[PATCH] UFS: inode->i_sem is not released in error path
[linux-2.6/verdex.git] / kernel / sys.c
blob218937e837dcb08b3c7c473e46c1ae5153beb4dd
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
58 #endif
61 * this is where the system-wide overflow UID and GID are defined, for
62 * architectures that now have 32-bit UID/GID but didn't in the past
65 int overflowuid = DEFAULT_OVERFLOWUID;
66 int overflowgid = DEFAULT_OVERFLOWGID;
68 #ifdef CONFIG_UID16
69 EXPORT_SYMBOL(overflowuid);
70 EXPORT_SYMBOL(overflowgid);
71 #endif
74 * the same as above, but for filesystems which can only store a 16-bit
75 * UID and GID. as such, this is needed on all architectures
78 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
79 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
81 EXPORT_SYMBOL(fs_overflowuid);
82 EXPORT_SYMBOL(fs_overflowgid);
85 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
88 int C_A_D = 1;
89 int cad_pid = 1;
92 * Notifier list for kernel code which wants to be called
93 * at shutdown. This is used to stop any idling DMA operations
94 * and the like.
97 static struct notifier_block *reboot_notifier_list;
98 static DEFINE_RWLOCK(notifier_lock);
101 * notifier_chain_register - Add notifier to a notifier chain
102 * @list: Pointer to root list pointer
103 * @n: New entry in notifier chain
105 * Adds a notifier to a notifier chain.
107 * Currently always returns zero.
110 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
112 write_lock(&notifier_lock);
113 while(*list)
115 if(n->priority > (*list)->priority)
116 break;
117 list= &((*list)->next);
119 n->next = *list;
120 *list=n;
121 write_unlock(&notifier_lock);
122 return 0;
125 EXPORT_SYMBOL(notifier_chain_register);
128 * notifier_chain_unregister - Remove notifier from a notifier chain
129 * @nl: Pointer to root list pointer
130 * @n: New entry in notifier chain
132 * Removes a notifier from a notifier chain.
134 * Returns zero on success, or %-ENOENT on failure.
137 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
139 write_lock(&notifier_lock);
140 while((*nl)!=NULL)
142 if((*nl)==n)
144 *nl=n->next;
145 write_unlock(&notifier_lock);
146 return 0;
148 nl=&((*nl)->next);
150 write_unlock(&notifier_lock);
151 return -ENOENT;
154 EXPORT_SYMBOL(notifier_chain_unregister);
157 * notifier_call_chain - Call functions in a notifier chain
158 * @n: Pointer to root pointer of notifier chain
159 * @val: Value passed unmodified to notifier function
160 * @v: Pointer passed unmodified to notifier function
162 * Calls each function in a notifier chain in turn.
164 * If the return value of the notifier can be and'd
165 * with %NOTIFY_STOP_MASK, then notifier_call_chain
166 * will return immediately, with the return value of
167 * the notifier function which halted execution.
168 * Otherwise, the return value is the return value
169 * of the last notifier function called.
172 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
174 int ret=NOTIFY_DONE;
175 struct notifier_block *nb = *n;
177 while(nb)
179 ret=nb->notifier_call(nb,val,v);
180 if(ret&NOTIFY_STOP_MASK)
182 return ret;
184 nb=nb->next;
186 return ret;
189 EXPORT_SYMBOL(notifier_call_chain);
192 * register_reboot_notifier - Register function to be called at reboot time
193 * @nb: Info about notifier function to be called
195 * Registers a function with the list of functions
196 * to be called at reboot time.
198 * Currently always returns zero, as notifier_chain_register
199 * always returns zero.
202 int register_reboot_notifier(struct notifier_block * nb)
204 return notifier_chain_register(&reboot_notifier_list, nb);
207 EXPORT_SYMBOL(register_reboot_notifier);
210 * unregister_reboot_notifier - Unregister previously registered reboot notifier
211 * @nb: Hook to be unregistered
213 * Unregisters a previously registered reboot
214 * notifier function.
216 * Returns zero on success, or %-ENOENT on failure.
219 int unregister_reboot_notifier(struct notifier_block * nb)
221 return notifier_chain_unregister(&reboot_notifier_list, nb);
224 EXPORT_SYMBOL(unregister_reboot_notifier);
226 static int set_one_prio(struct task_struct *p, int niceval, int error)
228 int no_nice;
230 if (p->uid != current->euid &&
231 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
232 error = -EPERM;
233 goto out;
235 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
236 error = -EACCES;
237 goto out;
239 no_nice = security_task_setnice(p, niceval);
240 if (no_nice) {
241 error = no_nice;
242 goto out;
244 if (error == -ESRCH)
245 error = 0;
246 set_user_nice(p, niceval);
247 out:
248 return error;
251 asmlinkage long sys_setpriority(int which, int who, int niceval)
253 struct task_struct *g, *p;
254 struct user_struct *user;
255 int error = -EINVAL;
257 if (which > 2 || which < 0)
258 goto out;
260 /* normalize: avoid signed division (rounding problems) */
261 error = -ESRCH;
262 if (niceval < -20)
263 niceval = -20;
264 if (niceval > 19)
265 niceval = 19;
267 read_lock(&tasklist_lock);
268 switch (which) {
269 case PRIO_PROCESS:
270 if (!who)
271 who = current->pid;
272 p = find_task_by_pid(who);
273 if (p)
274 error = set_one_prio(p, niceval, error);
275 break;
276 case PRIO_PGRP:
277 if (!who)
278 who = process_group(current);
279 do_each_task_pid(who, PIDTYPE_PGID, p) {
280 error = set_one_prio(p, niceval, error);
281 } while_each_task_pid(who, PIDTYPE_PGID, p);
282 break;
283 case PRIO_USER:
284 user = current->user;
285 if (!who)
286 who = current->uid;
287 else
288 if ((who != current->uid) && !(user = find_user(who)))
289 goto out_unlock; /* No processes for this user */
291 do_each_thread(g, p)
292 if (p->uid == who)
293 error = set_one_prio(p, niceval, error);
294 while_each_thread(g, p);
295 if (who != current->uid)
296 free_uid(user); /* For find_user() */
297 break;
299 out_unlock:
300 read_unlock(&tasklist_lock);
301 out:
302 return error;
306 * Ugh. To avoid negative return values, "getpriority()" will
307 * not return the normal nice-value, but a negated value that
308 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
309 * to stay compatible.
