn_ack
= tcp_v4_send_synack
,
705 .send_ack
= tcp_v4_reqsk_send_ack
,
706 .destructor
= tcp_v4_reqsk_destructor
,
707 .send_reset
= tcp_v4_send_reset
,
710 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
711 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
712 .twsk_unique
= tcp_twsk_unique
,
715 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
717 struct inet_request_sock
*ireq
;
718 struct tcp_options_received tmp_opt
;
719 struct request_sock
*req
;
720 __u32 saddr
= skb
->nh
.iph
->saddr
;
721 __u32 daddr
= skb
->nh
.iph
->daddr
;
722 __u32 isn
= TCP_SKB_CB(skb
)->when
;
723 struct dst_entry
*dst
= NULL
;
724 #ifdef CONFIG_SYN_COOKIES
727 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
730 /* Never answer to SYNs send to broadcast or multicast */
731 if (((struct rtable
*)skb
->dst
)->rt_flags
&
732 (RTCF_BROADCAST
| RTCF_MULTICAST
))
735 /* TW buckets are converted to open requests without
736 * limitations, they conserve resources and peer is
737 * evidently real one.
739 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
740 #ifdef CONFIG_SYN_COOKIES
741 if (sysctl_tcp_syncookies
) {
748 /* Accept backlog is full. If we have already queued enough
749 * of warm entries in syn queue, drop request. It is better than
750 * clogging syn queue with openreqs with exponentially increasing
753 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
756 req
= reqsk_alloc(&tcp_request_sock_ops
);
760 tcp_clear_options(&tmp_opt
);
761 tmp_opt
.mss_clamp
= 536;
762 tmp_opt
.user_mss
= tcp_sk(sk
)->rx_opt
.user_mss
;
764 tcp_parse_options(skb
, &tmp_opt
, 0);
767 tcp_clear_options(&tmp_opt
);
768 tmp_opt
.saw_tstamp
= 0;
771 if (tmp_opt
.saw_tstamp
&& !tmp_opt
.rcv_tsval
) {
772 /* Some OSes (unknown ones, but I see them on web server, which
773 * contains information interesting only for windows'
774 * users) do not send their stamp in SYN. It is easy case.
775 * We simply do not advertise TS support.
777 tmp_opt
.saw_tstamp
= 0;
778 tmp_opt
.tstamp_ok
= 0;
780 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
782 tcp_openreq_init(req
, &tmp_opt
, skb
);
784 ireq
= inet_rsk(req
);
785 ireq
->loc_addr
= daddr
;
786 ireq
->rmt_addr
= saddr
;
787 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
789 TCP_ECN_create_request(req
, skb
->h
.th
);
792 #ifdef CONFIG_SYN_COOKIES
793 syn_flood_warning(skb
);
795 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
797 struct inet_peer
*peer
= NULL
;
799 /* VJ's idea. We save last timestamp seen
800 * from the destination in peer table, when entering
801 * state TIME-WAIT, and check against it before
802 * accepting new connection request.
804 * If "isn" is not zero, this request hit alive
805 * timewait bucket, so that all the necessary checks
806 * are made in the function processing timewait state.
808 if (tmp_opt
.saw_tstamp
&&
809 tcp_death_row
.sysctl_tw_recycle
&&
810 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
811 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
812 peer
->v4daddr
== saddr
) {
813 if (xtime
.tv_sec
< peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
&&
814 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
816 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED
);
821 /* Kill the following clause, if you dislike this way. */
822 else if (!sysctl_tcp_syncookies
&&
823 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
824 (sysctl_max_syn_backlog
>> 2)) &&
825 (!peer
|| !peer
->tcp_ts_stamp
) &&
826 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
827 /* Without syncookies last quarter of
828 * backlog is filled with destinations,
829 * proven to be alive.
830 * It means that we continue to communicate
831 * to destinations, already remembered
832 * to the moment of synflood.
834 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open "
835 "request from %u.%u.%u.%u/%u\n",
837 ntohs(skb
->h
.th
->source
));
842 isn
= tcp_v4_init_sequence(sk
, skb
);
844 tcp_rsk(req
)->snt_isn
= isn
;
846 if (tcp_v4_send_synack(sk
, req
, dst
))
852 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
859 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS
);
865 * The three way handshake has completed - we got a valid synack -
866 * now create the new socket.
