[PATCH] UFS: inode->i_sem is not released in error path
[linux-2.6/verdex.git] / fs / reiserfs / inode.c
bloba5e3a0ddbe53a0cd5e6b731985ad3c87d033db99
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/config.h>
6 #include <linux/time.h>
7 #include <linux/fs.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_acl.h>
10 #include <linux/reiserfs_xattr.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
21 extern int reiserfs_default_io_size; /* default io size devuned in super.c */
23 static int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25 static int reiserfs_prepare_write(struct file *f, struct page *page,
26 unsigned from, unsigned to);
28 void reiserfs_delete_inode(struct inode *inode)
30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
31 int jbegin_count =
32 JOURNAL_PER_BALANCE_CNT * 2 +
33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34 struct reiserfs_transaction_handle th;
35 int err;
37 truncate_inode_pages(&inode->i_data, 0);
39 reiserfs_write_lock(inode->i_sb);
41 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
42 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
43 down(&inode->i_sem);
45 reiserfs_delete_xattrs(inode);
47 if (journal_begin(&th, inode->i_sb, jbegin_count)) {
48 up(&inode->i_sem);
49 goto out;
51 reiserfs_update_inode_transaction(inode);
53 err = reiserfs_delete_object(&th, inode);
55 /* Do quota update inside a transaction for journaled quotas. We must do that
56 * after delete_object so that quota updates go into the same transaction as
57 * stat data deletion */
58 if (!err)
59 DQUOT_FREE_INODE(inode);
61 if (journal_end(&th, inode->i_sb, jbegin_count)) {
62 up(&inode->i_sem);
63 goto out;
66 up(&inode->i_sem);
68 /* check return value from reiserfs_delete_object after
69 * ending the transaction
71 if (err)
72 goto out;
74 /* all items of file are deleted, so we can remove "save" link */
75 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
76 * about an error here */
77 } else {
78 /* no object items are in the tree */
81 out:
82 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
83 inode->i_blocks = 0;
84 reiserfs_write_unlock(inode->i_sb);
87 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
88 __u32 objectid, loff_t offset, int type, int length)
90 key->version = version;
92 key->on_disk_key.k_dir_id = dirid;
93 key->on_disk_key.k_objectid = objectid;
94 set_cpu_key_k_offset(key, offset);
95 set_cpu_key_k_type(key, type);
96 key->key_length = length;
99 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
100 offset and type of key */
101 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
102 int type, int length)
104 _make_cpu_key(key, get_inode_item_key_version(inode),
105 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
106 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
107 length);
111 // when key is 0, do not set version and short key
113 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
114 int version,
115 loff_t offset, int type, int length,
116 int entry_count /*or ih_free_space */ )
118 if (key) {
119 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
120 ih->ih_key.k_objectid =
121 cpu_to_le32(key->on_disk_key.k_objectid);
123 put_ih_version(ih, version);
124 set_le_ih_k_offset(ih, offset);
125 set_le_ih_k_type(ih, type);
126 put_ih_item_len(ih, length);
127 /* set_ih_free_space (ih, 0); */
128 // for directory items it is entry count, for directs and stat
129 // datas - 0xffff, for indirects - 0
130 put_ih_entry_count(ih, entry_count);
134 // FIXME: we might cache recently accessed indirect item
136 // Ugh. Not too eager for that....
137 // I cut the code until such time as I see a convincing argument (benchmark).
138 // I don't want a bloated inode struct..., and I don't like code complexity....
140 /* cutting the code is fine, since it really isn't in use yet and is easy
141 ** to add back in. But, Vladimir has a really good idea here. Think
142 ** about what happens for reading a file. For each page,
143 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
144 ** an indirect item. This indirect item has X number of pointers, where
145 ** X is a big number if we've done the block allocation right. But,
146 ** we only use one or two of these pointers during each call to readpage,
147 ** needlessly researching again later on.
149 ** The size of the cache could be dynamic based on the size of the file.
151 ** I'd also like to see us cache the location the stat data item, since
152 ** we are needlessly researching for that frequently.
154 ** --chris
157 /* If this page has a file tail in it, and
158 ** it was read in by get_block_create_0, the page data is valid,
159 ** but tail is still sitting in a direct item, and we can't write to
160 ** it. So, look through this page, and check all the mapped buffers
161 ** to make sure they have valid block numbers. Any that don't need
162 ** to be unmapped, so that block_prepare_write will correctly call
163 ** reiserfs_get_block to convert the tail into an unformatted node
165 static inline void fix_tail_page_for_writing(struct page *page)
167 struct buffer_head *head, *next, *bh;
169 if (page && page_has_buffers(page)) {
170 head = page_buffers(page);
171 bh = head;
172 do {
173 next = bh->b_this_page;
174 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
175 reiserfs_unmap_buffer(bh);
177 bh = next;
178 } while (bh != head);
182 /* reiserfs_get_block does not need to allocate a block only if it has been
183 done already or non-hole position has been found in the indirect item */
184 static inline int allocation_needed(int retval, b_blocknr_t allocated,
185 struct item_head *ih,
186 __le32 * item, int pos_in_item)
188 if (allocated)
189 return 0;
190 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
191 get_block_num(item, pos_in_item))
192 return 0;
193 return 1;
196 static inline int indirect_item_found(int retval, struct item_head *ih)
198 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
201 static inline void set_block_dev_mapped(struct buffer_head *bh,
202 b_blocknr_t block, struct inode *inode)
204 map_bh(bh, inode->i_sb, block);
208 // files which were created in the earlier version can not be longer,
209 // than 2 gb
211 static int file_capable(struct inode *inode, long block)
213 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
214 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
215 return 1;
217 return 0;
220 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
221 struct inode *inode, struct path *path)
223 struct super_block *s = th->t_super;
224 int len = th->t_blocks_allocated;
225 int err;
227 BUG_ON(!th->t_trans_id);
228 BUG_ON(!th->t_refcount);
230 /* we cannot restart while nested */
231 if (th->t_refcount > 1) {
232 return 0;
234 pathrelse(path);
235 reiserfs_update_sd(th, inode);
236 err = journal_end(th, s, len);
237 if (!err) {
238 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
239 if (!err)
240 reiserfs_update_inode_transaction(inode);
242 return err;
245 // it is called by get_block when create == 0. Returns block number
246 // for 'block'-th logical block of file. When it hits direct item it
247 // returns 0 (being called from bmap) or read direct item into piece
248 // of page (bh_result)
250 // Please improve the english/clarity in the comment above, as it is
251 // hard to understand.
253 static int _get_block_create_0(struct inode *inode, long block,
254 struct buffer_head *bh_result, int args)
256 INITIALIZE_PATH(path);
257 struct cpu_key key;
258 struct buffer_head *bh;
259 struct item_head *ih, tmp_ih;
260 int fs_gen;
261 int blocknr;
262 char *p = NULL;
263 int chars;
264 int ret;
265 int result;
266 int done = 0;
267 unsigned long offset;
269 // prepare the key to look for the 'block'-th block of file
270 make_cpu_key(&key, inode,
271 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
274 research:
275 result = search_for_position_by_key(inode->i_sb, &key, &path);
276 if (result != POSITION_FOUND) {
277 pathrelse(&path);
278 if (p)
279 kunmap(bh_result->b_page);
280 if (result == IO_ERROR)
281 return -EIO;
282 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
283 // That there is some MMAPED data associated with it that is yet to be written to disk.
284 if ((args & GET_BLOCK_NO_HOLE)
285 && !PageUptodate(bh_result->b_page)) {
286 return -ENOENT;
288 return 0;
291 bh = get_last_bh(&path);
292 ih = get_ih(&path);
293 if (is_indirect_le_ih(ih)) {
294 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
296 /* FIXME: here we could cache indirect item or part of it in
297 the inode to avoid search_by_key in case of subsequent
298 access to file */
299 blocknr = get_block_num(ind_item, path.pos_in_item);
300 ret = 0;
301 if (blocknr) {
302 map_bh(bh_result, inode->i_sb, blocknr);
303 if (path.pos_in_item ==
304 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
305 set_buffer_boundary(bh_result);
307 } else
308 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
309 // That there is some MMAPED data associated with it that is yet to be written to disk.
310 if ((args & GET_BLOCK_NO_HOLE)
311 && !PageUptodate(bh_result->b_page)) {
312 ret = -ENOENT;
315 pathrelse(&path);
316 if (p)
317 kunmap(bh_result->b_page);
318 return ret;
320 // requested data are in direct item(s)
321 if (!(args & GET_BLOCK_READ_DIRECT)) {
322 // we are called by bmap. FIXME: we can not map block of file
323 // when it is stored in direct item(s)
324 pathrelse(&path);
325 if (p)
326 kunmap(bh_result->b_page);
327 return -ENOENT;
330 /* if we've got a direct item, and the buffer or page was uptodate,
331 ** we don't want to pull data off disk again. skip to the
332 ** end, where we map the buffer and return
334 if (buffer_uptodate(bh_result)) {
335 goto finished;
336 } else
338 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
339 ** pages without any buffers. If the page is up to date, we don't want
340 ** read old data off disk. Set the up to date bit on the buffer instead
341 ** and jump to the end
343 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
344 set_buffer_uptodate(bh_result);
345 goto finished;
347 // read file tail into part of page
348 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
349 fs_gen = get_generation(inode->i_sb);
350 copy_item_head(&tmp_ih, ih);
352 /* we only want to kmap if we are reading the tail into the page.
353 ** this is not the common case, so we don't kmap until we are
354 ** sure we need to. But, this means the item might move if
355 ** kmap schedules
357 if (!p) {
358 p = (char *)kmap(bh_result->b_page);
359 if (fs_changed(fs_gen, inode->i_sb)
360 && item_moved(&tmp_ih, &path)) {
361 goto research;
364 p += offset;
365 memset(p, 0, inode->i_sb->s_blocksize);
366 do {
367 if (!is_direct_le_ih(ih)) {
368 BUG();
370 /* make sure we don't read more bytes than actually exist in
371 ** the file. This can happen in odd cases where i_size isn't
372 ** correct, and when direct item padding results in a few
373 ** extra bytes at the end of the direct item
375 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
376 break;
377 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
378 chars =
379 inode->i_size - (le_ih_k_offset(ih) - 1) -
380 path.pos_in_item;
381 done = 1;
382 } else {
383 chars = ih_item_len(ih) - path.pos_in_item;
385 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
387 if (done)
388 break;
390 p += chars;
392 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
393 // we done, if read direct item is not the last item of
394 // node FIXME: we could try to check right delimiting key
395 // to see whether direct item continues in the right
396 // neighbor or rely on i_size
397 break;
399 // update key to look for the next piece
400 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
401 result = search_for_position_by_key(inode->i_sb, &key, &path);
402 if (result != POSITION_FOUND)
403 // i/o error most likely
404 break;
405 bh = get_last_bh(&path);
406 ih = get_ih(&path);
407 } while (1);
409 flush_dcache_page(bh_result->b_page);
410 kunmap(bh_result->b_page);
412 finished:
413 pathrelse(&path);
415 if (result == IO_ERROR)
416 return -EIO;
418 /* this buffer has valid data, but isn't valid for io. mapping it to
419 * block #0 tells the rest of reiserfs it just has a tail in it
421 map_bh(bh_result, inode->i_sb, 0);
422 set_buffer_uptodate(bh_result);
423 return 0;
426 // this is called to create file map. So, _get_block_create_0 will not
427 // read direct item
428 static int reiserfs_bmap(struct inode *inode, sector_t block,
429 struct buffer_head *bh_result, int create)
431 if (!file_capable(inode, block))
432 return -EFBIG;
434 reiserfs_write_lock(inode->i_sb);
435 /* do not read the direct item */
436 _get_block_create_0(inode, block, bh_result, 0);
437 reiserfs_write_unlock(inode->i_sb);
438 return 0;
441 /* special version of get_block that is only used by grab_tail_page right
442 ** now. It is sent to block_prepare_write, and when you try to get a
443 ** block past the end of the file (or a block from a hole) it returns
444 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
445 ** be able to do i/o on the buffers returned, unless an error value
446 ** is also returned.
