[PATCH] UFS: inode->i_sem is not released in error path
[linux-2.6/verdex.git] / arch / sparc64 / mm / init.c
blob1e44ee26cee8470d8bfc97e0ddb9c29f01383e5c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
43 extern void device_scan(void);
45 #define MAX_BANKS 32
47 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
48 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
49 static int pavail_ents __initdata;
50 static int pavail_rescan_ents __initdata;
52 static int cmp_p64(const void *a, const void *b)
54 const struct linux_prom64_registers *x = a, *y = b;
56 if (x->phys_addr > y->phys_addr)
57 return 1;
58 if (x->phys_addr < y->phys_addr)
59 return -1;
60 return 0;
63 static void __init read_obp_memory(const char *property,
64 struct linux_prom64_registers *regs,
65 int *num_ents)
67 int node = prom_finddevice("/memory");
68 int prop_size = prom_getproplen(node, property);
69 int ents, ret, i;
71 ents = prop_size / sizeof(struct linux_prom64_registers);
72 if (ents > MAX_BANKS) {
73 prom_printf("The machine has more %s property entries than "
74 "this kernel can support (%d).\n",
75 property, MAX_BANKS);
76 prom_halt();
79 ret = prom_getproperty(node, property, (char *) regs, prop_size);
80 if (ret == -1) {
81 prom_printf("Couldn't get %s property from /memory.\n");
82 prom_halt();
85 *num_ents = ents;
87 /* Sanitize what we got from the firmware, by page aligning
88 * everything.
90 for (i = 0; i < ents; i++) {
91 unsigned long base, size;
93 base = regs[i].phys_addr;
94 size = regs[i].reg_size;
96 size &= PAGE_MASK;
97 if (base & ~PAGE_MASK) {
98 unsigned long new_base = PAGE_ALIGN(base);
100 size -= new_base - base;
101 if ((long) size < 0L)
102 size = 0UL;
103 base = new_base;
105 regs[i].phys_addr = base;
106 regs[i].reg_size = size;
108 sort(regs, ents, sizeof(struct linux_prom64_registers),
109 cmp_p64, NULL);
112 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
114 /* Ugly, but necessary... -DaveM */
115 unsigned long phys_base __read_mostly;
116 unsigned long kern_base __read_mostly;
117 unsigned long kern_size __read_mostly;
118 unsigned long pfn_base __read_mostly;
120 /* get_new_mmu_context() uses "cache + 1". */
121 DEFINE_SPINLOCK(ctx_alloc_lock);
122 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
123 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
124 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
126 /* References to special section boundaries */
127 extern char _start[], _end[];
129 /* Initial ramdisk setup */
130 extern unsigned long sparc_ramdisk_image64;
131 extern unsigned int sparc_ramdisk_image;
132 extern unsigned int sparc_ramdisk_size;
134 struct page *mem_map_zero __read_mostly;
136 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
138 unsigned long sparc64_kern_pri_context __read_mostly;
139 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
140 unsigned long sparc64_kern_sec_context __read_mostly;
142 int bigkernel = 0;
144 /* XXX Tune this... */
145 #define PGT_CACHE_LOW 25
146 #define PGT_CACHE_HIGH 50
148 void check_pgt_cache(void)
150 preempt_disable();
151 if (pgtable_cache_size > PGT_CACHE_HIGH) {
152 do {
153 if (pgd_quicklist)
154 free_pgd_slow(get_pgd_fast());
155 if (pte_quicklist[0])
156 free_pte_slow(pte_alloc_one_fast(NULL, 0));
157 if (pte_quicklist[1])
158 free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
159 } while (pgtable_cache_size > PGT_CACHE_LOW);
161 preempt_enable();
164 #ifdef CONFIG_DEBUG_DCFLUSH
165 atomic_t dcpage_flushes = ATOMIC_INIT(0);
166 #ifdef CONFIG_SMP
167 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
168 #endif
169 #endif
171 __inline__ void flush_dcache_page_impl(struct page *page)
173 #ifdef CONFIG_DEBUG_DCFLUSH
174 atomic_inc(&dcpage_flushes);
175 #endif
177 #ifdef DCACHE_ALIASING_POSSIBLE
178 __flush_dcache_page(page_address(page),
179 ((tlb_type == spitfire) &&
180 page_mapping(page) != NULL));
181 #else
182 if (page_mapping(page) != NULL &&
183 tlb_type == spitfire)
184 __flush_icache_page(__pa(page_address(page)));
185 #endif
188 #define PG_dcache_dirty PG_arch_1
189 #define PG_dcache_cpu_shift 24
190 #define PG_dcache_cpu_mask (256 - 1)
192 #if NR_CPUS > 256
193 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
194 #endif
196 #define dcache_dirty_cpu(page) \
197 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
199 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
201 unsigned long mask = this_cpu;
202 unsigned long non_cpu_bits;
204 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
205 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
207 __asm__ __volatile__("1:\n\t"
208 "ldx [%2], %%g7\n\t"
209 "and %%g7, %1, %%g1\n\t"
210 "or %%g1, %0, %%g1\n\t"
211 "casx [%2], %%g7, %%g1\n\t"
212 "cmp %%g7, %%g1\n\t"
213 "membar #StoreLoad | #StoreStore\n\t"
214 "bne,pn %%xcc, 1b\n\t"
215 " nop"
216 : /* no outputs */
217 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
218 : "g1", "g7");
221 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
223 unsigned long mask = (1UL << PG_dcache_dirty);
225 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
226 "1:\n\t"
227 "ldx [%2], %%g7\n\t"
228 "srlx %%g7, %4, %%g1\n\t"
229 "and %%g1, %3, %%g1\n\t"
230 "cmp %%g1, %0\n\t"
231 "bne,pn %%icc, 2f\n\t"
232 " andn %%g7, %1, %%g1\n\t"
233 "casx [%2], %%g7, %%g1\n\t"
234 "cmp %%g7, %%g1\n\t"
235 "membar #StoreLoad | #StoreStore\n\t"
236 "bne,pn %%xcc, 1b\n\t"
237 " nop\n"
238 "2:"
239 : /* no outputs */
240 : "r" (cpu), "r" (mask), "r" (&page->flags),
241 "i" (PG_dcache_cpu_mask),
242 "i" (PG_dcache_cpu_shift)
243 : "g1", "g7");
246 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
248 struct page *page;
249 unsigned long pfn;
250 unsigned long pg_flags;
252 pfn = pte_pfn(pte);
253 if (pfn_valid(pfn) &&
254 (page = pfn_to_page(pfn), page_mapping(page)) &&
255 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
256 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
257 PG_dcache_cpu_mask);
258 int this_cpu = get_cpu();
260 /* This is just to optimize away some function calls
261 * in the SMP case.