868 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
869 struct request_sock
*req
,
870 struct dst_entry
*dst
)
872 struct inet_request_sock
*ireq
;
873 struct inet_sock
*newinet
;
874 struct tcp_sock
*newtp
;
877 if (sk_acceptq_is_full(sk
))
880 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
883 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
887 sk_setup_caps(newsk
, dst
);
889 newtp
= tcp_sk(newsk
);
890 newinet
= inet_sk(newsk
);
891 ireq
= inet_rsk(req
);
892 newinet
->daddr
= ireq
->rmt_addr
;
893 newinet
->rcv_saddr
= ireq
->loc_addr
;
894 newinet
->saddr
= ireq
->loc_addr
;
895 newinet
->opt
= ireq
->opt
;
897 newinet
->mc_index
= inet_iif(skb
);
898 newinet
->mc_ttl
= skb
->nh
.iph
->ttl
;
899 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
901 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
902 newinet
->id
= newtp
->write_seq
^ jiffies
;
904 tcp_mtup_init(newsk
);
905 tcp_sync_mss(newsk
, dst_mtu(dst
));
906 newtp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
907 tcp_initialize_rcv_mss(newsk
);
909 __inet_hash(&tcp_hashinfo
, newsk
, 0);
910 __inet_inherit_port(&tcp_hashinfo
, sk
, newsk
);
915 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS
);
917 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS
);
922 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
924 struct tcphdr
*th
= skb
->h
.th
;
925 struct iphdr
*iph
= skb
->nh
.iph
;
927 struct request_sock
**prev
;
928 /* Find possible connection requests. */
929 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
930 iph
->saddr
, iph
->daddr
);
932 return tcp_check_req(sk
, skb
, req
, prev
);
934 nsk
= __inet_lookup_established(&tcp_hashinfo
, skb
->nh
.iph
->saddr
,
935 th
->source
, skb
->nh
.iph
->daddr
,
936 ntohs(th
->dest
), inet_iif(skb
));
939 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
943 inet_twsk_put((struct inet_timewait_sock
*)nsk
);
947 #ifdef CONFIG_SYN_COOKIES
948 if (!th
->rst
&& !th
->syn
&& th
->ack
)
949 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
954 static int tcp_v4_checksum_init(struct sk_buff
*skb
)
956 if (skb
->ip_summed
== CHECKSUM_HW
) {
957 if (!tcp_v4_check(skb
->h
.th
, skb
->len
, skb
->nh
.iph
->saddr
,
958 skb
->nh
.iph
->daddr
, skb
->csum
)) {
959 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
964 skb
->csum
= csum_tcpudp_nofold(skb
->nh
.iph
->saddr
, skb
->nh
.iph
->daddr
,
965 skb
->len
, IPPROTO_TCP
, 0);
967 if (skb
->len
<= 76) {
968 return __skb_checksum_complete(skb
);
974 /* The socket must have it's spinlock held when we get
977 * We have a potential double-lock case here, so even when
978 * doing backlog processing we use the BH locking scheme.
979 * This is because we cannot sleep with the original spinlock
982 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
984 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
986 if (tcp_rcv_established(sk
, skb
, skb
->h
.th
, skb
->len
))
992 if (skb
->len
< (skb
->h
.th
->doff
<< 2) || tcp_checksum_complete(skb
))
995 if (sk
->sk_state
== TCP_LISTEN
) {
996 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1001 if (tcp_child_process(sk
, nsk
, skb
))
1007 TCP_CHECK_TIMER(sk
);
1008 if (tcp_rcv_state_process(sk
, skb
, skb
->h
.th
, skb
->len
))
1010 TCP_CHECK_TIMER(sk
);
1014 tcp_v4_send_reset(skb
);
1017 /* Be careful here. If this function gets more complicated and
1018 * gcc suffers from register pressure on the x86, sk (in %ebx)
1019 * might be destroyed here. This current version compiles correctly,
1020 * but you have been warned.
1025 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1033 int tcp_v4_rcv(struct sk_buff
*skb
)
1039 if (skb
->pkt_type
!= PACKET_HOST
)
1042 /* Count it even if it's bad */
1043 TCP_INC_STATS_BH(TCP_MIB_INSEGS
);
1045 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1050 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1052 if (!pskb_may_pull(skb
, th
->doff
* 4))
1055 /* An explanation is required here, I think.
