[PATCH] UFS: inode->i_sem is not released in error path
[linux-2.6/verdex.git] / sound / pci / vx222 / vx222_ops.c
blobc705af409b0fd3b2b8c30aaf49f29336bde200a8
1 /*
2 * Driver for Digigram VX222 V2/Mic soundcards
4 * VX222-specific low-level routines
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/firmware.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <asm/io.h>
30 #include "vx222.h"
33 static int vx2_reg_offset[VX_REG_MAX] = {
34 [VX_ICR] = 0x00,
35 [VX_CVR] = 0x04,
36 [VX_ISR] = 0x08,
37 [VX_IVR] = 0x0c,
38 [VX_RXH] = 0x14,
39 [VX_RXM] = 0x18,
40 [VX_RXL] = 0x1c,
41 [VX_DMA] = 0x10,
42 [VX_CDSP] = 0x20,
43 [VX_CFG] = 0x24,
44 [VX_RUER] = 0x28,
45 [VX_DATA] = 0x2c,
46 [VX_STATUS] = 0x30,
47 [VX_LOFREQ] = 0x34,
48 [VX_HIFREQ] = 0x38,
49 [VX_CSUER] = 0x3c,
50 [VX_SELMIC] = 0x40,
51 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
52 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
53 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
54 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
55 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
56 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
59 static int vx2_reg_index[VX_REG_MAX] = {
60 [VX_ICR] = 1,
61 [VX_CVR] = 1,
62 [VX_ISR] = 1,
63 [VX_IVR] = 1,
64 [VX_RXH] = 1,
65 [VX_RXM] = 1,
66 [VX_RXL] = 1,
67 [VX_DMA] = 1,
68 [VX_CDSP] = 1,
69 [VX_CFG] = 1,
70 [VX_RUER] = 1,
71 [VX_DATA] = 1,
72 [VX_STATUS] = 1,
73 [VX_LOFREQ] = 1,
74 [VX_HIFREQ] = 1,
75 [VX_CSUER] = 1,
76 [VX_SELMIC] = 1,
77 [VX_COMPOT] = 1,
78 [VX_SCOMPR] = 1,
79 [VX_GLIMIT] = 1,
80 [VX_INTCSR] = 0, /* on the PLX */
81 [VX_CNTRL] = 0, /* on the PLX */
82 [VX_GPIOC] = 0, /* on the PLX */
85 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
87 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
88 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91 /**
92 * snd_vx_inb - read a byte from the register
93 * @offset: register enum
95 static unsigned char vx2_inb(struct vx_core *chip, int offset)
97 return inb(vx2_reg_addr(chip, offset));
101 * snd_vx_outb - write a byte on the register
102 * @offset: the register offset
103 * @val: the value to write
105 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
107 outb(val, vx2_reg_addr(chip, offset));
108 //printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
112 * snd_vx_inl - read a 32bit word from the register
113 * @offset: register enum
115 static unsigned int vx2_inl(struct vx_core *chip, int offset)
117 return inl(vx2_reg_addr(chip, offset));
121 * snd_vx_outl - write a 32bit word on the register
122 * @offset: the register enum
123 * @val: the value to write
125 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
127 // printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
128 outl(val, vx2_reg_addr(chip, offset));
132 * redefine macros to call directly
134 #undef vx_inb
135 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
136 #undef vx_outb
137 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
138 #undef vx_inl
139 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
140 #undef vx_outl
141 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
145 * vx_reset_dsp - reset the DSP
148 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
150 static void vx2_reset_dsp(struct vx_core *_chip)
152 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
154 /* set the reset dsp bit to 0 */
155 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
157 mdelay(XX_DSP_RESET_WAIT_TIME);
159 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
160 /* set the reset dsp bit to 1 */
161 vx_outl(chip, CDSP, chip->regCDSP);
165 static int vx2_test_xilinx(struct vx_core *_chip)
167 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
168 unsigned int data;
170 snd_printdd("testing xilinx...\n");
171 /* This test uses several write/read sequences on TEST0 and TEST1 bits
172 * to figure out whever or not the xilinx was correctly loaded
175 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
176 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
177 vx_inl(chip, ISR);
178 data = vx_inl(chip, STATUS);
179 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
180 snd_printdd("bad!\n");
181 return -ENODEV;
184 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
185 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
186 vx_inl(chip, ISR);
187 data = vx_inl(chip, STATUS);
188 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
189 snd_printdd("bad! #2\n");
190 return -ENODEV;
193 if (_chip->type == VX_TYPE_BOARD) {
194 /* not implemented on VX_2_BOARDS */
195 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
196 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
197 vx_inl(chip, ISR);
198 data = vx_inl(chip, STATUS);
199 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
200 snd_printdd("bad! #3\n");
201 return -ENODEV;
204 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
205 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
206 vx_inl(chip, ISR);
207 data = vx_inl(chip, STATUS);
208 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
209 snd_printdd("bad! #4\n");
210 return -ENODEV;
213 snd_printdd("ok, xilinx fine.\n");
214 return 0;
219 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
220 * @do_write: 0 = read, 1 = set up for DMA write
222 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
224 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
225 * (in case of the use of the pseudo-dma facility).