311 asmlinkage long sys_getpriority(int which, int who)
313 struct task_struct *g, *p;
314 struct user_struct *user;
315 long niceval, retval = -ESRCH;
317 if (which > 2 || which < 0)
318 return -EINVAL;
320 read_lock(&tasklist_lock);
321 switch (which) {
322 case PRIO_PROCESS:
323 if (!who)
324 who = current->pid;
325 p = find_task_by_pid(who);
326 if (p) {
327 niceval = 20 - task_nice(p);
328 if (niceval > retval)
329 retval = niceval;
331 break;
332 case PRIO_PGRP:
333 if (!who)
334 who = process_group(current);
335 do_each_task_pid(who, PIDTYPE_PGID, p) {
336 niceval = 20 - task_nice(p);
337 if (niceval > retval)
338 retval = niceval;
339 } while_each_task_pid(who, PIDTYPE_PGID, p);
340 break;
341 case PRIO_USER:
342 user = current->user;
343 if (!who)
344 who = current->uid;
345 else
346 if ((who != current->uid) && !(user = find_user(who)))
347 goto out_unlock; /* No processes for this user */
349 do_each_thread(g, p)
350 if (p->uid == who) {
351 niceval = 20 - task_nice(p);
352 if (niceval > retval)
353 retval = niceval;
355 while_each_thread(g, p);
356 if (who != current->uid)
357 free_uid(user); /* for find_user() */
358 break;
360 out_unlock:
361 read_unlock(&tasklist_lock);
363 return retval;
367 * emergency_restart - reboot the system
369 * Without shutting down any hardware or taking any locks
370 * reboot the system. This is called when we know we are in
371 * trouble so this is our best effort to reboot. This is
372 * safe to call in interrupt context.
374 void emergency_restart(void)
376 machine_emergency_restart();
378 EXPORT_SYMBOL_GPL(emergency_restart);
380 void kernel_restart_prepare(char *cmd)
382 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
383 system_state = SYSTEM_RESTART;
384 device_shutdown();
388 * kernel_restart - reboot the system
389 * @cmd: pointer to buffer containing command to execute for restart
390 * or %NULL
392 * Shutdown everything and perform a clean reboot.
393 * This is not safe to call in interrupt context.
395 void kernel_restart(char *cmd)
397 kernel_restart_prepare(cmd);
398 if (!cmd) {
399 printk(KERN_EMERG "Restarting system.\n");
400 } else {
401 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
403 printk(".\n");
404 machine_restart(cmd);
406 EXPORT_SYMBOL_GPL(kernel_restart);
409 * kernel_kexec - reboot the system
411 * Move into place and start executing a preloaded standalone
412 * executable. If nothing was preloaded return an error.
414 void kernel_kexec(void)
416 #ifdef CONFIG_KEXEC
417 struct kimage *image;
418 image = xchg(&kexec_image, 0);
419 if (!image) {
420 return;
422 kernel_restart_prepare(NULL);
423 printk(KERN_EMERG "Starting new kernel\n");
424 machine_shutdown();
425 machine_kexec(image);
426 #endif
428 EXPORT_SYMBOL_GPL(kernel_kexec);
431 * kernel_halt - halt the system
433 * Shutdown everything and perform a clean system halt.
435 void kernel_halt_prepare(void)
437 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
438 system_state = SYSTEM_HALT;
439 device_shutdown();
441 void kernel_halt(void)
443 kernel_halt_prepare();
444 printk(KERN_EMERG "System halted.\n");
445 machine_halt();
447 EXPORT_SYMBOL_GPL(kernel_halt);
450 * kernel_power_off - power_off the system
452 * Shutdown everything and perform a clean system power_off.
454 void kernel_power_off_prepare(void)
456 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
457 system_state = SYSTEM_POWER_OFF;
458 device_shutdown();
460 void kernel_power_off(void)
462 kernel_power_off_prepare();
463 printk(KERN_EMERG "Power down.\n");
464 machine_power_off();
466 EXPORT_SYMBOL_GPL(kernel_power_off);
469 * Reboot system call: for obvious reasons only root may call it,
470 * and even root needs to set up some magic numbers in the registers
471 * so that some mistake won't make this reboot the whole machine.
472 * You can also set the meaning of the ctrl-alt-del-key here.
474 * reboot doesn't sync: do that yourself before calling this.
476 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
478 char buffer[256];
480 /* We only trust the superuser with rebooting the system. */
481 if (!capable(CAP_SYS_BOOT))
482 return -EPERM;
484 /* For safety, we require "magic" arguments. */
485 if (magic1 != LINUX_REBOOT_MAGIC1 ||
486 (magic2 != LINUX_REBOOT_MAGIC2 &&
487 magic2 != LINUX_REBOOT_MAGIC2A &&
488 magic2 != LINUX_REBOOT_MAGIC2B &&
489 magic2 != LINUX_REBOOT_MAGIC2C))
490 return -EINVAL;
492 /* Instead of trying to make the power_off code look like
493 * halt when pm_power_off is not set do it the easy way.