1056 * Packet length and doff are validated by header prediction,
1057 * provided case of th->doff==0 is eliminated.
1058 * So, we defer the checks. */
1059 if ((skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
1060 tcp_v4_checksum_init(skb
)))
1064 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1065 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1066 skb
->len
- th
->doff
* 4);
1067 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1068 TCP_SKB_CB(skb
)->when
= 0;
1069 TCP_SKB_CB(skb
)->flags
= skb
->nh
.iph
->tos
;
1070 TCP_SKB_CB(skb
)->sacked
= 0;
1072 sk
= __inet_lookup(&tcp_hashinfo
, skb
->nh
.iph
->saddr
, th
->source
,
1073 skb
->nh
.iph
->daddr
, ntohs(th
->dest
),
1080 if (sk
->sk_state
== TCP_TIME_WAIT
)
1083 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1084 goto discard_and_relse
;
1087 if (sk_filter(sk
, skb
, 0))
1088 goto discard_and_relse
;
1094 if (!sock_owned_by_user(sk
)) {
1095 #ifdef CONFIG_NET_DMA
1096 struct tcp_sock
*tp
= tcp_sk(sk
);
1097 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1098 tp
->ucopy
.dma_chan
= get_softnet_dma();
1099 if (tp
->ucopy
.dma_chan
)
1100 ret
= tcp_v4_do_rcv(sk
, skb
);
1104 if (!tcp_prequeue(sk
, skb
))
1105 ret
= tcp_v4_do_rcv(sk
, skb
);
1108 sk_add_backlog(sk
, skb
);
1116 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1119 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1121 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1123 tcp_v4_send_reset(skb
);
1127 /* Discard frame. */
1136 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1137 inet_twsk_put((struct inet_timewait_sock
*) sk
);
1141 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1142 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1143 inet_twsk_put((struct inet_timewait_sock
*) sk
);
1146 switch (tcp_timewait_state_process((struct inet_timewait_sock
*)sk
,
1149 struct sock
*sk2
= inet_lookup_listener(&tcp_hashinfo
,
1154 inet_twsk_deschedule((struct inet_timewait_sock
*)sk
,
1156 inet_twsk_put((struct inet_timewait_sock
*)sk
);
1160 /* Fall through to ACK */
1163 tcp_v4_timewait_ack(sk
, skb
);
1167 case TCP_TW_SUCCESS
:;
1172 /* VJ's idea. Save last timestamp seen from this destination
1173 * and hold it at least for normal timewait interval to use for duplicate
1174 * segment detection in subsequent connections, before they enter synchronized
1178 int tcp_v4_remember_stamp(struct sock
*sk
)
1180 struct inet_sock
*inet
= inet_sk(sk
);
1181 struct tcp_sock
*tp
= tcp_sk(sk
);
1182 struct rtable
*rt
= (struct rtable
*)__sk_dst_get(sk
);
1183 struct inet_peer
*peer
= NULL
;
1186 if (!rt
|| rt
->rt_dst
!= inet
->daddr
) {
1187 peer
= inet_getpeer(inet
->daddr
, 1);
1191 rt_bind_peer(rt
, 1);
1196 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
1197 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1198 peer
->tcp_ts_stamp
<= tp
->rx_opt
.ts_recent_stamp
)) {
1199 peer
->tcp_ts_stamp
= tp
->rx_opt
.ts_recent_stamp
;
1200 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
1210 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock
*tw
)
1212 struct inet_peer
*peer
= inet_getpeer(tw
->tw_daddr
, 1);
1215 const struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
1217 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
1218 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1219 peer
->tcp_ts_stamp
<= tcptw
->tw_ts_recent_stamp
)) {
1220 peer
->tcp_ts_stamp
= tcptw
->tw_ts_recent_stamp
;
1221 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
1230 struct inet_connection_sock_af_ops ipv4_specific
= {
1231 .queue_xmit
= ip_queue_xmit
,
1232 .send_check
= tcp_v4_send_check
,
1233 .rebuild_header
= inet_sk_rebuild_header
,
1234 .conn_request
= tcp_v4_conn_request
,
1235 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1236 .remember_stamp
= tcp_v4_remember_stamp
,
1237 .net_header_len
= sizeof(struct iphdr
),
1238 .setsockopt
= ip_setsockopt
,
1239 .getsockopt
= ip_getsockopt
,
1240 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1241 .sockaddr_len
= sizeof(struct sockaddr_in
),
1242 #ifdef CONFIG_COMPAT
1243 .compat_setsockopt
= compat_ip_setsockopt
,
1244 .compat_getsockopt
= compat_ip_getsockopt
,
1248 /* NOTE: A lot of things set to zero explicitly by call to
1249 * sk_alloc() so need not be done here.