263 if (cpu == this_cpu)
264 flush_dcache_page_impl(page);
265 else
266 smp_flush_dcache_page_impl(page, cpu);
268 clear_dcache_dirty_cpu(page, cpu);
270 put_cpu();
274 void flush_dcache_page(struct page *page)
276 struct address_space *mapping;
277 int this_cpu;
279 /* Do not bother with the expensive D-cache flush if it
280 * is merely the zero page. The 'bigcore' testcase in GDB
281 * causes this case to run millions of times.
283 if (page == ZERO_PAGE(0))
284 return;
286 this_cpu = get_cpu();
288 mapping = page_mapping(page);
289 if (mapping && !mapping_mapped(mapping)) {
290 int dirty = test_bit(PG_dcache_dirty, &page->flags);
291 if (dirty) {
292 int dirty_cpu = dcache_dirty_cpu(page);
294 if (dirty_cpu == this_cpu)
295 goto out;
296 smp_flush_dcache_page_impl(page, dirty_cpu);
298 set_dcache_dirty(page, this_cpu);
299 } else {
300 /* We could delay the flush for the !page_mapping
301 * case too. But that case is for exec env/arg
302 * pages and those are %99 certainly going to get
303 * faulted into the tlb (and thus flushed) anyways.
305 flush_dcache_page_impl(page);
308 out:
309 put_cpu();
312 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
314 /* Cheetah has coherent I-cache. */
315 if (tlb_type == spitfire) {
316 unsigned long kaddr;
318 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
319 __flush_icache_page(__get_phys(kaddr));
323 unsigned long page_to_pfn(struct page *page)
325 return (unsigned long) ((page - mem_map) + pfn_base);
328 struct page *pfn_to_page(unsigned long pfn)
330 return (mem_map + (pfn - pfn_base));
333 void show_mem(void)
335 printk("Mem-info:\n");
336 show_free_areas();
337 printk("Free swap: %6ldkB\n",
338 nr_swap_pages << (PAGE_SHIFT-10));
339 printk("%ld pages of RAM\n", num_physpages);
340 printk("%d free pages\n", nr_free_pages());
341 printk("%d pages in page table cache\n",pgtable_cache_size);
344 void mmu_info(struct seq_file *m)
346 if (tlb_type == cheetah)
347 seq_printf(m, "MMU Type\t: Cheetah\n");
348 else if (tlb_type == cheetah_plus)
349 seq_printf(m, "MMU Type\t: Cheetah+\n");
350 else if (tlb_type == spitfire)
351 seq_printf(m, "MMU Type\t: Spitfire\n");
352 else
353 seq_printf(m, "MMU Type\t: ???\n");
355 #ifdef CONFIG_DEBUG_DCFLUSH
356 seq_printf(m, "DCPageFlushes\t: %d\n",
357 atomic_read(&dcpage_flushes));
358 #ifdef CONFIG_SMP
359 seq_printf(m, "DCPageFlushesXC\t: %d\n",
360 atomic_read(&dcpage_flushes_xcall));
361 #endif /* CONFIG_SMP */
362 #endif /* CONFIG_DEBUG_DCFLUSH */
365 struct linux_prom_translation {
366 unsigned long virt;
367 unsigned long size;
368 unsigned long data;
371 /* Exported for kernel TLB miss handling in ktlb.S */
372 struct linux_prom_translation prom_trans[512] __read_mostly;
373 unsigned int prom_trans_ents __read_mostly;
374 unsigned int swapper_pgd_zero __read_mostly;
376 extern unsigned long prom_boot_page;
377 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
378 extern int prom_get_mmu_ihandle(void);
379 extern void register_prom_callbacks(void);
381 /* Exported for SMP bootup purposes. */
382 unsigned long kern_locked_tte_data;
385 * Translate PROM's mapping we capture at boot time into physical address.
386 * The second parameter is only set from prom_callback() invocations.
388 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
390 int i;
392 for (i = 0; i < prom_trans_ents; i++) {
393 struct linux_prom_translation *p = &prom_trans[i];
395 if (promva >= p->virt &&
396 promva < (p->virt + p->size)) {
397 unsigned long base = p->data & _PAGE_PADDR;
399 if (error)
400 *error = 0;
401 return base + (promva & (8192 - 1));
404 if (error)
405 *error = 1;
406 return 0UL;
409 /* The obp translations are saved based on 8k pagesize, since obp can
410 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
411 * HI_OBP_ADDRESS range are handled in ktlb.S and do not use the vpte
412 * scheme (also, see rant in inherit_locked_prom_mappings()).