448 ** So, this allows block_prepare_write to be used for reading a single block
449 ** in a page. Where it does not produce a valid page for holes, or past the
450 ** end of the file. This turns out to be exactly what we need for reading
451 ** tails for conversion.
453 ** The point of the wrapper is forcing a certain value for create, even
454 ** though the VFS layer is calling this function with create==1. If you
455 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
456 ** don't use this function.
458 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
459 struct buffer_head *bh_result,
460 int create)
462 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
465 /* This is special helper for reiserfs_get_block in case we are executing
466 direct_IO request. */
467 static int reiserfs_get_blocks_direct_io(struct inode *inode,
468 sector_t iblock,
469 unsigned long max_blocks,
470 struct buffer_head *bh_result,
471 int create)
473 int ret;
475 bh_result->b_page = NULL;
477 /* We set the b_size before reiserfs_get_block call since it is
478 referenced in convert_tail_for_hole() that may be called from
479 reiserfs_get_block() */
480 bh_result->b_size = (1 << inode->i_blkbits);
482 ret = reiserfs_get_block(inode, iblock, bh_result,
483 create | GET_BLOCK_NO_DANGLE);
484 if (ret)
485 goto out;
487 /* don't allow direct io onto tail pages */
488 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
489 /* make sure future calls to the direct io funcs for this offset
490 ** in the file fail by unmapping the buffer
492 clear_buffer_mapped(bh_result);
493 ret = -EINVAL;
495 /* Possible unpacked tail. Flush the data before pages have
496 disappeared */
497 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
498 int err;
499 lock_kernel();
500 err = reiserfs_commit_for_inode(inode);
501 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
502 unlock_kernel();
503 if (err < 0)
504 ret = err;
506 out:
507 return ret;
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
520 static int convert_tail_for_hole(struct inode *inode,
521 struct buffer_head *bh_result,
522 loff_t tail_offset)
524 unsigned long index;
525 unsigned long tail_end;
526 unsigned long tail_start;
527 struct page *tail_page;
528 struct page *hole_page = bh_result->b_page;
529 int retval = 0;
531 if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 return -EIO;
534 /* always try to read until the end of the block */
535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538 index = tail_offset >> PAGE_CACHE_SHIFT;
539 /* hole_page can be zero in case of direct_io, we are sure
540 that we cannot get here if we write with O_DIRECT into
541 tail page */
542 if (!hole_page || index != hole_page->index) {
543 tail_page = grab_cache_page(inode->i_mapping, index);
544 retval = -ENOMEM;
545 if (!tail_page) {
546 goto out;
548 } else {
549 tail_page = hole_page;
552 /* we don't have to make sure the conversion did not happen while
553 ** we were locking the page because anyone that could convert
554 ** must first take i_sem.
556 ** We must fix the tail page for writing because it might have buffers
557 ** that are mapped, but have a block number of 0. This indicates tail
558 ** data that has been read directly into the page, and block_prepare_write
559 ** won't trigger a get_block in this case.
561 fix_tail_page_for_writing(tail_page);
562 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
563 if (retval)
564 goto unlock;
566 /* tail conversion might change the data in the page */
567 flush_dcache_page(tail_page);
569 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 unlock:
572 if (tail_page != hole_page) {
573 unlock_page(tail_page);
574 page_cache_release(tail_page);
576 out:
577 return retval;
580 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
581 long block,
582 struct inode *inode,
583 b_blocknr_t * allocated_block_nr,
584 struct path *path, int flags)
586 BUG_ON(!th->t_trans_id);
588 #ifdef REISERFS_PREALLOCATE
589 if (!(flags & GET_BLOCK_NO_ISEM)) {
590 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
591 path, block);
593 #endif
594 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
595 block);
598 int reiserfs_get_block(struct inode *inode, sector_t block,
599 struct buffer_head *bh_result, int create)
601 int repeat, retval = 0;
602 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
603 INITIALIZE_PATH(path);
604 int pos_in_item;
605 struct cpu_key key;
606 struct buffer_head *bh, *unbh = NULL;
607 struct item_head *ih, tmp_ih;
608 __le32 *item;
609 int done;
610 int fs_gen;
611 struct reiserfs_transaction_handle *th = NULL;
612 /* space reserved in transaction batch:
613 . 3 balancings in direct->indirect conversion
614 . 1 block involved into reiserfs_update_sd()
615 XXX in practically impossible worst case direct2indirect()
616 can incur (much) more than 3 balancings.
617 quota update for user, group */
618 int jbegin_count =
619 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
620 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
621 int version;
622 int dangle = 1;
623 loff_t new_offset =
624 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
626 /* bad.... */
627 reiserfs_write_lock(inode->i_sb);
628 version = get_inode_item_key_version(inode);
630 if (block < 0) {
631 reiserfs_write_unlock(inode->i_sb);
632 return -EIO;
635 if (!file_capable(inode, block)) {
636 reiserfs_write_unlock(inode->i_sb);
637 return -EFBIG;
640 /* if !create, we aren't changing the FS, so we don't need to
641 ** log anything, so we don't need to start a transaction
643 if (!(create & GET_BLOCK_CREATE)) {
644 int ret;
645 /* find number of block-th logical block of the file */
646 ret = _get_block_create_0(inode, block, bh_result,
647 create | GET_BLOCK_READ_DIRECT);
648 reiserfs_write_unlock(inode->i_sb);
649 return ret;
652 * if we're already in a transaction, make sure to close
653 * any new transactions we start in this func
655 if ((create & GET_BLOCK_NO_DANGLE) ||
656 reiserfs_transaction_running(inode->i_sb))
657 dangle = 0;
659 /* If file is of such a size, that it might have a tail and tails are enabled
660 ** we should mark it as possibly needing tail packing on close
662 if ((have_large_tails(inode->i_sb)
663 && inode->i_size < i_block_size(inode) * 4)
664 || (have_small_tails(inode->i_sb)
665 && inode->i_size < i_block_size(inode)))
666 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
668 /* set the key of the first byte in the 'block'-th block of file */
669 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
670 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
671 start_trans:
672 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
673 if (!th) {
674 retval = -ENOMEM;
675 goto failure;
677 reiserfs_update_inode_transaction(inode);
679 research:
681 retval = search_for_position_by_key(inode->i_sb, &key, &path);
682 if (retval == IO_ERROR) {
683 retval = -EIO;
684 goto failure;
687 bh = get_last_bh(&path);
688 ih = get_ih(&path);
689 item = get_item(&path);
690 pos_in_item = path.pos_in_item;
692 fs_gen = get_generation(inode->i_sb);
693 copy_item_head(&tmp_ih, ih);
695 if (allocation_needed
696 (retval, allocated_block_nr, ih, item, pos_in_item)) {
697 /* we have to allocate block for the unformatted node */
698 if (!th) {
699 pathrelse(&path);
700 goto start_trans;
703 repeat =
704 _allocate_block(th, block, inode, &allocated_block_nr,
705 &path, create);
707 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
708 /* restart the transaction to give the journal a chance to free
709 ** some blocks. releases the path, so we have to go back to
710 ** research if we succeed on the second try
712 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
713 retval = restart_transaction(th, inode, &path);
714 if (retval)
715 goto failure;
716 repeat =
717 _allocate_block(th, block, inode,
718 &allocated_block_nr, NULL, create);
720 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
721 goto research;
723 if (repeat == QUOTA_EXCEEDED)
724 retval = -EDQUOT;
725 else
726 retval = -ENOSPC;
727 goto failure;
730 if (fs_changed(fs_gen, inode->i_sb)
731 && item_moved(&tmp_ih, &path)) {
732 goto research;
736 if (indirect_item_found(retval, ih)) {
737 b_blocknr_t unfm_ptr;
738 /* 'block'-th block is in the file already (there is
739 corresponding cell in some indirect item). But it may be
740 zero unformatted node pointer (hole) */
741 unfm_ptr = get_block_num(item, pos_in_item);
742 if (unfm_ptr == 0) {
743 /* use allocated block to plug the hole */
744 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
745 if (fs_changed(fs_gen, inode->i_sb)
746 && item_moved(&tmp_ih, &path)) {
747 reiserfs_restore_prepared_buffer(inode->i_sb,
748 bh);
749 goto research;
751 set_buffer_new(bh_result);
752 if (buffer_dirty(bh_result)
753 && reiserfs_data_ordered(inode->i_sb))
754 reiserfs_add_ordered_list(inode, bh_result);
755 put_block_num(item, pos_in_item, allocated_block_nr);
756 unfm_ptr = allocated_block_nr;
757 journal_mark_dirty(th, inode->i_sb, bh);
758 reiserfs_update_sd(th, inode);
760 set_block_dev_mapped(bh_result, unfm_ptr, inode);
761 pathrelse(&path);
762 retval = 0;
763 if (!dangle && th)
764 retval = reiserfs_end_persistent_transaction(th);
766 reiserfs_write_unlock(inode->i_sb);
768 /* the item was found, so new blocks were not added to the file
769 ** there is no need to make sure the inode is updated with this
770 ** transaction
772 return retval;
775 if (!th) {
776 pathrelse(&path);
777 goto start_trans;
780 /* desired position is not found or is in the direct item. We have
781 to append file with holes up to 'block'-th block converting
782 direct items to indirect one if necessary */
783 done = 0;
784 do {
785 if (is_statdata_le_ih(ih)) {
786 __le32 unp = 0;
787 struct cpu_key tmp_key;
789 /* indirect item has to be inserted */
790 make_le_item_head(&tmp_ih, &key, version, 1,
791 TYPE_INDIRECT, UNFM_P_SIZE,
792 0 /* free_space */ );
794 if (cpu_key_k_offset(&key) == 1) {
795 /* we are going to add 'block'-th block to the file. Use
796 allocated block for that */
797 unp = cpu_to_le32(allocated_block_nr);
798 set_block_dev_mapped(bh_result,
799 allocated_block_nr, inode);
800 set_buffer_new(bh_result);
801 done = 1;
803 tmp_key = key; // ;)
804 set_cpu_key_k_offset(&tmp_key, 1);
805 PATH_LAST_POSITION(&path)++;
807 retval =
808 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
809 inode, (char *)&unp);
810 if (retval) {
811 reiserfs_free_block(th, inode,
812 allocated_block_nr, 1);
813 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
815 //mark_tail_converted (inode);
816 } else if (is_direct_le_ih(ih)) {
817 /* direct item has to be converted */
818 loff_t tail_offset;
820 tail_offset =
821 ((le_ih_k_offset(ih) -
822 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
823 if (tail_offset == cpu_key_k_offset(&key)) {
824 /* direct item we just found fits into block we have