227 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
229 /* Reset the pseudo-dma register (in case of the use of the
230 * pseudo-dma facility).
232 vx_outl(chip, RESET_DMA, 0);
236 * vx_release_pseudo_dma - disable the pseudo-DMA mode
238 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
240 /* HREQ pin disabled. */
241 vx_outl(chip, ICR, 0);
246 /* pseudo-dma write */
247 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
248 struct vx_pipe *pipe, int count)
250 unsigned long port = vx2_reg_addr(chip, VX_DMA);
251 int offset = pipe->hw_ptr;
252 u32 *addr = (u32 *)(runtime->dma_area + offset);
254 snd_assert(count % 4 == 0, return);
256 vx2_setup_pseudo_dma(chip, 1);
258 /* Transfer using pseudo-dma.
260 if (offset + count > pipe->buffer_bytes) {
261 int length = pipe->buffer_bytes - offset;
262 count -= length;
263 length >>= 2; /* in 32bit words */
264 /* Transfer using pseudo-dma. */
265 while (length-- > 0) {
266 outl(cpu_to_le32(*addr), port);
267 addr++;
269 addr = (u32 *)runtime->dma_area;
270 pipe->hw_ptr = 0;
272 pipe->hw_ptr += count;
273 count >>= 2; /* in 32bit words */
274 /* Transfer using pseudo-dma. */
275 while (count-- > 0) {
276 outl(cpu_to_le32(*addr), port);
277 addr++;
280 vx2_release_pseudo_dma(chip);
284 /* pseudo dma read */
285 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
286 struct vx_pipe *pipe, int count)
288 int offset = pipe->hw_ptr;
289 u32 *addr = (u32 *)(runtime->dma_area + offset);
290 unsigned long port = vx2_reg_addr(chip, VX_DMA);
292 snd_assert(count % 4 == 0, return);
294 vx2_setup_pseudo_dma(chip, 0);
295 /* Transfer using pseudo-dma.
297 if (offset + count > pipe->buffer_bytes) {
298 int length = pipe->buffer_bytes - offset;
299 count -= length;
300 length >>= 2; /* in 32bit words */
301 /* Transfer using pseudo-dma. */
302 while (length-- > 0)
303 *addr++ = le32_to_cpu(inl(port));
304 addr = (u32 *)runtime->dma_area;
305 pipe->hw_ptr = 0;
307 pipe->hw_ptr += count;
308 count >>= 2; /* in 32bit words */
309 /* Transfer using pseudo-dma. */
310 while (count-- > 0)
311 *addr++ = le32_to_cpu(inl(port));
313 vx2_release_pseudo_dma(chip);
316 #define VX_XILINX_RESET_MASK 0x40000000
317 #define VX_USERBIT0_MASK 0x00000004
318 #define VX_USERBIT1_MASK 0x00000020
319 #define VX_CNTRL_REGISTER_VALUE 0x00172012
322 * transfer counts bits to PLX
324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
326 unsigned int i;
328 for (i = 0; i < counts; i++) {
329 unsigned int val;
331 /* set the clock bit to 0. */
332 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333 vx2_outl(chip, port, val);
334 vx2_inl(chip, port);
335 udelay(1);
337 if (data & (1 << i))
338 val |= VX_USERBIT1_MASK;
339 else
340 val &= ~VX_USERBIT1_MASK;
341 vx2_outl(chip, port, val);
342 vx2_inl(chip, port);
344 /* set the clock bit to 1. */
345 val |= VX_USERBIT0_MASK;
346 vx2_outl(chip, port, val);
347 vx2_inl(chip, port);
348 udelay(1);
350 return 0;
354 * load the xilinx image
356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
358 unsigned int i;
359 unsigned int port;
360 unsigned char *image;
362 /* XILINX reset (wait at least 1 milisecond between reset on and off). */
363 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 vx_inl(chip, CNTRL);
365 msleep(10);
366 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 vx_inl(chip, CNTRL);
368 msleep(10);
370 if (chip->type == VX_TYPE_BOARD)
371 port = VX_CNTRL;
372 else
373 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
375 image = xilinx->data;
376 for (i = 0; i < xilinx->size; i++, image++) {
377 if (put_xilinx_data(chip, port, 8, *image) < 0)
378 return -EINVAL;
379 /* don't take too much time in this loop... */
380 cond_resched();
382 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
384 msleep(200);
386 /* test after loading (is buggy with VX222) */
387 if (chip->type != VX_TYPE_BOARD) {
388 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389 i = vx_inl(chip, GPIOC);
390 if (i & 0x0100)
391 return 0;
392 snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
393 return -EINVAL;
396 return 0;
401 * load the boot/dsp images
403 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405 int err;
407 switch (index) {
408 case 1:
409 /* xilinx image */
410 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
411 return err;
412 if ((err = vx2_test_xilinx(vx)) < 0)
413 return err;
414 return 0;
415 case 2:
416 /* DSP boot */
417 return snd_vx_dsp_boot(vx, dsp);
418 case 3:
419 /* DSP image */
420 return snd_vx_dsp_load(vx, dsp);
421 default:
422 snd_BUG();
423 return -EINVAL;
429 * vx_test_and_ack - test and acknowledge interrupt
431 * called from irq hander, too
433 * spinlock held!
435 static int vx2_test_and_ack(struct vx_core *chip)
437 /* not booted yet? */
438 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
439 return -ENXIO;
441 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
442 return -EIO;
444 /* ok, interrupts generated, now ack it */
445 /* set ACQUIT bit up and down */
446 vx_outl(chip, STATUS, 0);
447 /* useless read just to spend some time and maintain
448 * the ACQUIT signal up for a while ( a bus cycle )
450 vx_inl(chip, STATUS);
451 /* ack */
452 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
453 /* useless read just to spend some time and maintain
454 * the ACQUIT signal up for a while ( a bus cycle ) */
455 vx_inl(chip, STATUS);
456 /* clear */
457 vx_outl(chip, STATUS, 0);
459 return 0;
464 * vx_validate_irq - enable/disable IRQ
466 static void vx2_validate_irq(struct vx_core *_chip, int enable)
468 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
470 /* Set the interrupt enable bit to 1 in CDSP register */
471 if (enable) {
472 /* Set the PCI interrupt enable bit to 1.*/
473 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
474 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
475 } else {
476 /* Set the PCI interrupt enable bit to 0. */
477 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
478 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
480 vx_outl(chip, CDSP, chip->regCDSP);
485 * write an AKM codec data (24bit)