414 static inline int in_obp_range(unsigned long vaddr)
416 return (vaddr >= LOW_OBP_ADDRESS &&
417 vaddr < HI_OBP_ADDRESS);
420 static int cmp_ptrans(const void *a, const void *b)
422 const struct linux_prom_translation *x = a, *y = b;
424 if (x->virt > y->virt)
425 return 1;
426 if (x->virt < y->virt)
427 return -1;
428 return 0;
431 /* Read OBP translations property into 'prom_trans[]'. */
432 static void __init read_obp_translations(void)
434 int n, node, ents, first, last, i;
436 node = prom_finddevice("/virtual-memory");
437 n = prom_getproplen(node, "translations");
438 if (unlikely(n == 0 || n == -1)) {
439 prom_printf("prom_mappings: Couldn't get size.\n");
440 prom_halt();
442 if (unlikely(n > sizeof(prom_trans))) {
443 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
444 prom_halt();
447 if ((n = prom_getproperty(node, "translations",
448 (char *)&prom_trans[0],
449 sizeof(prom_trans))) == -1) {
450 prom_printf("prom_mappings: Couldn't get property.\n");
451 prom_halt();
454 n = n / sizeof(struct linux_prom_translation);
456 ents = n;
458 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
459 cmp_ptrans, NULL);
461 /* Now kick out all the non-OBP entries. */
462 for (i = 0; i < ents; i++) {
463 if (in_obp_range(prom_trans[i].virt))
464 break;
466 first = i;
467 for (; i < ents; i++) {
468 if (!in_obp_range(prom_trans[i].virt))
469 break;
471 last = i;
473 for (i = 0; i < (last - first); i++) {
474 struct linux_prom_translation *src = &prom_trans[i + first];
475 struct linux_prom_translation *dest = &prom_trans[i];
477 *dest = *src;
479 for (; i < ents; i++) {
480 struct linux_prom_translation *dest = &prom_trans[i];
481 dest->virt = dest->size = dest->data = 0x0UL;
484 prom_trans_ents = last - first;
486 if (tlb_type == spitfire) {
487 /* Clear diag TTE bits. */
488 for (i = 0; i < prom_trans_ents; i++)
489 prom_trans[i].data &= ~0x0003fe0000000000UL;
493 static void __init remap_kernel(void)
495 unsigned long phys_page, tte_vaddr, tte_data;
496 int tlb_ent = sparc64_highest_locked_tlbent();
498 tte_vaddr = (unsigned long) KERNBASE;
499 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
500 tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
501 _PAGE_CP | _PAGE_CV | _PAGE_P |
502 _PAGE_L | _PAGE_W));
504 kern_locked_tte_data = tte_data;
506 /* Now lock us into the TLBs via OBP. */
507 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
508 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
509 if (bigkernel) {
510 tlb_ent -= 1;
511 prom_dtlb_load(tlb_ent,
512 tte_data + 0x400000,
513 tte_vaddr + 0x400000);
514 prom_itlb_load(tlb_ent,
515 tte_data + 0x400000,
516 tte_vaddr + 0x400000);
518 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
519 if (tlb_type == cheetah_plus) {
520 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
521 CTX_CHEETAH_PLUS_NUC);
522 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
523 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
528 static void __init inherit_prom_mappings(void)
530 read_obp_translations();
532 /* Now fixup OBP's idea about where we really are mapped. */
533 prom_printf("Remapping the kernel... ");
534 remap_kernel();
535 prom_printf("done.\n");
537 prom_printf("Registering callbacks... ");
538 register_prom_callbacks();
539 prom_printf("done.\n");
542 /* The OBP specifications for sun4u mark 0xfffffffc00000000 and
543 * upwards as reserved for use by the firmware (I wonder if this
544 * will be the same on Cheetah...). We use this virtual address
545 * range for the VPTE table mappings of the nucleus so we need
546 * to zap them when we enter the PROM. -DaveM
548 static void __flush_nucleus_vptes(void)
550 unsigned long prom_reserved_base = 0xfffffffc00000000UL;
551 int i;
553 /* Only DTLB must be checked for VPTE entries. */
554 if (tlb_type == spitfire) {
555 for (i = 0; i < 63; i++) {
556 unsigned long tag;
558 /* Spitfire Errata #32 workaround */
559 /* NOTE: Always runs on spitfire, so no cheetah+
560 * page size encodings.
562 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
563 "flush %%g6"
564 : /* No outputs */
565 : "r" (0),
566 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
568 tag = spitfire_get_dtlb_tag(i);
569 if (((tag & ~(PAGE_MASK)) == 0) &&
570 ((tag & (PAGE_MASK)) >= prom_reserved_base)) {
571 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
572 "membar #Sync"
573 : /* no outputs */
574 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
575 spitfire_put_dtlb_data(i, 0x0UL);
578 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
579 for (i = 0; i < 512; i++) {
580 unsigned long tag = cheetah_get_dtlb_tag(i, 2);
582 if ((tag & ~PAGE_MASK) == 0 &&
583 (tag & PAGE_MASK) >= prom_reserved_base) {
584 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
585 "membar #Sync"
586 : /* no outputs */
587 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
588 cheetah_put_dtlb_data(i, 0x0UL, 2);
591 if (tlb_type != cheetah_plus)
592 continue;
594 tag = cheetah_get_dtlb_tag(i, 3);
596 if ((tag & ~PAGE_MASK) == 0 &&
597 (tag & PAGE_MASK) >= prom_reserved_base) {
598 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
599 "membar #Sync"
600 : /* no outputs */
601 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