825 to map. Convert it into unformatted node: use
826 bh_result for the conversion */
827 set_block_dev_mapped(bh_result,
828 allocated_block_nr, inode);
829 unbh = bh_result;
830 done = 1;
831 } else {
832 /* we have to padd file tail stored in direct item(s)
833 up to block size and convert it to unformatted
834 node. FIXME: this should also get into page cache */
836 pathrelse(&path);
838 * ugly, but we can only end the transaction if
839 * we aren't nested
841 BUG_ON(!th->t_refcount);
842 if (th->t_refcount == 1) {
843 retval =
844 reiserfs_end_persistent_transaction
845 (th);
846 th = NULL;
847 if (retval)
848 goto failure;
851 retval =
852 convert_tail_for_hole(inode, bh_result,
853 tail_offset);
854 if (retval) {
855 if (retval != -ENOSPC)
856 reiserfs_warning(inode->i_sb,
857 "clm-6004: convert tail failed inode %lu, error %d",
858 inode->i_ino,
859 retval);
860 if (allocated_block_nr) {
861 /* the bitmap, the super, and the stat data == 3 */
862 if (!th)
863 th = reiserfs_persistent_transaction(inode->i_sb, 3);
864 if (th)
865 reiserfs_free_block(th,
866 inode,
867 allocated_block_nr,
870 goto failure;
872 goto research;
874 retval =
875 direct2indirect(th, inode, &path, unbh,
876 tail_offset);
877 if (retval) {
878 reiserfs_unmap_buffer(unbh);
879 reiserfs_free_block(th, inode,
880 allocated_block_nr, 1);
881 goto failure;
883 /* it is important the set_buffer_uptodate is done after
884 ** the direct2indirect. The buffer might contain valid
885 ** data newer than the data on disk (read by readpage, changed,
886 ** and then sent here by writepage). direct2indirect needs
887 ** to know if unbh was already up to date, so it can decide
888 ** if the data in unbh needs to be replaced with data from
889 ** the disk
891 set_buffer_uptodate(unbh);
893 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
894 buffer will disappear shortly, so it should not be added to
896 if (unbh->b_page) {
897 /* we've converted the tail, so we must
898 ** flush unbh before the transaction commits
900 reiserfs_add_tail_list(inode, unbh);
902 /* mark it dirty now to prevent commit_write from adding
903 ** this buffer to the inode's dirty buffer list
906 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
907 * It's still atomic, but it sets the page dirty too,
908 * which makes it eligible for writeback at any time by the
909 * VM (which was also the case with __mark_buffer_dirty())
911 mark_buffer_dirty(unbh);
913 } else {
914 /* append indirect item with holes if needed, when appending
915 pointer to 'block'-th block use block, which is already
916 allocated */
917 struct cpu_key tmp_key;
918 unp_t unf_single = 0; // We use this in case we need to allocate only
919 // one block which is a fastpath
920 unp_t *un;
921 __u64 max_to_insert =
922 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
923 UNFM_P_SIZE;
924 __u64 blocks_needed;
926 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
927 "vs-804: invalid position for append");
928 /* indirect item has to be appended, set up key of that position */
929 make_cpu_key(&tmp_key, inode,
930 le_key_k_offset(version,
931 &(ih->ih_key)) +
932 op_bytes_number(ih,
933 inode->i_sb->s_blocksize),
934 //pos_in_item * inode->i_sb->s_blocksize,
935 TYPE_INDIRECT, 3); // key type is unimportant
937 blocks_needed =
939 ((cpu_key_k_offset(&key) -
940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 s_blocksize_bits);
942 RFALSE(blocks_needed < 0, "green-805: invalid offset");
944 if (blocks_needed == 1) {
945 un = &unf_single;
946 } else {
947 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
948 if (!un) {
949 un = &unf_single;
950 blocks_needed = 1;
951 max_to_insert = 0;
952 } else
953 memset(un, 0,
954 UNFM_P_SIZE * min(blocks_needed,
955 max_to_insert));
957 if (blocks_needed <= max_to_insert) {
958 /* we are going to add target block to the file. Use allocated
959 block for that */
960 un[blocks_needed - 1] =
961 cpu_to_le32(allocated_block_nr);
962 set_block_dev_mapped(bh_result,
963 allocated_block_nr, inode);
964 set_buffer_new(bh_result);
965 done = 1;
966 } else {
967 /* paste hole to the indirect item */
968 /* If kmalloc failed, max_to_insert becomes zero and it means we
969 only have space for one block */
970 blocks_needed =
971 max_to_insert ? max_to_insert : 1;
973 retval =
974 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
975 (char *)un,
976 UNFM_P_SIZE *
977 blocks_needed);
979 if (blocks_needed != 1)
980 kfree(un);
982 if (retval) {
983 reiserfs_free_block(th, inode,
984 allocated_block_nr, 1);
985 goto failure;
987 if (!done) {
988 /* We need to mark new file size in case this function will be
989 interrupted/aborted later on. And we may do this only for
990 holes. */
991 inode->i_size +=
992 inode->i_sb->s_blocksize * blocks_needed;
996 if (done == 1)
997 break;
999 /* this loop could log more blocks than we had originally asked
1000 ** for. So, we have to allow the transaction to end if it is
1001 ** too big or too full. Update the inode so things are
1002 ** consistent if we crash before the function returns
1004 ** release the path so that anybody waiting on the path before
1005 ** ending their transaction will be able to continue.
1007 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1008 retval = restart_transaction(th, inode, &path);
1009 if (retval)
1010 goto failure;
1012 /* inserting indirect pointers for a hole can take a
1013 ** long time. reschedule if needed
1015 cond_resched();
1017 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1018 if (retval == IO_ERROR) {
1019 retval = -EIO;
1020 goto failure;
1022 if (retval == POSITION_FOUND) {
1023 reiserfs_warning(inode->i_sb,
1024 "vs-825: reiserfs_get_block: "
1025 "%K should not be found", &key);
1026 retval = -EEXIST;
1027 if (allocated_block_nr)
1028 reiserfs_free_block(th, inode,
1029 allocated_block_nr, 1);
1030 pathrelse(&path);
1031 goto failure;
1033 bh = get_last_bh(&path);
1034 ih = get_ih(&path);
1035 item = get_item(&path);
1036 pos_in_item = path.pos_in_item;
1037 } while (1);
1039 retval = 0;
1041 failure:
1042 if (th && (!dangle || (retval && !th->t_trans_id))) {
1043 int err;
1044 if (th->t_trans_id)
1045 reiserfs_update_sd(th, inode);
1046 err = reiserfs_end_persistent_transaction(th);
1047 if (err)
1048 retval = err;
1051 reiserfs_write_unlock(inode->i_sb);
1052 reiserfs_check_path(&path);
1053 return retval;
1056 static int
1057 reiserfs_readpages(struct file *file, struct address_space *mapping,
1058 struct list_head *pages, unsigned nr_pages)
1060 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1063 /* Compute real number of used bytes by file
1064 * Following three functions can go away when we'll have enough space in stat item
1066 static int real_space_diff(struct inode *inode, int sd_size)
1068 int bytes;
1069 loff_t blocksize = inode->i_sb->s_blocksize;
1071 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1072 return sd_size;
1074 /* End of file is also in full block with indirect reference, so round
1075 ** up to the next block.
1077 ** there is just no way to know if the tail is actually packed
1078 ** on the file, so we have to assume it isn't. When we pack the
1079 ** tail, we add 4 bytes to pretend there really is an unformatted
1080 ** node pointer
1082 bytes =
1083 ((inode->i_size +
1084 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1085 sd_size;
1086 return bytes;
1089 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1090 int sd_size)
1092 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1093 return inode->i_size +
1094 (loff_t) (real_space_diff(inode, sd_size));
1096 return ((loff_t) real_space_diff(inode, sd_size)) +
1097 (((loff_t) blocks) << 9);
1100 /* Compute number of blocks used by file in ReiserFS counting */
1101 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 loff_t bytes = inode_get_bytes(inode);
1104 loff_t real_space = real_space_diff(inode, sd_size);
1106 /* keeps fsck and non-quota versions of reiserfs happy */
1107 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1108 bytes += (loff_t) 511;
1111 /* files from before the quota patch might i_blocks such that
1112 ** bytes < real_space. Deal with that here to prevent it from
1113 ** going negative.
1115 if (bytes < real_space)
1116 return 0;
1117 return (bytes - real_space) >> 9;
1121 // BAD: new directories have stat data of new type and all other items
1122 // of old type. Version stored in the inode says about body items, so
1123 // in update_stat_data we can not rely on inode, but have to check
1124 // item version directly
1127 // called by read_locked_inode
1128 static void init_inode(struct inode *inode, struct path *path)
1130 struct buffer_head *bh;
1131 struct item_head *ih;
1132 __u32 rdev;
1133 //int version = ITEM_VERSION_1;
1135 bh = PATH_PLAST_BUFFER(path);
1136 ih = PATH_PITEM_HEAD(path);
1138 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1139 inode->i_blksize = reiserfs_default_io_size;
1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 REISERFS_I(inode)->i_flags = 0;
1143 REISERFS_I(inode)->i_prealloc_block = 0;
1144 REISERFS_I(inode)->i_prealloc_count = 0;
1145 REISERFS_I(inode)->i_trans_id = 0;
1146 REISERFS_I(inode)->i_jl = NULL;
1147 REISERFS_I(inode)->i_acl_access = NULL;
1148 REISERFS_I(inode)->i_acl_default = NULL;
1149 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1151 if (stat_data_v1(ih)) {
1152 struct stat_data_v1 *sd =
1153 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1154 unsigned long blocks;
1156 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1157 set_inode_sd_version(inode, STAT_DATA_V1);
1158 inode->i_mode = sd_v1_mode(sd);
1159 inode->i_nlink = sd_v1_nlink(sd);
1160 inode->i_uid = sd_v1_uid(sd);
1161 inode->i_gid = sd_v1_gid(sd);
1162 inode->i_size = sd_v1_size(sd);
1163 inode->i_atime.tv_sec = sd_v1_atime(sd);
1164 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1165 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1166 inode->i_atime.tv_nsec = 0;
1167 inode->i_ctime.tv_nsec = 0;
1168 inode->i_mtime.tv_nsec = 0;
1170 inode->i_blocks = sd_v1_blocks(sd);
1171 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1172 blocks = (inode->i_size + 511) >> 9;
1173 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1174 if (inode->i_blocks > blocks) {
1175 // there was a bug in <=3.5.23 when i_blocks could take negative
1176 // values. Starting from 3.5.17 this value could even be stored in
1177 // stat data. For such files we set i_blocks based on file
1178 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1179 // only updated if file's inode will ever change
1180 inode->i_blocks = blocks;
1183 rdev = sd_v1_rdev(sd);
1184 REISERFS_I(inode)->i_first_direct_byte =
1185 sd_v1_first_direct_byte(sd);
1186 /* an early bug in the quota code can give us an odd number for the
1187 ** block count. This is incorrect, fix it here.