495 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
496 cmd = LINUX_REBOOT_CMD_HALT;
498 lock_kernel();
499 switch (cmd) {
500 case LINUX_REBOOT_CMD_RESTART:
501 kernel_restart(NULL);
502 break;
504 case LINUX_REBOOT_CMD_CAD_ON:
505 C_A_D = 1;
506 break;
508 case LINUX_REBOOT_CMD_CAD_OFF:
509 C_A_D = 0;
510 break;
512 case LINUX_REBOOT_CMD_HALT:
513 kernel_halt();
514 unlock_kernel();
515 do_exit(0);
516 break;
518 case LINUX_REBOOT_CMD_POWER_OFF:
519 kernel_power_off();
520 unlock_kernel();
521 do_exit(0);
522 break;
524 case LINUX_REBOOT_CMD_RESTART2:
525 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
526 unlock_kernel();
527 return -EFAULT;
529 buffer[sizeof(buffer) - 1] = '\0';
531 kernel_restart(buffer);
532 break;
534 case LINUX_REBOOT_CMD_KEXEC:
535 kernel_kexec();
536 unlock_kernel();
537 return -EINVAL;
539 #ifdef CONFIG_SOFTWARE_SUSPEND
540 case LINUX_REBOOT_CMD_SW_SUSPEND:
542 int ret = software_suspend();
543 unlock_kernel();
544 return ret;
546 #endif
548 default:
549 unlock_kernel();
550 return -EINVAL;
552 unlock_kernel();
553 return 0;
556 static void deferred_cad(void *dummy)
558 kernel_restart(NULL);
562 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
563 * As it's called within an interrupt, it may NOT sync: the only choice
564 * is whether to reboot at once, or just ignore the ctrl-alt-del.
566 void ctrl_alt_del(void)
568 static DECLARE_WORK(cad_work, deferred_cad, NULL);
570 if (C_A_D)
571 schedule_work(&cad_work);
572 else
573 kill_proc(cad_pid, SIGINT, 1);
578 * Unprivileged users may change the real gid to the effective gid
579 * or vice versa. (BSD-style)
581 * If you set the real gid at all, or set the effective gid to a value not
582 * equal to the real gid, then the saved gid is set to the new effective gid.
584 * This makes it possible for a setgid program to completely drop its
585 * privileges, which is often a useful assertion to make when you are doing
586 * a security audit over a program.
588 * The general idea is that a program which uses just setregid() will be
589 * 100% compatible with BSD. A program which uses just setgid() will be
590 * 100% compatible with POSIX with saved IDs.
592 * SMP: There are not races, the GIDs are checked only by filesystem
593 * operations (as far as semantic preservation is concerned).
595 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
597 int old_rgid = current->gid;
598 int old_egid = current->egid;
599 int new_rgid = old_rgid;
600 int new_egid = old_egid;
601 int retval;
603 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
604 if (retval)
605 return retval;
607 if (rgid != (gid_t) -1) {
608 if ((old_rgid == rgid) ||
609 (current->egid==rgid) ||
610 capable(CAP_SETGID))
611 new_rgid = rgid;
612 else
613 return -EPERM;
615 if (egid != (gid_t) -1) {
616 if ((old_rgid == egid) ||
617 (current->egid == egid) ||
618 (current->sgid == egid) ||
619 capable(CAP_SETGID))
620 new_egid = egid;
621 else {
622 return -EPERM;
625 if (new_egid != old_egid)
627 current->mm->dumpable = suid_dumpable;
628 smp_wmb();
630 if (rgid != (gid_t) -1 ||
631 (egid != (gid_t) -1 && egid != old_rgid))
632 current->sgid = new_egid;
633 current->fsgid = new_egid;
634 current->egid = new_egid;
635 current->gid = new_rgid;
636 key_fsgid_changed(current);
637 proc_id_connector(current, PROC_EVENT_GID);
638 return 0;
642 * setgid() is implemented like SysV w/ SAVED_IDS
644 * SMP: Same implicit races as above.
646 asmlinkage long sys_setgid(gid_t gid)
648 int old_egid = current->egid;
649 int retval;
651 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
652 if (retval)
653 return retval;
655 if (capable(CAP_SETGID))
657 if(old_egid != gid)
659 current->mm->dumpable = suid_dumpable;
660 smp_wmb();
662 current->gid = current->egid = current->sgid = current->fsgid = gid;
664 else if ((gid == current->gid) || (gid == current->sgid))
666 if(old_egid != gid)
668 current->mm->dumpable = suid_dumpable;
669 smp_wmb();
671 current->egid = current->fsgid = gid;
673 else
674 return -EPERM;
676 key_fsgid_changed(current);
677 proc_id_connector(current, PROC_EVENT_GID);
678 return 0;
681 static int set_user(uid_t new_ruid, int dumpclear)
683 struct user_struct *new_user;
685 new_user = alloc_uid(new_ruid);
686 if (!new_user)
687 return -EAGAIN;
689 if (atomic_read(&new_user->processes) >=
690 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
691 new_user != &root_user) {
692 free_uid(new_user);
693 return -EAGAIN;
696 switch_uid(new_user);
698 if(dumpclear)
700 current->mm->dumpable = suid_dumpable;
701 smp_wmb();
703 current->uid = new_ruid;
704 return 0;
708 * Unprivileged users may change the real uid to the effective uid
709 * or vice versa. (BSD-style)
711 * If you set the real uid at all, or set the effective uid to a value not
712 * equal to the real uid, then the saved uid is set to the new effective uid.
714 * This makes it possible for a setuid program to completely drop its
715 * privileges, which is often a useful assertion to make when you are doing
716 * a security audit over a program.
718 * The general idea is that a program which uses just setreuid() will be
719 * 100% compatible with BSD. A program which uses just setuid() will be
720 * 100% compatible with POSIX with saved IDs.
722 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
724 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
725 int retval;
727 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
728 if (retval)
729 return retval;
731 new_ruid = old_ruid = current->uid;
732 new_euid = old_euid = current->euid;
733 old_suid = current->suid;
735 if (ruid != (uid_t) -1) {
736 new_ruid = ruid;
737 if ((old_ruid != ruid) &&
738 (current->euid != ruid) &&
739 !capable(CAP_SETUID))
740 return -EPERM;
743 if (euid != (uid_t) -1) {
744 new_euid = euid;
745 if ((old_ruid != euid) &&
746 (current->euid != euid) &&
747 (current->suid != euid) &&
748 !capable(CAP_SETUID))
749 return -EPERM;
752 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
753 return -EAGAIN;
755 if (new_euid != old_euid)
757 current->mm->dumpable = suid_dumpable;
758 smp_wmb();
760 current->fsuid = current->euid = new_euid;
761 if (ruid != (uid_t) -1 ||
762 (euid != (uid_t) -1 && euid != old_ruid))
763 current->suid = current->euid;
764 current->fsuid = current->euid;
766 key_fsuid_changed(current);
767 proc_id_connector(current, PROC_EVENT_UID);
769 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
775 * setuid() is implemented like SysV with SAVED_IDS
777 * Note that SAVED_ID's is deficient in that a setuid root program
778 * like sendmail, for example, cannot set its uid to be a normal
779 * user and then switch back, because if you're root, setuid() sets
780 * the saved uid too. If you don't like this, blame the bright people
781 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
782 * will allow a root program to temporarily drop privileges and be able to
783 * regain them by swapping the real and effective uid.