602 cheetah_put_dtlb_data(i, 0x0UL, 3);
605 } else {
606 /* Implement me :-) */
607 BUG();
611 static int prom_ditlb_set;
612 struct prom_tlb_entry {
613 int tlb_ent;
614 unsigned long tlb_tag;
615 unsigned long tlb_data;
617 struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
619 void prom_world(int enter)
621 unsigned long pstate;
622 int i;
624 if (!enter)
625 set_fs((mm_segment_t) { get_thread_current_ds() });
627 if (!prom_ditlb_set)
628 return;
630 /* Make sure the following runs atomically. */
631 __asm__ __volatile__("flushw\n\t"
632 "rdpr %%pstate, %0\n\t"
633 "wrpr %0, %1, %%pstate"
634 : "=r" (pstate)
635 : "i" (PSTATE_IE));
637 if (enter) {
638 /* Kick out nucleus VPTEs. */
639 __flush_nucleus_vptes();
641 /* Install PROM world. */
642 for (i = 0; i < 16; i++) {
643 if (prom_dtlb[i].tlb_ent != -1) {
644 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
645 "membar #Sync"
646 : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
647 "i" (ASI_DMMU));
648 if (tlb_type == spitfire)
649 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
650 prom_dtlb[i].tlb_data);
651 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
652 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
653 prom_dtlb[i].tlb_data);
655 if (prom_itlb[i].tlb_ent != -1) {
656 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
657 "membar #Sync"
658 : : "r" (prom_itlb[i].tlb_tag),
659 "r" (TLB_TAG_ACCESS),
660 "i" (ASI_IMMU));
661 if (tlb_type == spitfire)
662 spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
663 prom_itlb[i].tlb_data);
664 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
665 cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
666 prom_itlb[i].tlb_data);
669 } else {
670 for (i = 0; i < 16; i++) {
671 if (prom_dtlb[i].tlb_ent != -1) {
672 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
673 "membar #Sync"
674 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
675 if (tlb_type == spitfire)
676 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
677 else
678 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
680 if (prom_itlb[i].tlb_ent != -1) {
681 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
682 "membar #Sync"
683 : : "r" (TLB_TAG_ACCESS),
684 "i" (ASI_IMMU));
685 if (tlb_type == spitfire)
686 spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
687 else
688 cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
692 __asm__ __volatile__("wrpr %0, 0, %%pstate"
693 : : "r" (pstate));
696 void inherit_locked_prom_mappings(int save_p)
698 int i;
699 int dtlb_seen = 0;
700 int itlb_seen = 0;
702 /* Fucking losing PROM has more mappings in the TLB, but
703 * it (conveniently) fails to mention any of these in the
704 * translations property. The only ones that matter are
705 * the locked PROM tlb entries, so we impose the following
706 * irrecovable rule on the PROM, it is allowed 8 locked
707 * entries in the ITLB and 8 in the DTLB.
709 * Supposedly the upper 16GB of the address space is
710 * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
711 * SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
712 * used between the client program and the firmware on sun5
713 * systems to coordinate mmu mappings is also COMPLETELY
714 * UNDOCUMENTED!!!!!! Thanks S(t)un!
716 if (save_p) {
717 for (i = 0; i < 16; i++) {
718 prom_itlb[i].tlb_ent = -1;
719 prom_dtlb[i].tlb_ent = -1;
722 if (tlb_type == spitfire) {
723 int high = sparc64_highest_unlocked_tlb_ent;
724 for (i = 0; i <= high; i++) {
725 unsigned long data;
727 /* Spitfire Errata #32 workaround */
728 /* NOTE: Always runs on spitfire, so no cheetah+
729 * page size encodings.
731 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
732 "flush %%g6"
733 : /* No outputs */
734 : "r" (0),
735 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
737 data = spitfire_get_dtlb_data(i);
738 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
739 unsigned long tag;
741 /* Spitfire Errata #32 workaround */
742 /* NOTE: Always runs on spitfire, so no
743 * cheetah+ page size encodings.
745 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
746 "flush %%g6"
747 : /* No outputs */
748 : "r" (0),
749 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
751 tag = spitfire_get_dtlb_tag(i);
752 if (save_p) {
753 prom_dtlb[dtlb_seen].tlb_ent = i;
754 prom_dtlb[dtlb_seen].tlb_tag = tag;
755 prom_dtlb[dtlb_seen].tlb_data = data;
757 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
758 "membar #Sync"
759 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
760 spitfire_put_dtlb_data(i, 0x0UL);
762 dtlb_seen++;
763 if (dtlb_seen > 15)
764 break;
768 for (i = 0; i < high; i++) {
769 unsigned long data;
771 /* Spitfire Errata #32 workaround */
772 /* NOTE: Always runs on spitfire, so no
773 * cheetah+ page size encodings.
775 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
776 "flush %%g6"
777 : /* No outputs */
778 : "r" (0),
779 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
781 data = spitfire_get_itlb_data(i);
782 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
783 unsigned long tag;
785 /* Spitfire Errata #32 workaround */
786 /* NOTE: Always runs on spitfire, so no
787 * cheetah+ page size encodings.