1189 if (inode->i_blocks & 1) {
1190 inode->i_blocks++;
1192 inode_set_bytes(inode,
1193 to_real_used_space(inode, inode->i_blocks,
1194 SD_V1_SIZE));
1195 /* nopack is initially zero for v1 objects. For v2 objects,
1196 nopack is initialised from sd_attrs */
1197 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1198 } else {
1199 // new stat data found, but object may have old items
1200 // (directories and symlinks)
1201 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1203 inode->i_mode = sd_v2_mode(sd);
1204 inode->i_nlink = sd_v2_nlink(sd);
1205 inode->i_uid = sd_v2_uid(sd);
1206 inode->i_size = sd_v2_size(sd);
1207 inode->i_gid = sd_v2_gid(sd);
1208 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1209 inode->i_atime.tv_sec = sd_v2_atime(sd);
1210 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1211 inode->i_ctime.tv_nsec = 0;
1212 inode->i_mtime.tv_nsec = 0;
1213 inode->i_atime.tv_nsec = 0;
1214 inode->i_blocks = sd_v2_blocks(sd);
1215 rdev = sd_v2_rdev(sd);
1216 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1217 inode->i_generation =
1218 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1219 else
1220 inode->i_generation = sd_v2_generation(sd);
1222 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1223 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1224 else
1225 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1226 REISERFS_I(inode)->i_first_direct_byte = 0;
1227 set_inode_sd_version(inode, STAT_DATA_V2);
1228 inode_set_bytes(inode,
1229 to_real_used_space(inode, inode->i_blocks,
1230 SD_V2_SIZE));
1231 /* read persistent inode attributes from sd and initalise
1232 generic inode flags from them */
1233 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1234 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1237 pathrelse(path);
1238 if (S_ISREG(inode->i_mode)) {
1239 inode->i_op = &reiserfs_file_inode_operations;
1240 inode->i_fop = &reiserfs_file_operations;
1241 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1242 } else if (S_ISDIR(inode->i_mode)) {
1243 inode->i_op = &reiserfs_dir_inode_operations;
1244 inode->i_fop = &reiserfs_dir_operations;
1245 } else if (S_ISLNK(inode->i_mode)) {
1246 inode->i_op = &reiserfs_symlink_inode_operations;
1247 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1248 } else {
1249 inode->i_blocks = 0;
1250 inode->i_op = &reiserfs_special_inode_operations;
1251 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1255 // update new stat data with inode fields
1256 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1258 struct stat_data *sd_v2 = (struct stat_data *)sd;
1259 __u16 flags;
1261 set_sd_v2_mode(sd_v2, inode->i_mode);
1262 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1263 set_sd_v2_uid(sd_v2, inode->i_uid);
1264 set_sd_v2_size(sd_v2, size);
1265 set_sd_v2_gid(sd_v2, inode->i_gid);
1266 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1267 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1268 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1269 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1270 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1271 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1272 else
1273 set_sd_v2_generation(sd_v2, inode->i_generation);
1274 flags = REISERFS_I(inode)->i_attrs;
1275 i_attrs_to_sd_attrs(inode, &flags);
1276 set_sd_v2_attrs(sd_v2, flags);
1279 // used to copy inode's fields to old stat data
1280 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1282 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1284 set_sd_v1_mode(sd_v1, inode->i_mode);
1285 set_sd_v1_uid(sd_v1, inode->i_uid);
1286 set_sd_v1_gid(sd_v1, inode->i_gid);
1287 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1288 set_sd_v1_size(sd_v1, size);
1289 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1290 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1291 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1293 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1294 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1295 else
1296 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1298 // Sigh. i_first_direct_byte is back
1299 set_sd_v1_first_direct_byte(sd_v1,
1300 REISERFS_I(inode)->i_first_direct_byte);
1303 /* NOTE, you must prepare the buffer head before sending it here,
1304 ** and then log it after the call
1306 static void update_stat_data(struct path *path, struct inode *inode,
1307 loff_t size)
1309 struct buffer_head *bh;
1310 struct item_head *ih;
1312 bh = PATH_PLAST_BUFFER(path);
1313 ih = PATH_PITEM_HEAD(path);
1315 if (!is_statdata_le_ih(ih))
1316 reiserfs_panic(inode->i_sb,
1317 "vs-13065: update_stat_data: key %k, found item %h",
1318 INODE_PKEY(inode), ih);
1320 if (stat_data_v1(ih)) {
1321 // path points to old stat data
1322 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1323 } else {
1324 inode2sd(B_I_PITEM(bh, ih), inode, size);
1327 return;
1330 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1331 struct inode *inode, loff_t size)
1333 struct cpu_key key;
1334 INITIALIZE_PATH(path);
1335 struct buffer_head *bh;
1336 int fs_gen;
1337 struct item_head *ih, tmp_ih;
1338 int retval;
1340 BUG_ON(!th->t_trans_id);
1342 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1344 for (;;) {
1345 int pos;
1346 /* look for the object's stat data */
1347 retval = search_item(inode->i_sb, &key, &path);
1348 if (retval == IO_ERROR) {
1349 reiserfs_warning(inode->i_sb,
1350 "vs-13050: reiserfs_update_sd: "
1351 "i/o failure occurred trying to update %K stat data",
1352 &key);
1353 return;
1355 if (retval == ITEM_NOT_FOUND) {
1356 pos = PATH_LAST_POSITION(&path);
1357 pathrelse(&path);
1358 if (inode->i_nlink == 0) {
1359 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1360 return;
1362 reiserfs_warning(inode->i_sb,
1363 "vs-13060: reiserfs_update_sd: "
1364 "stat data of object %k (nlink == %d) not found (pos %d)",
1365 INODE_PKEY(inode), inode->i_nlink,
1366 pos);
1367 reiserfs_check_path(&path);
1368 return;
1371 /* sigh, prepare_for_journal might schedule. When it schedules the
1372 ** FS might change. We have to detect that, and loop back to the
1373 ** search if the stat data item has moved
1375 bh = get_last_bh(&path);
1376 ih = get_ih(&path);
1377 copy_item_head(&tmp_ih, ih);
1378 fs_gen = get_generation(inode->i_sb);
1379 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1380 if (fs_changed(fs_gen, inode->i_sb)
1381 && item_moved(&tmp_ih, &path)) {
1382 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1383 continue; /* Stat_data item has been moved after scheduling. */
1385 break;
1387 update_stat_data(&path, inode, size);
1388 journal_mark_dirty(th, th->t_super, bh);
1389 pathrelse(&path);
1390 return;
1393 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1394 ** does a make_bad_inode when things go wrong. But, we need to make sure
1395 ** and clear the key in the private portion of the inode, otherwise a
1396 ** corresponding iput might try to delete whatever object the inode last
1397 ** represented.
1399 static void reiserfs_make_bad_inode(struct inode *inode)
1401 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1402 make_bad_inode(inode);
1406 // initially this function was derived from minix or ext2's analog and
1407 // evolved as the prototype did
1410 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1412 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1413 inode->i_ino = args->objectid;
1414 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1415 return 0;
1418 /* looks for stat data in the tree, and fills up the fields of in-core
1419 inode stat data fields */
1420 void reiserfs_read_locked_inode(struct inode *inode,
1421 struct reiserfs_iget_args *args)
1423 INITIALIZE_PATH(path_to_sd);
1424 struct cpu_key key;
1425 unsigned long dirino;
1426 int retval;
1428 dirino = args->dirid;
1430 /* set version 1, version 2 could be used too, because stat data
1431 key is the same in both versions */
1432 key.version = KEY_FORMAT_3_5;
1433 key.on_disk_key.k_dir_id = dirino;
1434 key.on_disk_key.k_objectid = inode->i_ino;
1435 key.on_disk_key.k_offset = 0;
1436 key.on_disk_key.k_type = 0;
1438 /* look for the object's stat data */
1439 retval = search_item(inode->i_sb, &key, &path_to_sd);
1440 if (retval == IO_ERROR) {
1441 reiserfs_warning(inode->i_sb,
1442 "vs-13070: reiserfs_read_locked_inode: "
1443 "i/o failure occurred trying to find stat data of %K",
1444 &key);
1445 reiserfs_make_bad_inode(inode);
1446 return;
1448 if (retval != ITEM_FOUND) {
1449 /* a stale NFS handle can trigger this without it being an error */
1450 pathrelse(&path_to_sd);
1451 reiserfs_make_bad_inode(inode);
1452 inode->i_nlink = 0;
1453 return;
1456 init_inode(inode, &path_to_sd);
1458 /* It is possible that knfsd is trying to access inode of a file
1459 that is being removed from the disk by some other thread. As we
1460 update sd on unlink all that is required is to check for nlink
1461 here. This bug was first found by Sizif when debugging
1462 SquidNG/Butterfly, forgotten, and found again after Philippe
1463 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1465 More logical fix would require changes in fs/inode.c:iput() to
1466 remove inode from hash-table _after_ fs cleaned disk stuff up and
1467 in iget() to return NULL if I_FREEING inode is found in
1468 hash-table. */
1469 /* Currently there is one place where it's ok to meet inode with
1470 nlink==0: processing of open-unlinked and half-truncated files
1471 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1472 if ((inode->i_nlink == 0) &&
1473 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1474 reiserfs_warning(inode->i_sb,
1475 "vs-13075: reiserfs_read_locked_inode: "
1476 "dead inode read from disk %K. "
1477 "This is likely to be race with knfsd. Ignore",
1478 &key);
1479 reiserfs_make_bad_inode(inode);
1482 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1487 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1489 * @inode: inode from hash table to check
1490 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1492 * This function is called by iget5_locked() to distinguish reiserfs inodes
1493 * having the same inode numbers. Such inodes can only exist due to some
1494 * error condition. One of them should be bad. Inodes with identical
1495 * inode numbers (objectids) are distinguished by parent directory ids.