487 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
489 unsigned int i;
491 vx_inl(chip, HIFREQ);
493 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
494 for (i = 0; i < 24; i++, data <<= 1)
495 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
496 /* Terminate access to codec registers */
497 vx_inl(chip, RUER);
501 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
502 #define AKM_CODEC_RESET_ON_CMD 0xA100
503 #define AKM_CODEC_RESET_OFF_CMD 0xA103
504 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
505 #define AKM_CODEC_MUTE_CMD 0xA38D
506 #define AKM_CODEC_UNMUTE_CMD 0xA30D
507 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
508 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
510 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
511 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
512 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
513 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
514 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
515 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
516 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
517 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
518 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
519 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
520 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
521 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
522 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
523 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
524 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
525 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
526 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
527 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
528 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
529 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
530 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
531 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
532 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
533 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
534 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
535 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
536 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
537 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
538 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
539 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
540 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
541 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
542 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
543 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
544 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
545 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
546 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
547 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
548 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
549 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
550 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
551 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
552 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
553 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
554 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
555 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
556 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
557 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
558 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
559 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
560 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
561 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
562 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
563 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
564 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
565 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
566 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
567 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
568 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
569 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
570 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
571 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
572 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
573 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
574 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
575 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
576 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
577 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
578 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
579 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
580 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
581 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
582 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
583 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
584 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
585 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
586 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
587 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
588 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
589 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
590 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
591 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
592 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
593 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
594 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
595 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
596 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
597 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
598 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
599 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
600 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
601 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
602 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