789 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
790 "flush %%g6"
791 : /* No outputs */
792 : "r" (0),
793 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
795 tag = spitfire_get_itlb_tag(i);
796 if (save_p) {
797 prom_itlb[itlb_seen].tlb_ent = i;
798 prom_itlb[itlb_seen].tlb_tag = tag;
799 prom_itlb[itlb_seen].tlb_data = data;
801 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
802 "membar #Sync"
803 : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
804 spitfire_put_itlb_data(i, 0x0UL);
806 itlb_seen++;
807 if (itlb_seen > 15)
808 break;
811 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
812 int high = sparc64_highest_unlocked_tlb_ent;
814 for (i = 0; i <= high; i++) {
815 unsigned long data;
817 data = cheetah_get_ldtlb_data(i);
818 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
819 unsigned long tag;
821 tag = cheetah_get_ldtlb_tag(i);
822 if (save_p) {
823 prom_dtlb[dtlb_seen].tlb_ent = i;
824 prom_dtlb[dtlb_seen].tlb_tag = tag;
825 prom_dtlb[dtlb_seen].tlb_data = data;
827 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
828 "membar #Sync"
829 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
830 cheetah_put_ldtlb_data(i, 0x0UL);
832 dtlb_seen++;
833 if (dtlb_seen > 15)
834 break;
838 for (i = 0; i < high; i++) {
839 unsigned long data;
841 data = cheetah_get_litlb_data(i);
842 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
843 unsigned long tag;
845 tag = cheetah_get_litlb_tag(i);
846 if (save_p) {
847 prom_itlb[itlb_seen].tlb_ent = i;
848 prom_itlb[itlb_seen].tlb_tag = tag;
849 prom_itlb[itlb_seen].tlb_data = data;
851 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
852 "membar #Sync"
853 : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
854 cheetah_put_litlb_data(i, 0x0UL);
856 itlb_seen++;
857 if (itlb_seen > 15)
858 break;
861 } else {
862 /* Implement me :-) */
863 BUG();
865 if (save_p)
866 prom_ditlb_set = 1;
869 /* Give PROM back his world, done during reboots... */
870 void prom_reload_locked(void)
872 int i;
874 for (i = 0; i < 16; i++) {
875 if (prom_dtlb[i].tlb_ent != -1) {
876 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
877 "membar #Sync"
878 : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
879 "i" (ASI_DMMU));
880 if (tlb_type == spitfire)
881 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
882 prom_dtlb[i].tlb_data);
883 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
884 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
885 prom_dtlb[i].tlb_data);
888 if (prom_itlb[i].tlb_ent != -1) {
889 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
890 "membar #Sync"
891 : : "r" (prom_itlb[i].tlb_tag),
892 "r" (TLB_TAG_ACCESS),
893 "i" (ASI_IMMU));
894 if (tlb_type == spitfire)
895 spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
896 prom_itlb[i].tlb_data);
897 else
898 cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
899 prom_itlb[i].tlb_data);
904 #ifdef DCACHE_ALIASING_POSSIBLE
905 void __flush_dcache_range(unsigned long start, unsigned long end)
907 unsigned long va;
909 if (tlb_type == spitfire) {
910 int n = 0;
912 for (va = start; va < end; va += 32) {
913 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
914 if (++n >= 512)
915 break;
917 } else {
918 start = __pa(start);
919 end = __pa(end);
920 for (va = start; va < end; va += 32)
921 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
922 "membar #Sync"
923 : /* no outputs */
924 : "r" (va),
925 "i" (ASI_DCACHE_INVALIDATE));
928 #endif /* DCACHE_ALIASING_POSSIBLE */
930 /* If not locked, zap it. */
931 void __flush_tlb_all(void)
933 unsigned long pstate;
934 int i;
936 __asm__ __volatile__("flushw\n\t"
937 "rdpr %%pstate, %0\n\t"
938 "wrpr %0, %1, %%pstate"
939 : "=r" (pstate)
940 : "i" (PSTATE_IE));
941 if (tlb_type == spitfire) {
942 for (i = 0; i < 64; i++) {
943 /* Spitfire Errata #32 workaround */
944 /* NOTE: Always runs on spitfire, so no
945 * cheetah+ page size encodings.
947 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
948 "flush %%g6"
949 : /* No outputs */
950 : "r" (0),
951 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
953 if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
954 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
955 "membar #Sync"
956 : /* no outputs */
957 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
958 spitfire_put_dtlb_data(i, 0x0UL);
961 /* Spitfire Errata #32 workaround */
962 /* NOTE: Always runs on spitfire, so no
963 * cheetah+ page size encodings.
965 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
966 "flush %%g6"
967 : /* No outputs */
968 : "r" (0),
969 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
971 if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
972 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
973 "membar #Sync"
974 : /* no outputs */
975 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
976 spitfire_put_itlb_data(i, 0x0UL);
979 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
980 cheetah_flush_dtlb_all();
981 cheetah_flush_itlb_all();
983 __asm__ __volatile__("wrpr %0, 0, %%pstate"
984 : : "r" (pstate));
987 /* Caller does TLB context flushing on local CPU if necessary.
988 * The caller also ensures that CTX_VALID(mm->context) is false.
990 * We must be careful about boundary cases so that we never
991 * let the user have CTX 0 (nucleus) or we ever use a CTX
992 * version of zero (and thus NO_CONTEXT would not be caught
993 * by version mis-match tests in mmu_context.h).
995 void get_new_mmu_context(struct mm_struct *mm)
997 unsigned long ctx, new_ctx;
998 unsigned long orig_pgsz_bits;
1001 spin_lock(&ctx_alloc_lock);
1002 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
1003 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
1004 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
1005 if (new_ctx >= (1 << CTX_NR_BITS)) {
1006 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
1007 if (new_ctx >= ctx) {
1008 int i;
1009 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
1010 CTX_FIRST_VERSION;
1011 if (new_ctx == 1)
1012 new_ctx = CTX_FIRST_VERSION;
1014 /* Don't call memset, for 16 entries that's just
1015 * plain silly...
1017 mmu_context_bmap[0] = 3;
1018 mmu_context_bmap[1] = 0;
1019 mmu_context_bmap[2] = 0;
1020 mmu_context_bmap[3] = 0;
1021 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
1022 mmu_context_bmap[i + 0] = 0;
1023 mmu_context_bmap[i + 1] = 0;
1024 mmu_context_bmap[i + 2] = 0;
1025 mmu_context_bmap[i + 3] = 0;
1027 goto out;
1030 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
1031 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
1032 out:
1033 tlb_context_cache = new_ctx;
1034 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
1035 spin_unlock(&ctx_alloc_lock);
1038 #ifndef CONFIG_SMP
1039 struct pgtable_cache_struct pgt_quicklists;
1040 #endif
1042 /* OK, we have to color these pages. The page tables are accessed
1043 * by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
1044 * code, as well as by PAGE_OFFSET range direct-mapped addresses by
1045 * other parts of the kernel. By coloring, we make sure that the tlbmiss
1046 * fast handlers do not get data from old/garbage dcache lines that
1047 * correspond to an old/stale virtual address (user/kernel) that
1048 * previously mapped the pagetable page while accessing vpte range
1049 * addresses. The idea is that if the vpte color and PAGE_OFFSET range
1050 * color is the same, then when the kernel initializes the pagetable
1051 * using the later address range, accesses with the first address
1052 * range will see the newly initialized data rather than the garbage.