1498 int reiserfs_find_actor(struct inode *inode, void *opaque)
1500 struct reiserfs_iget_args *args;
1502 args = opaque;
1503 /* args is already in CPU order */
1504 return (inode->i_ino == args->objectid) &&
1505 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1508 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1510 struct inode *inode;
1511 struct reiserfs_iget_args args;
1513 args.objectid = key->on_disk_key.k_objectid;
1514 args.dirid = key->on_disk_key.k_dir_id;
1515 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 reiserfs_find_actor, reiserfs_init_locked_inode,
1517 (void *)(&args));
1518 if (!inode)
1519 return ERR_PTR(-ENOMEM);
1521 if (inode->i_state & I_NEW) {
1522 reiserfs_read_locked_inode(inode, &args);
1523 unlock_new_inode(inode);
1526 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1527 /* either due to i/o error or a stale NFS handle */
1528 iput(inode);
1529 inode = NULL;
1531 return inode;
1534 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1536 __u32 *data = vobjp;
1537 struct cpu_key key;
1538 struct dentry *result;
1539 struct inode *inode;
1541 key.on_disk_key.k_objectid = data[0];
1542 key.on_disk_key.k_dir_id = data[1];
1543 reiserfs_write_lock(sb);
1544 inode = reiserfs_iget(sb, &key);
1545 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1546 data[2] != inode->i_generation) {
1547 iput(inode);
1548 inode = NULL;
1550 reiserfs_write_unlock(sb);
1551 if (!inode)
1552 inode = ERR_PTR(-ESTALE);
1553 if (IS_ERR(inode))
1554 return ERR_PTR(PTR_ERR(inode));
1555 result = d_alloc_anon(inode);
1556 if (!result) {
1557 iput(inode);
1558 return ERR_PTR(-ENOMEM);
1560 return result;
1563 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1564 int len, int fhtype,
1565 int (*acceptable) (void *contect,
1566 struct dentry * de),
1567 void *context)
1569 __u32 obj[3], parent[3];
1571 /* fhtype happens to reflect the number of u32s encoded.
1572 * due to a bug in earlier code, fhtype might indicate there
1573 * are more u32s then actually fitted.
1574 * so if fhtype seems to be more than len, reduce fhtype.
1575 * Valid types are:
1576 * 2 - objectid + dir_id - legacy support
1577 * 3 - objectid + dir_id + generation
1578 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1579 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1580 * 6 - as above plus generation of directory
1581 * 6 does not fit in NFSv2 handles
1583 if (fhtype > len) {
1584 if (fhtype != 6 || len != 5)
1585 reiserfs_warning(sb,
1586 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1587 fhtype, len);
1588 fhtype = 5;
1591 obj[0] = data[0];
1592 obj[1] = data[1];
1593 if (fhtype == 3 || fhtype >= 5)
1594 obj[2] = data[2];
1595 else
1596 obj[2] = 0; /* generation number */
1598 if (fhtype >= 4) {
1599 parent[0] = data[fhtype >= 5 ? 3 : 2];
1600 parent[1] = data[fhtype >= 5 ? 4 : 3];
1601 if (fhtype == 6)
1602 parent[2] = data[5];
1603 else
1604 parent[2] = 0;
1606 return sb->s_export_op->find_exported_dentry(sb, obj,
1607 fhtype < 4 ? NULL : parent,
1608 acceptable, context);
1611 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1612 int need_parent)
1614 struct inode *inode = dentry->d_inode;
1615 int maxlen = *lenp;
1617 if (maxlen < 3)
1618 return 255;
1620 data[0] = inode->i_ino;
1621 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1622 data[2] = inode->i_generation;
1623 *lenp = 3;
1624 /* no room for directory info? return what we've stored so far */
1625 if (maxlen < 5 || !need_parent)
1626 return 3;
1628 spin_lock(&dentry->d_lock);
1629 inode = dentry->d_parent->d_inode;
1630 data[3] = inode->i_ino;
1631 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1632 *lenp = 5;
1633 if (maxlen >= 6) {
1634 data[5] = inode->i_generation;
1635 *lenp = 6;
1637 spin_unlock(&dentry->d_lock);
1638 return *lenp;
1641 /* looks for stat data, then copies fields to it, marks the buffer
1642 containing stat data as dirty */
1643 /* reiserfs inodes are never really dirty, since the dirty inode call
1644 ** always logs them. This call allows the VFS inode marking routines
1645 ** to properly mark inodes for datasync and such, but only actually
1646 ** does something when called for a synchronous update.
1648 int reiserfs_write_inode(struct inode *inode, int do_sync)
1650 struct reiserfs_transaction_handle th;
1651 int jbegin_count = 1;
1653 if (inode->i_sb->s_flags & MS_RDONLY)
1654 return -EROFS;
1655 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1656 ** these cases are just when the system needs ram, not when the
1657 ** inode needs to reach disk for safety, and they can safely be
1658 ** ignored because the altered inode has already been logged.
1660 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1661 reiserfs_write_lock(inode->i_sb);
1662 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1663 reiserfs_update_sd(&th, inode);
1664 journal_end_sync(&th, inode->i_sb, jbegin_count);
1666 reiserfs_write_unlock(inode->i_sb);
1668 return 0;
1671 /* stat data of new object is inserted already, this inserts the item
1672 containing "." and ".." entries */
1673 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1674 struct inode *inode,
1675 struct item_head *ih, struct path *path,
1676 struct inode *dir)
1678 struct super_block *sb = th->t_super;
1679 char empty_dir[EMPTY_DIR_SIZE];
1680 char *body = empty_dir;
1681 struct cpu_key key;
1682 int retval;
1684 BUG_ON(!th->t_trans_id);
1686 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1687 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1688 TYPE_DIRENTRY, 3 /*key length */ );
1690 /* compose item head for new item. Directories consist of items of
1691 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1692 is done by reiserfs_new_inode */
1693 if (old_format_only(sb)) {
1694 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1695 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1697 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1698 ih->ih_key.k_objectid,
1699 INODE_PKEY(dir)->k_dir_id,
1700 INODE_PKEY(dir)->k_objectid);
1701 } else {
1702 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1703 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1705 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1706 ih->ih_key.k_objectid,
1707 INODE_PKEY(dir)->k_dir_id,
1708 INODE_PKEY(dir)->k_objectid);
1711 /* look for place in the tree for new item */
1712 retval = search_item(sb, &key, path);
1713 if (retval == IO_ERROR) {
1714 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1715 "i/o failure occurred creating new directory");
1716 return -EIO;
1718 if (retval == ITEM_FOUND) {
1719 pathrelse(path);
1720 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1721 "object with this key exists (%k)",
1722 &(ih->ih_key));
1723 return -EEXIST;
1726 /* insert item, that is empty directory item */
1727 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1730 /* stat data of object has been inserted, this inserts the item
1731 containing the body of symlink */
1732 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1733 struct item_head *ih,
1734 struct path *path, const char *symname,
1735 int item_len)
1737 struct super_block *sb = th->t_super;
1738 struct cpu_key key;
1739 int retval;
1741 BUG_ON(!th->t_trans_id);
1743 _make_cpu_key(&key, KEY_FORMAT_3_5,
1744 le32_to_cpu(ih->ih_key.k_dir_id),
1745 le32_to_cpu(ih->ih_key.k_objectid),
1746 1, TYPE_DIRECT, 3 /*key length */ );
1748 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1749 0 /*free_space */ );
1751 /* look for place in the tree for new item */
1752 retval = search_item(sb, &key, path);
1753 if (retval == IO_ERROR) {
1754 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1755 "i/o failure occurred creating new symlink");
1756 return -EIO;
1758 if (retval == ITEM_FOUND) {
1759 pathrelse(path);
1760 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1761 "object with this key exists (%k)",
1762 &(ih->ih_key));
1763 return -EEXIST;
1766 /* insert item, that is body of symlink */
1767 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1770 /* inserts the stat data into the tree, and then calls
1771 reiserfs_new_directory (to insert ".", ".." item if new object is
1772 directory) or reiserfs_new_symlink (to insert symlink body if new
1773 object is symlink) or nothing (if new object is regular file)
1775 NOTE! uid and gid must already be set in the inode. If we return
1776 non-zero due to an error, we have to drop the quota previously allocated
1777 for the fresh inode. This can only be done outside a transaction, so
1778 if we return non-zero, we also end the transaction. */
1779 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1780 struct inode *dir, int mode, const char *symname,
1781 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1782 strlen (symname) for symlinks) */
1783 loff_t i_size, struct dentry *dentry,
1784 struct inode *inode)
1786 struct super_block *sb;
1787 INITIALIZE_PATH(path_to_key);
1788 struct cpu_key key;
1789 struct item_head ih;
1790 struct stat_data sd;
1791 int retval;
1792 int err;
1794 BUG_ON(!th->t_trans_id);
1796 if (DQUOT_ALLOC_INODE(inode)) {
1797 err = -EDQUOT;
1798 goto out_end_trans;
1800 if (!dir || !dir->i_nlink) {
1801 err = -EPERM;
1802 goto out_bad_inode;
1805 sb = dir->i_sb;
1807 /* item head of new item */
1808 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1809 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1810 if (!ih.ih_key.k_objectid) {
1811 err = -ENOMEM;
1812 goto out_bad_inode;
1814 if (old_format_only(sb))
1815 /* not a perfect generation count, as object ids can be reused, but
1816 ** this is as good as reiserfs can do right now.
1817 ** note that the private part of inode isn't filled in yet, we have
1818 ** to use the directory.