785 asmlinkage long sys_setuid(uid_t uid)
787 int old_euid = current->euid;
788 int old_ruid, old_suid, new_ruid, new_suid;
789 int retval;
791 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
792 if (retval)
793 return retval;
795 old_ruid = new_ruid = current->uid;
796 old_suid = current->suid;
797 new_suid = old_suid;
799 if (capable(CAP_SETUID)) {
800 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
801 return -EAGAIN;
802 new_suid = uid;
803 } else if ((uid != current->uid) && (uid != new_suid))
804 return -EPERM;
806 if (old_euid != uid)
808 current->mm->dumpable = suid_dumpable;
809 smp_wmb();
811 current->fsuid = current->euid = uid;
812 current->suid = new_suid;
814 key_fsuid_changed(current);
815 proc_id_connector(current, PROC_EVENT_UID);
817 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
822 * This function implements a generic ability to update ruid, euid,
823 * and suid. This allows you to implement the 4.4 compatible seteuid().
825 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
827 int old_ruid = current->uid;
828 int old_euid = current->euid;
829 int old_suid = current->suid;
830 int retval;
832 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
833 if (retval)
834 return retval;
836 if (!capable(CAP_SETUID)) {
837 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
838 (ruid != current->euid) && (ruid != current->suid))
839 return -EPERM;
840 if ((euid != (uid_t) -1) && (euid != current->uid) &&
841 (euid != current->euid) && (euid != current->suid))
842 return -EPERM;
843 if ((suid != (uid_t) -1) && (suid != current->uid) &&
844 (suid != current->euid) && (suid != current->suid))
845 return -EPERM;
847 if (ruid != (uid_t) -1) {
848 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
849 return -EAGAIN;
851 if (euid != (uid_t) -1) {
852 if (euid != current->euid)
854 current->mm->dumpable = suid_dumpable;
855 smp_wmb();
857 current->euid = euid;
859 current->fsuid = current->euid;
860 if (suid != (uid_t) -1)
861 current->suid = suid;
863 key_fsuid_changed(current);
864 proc_id_connector(current, PROC_EVENT_UID);
866 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
869 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
871 int retval;
873 if (!(retval = put_user(current->uid, ruid)) &&
874 !(retval = put_user(current->euid, euid)))
875 retval = put_user(current->suid, suid);
877 return retval;
881 * Same as above, but for rgid, egid, sgid.
883 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
885 int retval;
887 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
888 if (retval)
889 return retval;
891 if (!capable(CAP_SETGID)) {
892 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
893 (rgid != current->egid) && (rgid != current->sgid))
894 return -EPERM;
895 if ((egid != (gid_t) -1) && (egid != current->gid) &&
896 (egid != current->egid) && (egid != current->sgid))
897 return -EPERM;
898 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
899 (sgid != current->egid) && (sgid != current->sgid))
900 return -EPERM;
902 if (egid != (gid_t) -1) {
903 if (egid != current->egid)
905 current->mm->dumpable = suid_dumpable;
906 smp_wmb();
908 current->egid = egid;
910 current->fsgid = current->egid;
911 if (rgid != (gid_t) -1)
912 current->gid = rgid;
913 if (sgid != (gid_t) -1)
914 current->sgid = sgid;
916 key_fsgid_changed(current);
917 proc_id_connector(current, PROC_EVENT_GID);
918 return 0;
921 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
923 int retval;
925 if (!(retval = put_user(current->gid, rgid)) &&
926 !(retval = put_user(current->egid, egid)))
927 retval = put_user(current->sgid, sgid);
929 return retval;
934 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
935 * is used for "access()" and for the NFS daemon (letting nfsd stay at
936 * whatever uid it wants to). It normally shadows "euid", except when
937 * explicitly set by setfsuid() or for access..
939 asmlinkage long sys_setfsuid(uid_t uid)
941 int old_fsuid;
943 old_fsuid = current->fsuid;
944 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
945 return old_fsuid;
947 if (uid == current->uid || uid == current->euid ||
948 uid == current->suid || uid == current->fsuid ||
949 capable(CAP_SETUID))
951 if (uid != old_fsuid)
953 current->mm->dumpable = suid_dumpable;
954 smp_wmb();
956 current->fsuid = uid;
959 key_fsuid_changed(current);
960 proc_id_connector(current, PROC_EVENT_UID);
962 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
964 return old_fsuid;
968 * Samma på svenska..
970 asmlinkage long sys_setfsgid(gid_t gid)
972 int old_fsgid;
974 old_fsgid = current->fsgid;
975 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
976 return old_fsgid;
978 if (gid == current->gid || gid == current->egid ||
979 gid == current->sgid || gid == current->fsgid ||
980 capable(CAP_SETGID))
982 if (gid != old_fsgid)
984 current->mm->dumpable = suid_dumpable;
985 smp_wmb();
987 current->fsgid = gid;
988 key_fsgid_changed(current);
989 proc_id_connector(current, PROC_EVENT_GID);
991 return old_fsgid;
994 asmlinkage long sys_times(struct tms __user * tbuf)
997 * In the SMP world we might just be unlucky and have one of
998 * the times increment as we use it. Since the value is an
999 * atomically safe type this is just fine. Conceptually its
1000 * as if the syscall took an instant longer to occur.
1002 if (tbuf) {
1003 struct tms tmp;
1004 cputime_t utime, stime, cutime, cstime;
1006 #ifdef CONFIG_SMP
1007 if (thread_group_empty(current)) {
1009 * Single thread case without the use of any locks.