1054 #ifdef DCACHE_ALIASING_POSSIBLE
1055 #define DC_ALIAS_SHIFT 1
1056 #else
1057 #define DC_ALIAS_SHIFT 0
1058 #endif
1059 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
1061 struct page *page;
1062 unsigned long color;
1065 pte_t *ptep = pte_alloc_one_fast(mm, address);
1067 if (ptep)
1068 return ptep;
1071 color = VPTE_COLOR(address);
1072 page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
1073 if (page) {
1074 unsigned long *to_free;
1075 unsigned long paddr;
1076 pte_t *pte;
1078 #ifdef DCACHE_ALIASING_POSSIBLE
1079 set_page_count(page, 1);
1080 ClearPageCompound(page);
1082 set_page_count((page + 1), 1);
1083 ClearPageCompound(page + 1);
1084 #endif
1085 paddr = (unsigned long) page_address(page);
1086 memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
1088 if (!color) {
1089 pte = (pte_t *) paddr;
1090 to_free = (unsigned long *) (paddr + PAGE_SIZE);
1091 } else {
1092 pte = (pte_t *) (paddr + PAGE_SIZE);
1093 to_free = (unsigned long *) paddr;
1096 #ifdef DCACHE_ALIASING_POSSIBLE
1097 /* Now free the other one up, adjust cache size. */
1098 preempt_disable();
1099 *to_free = (unsigned long) pte_quicklist[color ^ 0x1];
1100 pte_quicklist[color ^ 0x1] = to_free;
1101 pgtable_cache_size++;
1102 preempt_enable();
1103 #endif
1105 return pte;
1107 return NULL;
1110 void sparc_ultra_dump_itlb(void)
1112 int slot;
1114 if (tlb_type == spitfire) {
1115 printk ("Contents of itlb: ");
1116 for (slot = 0; slot < 14; slot++) printk (" ");
1117 printk ("%2x:%016lx,%016lx\n",
1119 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
1120 for (slot = 1; slot < 64; slot+=3) {
1121 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1122 slot,
1123 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
1124 slot+1,
1125 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
1126 slot+2,
1127 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
1129 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1130 printk ("Contents of itlb0:\n");
1131 for (slot = 0; slot < 16; slot+=2) {
1132 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1133 slot,
1134 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
1135 slot+1,
1136 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
1138 printk ("Contents of itlb2:\n");
1139 for (slot = 0; slot < 128; slot+=2) {
1140 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1141 slot,
1142 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
1143 slot+1,
1144 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
1149 void sparc_ultra_dump_dtlb(void)
1151 int slot;
1153 if (tlb_type == spitfire) {
1154 printk ("Contents of dtlb: ");
1155 for (slot = 0; slot < 14; slot++) printk (" ");
1156 printk ("%2x:%016lx,%016lx\n", 0,
1157 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
1158 for (slot = 1; slot < 64; slot+=3) {
1159 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1160 slot,
1161 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
1162 slot+1,
1163 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
1164 slot+2,
1165 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
1167 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1168 printk ("Contents of dtlb0:\n");
1169 for (slot = 0; slot < 16; slot+=2) {
1170 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1171 slot,
1172 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
1173 slot+1,
1174 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
1176 printk ("Contents of dtlb2:\n");
1177 for (slot = 0; slot < 512; slot+=2) {
1178 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1179 slot,
1180 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
1181 slot+1,
1182 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
1184 if (tlb_type == cheetah_plus) {
1185 printk ("Contents of dtlb3:\n");
1186 for (slot = 0; slot < 512; slot+=2) {
1187 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1188 slot,
1189 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
1190 slot+1,
1191 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
1197 extern unsigned long cmdline_memory_size;
1199 unsigned long __init bootmem_init(unsigned long *pages_avail)
1201 unsigned long bootmap_size, start_pfn, end_pfn;
1202 unsigned long end_of_phys_memory = 0UL;
1203 unsigned long bootmap_pfn, bytes_avail, size;
1204 int i;
1206 #ifdef CONFIG_DEBUG_BOOTMEM
1207 prom_printf("bootmem_init: Scan pavail, ");
1208 #endif
1210 bytes_avail = 0UL;
1211 for (i = 0; i < pavail_ents; i++) {
1212 end_of_phys_memory = pavail[i].phys_addr +
1213 pavail[i].reg_size;
1214 bytes_avail += pavail[i].reg_size;
1215 if (cmdline_memory_size) {
1216 if (bytes_avail > cmdline_memory_size) {
1217 unsigned long slack = bytes_avail - cmdline_memory_size;
1219 bytes_avail -= slack;
1220 end_of_phys_memory -= slack;
1222 pavail[i].reg_size -= slack;
1223 if ((long)pavail[i].reg_size <= 0L) {
1224 pavail[i].phys_addr = 0xdeadbeefUL;
1225 pavail[i].reg_size = 0UL;
1226 pavail_ents = i;
1227 } else {
1228 pavail[i+1].reg_size = 0Ul;
1229 pavail[i+1].phys_addr = 0xdeadbeefUL;
1230 pavail_ents = i + 1;
1232 break;
1237 *pages_avail = bytes_avail >> PAGE_SHIFT;
1239 /* Start with page aligned address of last symbol in kernel
1240 * image. The kernel is hard mapped below PAGE_OFFSET in a
1241 * 4MB locked TLB translation.
1243 start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
1245 bootmap_pfn = start_pfn;
1247 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1249 #ifdef CONFIG_BLK_DEV_INITRD
1250 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1251 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
1252 unsigned long ramdisk_image = sparc_ramdisk_image ?