1820 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1821 else
1822 #if defined( USE_INODE_GENERATION_COUNTER )
1823 inode->i_generation =
1824 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1825 #else
1826 inode->i_generation = ++event;
1827 #endif
1829 /* fill stat data */
1830 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1832 /* uid and gid must already be set by the caller for quota init */
1834 /* symlink cannot be immutable or append only, right? */
1835 if (S_ISLNK(inode->i_mode))
1836 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1838 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1839 inode->i_size = i_size;
1840 inode->i_blocks = 0;
1841 inode->i_bytes = 0;
1842 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1843 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1845 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1846 REISERFS_I(inode)->i_flags = 0;
1847 REISERFS_I(inode)->i_prealloc_block = 0;
1848 REISERFS_I(inode)->i_prealloc_count = 0;
1849 REISERFS_I(inode)->i_trans_id = 0;
1850 REISERFS_I(inode)->i_jl = NULL;
1851 REISERFS_I(inode)->i_attrs =
1852 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1853 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1854 REISERFS_I(inode)->i_acl_access = NULL;
1855 REISERFS_I(inode)->i_acl_default = NULL;
1856 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1858 if (old_format_only(sb))
1859 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1860 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1861 else
1862 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1863 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1865 /* key to search for correct place for new stat data */
1866 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1867 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1868 TYPE_STAT_DATA, 3 /*key length */ );
1870 /* find proper place for inserting of stat data */
1871 retval = search_item(sb, &key, &path_to_key);
1872 if (retval == IO_ERROR) {
1873 err = -EIO;
1874 goto out_bad_inode;
1876 if (retval == ITEM_FOUND) {
1877 pathrelse(&path_to_key);
1878 err = -EEXIST;
1879 goto out_bad_inode;
1881 if (old_format_only(sb)) {
1882 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1883 pathrelse(&path_to_key);
1884 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1885 err = -EINVAL;
1886 goto out_bad_inode;
1888 inode2sd_v1(&sd, inode, inode->i_size);
1889 } else {
1890 inode2sd(&sd, inode, inode->i_size);
1892 // these do not go to on-disk stat data
1893 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1894 inode->i_blksize = reiserfs_default_io_size;
1896 // store in in-core inode the key of stat data and version all
1897 // object items will have (directory items will have old offset
1898 // format, other new objects will consist of new items)
1899 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1900 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1901 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1902 else
1903 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1904 if (old_format_only(sb))
1905 set_inode_sd_version(inode, STAT_DATA_V1);
1906 else
1907 set_inode_sd_version(inode, STAT_DATA_V2);
1909 /* insert the stat data into the tree */
1910 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1911 if (REISERFS_I(dir)->new_packing_locality)
1912 th->displace_new_blocks = 1;
1913 #endif
1914 retval =
1915 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1916 (char *)(&sd));
1917 if (retval) {
1918 err = retval;
1919 reiserfs_check_path(&path_to_key);
1920 goto out_bad_inode;
1922 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1923 if (!th->displace_new_blocks)
1924 REISERFS_I(dir)->new_packing_locality = 0;
1925 #endif
1926 if (S_ISDIR(mode)) {
1927 /* insert item with "." and ".." */
1928 retval =
1929 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1932 if (S_ISLNK(mode)) {
1933 /* insert body of symlink */
1934 if (!old_format_only(sb))
1935 i_size = ROUND_UP(i_size);
1936 retval =
1937 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1938 i_size);
1940 if (retval) {
1941 err = retval;
1942 reiserfs_check_path(&path_to_key);
1943 journal_end(th, th->t_super, th->t_blocks_allocated);
1944 goto out_inserted_sd;
1947 /* XXX CHECK THIS */
1948 if (reiserfs_posixacl(inode->i_sb)) {
1949 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1950 if (retval) {
1951 err = retval;
1952 reiserfs_check_path(&path_to_key);
1953 journal_end(th, th->t_super, th->t_blocks_allocated);
1954 goto out_inserted_sd;
1956 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1957 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1958 "but vfs thinks they are!");
1959 } else if (is_reiserfs_priv_object(dir)) {
1960 reiserfs_mark_inode_private(inode);
1963 insert_inode_hash(inode);
1964 reiserfs_update_sd(th, inode);
1965 reiserfs_check_path(&path_to_key);
1967 return 0;
1969 /* it looks like you can easily compress these two goto targets into
1970 * one. Keeping it like this doesn't actually hurt anything, and they
1971 * are place holders for what the quota code actually needs.
1973 out_bad_inode:
1974 /* Invalidate the object, nothing was inserted yet */
1975 INODE_PKEY(inode)->k_objectid = 0;
1977 /* Quota change must be inside a transaction for journaling */
1978 DQUOT_FREE_INODE(inode);
1980 out_end_trans:
1981 journal_end(th, th->t_super, th->t_blocks_allocated);
1982 /* Drop can be outside and it needs more credits so it's better to have it outside */
1983 DQUOT_DROP(inode);
1984 inode->i_flags |= S_NOQUOTA;
1985 make_bad_inode(inode);
1987 out_inserted_sd:
1988 inode->i_nlink = 0;
1989 th->t_trans_id = 0; /* so the caller can't use this handle later */
1991 /* If we were inheriting an ACL, we need to release the lock so that
1992 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1993 * code really needs to be reworked, but this will take care of it
1994 * for now. -jeffm */
1995 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1996 reiserfs_write_unlock_xattrs(dir->i_sb);
1997 iput(inode);
1998 reiserfs_write_lock_xattrs(dir->i_sb);
1999 } else
2000 iput(inode);
2001 return err;
2005 ** finds the tail page in the page cache,
2006 ** reads the last block in.
2008 ** On success, page_result is set to a locked, pinned page, and bh_result
2009 ** is set to an up to date buffer for the last block in the file. returns 0.
2011 ** tail conversion is not done, so bh_result might not be valid for writing
2012 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2013 ** trying to write the block.
2015 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2017 static int grab_tail_page(struct inode *p_s_inode,
2018 struct page **page_result,
2019 struct buffer_head **bh_result)
2022 /* we want the page with the last byte in the file,
2023 ** not the page that will hold the next byte for appending
2025 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2026 unsigned long pos = 0;
2027 unsigned long start = 0;
2028 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2029 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2030 struct buffer_head *bh;
2031 struct buffer_head *head;
2032 struct page *page;
2033 int error;
2035 /* we know that we are only called with inode->i_size > 0.
2036 ** we also know that a file tail can never be as big as a block
2037 ** If i_size % blocksize == 0, our file is currently block aligned
2038 ** and it won't need converting or zeroing after a truncate.
2040 if ((offset & (blocksize - 1)) == 0) {
2041 return -ENOENT;
2043 page = grab_cache_page(p_s_inode->i_mapping, index);
2044 error = -ENOMEM;
2045 if (!page) {
2046 goto out;
2048 /* start within the page of the last block in the file */
2049 start = (offset / blocksize) * blocksize;
2051 error = block_prepare_write(page, start, offset,
2052 reiserfs_get_block_create_0);
2053 if (error)
2054 goto unlock;
2056 head = page_buffers(page);
2057 bh = head;
2058 do {
2059 if (pos >= start) {
2060 break;
2062 bh = bh->b_this_page;
2063 pos += blocksize;
2064 } while (bh != head);
2066 if (!buffer_uptodate(bh)) {
2067 /* note, this should never happen, prepare_write should
2068 ** be taking care of this for us. If the buffer isn't up to date,
2069 ** I've screwed up the code to find the buffer, or the code to
2070 ** call prepare_write
2072 reiserfs_warning(p_s_inode->i_sb,
2073 "clm-6000: error reading block %lu on dev %s",
2074 bh->b_blocknr,
2075 reiserfs_bdevname(p_s_inode->i_sb));
2076 error = -EIO;
2077 goto unlock;
2079 *bh_result = bh;
2080 *page_result = page;
2082 out:
2083 return error;
2085 unlock:
2086 unlock_page(page);
2087 page_cache_release(page);
2088 return error;
2092 ** vfs version of truncate file. Must NOT be called with
2093 ** a transaction already started.
2095 ** some code taken from block_truncate_page
2097 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2099 struct reiserfs_transaction_handle th;
2100 /* we want the offset for the first byte after the end of the file */
2101 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2102 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2103 unsigned length;
2104 struct page *page = NULL;
2105 int error;
2106 struct buffer_head *bh = NULL;
2107 int err2;
2109 reiserfs_write_lock(p_s_inode->i_sb);
2111 if (p_s_inode->i_size > 0) {
2112 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2113 // -ENOENT means we truncated past the end of the file,
2114 // and get_block_create_0 could not find a block to read in,
2115 // which is ok.
2116 if (error != -ENOENT)
2117 reiserfs_warning(p_s_inode->i_sb,
2118 "clm-6001: grab_tail_page failed %d",
2119 error);
2120 page = NULL;
2121 bh = NULL;
2125 /* so, if page != NULL, we have a buffer head for the offset at
2126 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2127 ** then we have an unformatted node. Otherwise, we have a direct item,
2128 ** and no zeroing is required on disk. We zero after the truncate,
2129 ** because the truncate might pack the item anyway
2130 ** (it will unmap bh if it packs).
2132 /* it is enough to reserve space in transaction for 2 balancings:
2133 one for "save" link adding and another for the first
2134 cut_from_item. 1 is for update_sd */
2135 error = journal_begin(&th, p_s_inode->i_sb,
2136 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2137 if (error)
2138 goto out;
2139 reiserfs_update_inode_transaction(p_s_inode);
2140 if (update_timestamps)
2141 /* we are doing real truncate: if the system crashes before the last
2142 transaction of truncating gets committed - on reboot the file
2143 either appears truncated properly or not truncated at all */
2144 add_save_link(&th, p_s_inode, 1);
2145 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2146 error =
2147 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2148 if (error)
2149 goto out;
2151 /* check reiserfs_do_truncate after ending the transaction */
2152 if (err2) {
2153 error = err2;
2154 goto out;
2157 if (update_timestamps) {
2158 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2159 if (error)
2160 goto out;
2163 if (page) {
2164 length = offset & (blocksize - 1);
2165 /* if we are not on a block boundary */
2166 if (length) {
2167 char *kaddr;
2169 length = blocksize - length;
2170 kaddr = kmap_atomic(page, KM_USER0);
2171 memset(kaddr + offset, 0, length);
2172 flush_dcache_page(page);
2173 kunmap_atomic(kaddr, KM_USER0);
2174 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2175 mark_buffer_dirty(bh);
2178 unlock_page(page);
2179 page_cache_release(page);
2182 reiserfs_write_unlock(p_s_inode->i_sb);
2183 return 0;
2184 out:
2185 if (page) {
2186 unlock_page(page);
2187 page_cache_release(page);
2189 reiserfs_write_unlock(p_s_inode->i_sb);
2190 return error;
2193 static int map_block_for_writepage(struct inode *inode,
2194 struct buffer_head *bh_result,
2195 unsigned long block)
2197 struct reiserfs_transaction_handle th;
2198 int fs_gen;
2199 struct item_head tmp_ih;
2200 struct item_head *ih;
2201 struct buffer_head *bh;
2202 __le32 *item;
2203 struct cpu_key key;
2204 INITIALIZE_PATH(path);
2205 int pos_in_item;
2206 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2207 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2208 int retval;
2209 int use_get_block = 0;
2210 int bytes_copied = 0;
2211 int copy_size;
2212 int trans_running = 0;
2214 /* catch places below that try to log something without starting a trans */
2215 th.t_trans_id = 0;
2217 if (!buffer_uptodate(bh_result)) {
2218 return -EIO;
2221 kmap(bh_result->b_page);
2222 start_over:
2223 reiserfs_write_lock(inode->i_sb);
2224 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2226 research:
2227 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2228 if (retval != POSITION_FOUND) {
2229 use_get_block = 1;
2230 goto out;
2233 bh = get_last_bh(&path);
2234 ih = get_ih(&path);
2235 item = get_item(&path);
2236 pos_in_item = path.pos_in_item;
2238 /* we've found an unformatted node */
2239 if (indirect_item_found(retval, ih)) {
2240 if (bytes_copied > 0) {
2241 reiserfs_warning(inode->i_sb,
2242 "clm-6002: bytes_copied %d",
2243 bytes_copied);
2245 if (!get_block_num(item, pos_in_item)) {
2246 /* crap, we are writing to a hole */
2247 use_get_block = 1;
2248 goto out;
2250 set_block_dev_mapped(bh_result,
2251 get_block_num(item, pos_in_item), inode);
2252 } else if (is_direct_le_ih(ih)) {
2253 char *p;
2254 p = page_address(bh_result->b_page);
2255 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2256 copy_size = ih_item_len(ih) - pos_in_item;
2258 fs_gen = get_generation(inode->i_sb);
2259 copy_item_head(&tmp_ih, ih);
2261 if (!trans_running) {
2262 /* vs-3050 is gone, no need to drop the path */
2263 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2264 if (retval)
2265 goto out;
2266 reiserfs_update_inode_transaction(inode);
2267 trans_running = 1;
2268 if (fs_changed(fs_gen, inode->i_sb)
2269 && item_moved(&tmp_ih, &path)) {
2270 reiserfs_restore_prepared_buffer(inode->i_sb,
2271 bh);
2272 goto research;
2276 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2278 if (fs_changed(fs_gen, inode->i_sb)
2279 && item_moved(&tmp_ih, &path)) {
2280 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2281 goto research;
2284 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2285 copy_size);
2287 journal_mark_dirty(&th, inode->i_sb, bh);
2288 bytes_copied += copy_size;
2289 set_block_dev_mapped(bh_result, 0, inode);
2291 /* are there still bytes left? */
2292 if (bytes_copied < bh_result->b_size &&
2293 (byte_offset + bytes_copied) < inode->i_size) {
2294 set_cpu_key_k_offset(&key,
2295 cpu_key_k_offset(&key) +
2296 copy_size);
2297 goto research;
2299 } else {
2300 reiserfs_warning(inode->i_sb,
2301 "clm-6003: bad item inode %lu, device %s",
2302 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2303 retval = -EIO;
2304 goto out;
2306 retval = 0;
2308 out:
2309 pathrelse(&path);
2310 if (trans_running) {
2311 int err = journal_end(&th, inode->i_sb, jbegin_count);
2312 if (err)
2313 retval = err;
2314 trans_running = 0;
2316 reiserfs_write_unlock(inode->i_sb);
2318 /* this is where we fill in holes in the file. */
2319 if (use_get_block) {
2320 retval = reiserfs_get_block(inode, block, bh_result,
2321 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM
2322 | GET_BLOCK_NO_DANGLE);
2323 if (!retval) {
2324 if (!buffer_mapped(bh_result)
2325 || bh_result->b_blocknr == 0) {
2326 /* get_block failed to find a mapped unformatted node. */
2327 use_get_block = 0;
2328 goto start_over;
2332 kunmap(bh_result->b_page);
2334 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2335 /* we've copied data from the page into the direct item, so the
2336 * buffer in the page is now clean, mark it to reflect that.