1011 * We may race with release_task if two threads are
1012 * executing. However, release task first adds up the
1013 * counters (__exit_signal) before removing the task
1014 * from the process tasklist (__unhash_process).
1015 * __exit_signal also acquires and releases the
1016 * siglock which results in the proper memory ordering
1017 * so that the list modifications are always visible
1018 * after the counters have been updated.
1020 * If the counters have been updated by the second thread
1021 * but the thread has not yet been removed from the list
1022 * then the other branch will be executing which will
1023 * block on tasklist_lock until the exit handling of the
1024 * other task is finished.
1026 * This also implies that the sighand->siglock cannot
1027 * be held by another processor. So we can also
1028 * skip acquiring that lock.
1030 utime = cputime_add(current->signal->utime, current->utime);
1031 stime = cputime_add(current->signal->utime, current->stime);
1032 cutime = current->signal->cutime;
1033 cstime = current->signal->cstime;
1034 } else
1035 #endif
1038 /* Process with multiple threads */
1039 struct task_struct *tsk = current;
1040 struct task_struct *t;
1042 read_lock(&tasklist_lock);
1043 utime = tsk->signal->utime;
1044 stime = tsk->signal->stime;
1045 t = tsk;
1046 do {
1047 utime = cputime_add(utime, t->utime);
1048 stime = cputime_add(stime, t->stime);
1049 t = next_thread(t);
1050 } while (t != tsk);
1053 * While we have tasklist_lock read-locked, no dying thread
1054 * can be updating current->signal->[us]time. Instead,
1055 * we got their counts included in the live thread loop.
1056 * However, another thread can come in right now and
1057 * do a wait call that updates current->signal->c[us]time.
1058 * To make sure we always see that pair updated atomically,
1059 * we take the siglock around fetching them.
1061 spin_lock_irq(&tsk->sighand->siglock);
1062 cutime = tsk->signal->cutime;
1063 cstime = tsk->signal->cstime;
1064 spin_unlock_irq(&tsk->sighand->siglock);
1065 read_unlock(&tasklist_lock);
1067 tmp.tms_utime = cputime_to_clock_t(utime);
1068 tmp.tms_stime = cputime_to_clock_t(stime);
1069 tmp.tms_cutime = cputime_to_clock_t(cutime);
1070 tmp.tms_cstime = cputime_to_clock_t(cstime);
1071 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1072 return -EFAULT;
1074 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1078 * This needs some heavy checking ...
1079 * I just haven't the stomach for it. I also don't fully
1080 * understand sessions/pgrp etc. Let somebody who does explain it.
1082 * OK, I think I have the protection semantics right.... this is really
1083 * only important on a multi-user system anyway, to make sure one user
1084 * can't send a signal to a process owned by another. -TYT, 12/12/91
1086 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1087 * LBT 04.03.94
1090 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1092 struct task_struct *p;
1093 struct task_struct *group_leader = current->group_leader;
1094 int err = -EINVAL;
1096 if (!pid)
1097 pid = group_leader->pid;
1098 if (!pgid)
1099 pgid = pid;
1100 if (pgid < 0)
1101 return -EINVAL;
1103 /* From this point forward we keep holding onto the tasklist lock
1104 * so that our parent does not change from under us. -DaveM
1106 write_lock_irq(&tasklist_lock);
1108 err = -ESRCH;
1109 p = find_task_by_pid(pid);
1110 if (!p)
1111 goto out;
1113 err = -EINVAL;
1114 if (!thread_group_leader(p))
1115 goto out;
1117 if (p->real_parent == group_leader) {
1118 err = -EPERM;
1119 if (p->signal->session != group_leader->signal->session)
1120 goto out;
1121 err = -EACCES;
1122 if (p->did_exec)
1123 goto out;
1124 } else {
1125 err = -ESRCH;
1126 if (p != group_leader)
1127 goto out;
1130 err = -EPERM;
1131 if (p->signal->leader)
1132 goto out;
1134 if (pgid != pid) {
1135 struct task_struct *p;
1137 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1138 if (p->signal->session == group_leader->signal->session)
1139 goto ok_pgid;
1140 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1141 goto out;
1144 ok_pgid:
1145 err = security_task_setpgid(p, pgid);
1146 if (err)
1147 goto out;
1149 if (process_group(p) != pgid) {
1150 detach_pid(p, PIDTYPE_PGID);
1151 p->signal->pgrp = pgid;
1152 attach_pid(p, PIDTYPE_PGID, pgid);
1155 err = 0;
1156 out:
1157 /* All paths lead to here, thus we are safe. -DaveM */
1158 write_unlock_irq(&tasklist_lock);
1159 return err;
1162 asmlinkage long sys_getpgid(pid_t pid)
1164 if (!pid) {
1165 return process_group(current);
1166 } else {
1167 int retval;
1168 struct task_struct *p;
1170 read_lock(&tasklist_lock);
1171 p = find_task_by_pid(pid);
1173 retval = -ESRCH;
1174 if (p) {
1175 retval = security_task_getpgid(p);
1176 if (!retval)
1177 retval = process_group(p);
1179 read_unlock(&tasklist_lock);
1180 return retval;
1184 #ifdef __ARCH_WANT_SYS_GETPGRP
1186 asmlinkage long sys_getpgrp(void)
1188 /* SMP - assuming writes are word atomic this is fine */
1189 return process_group(current);
1192 #endif
1194 asmlinkage long sys_getsid(pid_t pid)
1196 if (!pid) {
1197 return current->signal->session;
1198 } else {
1199 int retval;
1200 struct task_struct *p;
1202 read_lock(&tasklist_lock);
1203 p = find_task_by_pid(pid);
1205 retval = -ESRCH;
1206 if(p) {
1207 retval = security_task_getsid(p);
1208 if (!retval)
1209 retval = p->signal->session;
1211 read_unlock(&tasklist_lock);