1253 sparc_ramdisk_image : sparc_ramdisk_image64;
1254 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
1255 ramdisk_image -= KERNBASE;
1256 initrd_start = ramdisk_image + phys_base;
1257 initrd_end = initrd_start + sparc_ramdisk_size;
1258 if (initrd_end > end_of_phys_memory) {
1259 printk(KERN_CRIT "initrd extends beyond end of memory "
1260 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1261 initrd_end, end_of_phys_memory);
1262 initrd_start = 0;
1264 if (initrd_start) {
1265 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
1266 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
1267 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
1270 #endif
1271 /* Initialize the boot-time allocator. */
1272 max_pfn = max_low_pfn = end_pfn;
1273 min_low_pfn = pfn_base;
1275 #ifdef CONFIG_DEBUG_BOOTMEM
1276 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1277 min_low_pfn, bootmap_pfn, max_low_pfn);
1278 #endif
1279 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
1281 /* Now register the available physical memory with the
1282 * allocator.
1284 for (i = 0; i < pavail_ents; i++) {
1285 #ifdef CONFIG_DEBUG_BOOTMEM
1286 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1287 i, pavail[i].phys_addr, pavail[i].reg_size);
1288 #endif
1289 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
1292 #ifdef CONFIG_BLK_DEV_INITRD
1293 if (initrd_start) {
1294 size = initrd_end - initrd_start;
1296 /* Resert the initrd image area. */
1297 #ifdef CONFIG_DEBUG_BOOTMEM
1298 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1299 initrd_start, initrd_end);
1300 #endif
1301 reserve_bootmem(initrd_start, size);
1302 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1304 initrd_start += PAGE_OFFSET;
1305 initrd_end += PAGE_OFFSET;
1307 #endif
1308 /* Reserve the kernel text/data/bss. */
1309 #ifdef CONFIG_DEBUG_BOOTMEM
1310 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1311 #endif
1312 reserve_bootmem(kern_base, kern_size);
1313 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1315 /* Reserve the bootmem map. We do not account for it
1316 * in pages_avail because we will release that memory
1317 * in free_all_bootmem.
1319 size = bootmap_size;
1320 #ifdef CONFIG_DEBUG_BOOTMEM
1321 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1322 (bootmap_pfn << PAGE_SHIFT), size);
1323 #endif
1324 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1325 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1327 return end_pfn;
1330 #ifdef CONFIG_DEBUG_PAGEALLOC
1331 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1333 unsigned long vstart = PAGE_OFFSET + pstart;
1334 unsigned long vend = PAGE_OFFSET + pend;
1335 unsigned long alloc_bytes = 0UL;
1337 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1338 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1339 vstart, vend);
1340 prom_halt();
1343 while (vstart < vend) {
1344 unsigned long this_end, paddr = __pa(vstart);
1345 pgd_t *pgd = pgd_offset_k(vstart);
1346 pud_t *pud;
1347 pmd_t *pmd;
1348 pte_t *pte;
1350 pud = pud_offset(pgd, vstart);
1351 if (pud_none(*pud)) {
1352 pmd_t *new;
1354 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1355 alloc_bytes += PAGE_SIZE;
1356 pud_populate(&init_mm, pud, new);
1359 pmd = pmd_offset(pud, vstart);
1360 if (!pmd_present(*pmd)) {
1361 pte_t *new;
1363 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1364 alloc_bytes += PAGE_SIZE;
1365 pmd_populate_kernel(&init_mm, pmd, new);
1368 pte = pte_offset_kernel(pmd, vstart);
1369 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1370 if (this_end > vend)
1371 this_end = vend;
1373 while (vstart < this_end) {
1374 pte_val(*pte) = (paddr | pgprot_val(prot));
1376 vstart += PAGE_SIZE;
1377 paddr += PAGE_SIZE;
1378 pte++;
1382 return alloc_bytes;
1385 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1386 static int pall_ents __initdata;
1388 extern unsigned int kvmap_linear_patch[1];
1390 static void __init kernel_physical_mapping_init(void)
1392 unsigned long i, mem_alloced = 0UL;
1394 read_obp_memory("reg", &pall[0], &pall_ents);
1396 for (i = 0; i < pall_ents; i++) {
1397 unsigned long phys_start, phys_end;
1399 phys_start = pall[i].phys_addr;
1400 phys_end = phys_start + pall[i].reg_size;
1401 mem_alloced += kernel_map_range(phys_start, phys_end,
1402 PAGE_KERNEL);
1405 printk("Allocated %ld bytes for kernel page tables.\n",
1406 mem_alloced);
1408 kvmap_linear_patch[0] = 0x01000000; /* nop */
1409 flushi(&kvmap_linear_patch[0]);
1411 __flush_tlb_all();
1414 void kernel_map_pages(struct page *page, int numpages, int enable)
1416 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1417 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1419 kernel_map_range(phys_start, phys_end,
1420 (enable ? PAGE_KERNEL : __pgprot(0)));
1422 /* we should perform an IPI and flush all tlbs,
1423 * but that can deadlock->flush only current cpu.