2338 lock_buffer(bh_result);
2339 clear_buffer_dirty(bh_result);
2340 unlock_buffer(bh_result);
2342 return retval;
2346 * mason@suse.com: updated in 2.5.54 to follow the same general io
2347 * start/recovery path as __block_write_full_page, along with special
2348 * code to handle reiserfs tails.
2350 static int reiserfs_write_full_page(struct page *page,
2351 struct writeback_control *wbc)
2353 struct inode *inode = page->mapping->host;
2354 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2355 int error = 0;
2356 unsigned long block;
2357 struct buffer_head *head, *bh;
2358 int partial = 0;
2359 int nr = 0;
2360 int checked = PageChecked(page);
2361 struct reiserfs_transaction_handle th;
2362 struct super_block *s = inode->i_sb;
2363 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2364 th.t_trans_id = 0;
2366 /* The page dirty bit is cleared before writepage is called, which
2367 * means we have to tell create_empty_buffers to make dirty buffers
2368 * The page really should be up to date at this point, so tossing
2369 * in the BH_Uptodate is just a sanity check.
2371 if (!page_has_buffers(page)) {
2372 create_empty_buffers(page, s->s_blocksize,
2373 (1 << BH_Dirty) | (1 << BH_Uptodate));
2375 head = page_buffers(page);
2377 /* last page in the file, zero out any contents past the
2378 ** last byte in the file
2380 if (page->index >= end_index) {
2381 char *kaddr;
2382 unsigned last_offset;
2384 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2385 /* no file contents in this page */
2386 if (page->index >= end_index + 1 || !last_offset) {
2387 unlock_page(page);
2388 return 0;
2390 kaddr = kmap_atomic(page, KM_USER0);
2391 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2392 flush_dcache_page(page);
2393 kunmap_atomic(kaddr, KM_USER0);
2395 bh = head;
2396 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2397 /* first map all the buffers, logging any direct items we find */
2398 do {
2399 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) ||
2400 (buffer_mapped(bh)
2401 && bh->b_blocknr ==
2402 0))) {
2403 /* not mapped yet, or it points to a direct item, search
2404 * the btree for the mapping info, and log any direct
2405 * items found
2407 if ((error = map_block_for_writepage(inode, bh, block))) {
2408 goto fail;
2411 bh = bh->b_this_page;
2412 block++;
2413 } while (bh != head);
2416 * we start the transaction after map_block_for_writepage,
2417 * because it can create holes in the file (an unbounded operation).
2418 * starting it here, we can make a reliable estimate for how many
2419 * blocks we're going to log
2421 if (checked) {
2422 ClearPageChecked(page);
2423 reiserfs_write_lock(s);
2424 error = journal_begin(&th, s, bh_per_page + 1);
2425 if (error) {
2426 reiserfs_write_unlock(s);
2427 goto fail;
2429 reiserfs_update_inode_transaction(inode);
2431 /* now go through and lock any dirty buffers on the page */
2432 do {
2433 get_bh(bh);
2434 if (!buffer_mapped(bh))
2435 continue;
2436 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2437 continue;
2439 if (checked) {
2440 reiserfs_prepare_for_journal(s, bh, 1);
2441 journal_mark_dirty(&th, s, bh);
2442 continue;
2444 /* from this point on, we know the buffer is mapped to a
2445 * real block and not a direct item
2447 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2448 lock_buffer(bh);
2449 } else {
2450 if (test_set_buffer_locked(bh)) {
2451 redirty_page_for_writepage(wbc, page);
2452 continue;
2455 if (test_clear_buffer_dirty(bh)) {
2456 mark_buffer_async_write(bh);
2457 } else {
2458 unlock_buffer(bh);
2460 } while ((bh = bh->b_this_page) != head);
2462 if (checked) {
2463 error = journal_end(&th, s, bh_per_page + 1);
2464 reiserfs_write_unlock(s);
2465 if (error)
2466 goto fail;
2468 BUG_ON(PageWriteback(page));
2469 set_page_writeback(page);
2470 unlock_page(page);
2473 * since any buffer might be the only dirty buffer on the page,
2474 * the first submit_bh can bring the page out of writeback.
2475 * be careful with the buffers.
2477 do {
2478 struct buffer_head *next = bh->b_this_page;
2479 if (buffer_async_write(bh)) {
2480 submit_bh(WRITE, bh);
2481 nr++;
2483 put_bh(bh);
2484 bh = next;
2485 } while (bh != head);
2487 error = 0;
2488 done:
2489 if (nr == 0) {
2491 * if this page only had a direct item, it is very possible for
2492 * no io to be required without there being an error. Or,
2493 * someone else could have locked them and sent them down the
2494 * pipe without locking the page
2496 bh = head;
2497 do {
2498 if (!buffer_uptodate(bh)) {
2499 partial = 1;
2500 break;
2502 bh = bh->b_this_page;
2503 } while (bh != head);
2504 if (!partial)
2505 SetPageUptodate(page);
2506 end_page_writeback(page);
2508 return error;
2510 fail:
2511 /* catches various errors, we need to make sure any valid dirty blocks
2512 * get to the media. The page is currently locked and not marked for
2513 * writeback
2515 ClearPageUptodate(page);
2516 bh = head;
2517 do {
2518 get_bh(bh);
2519 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2520 lock_buffer(bh);
2521 mark_buffer_async_write(bh);
2522 } else {
2524 * clear any dirty bits that might have come from getting
2525 * attached to a dirty page
2527 clear_buffer_dirty(bh);
2529 bh = bh->b_this_page;
2530 } while (bh != head);
2531 SetPageError(page);
2532 BUG_ON(PageWriteback(page));
2533 set_page_writeback(page);
2534 unlock_page(page);
2535 do {
2536 struct buffer_head *next = bh->b_this_page;
2537 if (buffer_async_write(bh)) {
2538 clear_buffer_dirty(bh);
2539 submit_bh(WRITE, bh);
2540 nr++;
2542 put_bh(bh);
2543 bh = next;
2544 } while (bh != head);
2545 goto done;
2548 static int reiserfs_readpage(struct file *f, struct page *page)
2550 return block_read_full_page(page, reiserfs_get_block);
2553 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2555 struct inode *inode = page->mapping->host;
2556 reiserfs_wait_on_write_block(inode->i_sb);
2557 return reiserfs_write_full_page(page, wbc);
2560 static int reiserfs_prepare_write(struct file *f, struct page *page,
2561 unsigned from, unsigned to)
2563 struct inode *inode = page->mapping->host;
2564 int ret;
2565 int old_ref = 0;
2567 reiserfs_wait_on_write_block(inode->i_sb);
2568 fix_tail_page_for_writing(page);
2569 if (reiserfs_transaction_running(inode->i_sb)) {
2570 struct reiserfs_transaction_handle *th;
2571 th = (struct reiserfs_transaction_handle *)current->
2572 journal_info;
2573 BUG_ON(!th->t_refcount);
2574 BUG_ON(!th->t_trans_id);
2575 old_ref = th->t_refcount;
2576 th->t_refcount++;
2579 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2580 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2581 struct reiserfs_transaction_handle *th = current->journal_info;
2582 /* this gets a little ugly. If reiserfs_get_block returned an
2583 * error and left a transacstion running, we've got to close it,
2584 * and we've got to free handle if it was a persistent transaction.
2586 * But, if we had nested into an existing transaction, we need
2587 * to just drop the ref count on the handle.
2589 * If old_ref == 0, the transaction is from reiserfs_get_block,
2590 * and it was a persistent trans. Otherwise, it was nested above.
2592 if (th->t_refcount > old_ref) {
2593 if (old_ref)
2594 th->t_refcount--;
2595 else {
2596 int err;
2597 reiserfs_write_lock(inode->i_sb);
2598 err = reiserfs_end_persistent_transaction(th);
2599 reiserfs_write_unlock(inode->i_sb);
2600 if (err)
2601 ret = err;
2605 return ret;
2609 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2611 return generic_block_bmap(as, block, reiserfs_bmap);
2614 static int reiserfs_commit_write(struct file *f, struct page *page,
2615 unsigned from, unsigned to)
2617 struct inode *inode = page->mapping->host;
2618 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2619 int ret = 0;
2620 int update_sd = 0;
2621 struct reiserfs_transaction_handle *th = NULL;
2623 reiserfs_wait_on_write_block(inode->i_sb);
2624 if (reiserfs_transaction_running(inode->i_sb)) {
2625 th = current->journal_info;
2627 reiserfs_commit_page(inode, page, from, to);
2629 /* generic_commit_write does this for us, but does not update the
2630 ** transaction tracking stuff when the size changes. So, we have
2631 ** to do the i_size updates here.