1212 return retval;
1216 asmlinkage long sys_setsid(void)
1218 struct task_struct *group_leader = current->group_leader;
1219 struct pid *pid;
1220 int err = -EPERM;
1222 down(&tty_sem);
1223 write_lock_irq(&tasklist_lock);
1225 pid = find_pid(PIDTYPE_PGID, group_leader->pid);
1226 if (pid)
1227 goto out;
1229 group_leader->signal->leader = 1;
1230 __set_special_pids(group_leader->pid, group_leader->pid);
1231 group_leader->signal->tty = NULL;
1232 group_leader->signal->tty_old_pgrp = 0;
1233 err = process_group(group_leader);
1234 out:
1235 write_unlock_irq(&tasklist_lock);
1236 up(&tty_sem);
1237 return err;
1241 * Supplementary group IDs
1244 /* init to 2 - one for init_task, one to ensure it is never freed */
1245 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1247 struct group_info *groups_alloc(int gidsetsize)
1249 struct group_info *group_info;
1250 int nblocks;
1251 int i;
1253 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1254 /* Make sure we always allocate at least one indirect block pointer */
1255 nblocks = nblocks ? : 1;
1256 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1257 if (!group_info)
1258 return NULL;
1259 group_info->ngroups = gidsetsize;
1260 group_info->nblocks = nblocks;
1261 atomic_set(&group_info->usage, 1);
1263 if (gidsetsize <= NGROUPS_SMALL) {
1264 group_info->blocks[0] = group_info->small_block;
1265 } else {
1266 for (i = 0; i < nblocks; i++) {
1267 gid_t *b;
1268 b = (void *)__get_free_page(GFP_USER);
1269 if (!b)
1270 goto out_undo_partial_alloc;
1271 group_info->blocks[i] = b;
1274 return group_info;
1276 out_undo_partial_alloc:
1277 while (--i >= 0) {
1278 free_page((unsigned long)group_info->blocks[i]);
1280 kfree(group_info);
1281 return NULL;
1284 EXPORT_SYMBOL(groups_alloc);
1286 void groups_free(struct group_info *group_info)
1288 if (group_info->blocks[0] != group_info->small_block) {
1289 int i;
1290 for (i = 0; i < group_info->nblocks; i++)
1291 free_page((unsigned long)group_info->blocks[i]);
1293 kfree(group_info);
1296 EXPORT_SYMBOL(groups_free);
1298 /* export the group_info to a user-space array */
1299 static int groups_to_user(gid_t __user *grouplist,
1300 struct group_info *group_info)
1302 int i;
1303 int count = group_info->ngroups;
1305 for (i = 0; i < group_info->nblocks; i++) {
1306 int cp_count = min(NGROUPS_PER_BLOCK, count);
1307 int off = i * NGROUPS_PER_BLOCK;
1308 int len = cp_count * sizeof(*grouplist);
1310 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1311 return -EFAULT;
1313 count -= cp_count;
1315 return 0;
1318 /* fill a group_info from a user-space array - it must be allocated already */
1319 static int groups_from_user(struct group_info *group_info,
1320 gid_t __user *grouplist)
1322 int i;
1323 int count = group_info->ngroups;
1325 for (i = 0; i < group_info->nblocks; i++) {
1326 int cp_count = min(NGROUPS_PER_BLOCK, count);
1327 int off = i * NGROUPS_PER_BLOCK;
1328 int len = cp_count * sizeof(*grouplist);
1330 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1331 return -EFAULT;
1333 count -= cp_count;
1335 return 0;
1338 /* a simple Shell sort */
1339 static void groups_sort(struct group_info *group_info)
1341 int base, max, stride;
1342 int gidsetsize = group_info->ngroups;
1344 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1345 ; /* nothing */
1346 stride /= 3;
1348 while (stride) {
1349 max = gidsetsize - stride;
1350 for (base = 0; base < max; base++) {
1351 int left = base;
1352 int right = left + stride;
1353 gid_t tmp = GROUP_AT(group_info, right);
1355 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1356 GROUP_AT(group_info, right) =
1357 GROUP_AT(group_info, left);
1358 right = left;
1359 left -= stride;
1361 GROUP_AT(group_info, right) = tmp;
1363 stride /= 3;
1367 /* a simple bsearch */
1368 int groups_search(struct group_info *group_info, gid_t grp)
1370 int left, right;
1372 if (!group_info)
1373 return 0;
1375 left = 0;
1376 right = group_info->ngroups;
1377 while (left < right) {
1378 int mid = (left+right)/2;
1379 int cmp = grp - GROUP_AT(group_info, mid);
1380 if (cmp > 0)
1381 left = mid + 1;
1382 else if (cmp < 0)
1383 right = mid;
1384 else
1385 return 1;
1387 return 0;
1390 /* validate and set current->group_info */
1391 int set_current_groups(struct group_info *group_info)
1393 int retval;
1394 struct group_info *old_info;
1396 retval = security_task_setgroups(group_info);
1397 if (retval)
1398 return retval;
1400 groups_sort(group_info);
1401 get_group_info(group_info);
1403 task_lock(current);
1404 old_info = current->group_info;
1405 current->group_info = group_info;
1406 task_unlock(current);
1408 put_group_info(old_info);
1410 return 0;
1413 EXPORT_SYMBOL(set_current_groups);
1415 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1417 int i = 0;
1420 * SMP: Nobody else can change our grouplist. Thus we are
1421 * safe.
1424 if (gidsetsize < 0)
1425 return -EINVAL;
1427 /* no need to grab task_lock here; it cannot change */
1428 get_group_info(current->group_info);
1429 i = current->group_info->ngroups;
1430 if (gidsetsize) {
1431 if (i > gidsetsize) {
1432 i = -EINVAL;
1433 goto out;
1435 if (groups_to_user(grouplist, current->group_info)) {
1436 i = -EFAULT;
1437 goto out;
1440 out:
1441 put_group_info(current->group_info);
1442 return i;
1446 * SMP: Our groups are copy-on-write. We can set them safely
1447 * without another task interfering.