1251 static int tcp_v4_init_sock(struct sock
*sk
)
1253 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1254 struct tcp_sock
*tp
= tcp_sk(sk
);
1256 skb_queue_head_init(&tp
->out_of_order_queue
);
1257 tcp_init_xmit_timers(sk
);
1258 tcp_prequeue_init(tp
);
1260 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1261 tp
->mdev
= TCP_TIMEOUT_INIT
;
1263 /* So many TCP implementations out there (incorrectly) count the
1264 * initial SYN frame in their delayed-ACK and congestion control
1265 * algorithms that we must have the following bandaid to talk
1266 * efficiently to them. -DaveM
1270 /* See draft-stevens-tcpca-spec-01 for discussion of the
1271 * initialization of these values.
1273 tp
->snd_ssthresh
= 0x7fffffff; /* Infinity */
1274 tp
->snd_cwnd_clamp
= ~0;
1275 tp
->mss_cache
= 536;
1277 tp
->reordering
= sysctl_tcp_reordering
;
1278 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1280 sk
->sk_state
= TCP_CLOSE
;
1282 sk
->sk_write_space
= sk_stream_write_space
;
1283 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1285 icsk
->icsk_af_ops
= &ipv4_specific
;
1286 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1288 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1289 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1291 atomic_inc(&tcp_sockets_allocated
);
1296 int tcp_v4_destroy_sock(struct sock
*sk
)
1298 struct tcp_sock
*tp
= tcp_sk(sk
);
1300 tcp_clear_xmit_timers(sk
);
1302 tcp_cleanup_congestion_control(sk
);
1304 /* Cleanup up the write buffer. */
1305 sk_stream_writequeue_purge(sk
);
1307 /* Cleans up our, hopefully empty, out_of_order_queue. */
1308 __skb_queue_purge(&tp
->out_of_order_queue
);
1310 #ifdef CONFIG_NET_DMA
1311 /* Cleans up our sk_async_wait_queue */
1312 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1315 /* Clean prequeue, it must be empty really */
1316 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1318 /* Clean up a referenced TCP bind bucket. */
1319 if (inet_csk(sk
)->icsk_bind_hash
)
1320 inet_put_port(&tcp_hashinfo
, sk
);
1323 * If sendmsg cached page exists, toss it.
1325 if (sk
->sk_sndmsg_page
) {
1326 __free_page(sk
->sk_sndmsg_page
);
1327 sk
->sk_sndmsg_page
= NULL
;
1330 atomic_dec(&tcp_sockets_allocated
);
1335 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1337 #ifdef CONFIG_PROC_FS
1338 /* Proc filesystem TCP sock list dumping. */
1340 static inline struct inet_timewait_sock
*tw_head(struct hlist_head
*head
)
1342 return hlist_empty(head
) ? NULL
:
1343 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1346 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1348 return tw
->tw_node
.next
?