603 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
604 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
605 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
606 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
607 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
608 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
609 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
610 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
611 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
612 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
613 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
614 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
615 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
616 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
617 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
618 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
619 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
620 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
621 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
622 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
623 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
624 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
625 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
626 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
627 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
628 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
629 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
630 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
631 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
632 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
633 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
634 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
635 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
636 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
637 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
638 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
639 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
640 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
641 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
642 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
643 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
644 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
645 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
646 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
647 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
648 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
649 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
650 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
651 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
652 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
653 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
654 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
655 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
656 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
657 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
658 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
661 * pseudo-codec write entry
663 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
665 unsigned int val;
667 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
668 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
669 return;
672 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
673 a look up table, as there is no linear matching between the driver codec values
674 and the real dBu value
676 snd_assert(data < sizeof(vx2_akm_gains_lut), return);
678 switch (reg) {
679 case XX_CODEC_LEVEL_LEFT_REGISTER:
680 val = AKM_CODEC_LEFT_LEVEL_CMD;
681 break;
682 case XX_CODEC_LEVEL_RIGHT_REGISTER:
683 val = AKM_CODEC_RIGHT_LEVEL_CMD;
684 break;
685 default:
686 snd_BUG();
687 return;
689 val |= vx2_akm_gains_lut[data];
691 vx2_write_codec_reg(chip, val);
696 * write codec bit for old VX222 board
698 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
700 int i;
702 /* activate access to codec registers */
703 vx_inl(chip, HIFREQ);
705 for (i = 0; i < 24; i++, data <<= 1)
706 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
708 /* Terminate access to codec registers */
709 vx_inl(chip, RUER);
714 * reset codec bit
716 static void vx2_reset_codec(struct vx_core *_chip)
718 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
720 /* Set the reset CODEC bit to 0. */
721 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
722 vx_inl(chip, CDSP);
723 msleep(10);
724 /* Set the reset CODEC bit to 1. */
725 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
726 vx_outl(chip, CDSP, chip->regCDSP);
727 vx_inl(chip, CDSP);
728 if (_chip->type == VX_TYPE_BOARD) {
729 msleep(1);
730 return;
733 msleep(5); /* additionnel wait time for AKM's */
735 vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
737 vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
738 vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
739 vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
741 if (_chip->type == VX_TYPE_MIC) {
742 /* set up the micro input selector */
743 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
744 MICRO_SELECT_PREAMPLI_G_0 |
745 MICRO_SELECT_NOISE_T_52DB;
747 /* reset phantom power supply */
748 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
750 vx_outl(_chip, SELMIC, chip->regSELMIC);
756 * change the audio source
758 static void vx2_change_audio_source(struct vx_core *_chip, int src)
760 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
762 switch (src) {
763 case VX_AUDIO_SRC_DIGITAL:
764 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
765 break;
766 default:
767 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
768 break;
770 vx_outl(chip, CFG, chip->regCFG);
775 * set the clock source
777 static void vx2_set_clock_source(struct vx_core *_chip, int source)
779 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
781 if (source == INTERNAL_QUARTZ)