2633 if (pos > inode->i_size) {
2634 struct reiserfs_transaction_handle myth;
2635 reiserfs_write_lock(inode->i_sb);
2636 /* If the file have grown beyond the border where it
2637 can have a tail, unmark it as needing a tail
2638 packing */
2639 if ((have_large_tails(inode->i_sb)
2640 && inode->i_size > i_block_size(inode) * 4)
2641 || (have_small_tails(inode->i_sb)
2642 && inode->i_size > i_block_size(inode)))
2643 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2645 ret = journal_begin(&myth, inode->i_sb, 1);
2646 if (ret) {
2647 reiserfs_write_unlock(inode->i_sb);
2648 goto journal_error;
2650 reiserfs_update_inode_transaction(inode);
2651 inode->i_size = pos;
2653 * this will just nest into our transaction. It's important
2654 * to use mark_inode_dirty so the inode gets pushed around on the
2655 * dirty lists, and so that O_SYNC works as expected
2657 mark_inode_dirty(inode);
2658 reiserfs_update_sd(&myth, inode);
2659 update_sd = 1;
2660 ret = journal_end(&myth, inode->i_sb, 1);
2661 reiserfs_write_unlock(inode->i_sb);
2662 if (ret)
2663 goto journal_error;
2665 if (th) {
2666 reiserfs_write_lock(inode->i_sb);
2667 if (!update_sd)
2668 mark_inode_dirty(inode);
2669 ret = reiserfs_end_persistent_transaction(th);
2670 reiserfs_write_unlock(inode->i_sb);
2671 if (ret)
2672 goto out;
2675 out:
2676 return ret;
2678 journal_error:
2679 if (th) {
2680 reiserfs_write_lock(inode->i_sb);
2681 if (!update_sd)
2682 reiserfs_update_sd(th, inode);
2683 ret = reiserfs_end_persistent_transaction(th);
2684 reiserfs_write_unlock(inode->i_sb);
2687 return ret;
2690 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2692 if (reiserfs_attrs(inode->i_sb)) {
2693 if (sd_attrs & REISERFS_SYNC_FL)
2694 inode->i_flags |= S_SYNC;
2695 else
2696 inode->i_flags &= ~S_SYNC;
2697 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2698 inode->i_flags |= S_IMMUTABLE;
2699 else
2700 inode->i_flags &= ~S_IMMUTABLE;
2701 if (sd_attrs & REISERFS_APPEND_FL)
2702 inode->i_flags |= S_APPEND;
2703 else
2704 inode->i_flags &= ~S_APPEND;
2705 if (sd_attrs & REISERFS_NOATIME_FL)
2706 inode->i_flags |= S_NOATIME;
2707 else
2708 inode->i_flags &= ~S_NOATIME;
2709 if (sd_attrs & REISERFS_NOTAIL_FL)
2710 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2711 else
2712 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2716 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2718 if (reiserfs_attrs(inode->i_sb)) {
2719 if (inode->i_flags & S_IMMUTABLE)
2720 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2721 else
2722 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2723 if (inode->i_flags & S_SYNC)
2724 *sd_attrs |= REISERFS_SYNC_FL;
2725 else
2726 *sd_attrs &= ~REISERFS_SYNC_FL;
2727 if (inode->i_flags & S_NOATIME)
2728 *sd_attrs |= REISERFS_NOATIME_FL;
2729 else
2730 *sd_attrs &= ~REISERFS_NOATIME_FL;
2731 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2732 *sd_attrs |= REISERFS_NOTAIL_FL;
2733 else
2734 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2738 /* decide if this buffer needs to stay around for data logging or ordered
2739 ** write purposes
2741 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2743 int ret = 1;
2744 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2746 spin_lock(&j->j_dirty_buffers_lock);
2747 if (!buffer_mapped(bh)) {
2748 goto free_jh;
2750 /* the page is locked, and the only places that log a data buffer
2751 * also lock the page.
2753 if (reiserfs_file_data_log(inode)) {
2755 * very conservative, leave the buffer pinned if
2756 * anyone might need it.
2758 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2759 ret = 0;
2761 } else if (buffer_dirty(bh) || buffer_locked(bh)) {
2762 struct reiserfs_journal_list *jl;
2763 struct reiserfs_jh *jh = bh->b_private;
2765 /* why is this safe?
2766 * reiserfs_setattr updates i_size in the on disk
2767 * stat data before allowing vmtruncate to be called.
2769 * If buffer was put onto the ordered list for this
2770 * transaction, we know for sure either this transaction
2771 * or an older one already has updated i_size on disk,
2772 * and this ordered data won't be referenced in the file
2773 * if we crash.
2775 * if the buffer was put onto the ordered list for an older
2776 * transaction, we need to leave it around
2778 if (jh && (jl = jh->jl)
2779 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2780 ret = 0;
2782 free_jh:
2783 if (ret && bh->b_private) {
2784 reiserfs_free_jh(bh);
2786 spin_unlock(&j->j_dirty_buffers_lock);
2787 return ret;
2790 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2791 static int reiserfs_invalidatepage(struct page *page, unsigned long offset)
2793 struct buffer_head *head, *bh, *next;
2794 struct inode *inode = page->mapping->host;
2795 unsigned int curr_off = 0;
2796 int ret = 1;
2798 BUG_ON(!PageLocked(page));
2800 if (offset == 0)
2801 ClearPageChecked(page);
2803 if (!page_has_buffers(page))
2804 goto out;
2806 head = page_buffers(page);
2807 bh = head;
2808 do {
2809 unsigned int next_off = curr_off + bh->b_size;
2810 next = bh->b_this_page;
2813 * is this block fully invalidated?
2815 if (offset <= curr_off) {
2816 if (invalidatepage_can_drop(inode, bh))
2817 reiserfs_unmap_buffer(bh);
2818 else
2819 ret = 0;
2821 curr_off = next_off;
2822 bh = next;
2823 } while (bh != head);
2826 * We release buffers only if the entire page is being invalidated.
2827 * The get_block cached value has been unconditionally invalidated,
2828 * so real IO is not possible anymore.
2830 if (!offset && ret)
2831 ret = try_to_release_page(page, 0);
2832 out:
2833 return ret;
2836 static int reiserfs_set_page_dirty(struct page *page)
2838 struct inode *inode = page->mapping->host;
2839 if (reiserfs_file_data_log(inode)) {
2840 SetPageChecked(page);
2841 return __set_page_dirty_nobuffers(page);
2843 return __set_page_dirty_buffers(page);
2847 * Returns 1 if the page's buffers were dropped. The page is locked.
2849 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2850 * in the buffers at page_buffers(page).
2852 * even in -o notail mode, we can't be sure an old mount without -o notail
2853 * didn't create files with tails.
2855 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2857 struct inode *inode = page->mapping->host;
2858 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2859 struct buffer_head *head;
2860 struct buffer_head *bh;
2861 int ret = 1;
2863 WARN_ON(PageChecked(page));
2864 spin_lock(&j->j_dirty_buffers_lock);
2865 head = page_buffers(page);
2866 bh = head;
2867 do {
2868 if (bh->b_private) {
2869 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2870 reiserfs_free_jh(bh);
2871 } else {
2872 ret = 0;
2873 break;
2876 bh = bh->b_this_page;
2877 } while (bh != head);
2878 if (ret)
2879 ret = try_to_free_buffers(page);
2880 spin_unlock(&j->j_dirty_buffers_lock);
2881 return ret;
2884 /* We thank Mingming Cao for helping us understand in great detail what
2885 to do in this section of the code. */
2886 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2887 const struct iovec *iov, loff_t offset,
2888 unsigned long nr_segs)
2890 struct file *file = iocb->ki_filp;
2891 struct inode *inode = file->f_mapping->host;
2893 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2894 offset, nr_segs,
2895 reiserfs_get_blocks_direct_io, NULL);
2898 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2900 struct inode *inode = dentry->d_inode;
2901 int error;
2902 unsigned int ia_valid = attr->ia_valid;
2903 reiserfs_write_lock(inode->i_sb);
2904 if (attr->ia_valid & ATTR_SIZE) {
2905 /* version 2 items will be caught by the s_maxbytes check
2906 ** done for us in vmtruncate
2908 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2909 attr->ia_size > MAX_NON_LFS) {
2910 error = -EFBIG;
2911 goto out;
2913 /* fill in hole pointers in the expanding truncate case. */
2914 if (attr->ia_size > inode->i_size) {
2915 error = generic_cont_expand(inode, attr->ia_size);
2916 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2917 int err;
2918 struct reiserfs_transaction_handle th;
2919 /* we're changing at most 2 bitmaps, inode + super */
2920 err = journal_begin(&th, inode->i_sb, 4);
2921 if (!err) {
2922 reiserfs_discard_prealloc(&th, inode);
2923 err = journal_end(&th, inode->i_sb, 4);
2925 if (err)
2926 error = err;
2928 if (error)
2929 goto out;
2933 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2934 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2935 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2936 /* stat data of format v3.5 has 16 bit uid and gid */
2937 error = -EINVAL;
2938 goto out;
2941 error = inode_change_ok(inode, attr);
2942 if (!error) {
2943 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2944 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2945 error = reiserfs_chown_xattrs(inode, attr);
2947 if (!error) {
2948 struct reiserfs_transaction_handle th;
2949 int jbegin_count =
2951 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2952 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2955 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2956 error =
2957 journal_begin(&th, inode->i_sb,
2958 jbegin_count);
2959 if (error)
2960 goto out;
2961 error =
2962 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2963 if (error) {
2964 journal_end(&th, inode->i_sb,
2965 jbegin_count);
2966 goto out;
2968 /* Update corresponding info in inode so that everything is in
2969 * one transaction */
2970 if (attr->ia_valid & ATTR_UID)
2971 inode->i_uid = attr->ia_uid;
2972 if (attr->ia_valid & ATTR_GID)
2973 inode->i_gid = attr->ia_gid;
2974 mark_inode_dirty(inode);
2975 error =
2976 journal_end(&th, inode->i_sb, jbegin_count);
2979 if (!error)
2980 error = inode_setattr(inode, attr);
2983 if (!error && reiserfs_posixacl(inode->i_sb)) {
2984 if (attr->ia_valid & ATTR_MODE)
2985 error = reiserfs_acl_chmod(inode);
2988 out:
2989 reiserfs_write_unlock(inode->i_sb);
2990 return error;
2993 struct address_space_operations reiserfs_address_space_operations = {
2994 .writepage = reiserfs_writepage,
2995 .readpage = reiserfs_readpage,
2996 .readpages = reiserfs_readpages,
2997 .releasepage = reiserfs_releasepage,
2998 .invalidatepage = reiserfs_invalidatepage,
2999 .sync_page = block_sync_page,
3000 .prepare_write = reiserfs_prepare_write,
3001 .commit_write = reiserfs_commit_write,
3002 .bmap = reiserfs_aop_bmap,
3003 .direct_IO = reiserfs_direct_IO,
3004 .set_page_dirty = reiserfs_set_page_dirty,