1349 hlist_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1352 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1354 struct inet_connection_sock
*icsk
;
1355 struct hlist_node
*node
;
1356 struct sock
*sk
= cur
;
1357 struct tcp_iter_state
* st
= seq
->private;
1361 sk
= sk_head(&tcp_hashinfo
.listening_hash
[0]);
1367 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1368 struct request_sock
*req
= cur
;
1370 icsk
= inet_csk(st
->syn_wait_sk
);
1374 if (req
->rsk_ops
->family
== st
->family
) {
1380 if (++st
->sbucket
>= TCP_SYNQ_HSIZE
)
1383 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
1385 sk
= sk_next(st
->syn_wait_sk
);
1386 st
->state
= TCP_SEQ_STATE_LISTENING
;
1387 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1389 icsk
= inet_csk(sk
);
1390 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1391 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
1393 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1397 sk_for_each_from(sk
, node
) {
1398 if (sk
->sk_family
== st
->family
) {
1402 icsk
= inet_csk(sk
);
1403 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1404 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
1406 st
->uid
= sock_i_uid(sk
);
1407 st
->syn_wait_sk
= sk
;
1408 st
->state
= TCP_SEQ_STATE_OPENREQ
;
1412 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1414 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
1415 sk
= sk_head(&tcp_hashinfo
.listening_hash
[st
->bucket
]);
1423 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
1425 void *rc
= listening_get_next(seq
, NULL
);
1427 while (rc
&& *pos
) {
1428 rc
= listening_get_next(seq
, rc
);
1434 static void *established_get_first(struct seq_file
*seq
)
1436 struct tcp_iter_state
* st
= seq
->private;
1439 for (st
->bucket
= 0; st
->bucket
< tcp_hashinfo
.ehash_size
; ++st
->bucket
) {
1441 struct hlist_node
*node
;
1442 struct inet_timewait_sock
*tw
;
1444 /* We can reschedule _before_ having picked the target: */
1445 cond_resched_softirq();
1447 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1448 sk_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
1449 if (sk
->sk_family
!= st
->family
) {
1455 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
1456 inet_twsk_for_each(tw
, node
,
1457 &tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
) {
1458 if (tw
->tw_family
!= st
->family
) {
1464 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1465 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1471 static void *established_get_next(struct seq_file
*seq
, void *cur
)
1473 struct sock
*sk
= cur
;
1474 struct inet_timewait_sock
*tw
;
1475 struct hlist_node
*node
;
1476 struct tcp_iter_state
* st
= seq
->private;
1480 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
1484 while (tw
&& tw
->tw_family
!= st
->family
) {
1491 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1492 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1494 /* We can reschedule between buckets: */
1495 cond_resched_softirq();
1497 if (++st
->bucket
< tcp_hashinfo
.ehash_size
) {
1498 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1499 sk
= sk_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
1507 sk_for_each_from(sk
, node
) {
1508 if (sk
->sk_family
== st
->family
)
1512 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
1513 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
);
1521 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
1523 void *rc
= established_get_first(seq
);
1526 rc
= established_get_next(seq
, rc
);
1532 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
1535 struct tcp_iter_state
* st
= seq
->private;
1537 inet_listen_lock(&tcp_hashinfo
);
1538 st
->state
= TCP_SEQ_STATE_LISTENING
;
1539 rc
= listening_get_idx(seq
, &pos
);
1542 inet_listen_unlock(&tcp_hashinfo
);
1544 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1545 rc
= established_get_idx(seq
, pos
);
1551 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1553 struct tcp_iter_state