782 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
783 else
784 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
785 vx_outl(chip, CFG, chip->regCFG);
789 * reset the board
791 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
793 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
795 /* initialize the register values */
796 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
797 chip->regCFG = 0;
803 * input level controls for VX222 Mic
806 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
807 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
808 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
810 #define V2_MICRO_LEVEL_RANGE (318 - 255)
812 static void vx2_set_input_level(struct snd_vx222 *chip)
814 int i, miclevel, preamp;
815 unsigned int data;
817 miclevel = chip->mic_level;
818 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
819 preamp = 0;
820 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
821 preamp++; /* raise pre ampli + 18dB */
822 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
824 snd_assert(preamp < 4, return);
826 /* set pre-amp level */
827 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
828 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
829 vx_outl(chip, SELMIC, chip->regSELMIC);
831 data = (unsigned int)miclevel << 16 |
832 (unsigned int)chip->input_level[1] << 8 |
833 (unsigned int)chip->input_level[0];
834 vx_inl(chip, DATA); /* Activate input level programming */
836 /* We have to send 32 bits (4 x 8 bits) */
837 for (i = 0; i < 32; i++, data <<= 1)
838 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
840 vx_inl(chip, RUER); /* Terminate input level programming */
844 #define MIC_LEVEL_MAX 0xff
847 * controls API for input levels
850 /* input levels */
851 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
853 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
854 uinfo->count = 2;
855 uinfo->value.integer.min = 0;
856 uinfo->value.integer.max = MIC_LEVEL_MAX;
857 return 0;
860 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
862 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
863 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
864 down(&_chip->mixer_mutex);
865 ucontrol->value.integer.value[0] = chip->input_level[0];
866 ucontrol->value.integer.value[1] = chip->input_level[1];
867 up(&_chip->mixer_mutex);
868 return 0;
871 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
873 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
874 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
875 down(&_chip->mixer_mutex);
876 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
877 chip->input_level[1] != ucontrol->value.integer.value[1]) {
878 chip->input_level[0] = ucontrol->value.integer.value[0];
879 chip->input_level[1] = ucontrol->value.integer.value[1];
880 vx2_set_input_level(chip);
881 up(&_chip->mixer_mutex);
882 return 1;
884 up(&_chip->mixer_mutex);
885 return 0;
888 /* mic level */
889 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
891 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
892 uinfo->count = 1;
893 uinfo->value.integer.min = 0;
894 uinfo->value.integer.max = MIC_LEVEL_MAX;
895 return 0;
898 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
900 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
901 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
902 ucontrol->value.integer.value[0] = chip->mic_level;
903 return 0;
906 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
908 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
909 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
910 down(&_chip->mixer_mutex);
911 if (chip->mic_level != ucontrol->value.integer.value[0]) {
912 chip->mic_level = ucontrol->value.integer.value[0];
913 vx2_set_input_level(chip);
914 up(&_chip->mixer_mutex);
915 return 1;
917 up(&_chip->mixer_mutex);
918 return 0;
921 static struct snd_kcontrol_new vx_control_input_level = {
922 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
923 .name = "Capture Volume",
924 .info = vx_input_level_info,
925 .get = vx_input_level_get,
926 .put = vx_input_level_put,
929 static struct snd_kcontrol_new vx_control_mic_level = {
930 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
931 .name = "Mic Capture Volume",
932 .info = vx_mic_level_info,
933 .get = vx_mic_level_get,
934 .put = vx_mic_level_put,
938 * FIXME: compressor/limiter implementation is missing yet...
941 static int vx2_add_mic_controls(struct vx_core *_chip)
943 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
944 int err;
946 if (_chip->type != VX_TYPE_MIC)
947 return 0;
949 /* mute input levels */
950 chip->input_level[0] = chip->input_level[1] = 0;
951 chip->mic_level = 0;
952 vx2_set_input_level(chip);
954 /* controls */
955 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
956 return err;
957 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
958 return err;
960 return 0;
965 * callbacks
967 struct snd_vx_ops vx222_ops = {
968 .in8 = vx2_inb,
969 .in32 = vx2_inl,
970 .out8 = vx2_outb,
971 .out32 = vx2_outl,
972 .test_and_ack = vx2_test_and_ack,
973 .validate_irq = vx2_validate_irq,
974 .akm_write = vx2_write_akm,
975 .reset_codec = vx2_reset_codec,
976 .change_audio_source = vx2_change_audio_source,
977 .set_clock_source = vx2_set_clock_source,
978 .load_dsp = vx2_load_dsp,
979 .reset_dsp = vx2_reset_dsp,
980 .reset_board = vx2_reset_board,
981 .dma_write = vx2_dma_write,
982 .dma_read = vx2_dma_read,
983 .add_controls = vx2_add_mic_controls,
986 /* for old VX222 board */
987 struct snd_vx_ops vx222_old_ops = {
988 .in8 = vx2_inb,
989 .in32 = vx2_inl,
990 .out8 = vx2_outb,
991 .out32 = vx2_outl,
992 .test_and_ack = vx2_test_and_ack,
993 .validate_irq = vx2_validate_irq,
994 .write_codec = vx2_old_write_codec_bit,
995 .reset_codec = vx2_reset_codec,
996 .change_audio_source = vx2_change_audio_source,
997 .set_clock_source = vx2_set_clock_source,
998 .load_dsp = vx2_load_dsp,
999 .reset_dsp = vx2_reset_dsp,
1000 .reset_board = vx2_reset_board,
1001 .dma_write = vx2_dma_write,
1002 .dma_read = vx2_dma_read,