1425 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1426 PAGE_OFFSET + phys_end);
1428 #endif
1430 unsigned long __init find_ecache_flush_span(unsigned long size)
1432 int i;
1434 for (i = 0; i < pavail_ents; i++) {
1435 if (pavail[i].reg_size >= size)
1436 return pavail[i].phys_addr;
1439 return ~0UL;
1442 /* paging_init() sets up the page tables */
1444 extern void cheetah_ecache_flush_init(void);
1446 static unsigned long last_valid_pfn;
1447 pgd_t swapper_pg_dir[2048];
1449 void __init paging_init(void)
1451 unsigned long end_pfn, pages_avail, shift;
1452 unsigned long real_end, i;
1454 /* Find available physical memory... */
1455 read_obp_memory("available", &pavail[0], &pavail_ents);
1457 phys_base = 0xffffffffffffffffUL;
1458 for (i = 0; i < pavail_ents; i++)
1459 phys_base = min(phys_base, pavail[i].phys_addr);
1461 pfn_base = phys_base >> PAGE_SHIFT;
1463 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1464 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1466 set_bit(0, mmu_context_bmap);
1468 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1470 real_end = (unsigned long)_end;
1471 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1472 bigkernel = 1;
1473 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1474 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1475 prom_halt();
1478 /* Set kernel pgd to upper alias so physical page computations
1479 * work.
1481 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1483 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1485 /* Now can init the kernel/bad page tables. */
1486 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1487 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1489 swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
1491 inherit_prom_mappings();
1493 /* Ok, we can use our TLB miss and window trap handlers safely.
1494 * We need to do a quick peek here to see if we are on StarFire
1495 * or not, so setup_tba can setup the IRQ globals correctly (it
1496 * needs to get the hard smp processor id correctly).
1499 extern void setup_tba(int);
1500 setup_tba(this_is_starfire);
1503 inherit_locked_prom_mappings(1);
1505 __flush_tlb_all();
1507 /* Setup bootmem... */
1508 pages_avail = 0;
1509 last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1511 #ifdef CONFIG_DEBUG_PAGEALLOC
1512 kernel_physical_mapping_init();
1513 #endif
1516 unsigned long zones_size[MAX_NR_ZONES];
1517 unsigned long zholes_size[MAX_NR_ZONES];
1518 unsigned long npages;
1519 int znum;
1521 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1522 zones_size[znum] = zholes_size[znum] = 0;
1524 npages = end_pfn - pfn_base;
1525 zones_size[ZONE_DMA] = npages;
1526 zholes_size[ZONE_DMA] = npages - pages_avail;
1528 free_area_init_node(0, &contig_page_data, zones_size,
1529 phys_base >> PAGE_SHIFT, zholes_size);
1532 device_scan();
1535 static void __init taint_real_pages(void)
1537 int i;
1539 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1541 /* Find changes discovered in the physmem available rescan and
1542 * reserve the lost portions in the bootmem maps.
1544 for (i = 0; i < pavail_ents; i++) {
1545 unsigned long old_start, old_end;
1547 old_start = pavail[i].phys_addr;
1548 old_end = old_start +
1549 pavail[i].reg_size;
1550 while (old_start < old_end) {
1551 int n;
1553 for (n = 0; pavail_rescan_ents; n++) {
1554 unsigned long new_start, new_end;
1556 new_start = pavail_rescan[n].phys_addr;
1557 new_end = new_start +
1558 pavail_rescan[n].reg_size;
1560 if (new_start <= old_start &&
1561 new_end >= (old_start + PAGE_SIZE)) {
1562 set_bit(old_start >> 22,
1563 sparc64_valid_addr_bitmap);
1564 goto do_next_page;
1567 reserve_bootmem(old_start, PAGE_SIZE);
1569 do_next_page:
1570 old_start += PAGE_SIZE;
1575 void __init mem_init(void)
1577 unsigned long codepages, datapages, initpages;
1578 unsigned long addr, last;
1579 int i;
1581 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1582 i += 1;
1583 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1584 if (sparc64_valid_addr_bitmap == NULL) {
1585 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1586 prom_halt();
1588 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1590 addr = PAGE_OFFSET + kern_base;
1591 last = PAGE_ALIGN(kern_size) + addr;
1592 while (addr < last) {
1593 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1594 addr += PAGE_SIZE;
1597 taint_real_pages();
1599 max_mapnr = last_valid_pfn - pfn_base;
1600 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1602 #ifdef CONFIG_DEBUG_BOOTMEM
1603 prom_printf("mem_init: Calling free_all_bootmem().\n");
1604 #endif
1605 totalram_pages = num_physpages = free_all_bootmem() - 1;
1608 * Set up the zero page, mark it reserved, so that page count
1609 * is not manipulated when freeing the page from user ptes.
1611 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1612 if (mem_map_zero == NULL) {
1613 prom_printf("paging_init: Cannot alloc zero page.\n");
1614 prom_halt();
1616 SetPageReserved(mem_map_zero);
1618 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1619 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1620 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1621 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1622 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1623 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1625 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1626 nr_free_pages() << (PAGE_SHIFT-10),
1627 codepages << (PAGE_SHIFT-10),
1628 datapages << (PAGE_SHIFT-10),
1629 initpages << (PAGE_SHIFT-10),
1630 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1632 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1633 cheetah_ecache_flush_init();
1636 void free_initmem(void)
1638 unsigned long addr, initend;
1641 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1643 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1644 initend = (unsigned long)(__init_end) & PAGE_MASK;
1645 for (; addr < initend; addr += PAGE_SIZE) {
1646 unsigned long page;
1647 struct page *p;
1649 page = (addr +
1650 ((unsigned long) __va(kern_base)) -
1651 ((unsigned long) KERNBASE));
1652 memset((void *)addr, 0xcc, PAGE_SIZE);
1653 p = virt_to_page(page);
1655 ClearPageReserved(p);
1656 set_page_count(p, 1);
1657 __free_page(p);
1658 num_physpages++;
1659 totalram_pages++;
1663 #ifdef CONFIG_BLK_DEV_INITRD
1664 void free_initrd_mem(unsigned long start, unsigned long end)
1666 if (start < end)
1667 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1668 for (; start < end; start += PAGE_SIZE) {
1669 struct page *p = virt_to_page(start);
1671 ClearPageReserved(p);
1672 set_page_count(p, 1);
1673 __free_page(p);
1674 num_physpages++;
1675 totalram_pages++;
1678 #endif