1450 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1452 struct group_info *group_info;
1453 int retval;
1455 if (!capable(CAP_SETGID))
1456 return -EPERM;
1457 if ((unsigned)gidsetsize > NGROUPS_MAX)
1458 return -EINVAL;
1460 group_info = groups_alloc(gidsetsize);
1461 if (!group_info)
1462 return -ENOMEM;
1463 retval = groups_from_user(group_info, grouplist);
1464 if (retval) {
1465 put_group_info(group_info);
1466 return retval;
1469 retval = set_current_groups(group_info);
1470 put_group_info(group_info);
1472 return retval;
1476 * Check whether we're fsgid/egid or in the supplemental group..
1478 int in_group_p(gid_t grp)
1480 int retval = 1;
1481 if (grp != current->fsgid) {
1482 get_group_info(current->group_info);
1483 retval = groups_search(current->group_info, grp);
1484 put_group_info(current->group_info);
1486 return retval;
1489 EXPORT_SYMBOL(in_group_p);
1491 int in_egroup_p(gid_t grp)
1493 int retval = 1;
1494 if (grp != current->egid) {
1495 get_group_info(current->group_info);
1496 retval = groups_search(current->group_info, grp);
1497 put_group_info(current->group_info);
1499 return retval;
1502 EXPORT_SYMBOL(in_egroup_p);
1504 DECLARE_RWSEM(uts_sem);
1506 EXPORT_SYMBOL(uts_sem);
1508 asmlinkage long sys_newuname(struct new_utsname __user * name)
1510 int errno = 0;
1512 down_read(&uts_sem);
1513 if (copy_to_user(name,&system_utsname,sizeof *name))
1514 errno = -EFAULT;
1515 up_read(&uts_sem);
1516 return errno;
1519 asmlinkage long sys_sethostname(char __user *name, int len)
1521 int errno;
1522 char tmp[__NEW_UTS_LEN];
1524 if (!capable(CAP_SYS_ADMIN))
1525 return -EPERM;
1526 if (len < 0 || len > __NEW_UTS_LEN)
1527 return -EINVAL;
1528 down_write(&uts_sem);
1529 errno = -EFAULT;
1530 if (!copy_from_user(tmp, name, len)) {
1531 memcpy(system_utsname.nodename, tmp, len);
1532 system_utsname.nodename[len] = 0;
1533 errno = 0;
1535 up_write(&uts_sem);
1536 return errno;
1539 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1541 asmlinkage long sys_gethostname(char __user *name, int len)
1543 int i, errno;
1545 if (len < 0)
1546 return -EINVAL;
1547 down_read(&uts_sem);
1548 i = 1 + strlen(system_utsname.nodename);
1549 if (i > len)
1550 i = len;
1551 errno = 0;
1552 if (copy_to_user(name, system_utsname.nodename, i))
1553 errno = -EFAULT;
1554 up_read(&uts_sem);
1555 return errno;
1558 #endif
1561 * Only setdomainname; getdomainname can be implemented by calling
1562 * uname()
1564 asmlinkage long sys_setdomainname(char __user *name, int len)
1566 int errno;
1567 char tmp[__NEW_UTS_LEN];
1569 if (!capable(CAP_SYS_ADMIN))
1570 return -EPERM;
1571 if (len < 0 || len > __NEW_UTS_LEN)
1572 return -EINVAL;
1574 down_write(&uts_sem);
1575 errno = -EFAULT;
1576 if (!copy_from_user(tmp, name, len)) {
1577 memcpy(system_utsname.domainname, tmp, len);
1578 system_utsname.domainname[len] = 0;
1579 errno = 0;
1581 up_write(&uts_sem);
1582 return errno;
1585 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1587 if (resource >= RLIM_NLIMITS)
1588 return -EINVAL;
1589 else {
1590 struct rlimit value;
1591 task_lock(current->group_leader);
1592 value = current->signal->rlim[resource];
1593 task_unlock(current->group_leader);
1594 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1598 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1601 * Back compatibility for getrlimit. Needed for some apps.
1604 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1606 struct rlimit x;
1607 if (resource >= RLIM_NLIMITS)
1608 return -EINVAL;
1610 task_lock(current->group_leader);
1611 x = current->signal->rlim[resource];
1612 task_unlock(current->group_leader);
1613 if(x.rlim_cur > 0x7FFFFFFF)
1614 x.rlim_cur = 0x7FFFFFFF;
1615 if(x.rlim_max > 0x7FFFFFFF)
1616 x.rlim_max = 0x7FFFFFFF;
1617 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1620 #endif
1622 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1624 struct rlimit new_rlim, *old_rlim;
1625 int retval;
1627 if (resource >= RLIM_NLIMITS)
1628 return -EINVAL;
1629 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1630 return -EFAULT;
1631 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1632 return -EINVAL;
1633 old_rlim = current->signal->rlim + resource;
1634 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1635 !capable(CAP_SYS_RESOURCE))
1636 return -EPERM;
1637 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1638 return -EPERM;
1640 retval = security_task_setrlimit(resource, &new_rlim);
1641 if (retval)
1642 return retval;
1644 task_lock(current->group_leader);
1645 *old_rlim = new_rlim;
1646 task_unlock(current->group_leader);
1648 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1649 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1650 new_rlim.rlim_cur <= cputime_to_secs(
1651 current->signal->it_prof_expires))) {
1652 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1653 read_lock(&tasklist_lock);
1654 spin_lock_irq(&current->sighand->siglock);
1655 set_process_cpu_timer(current, CPUCLOCK_PROF,
1656 &cputime, NULL);
1657 spin_unlock_irq(&current->sighand->siglock);
1658 read_unlock(&tasklist_lock);
1661 return 0;
1665 * It would make sense to put struct rusage in the task_struct,
1666 * except that would make the task_struct be *really big*. After
1667 * task_struct gets moved into malloc'ed memory, it would
1668 * make sense to do this. It will make moving the rest of the information
1669 * a lot simpler! (Which we're not doing right now because we're not
1670 * measuring them yet).
1672 * This expects to be called with tasklist_lock read-locked or better,
1673 * and the siglock not locked. It may momentarily take the siglock.