* st
= seq
->private;
1554 st
->state
= TCP_SEQ_STATE_LISTENING
;
1556 return *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
1559 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1562 struct tcp_iter_state
* st
;
1564 if (v
== SEQ_START_TOKEN
) {
1565 rc
= tcp_get_idx(seq
, 0);
1570 switch (st
->state
) {
1571 case TCP_SEQ_STATE_OPENREQ
:
1572 case TCP_SEQ_STATE_LISTENING
:
1573 rc
= listening_get_next(seq
, v
);
1575 inet_listen_unlock(&tcp_hashinfo
);
1577 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1578 rc
= established_get_first(seq
);
1581 case TCP_SEQ_STATE_ESTABLISHED
:
1582 case TCP_SEQ_STATE_TIME_WAIT
:
1583 rc
= established_get_next(seq
, v
);
1591 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
1593 struct tcp_iter_state
* st
= seq
->private;
1595 switch (st
->state
) {
1596 case TCP_SEQ_STATE_OPENREQ
:
1598 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
1599 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1601 case TCP_SEQ_STATE_LISTENING
:
1602 if (v
!= SEQ_START_TOKEN
)
1603 inet_listen_unlock(&tcp_hashinfo
);
1605 case TCP_SEQ_STATE_TIME_WAIT
:
1606 case TCP_SEQ_STATE_ESTABLISHED
:
1608 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1614 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
1616 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
1617 struct seq_file
*seq
;
1618 struct tcp_iter_state
*s
;
1621 if (unlikely(afinfo
== NULL
))
1624 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1627 memset(s
, 0, sizeof(*s
));
1628 s
->family
= afinfo
->family
;
1629 s
->seq_ops
.start
= tcp_seq_start
;
1630 s
->seq_ops
.next
= tcp_seq_next
;
1631 s
->seq_ops
.show
= afinfo
->seq_show
;
1632 s
->seq_ops
.stop
= tcp_seq_stop
;
1634 rc
= seq_open(file
, &s
->seq_ops
);
1637 seq
= file
->private_data
;
1646 int tcp_proc_register(struct tcp_seq_afinfo
*afinfo
)
1649 struct proc_dir_entry
*p
;
1653 afinfo
->seq_fops
->owner
= afinfo
->owner
;
1654 afinfo
->seq_fops
->open
= tcp_seq_open
;
1655 afinfo
->seq_fops
->read
= seq_read
;
1656 afinfo
->seq_fops
->llseek
= seq_lseek
;
1657 afinfo
->seq_fops
->release
= seq_release_private
;
1659 p
= proc_net_fops_create(afinfo
->name
, S_IRUGO
, afinfo
->seq_fops
);
1667 void tcp_proc_unregister(struct tcp_seq_afinfo
*afinfo
)
1671 proc_net_remove(afinfo
->name
);
1672 memset(afinfo
->seq_fops
, 0, sizeof(*afinfo
->seq_fops
));
1675 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
1676 char *tmpbuf
, int i
, int uid
)
1678 const struct inet_request_sock
*ireq
= inet_rsk(req
);
1679 int ttd
= req
->expires
- jiffies
;
1681 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
1682 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1685 ntohs(inet_sk(sk
)->sport
),
1687 ntohs(ireq
->rmt_port
),
1689 0, 0, /* could print option size, but that is af dependent. */
1690 1, /* timers active (only the expire timer) */
1691 jiffies_to_clock_t(ttd
),
1694 0, /* non standard timer */
1695 0, /* open_requests have no inode */
1696 atomic_read(&sk
->sk_refcnt
),
1700 static void get_tcp4_sock(struct sock
*sp
, char *tmpbuf
, int i
)
1703 unsigned long timer_expires
;
1704 struct tcp_sock
*tp
= tcp_sk(sp
);
1705 const struct inet_connection_sock
*icsk
= inet_csk(sp
);
1706 struct inet_sock
*inet
= inet_sk(sp
);
1707 unsigned int dest
= inet
->daddr
;
1708 unsigned int src
= inet
->rcv_saddr
;
1709 __u16 destp
= ntohs(inet
->dport
);
1710 __u16 srcp
= ntohs(inet
->sport
);
1712 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
1714 timer_expires
= icsk
->icsk_timeout
;
1715 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
1717 timer_expires
= icsk
->icsk_timeout
;
1718 } else if (timer_pending(&sp
->sk_timer
)) {
1720 timer_expires
= sp
->sk_timer
.expires
;
1723 timer_expires
= jiffies
;
1726 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1727 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1728 i
, src
, srcp
, dest
, destp
, sp
->sk_state
,
1729 tp
->write_seq
- tp
->snd_una