1675 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1676 * races with threads incrementing their own counters. But since word
1677 * reads are atomic, we either get new values or old values and we don't
1678 * care which for the sums. We always take the siglock to protect reading
1679 * the c* fields from p->signal from races with exit.c updating those
1680 * fields when reaping, so a sample either gets all the additions of a
1681 * given child after it's reaped, or none so this sample is before reaping.
1684 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1686 struct task_struct *t;
1687 unsigned long flags;
1688 cputime_t utime, stime;
1690 memset((char *) r, 0, sizeof *r);
1692 if (unlikely(!p->signal))
1693 return;
1695 switch (who) {
1696 case RUSAGE_CHILDREN:
1697 spin_lock_irqsave(&p->sighand->siglock, flags);
1698 utime = p->signal->cutime;
1699 stime = p->signal->cstime;
1700 r->ru_nvcsw = p->signal->cnvcsw;
1701 r->ru_nivcsw = p->signal->cnivcsw;
1702 r->ru_minflt = p->signal->cmin_flt;
1703 r->ru_majflt = p->signal->cmaj_flt;
1704 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1705 cputime_to_timeval(utime, &r->ru_utime);
1706 cputime_to_timeval(stime, &r->ru_stime);
1707 break;
1708 case RUSAGE_SELF:
1709 spin_lock_irqsave(&p->sighand->siglock, flags);
1710 utime = stime = cputime_zero;
1711 goto sum_group;
1712 case RUSAGE_BOTH:
1713 spin_lock_irqsave(&p->sighand->siglock, flags);
1714 utime = p->signal->cutime;
1715 stime = p->signal->cstime;
1716 r->ru_nvcsw = p->signal->cnvcsw;
1717 r->ru_nivcsw = p->signal->cnivcsw;
1718 r->ru_minflt = p->signal->cmin_flt;
1719 r->ru_majflt = p->signal->cmaj_flt;
1720 sum_group:
1721 utime = cputime_add(utime, p->signal->utime);
1722 stime = cputime_add(stime, p->signal->stime);
1723 r->ru_nvcsw += p->signal->nvcsw;
1724 r->ru_nivcsw += p->signal->nivcsw;
1725 r->ru_minflt += p->signal->min_flt;
1726 r->ru_majflt += p->signal->maj_flt;
1727 t = p;
1728 do {
1729 utime = cputime_add(utime, t->utime);
1730 stime = cputime_add(stime, t->stime);
1731 r->ru_nvcsw += t->nvcsw;
1732 r->ru_nivcsw += t->nivcsw;
1733 r->ru_minflt += t->min_flt;
1734 r->ru_majflt += t->maj_flt;
1735 t = next_thread(t);
1736 } while (t != p);
1737 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1738 cputime_to_timeval(utime, &r->ru_utime);
1739 cputime_to_timeval(stime, &r->ru_stime);
1740 break;
1741 default:
1742 BUG();
1746 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1748 struct rusage r;
1749 read_lock(&tasklist_lock);
1750 k_getrusage(p, who, &r);
1751 read_unlock(&tasklist_lock);
1752 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1755 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1757 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1758 return -EINVAL;
1759 return getrusage(current, who, ru);
1762 asmlinkage long sys_umask(int mask)
1764 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1765 return mask;
1768 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1769 unsigned long arg4, unsigned long arg5)
1771 long error;
1773 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1774 if (error)
1775 return error;
1777 switch (option) {
1778 case PR_SET_PDEATHSIG:
1779 if (!valid_signal(arg2)) {
1780 error = -EINVAL;
1781 break;
1783 current->pdeath_signal = arg2;
1784 break;
1785 case PR_GET_PDEATHSIG:
1786 error = put_user(current->pdeath_signal, (int __user *)arg2);
1787 break;
1788 case PR_GET_DUMPABLE:
1789 error = current->mm->dumpable;
1790 break;
1791 case PR_SET_DUMPABLE:
1792 if (arg2 < 0 || arg2 > 2) {
1793 error = -EINVAL;
1794 break;
1796 current->mm->dumpable = arg2;
1797 break;
1799 case PR_SET_UNALIGN:
1800 error = SET_UNALIGN_CTL(current, arg2);
1801 break;
1802 case PR_GET_UNALIGN:
1803 error = GET_UNALIGN_CTL(current, arg2);
1804 break;
1805 case PR_SET_FPEMU:
1806 error = SET_FPEMU_CTL(current, arg2);
1807 break;
1808 case PR_GET_FPEMU:
1809 error = GET_FPEMU_CTL(current, arg2);
1810 break;
1811 case PR_SET_FPEXC:
1812 error = SET_FPEXC_CTL(current, arg2);
1813 break;
1814 case PR_GET_FPEXC:
1815 error = GET_FPEXC_CTL(current, arg2);
1816 break;
1817 case PR_GET_TIMING:
1818 error = PR_TIMING_STATISTICAL;
1819 break;
1820 case PR_SET_TIMING:
1821 if (arg2 == PR_TIMING_STATISTICAL)
1822 error = 0;
1823 else
1824 error = -EINVAL;
1825 break;
1827 case PR_GET_KEEPCAPS:
1828 if (current->keep_capabilities)
1829 error = 1;
1830 break;
1831 case PR_SET_KEEPCAPS:
1832 if (arg2 != 0 && arg2 != 1) {
1833 error = -EINVAL;
1834 break;
1836 current->keep_capabilities = arg2;
1837 break;
1838 case PR_SET_NAME: {
1839 struct task_struct *me = current;
1840 unsigned char ncomm[sizeof(me->comm)];
1842 ncomm[sizeof(me->comm)-1] = 0;
1843 if (strncpy_from_user(ncomm, (char __user *)arg2,
1844 sizeof(me->comm)-1) < 0)
1845 return -EFAULT;
1846 set_task_comm(me, ncomm);
1847 return 0;
1849 case PR_GET_NAME: {
1850 struct task_struct *me = current;
1851 unsigned char tcomm[sizeof(me->comm)];
1853 get_task_comm(tcomm, me);
1854 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1855 return -EFAULT;
1856 return 0;
1858 default:
1859 error = -EINVAL;
1860 break;
1862 return error;