, tp
->rcv_nxt
- tp
->copied_seq
,
1731 jiffies_to_clock_t(timer_expires
- jiffies
),
1732 icsk
->icsk_retransmits
,
1734 icsk
->icsk_probes_out
,
1736 atomic_read(&sp
->sk_refcnt
), sp
,
1739 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
1741 tp
->snd_ssthresh
>= 0xFFFF ? -1 : tp
->snd_ssthresh
);
1744 static void get_timewait4_sock(struct inet_timewait_sock
*tw
, char *tmpbuf
, int i
)
1746 unsigned int dest
, src
;
1748 int ttd
= tw
->tw_ttd
- jiffies
;
1753 dest
= tw
->tw_daddr
;
1754 src
= tw
->tw_rcv_saddr
;
1755 destp
= ntohs(tw
->tw_dport
);
1756 srcp
= ntohs(tw
->tw_sport
);
1758 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
1759 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1760 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
1761 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
1762 atomic_read(&tw
->tw_refcnt
), tw
);
1767 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
1769 struct tcp_iter_state
* st
;
1770 char tmpbuf
[TMPSZ
+ 1];
1772 if (v
== SEQ_START_TOKEN
) {
1773 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
1774 " sl local_address rem_address st tx_queue "
1775 "rx_queue tr tm->when retrnsmt uid timeout "
1781 switch (st
->state
) {
1782 case TCP_SEQ_STATE_LISTENING
:
1783 case TCP_SEQ_STATE_ESTABLISHED
:
1784 get_tcp4_sock(v
, tmpbuf
, st
->num
);
1786 case TCP_SEQ_STATE_OPENREQ
:
1787 get_openreq4(st
->syn_wait_sk
, v
, tmpbuf
, st
->num
, st
->uid
);
1789 case TCP_SEQ_STATE_TIME_WAIT
:
1790 get_timewait4_sock(v
, tmpbuf
, st
->num
);
1793 seq_printf(seq
, "%-*s\n", TMPSZ
- 1, tmpbuf
);
1798 static struct file_operations tcp4_seq_fops
;
1799 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
1800 .owner
= THIS_MODULE
,
1803 .seq_show
= tcp4_seq_show
,
1804 .seq_fops
= &tcp4_seq_fops
,
1807 int __init
tcp4_proc_init(void)
1809 return tcp_proc_register(&tcp4_seq_afinfo
);
1812 void tcp4_proc_exit(void)
1814 tcp_proc_unregister(&tcp4_seq_afinfo
);
1816 #endif /* CONFIG_PROC_FS */
1818 struct proto tcp_prot
= {
1820 .owner
= THIS_MODULE
,
1822 .connect
= tcp_v4_connect
,
1823 .disconnect
= tcp_disconnect
,
1824 .accept
= inet_csk_accept
,
1826 .init
= tcp_v4_init_sock
,
1827 .destroy
= tcp_v4_destroy_sock
,
1828 .shutdown
= tcp_shutdown
,
1829 .setsockopt
= tcp_setsockopt
,
1830 .getsockopt
= tcp_getsockopt
,
1831 .sendmsg
= tcp_sendmsg
,
1832 .recvmsg
= tcp_recvmsg
,
1833 .backlog_rcv
= tcp_v4_do_rcv
,
1834 .hash
= tcp_v4_hash
,
1835 .unhash
= tcp_unhash
,
1836 .get_port
= tcp_v4_get_port
,
1837 .enter_memory_pressure
= tcp_enter_memory_pressure
,
1838 .sockets_allocated
= &tcp_sockets_allocated
,
1839 .orphan_count
= &tcp_orphan_count
,
1840 .memory_allocated
= &tcp_memory_allocated
,
1841 .memory_pressure
= &tcp_memory_pressure
,
1842 .sysctl_mem
= sysctl_tcp_mem
,
1843 .sysctl_wmem
= sysctl_tcp_wmem
,
1844 .sysctl_rmem
= sysctl_tcp_rmem
,
1845 .max_header
= MAX_TCP_HEADER
,
1846 .obj_size
= sizeof(struct tcp_sock
),
1847 .twsk_prot
= &tcp_timewait_sock_ops
,
1848 .rsk_prot
= &tcp_request_sock_ops
,
1849 #ifdef CONFIG_COMPAT
1850 .compat_setsockopt
= compat_tcp_setsockopt
,
1851 .compat_getsockopt
= compat_tcp_getsockopt
,
1855 void __init
tcp_v4_init(struct net_proto_family
*ops
)
1857 if (inet_csk_ctl_sock_create(&tcp_socket
, PF_INET
, SOCK_RAW
, IPPROTO_TCP
) < 0)
1858 panic("Failed to create the TCP control socket.\n");
1861 EXPORT_SYMBOL(ipv4_specific
);
1862 EXPORT_SYMBOL(tcp_hashinfo
);
1863 EXPORT_SYMBOL(tcp_prot
);
1864 EXPORT_SYMBOL(tcp_unhash
);
1865 EXPORT_SYMBOL(tcp_v4_conn_request
);
1866 EXPORT_SYMBOL(tcp_v4_connect
);
1867 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1868 EXPORT_SYMBOL(tcp_v4_remember_stamp
);
1869 EXPORT_SYMBOL(tcp_v4_send_check
);
1870 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1872 #ifdef CONFIG_PROC_FS
1873 EXPORT_SYMBOL(tcp_proc_register
);
1874 EXPORT_SYMBOL(tcp_proc_unregister
);
1876 EXPORT_SYMBOL(sysctl_local_port_range
);
1877 EXPORT_SYMBOL(sysctl_tcp_low_latency
);