1 Notes on the Generic Block Layer Rewrite in Linux 2.5
2 =====================================================
4 Notes Written on Jan 15, 2002:
5 Jens Axboe <axboe@suse.de>
6 Suparna Bhattacharya <suparna@in.ibm.com>
8 Last Updated May 2, 2002
9 September 2003: Updated I/O Scheduler portions
10 Nick Piggin <piggin@cyberone.com.au>
14 These are some notes describing some aspects of the 2.5 block layer in the
15 context of the bio rewrite. The idea is to bring out some of the key
16 changes and a glimpse of the rationale behind those changes.
18 Please mail corrections & suggestions to suparna@in.ibm.com.
24 Jens Axboe <axboe@suse.de>
26 Many aspects of the generic block layer redesign were driven by and evolved
27 over discussions, prior patches and the collective experience of several
28 people. See sections 8 and 9 for a list of some related references.
30 The following people helped with review comments and inputs for this
32 Christoph Hellwig <hch@infradead.org>
33 Arjan van de Ven <arjanv@redhat.com>
34 Randy Dunlap <rddunlap@osdl.org>
35 Andre Hedrick <andre@linux-ide.org>
37 The following people helped with fixes/contributions to the bio patches
38 while it was still work-in-progress:
39 David S. Miller <davem@redhat.com>
42 Description of Contents:
43 ------------------------
45 1. Scope for tuning of logic to various needs
46 1.1 Tuning based on device or low level driver capabilities
47 - Per-queue parameters
49 - I/O scheduler modularization
50 1.2 Tuning based on high level requirements/capabilities
52 1.2.2 Request Priority/Latency
53 1.3 Direct access/bypass to lower layers for diagnostics and special
55 1.3.1 Pre-built commands
56 2. New flexible and generic but minimalist i/o structure or descriptor
57 (instead of using buffer heads at the i/o layer)
58 2.1 Requirements/Goals addressed
59 2.2 The bio struct in detail (multi-page io unit)
60 2.3 Changes in the request structure
62 3.1 Setup/teardown (allocation, splitting)
63 3.2 Generic bio helper routines
64 3.2.1 Traversing segments and completion units in a request
65 3.2.2 Setting up DMA scatterlists
67 3.2.4 Implications for drivers that do not interpret bios (don't handle
69 3.2.5 Request command tagging
72 5. Scalability related changes
73 5.1 Granular locking: Removal of io_request_lock
74 5.2 Prepare for transition to 64 bit sector_t
75 6. Other Changes/Implications
76 6.1 Partition re-mapping handled by the generic block layer
77 7. A few tips on migration of older drivers
78 8. A list of prior/related/impacted patches/ideas
79 9. Other References/Discussion Threads
81 ---------------------------------------------------------------------------
86 Let us discuss the changes in the context of how some overall goals for the
87 block layer are addressed.
89 1. Scope for tuning the generic logic to satisfy various requirements
91 The block layer design supports adaptable abstractions to handle common
92 processing with the ability to tune the logic to an appropriate extent
93 depending on the nature of the device and the requirements of the caller.
94 One of the objectives of the rewrite was to increase the degree of tunability
95 and to enable higher level code to utilize underlying device/driver
96 capabilities to the maximum extent for better i/o performance. This is
97 important especially in the light of ever improving hardware capabilities
98 and application/middleware software designed to take advantage of these
101 1.1 Tuning based on low level device / driver capabilities
103 Sophisticated devices with large built-in caches, intelligent i/o scheduling
104 optimizations, high memory DMA support, etc may find some of the
105 generic processing an overhead, while for less capable devices the
106 generic functionality is essential for performance or correctness reasons.
107 Knowledge of some of the capabilities or parameters of the device should be
108 used at the generic block layer to take the right decisions on
109 behalf of the driver.
111 How is this achieved ?
113 Tuning at a per-queue level:
115 i. Per-queue limits/values exported to the generic layer by the driver
117 Various parameters that the generic i/o scheduler logic uses are set at
118 a per-queue level (e.g maximum request size, maximum number of segments in
119 a scatter-gather list, hardsect size)
121 Some parameters that were earlier available as global arrays indexed by
122 major/minor are now directly associated with the queue. Some of these may
123 move into the block device structure in the future. Some characteristics
124 have been incorporated into a queue flags field rather than separate fields
125 in themselves. There are blk_queue_xxx functions to set the parameters,
126 rather than update the fields directly
128 Some new queue property settings:
130 blk_queue_bounce_limit(q, u64 dma_address)
131 Enable I/O to highmem pages, dma_address being the
132 limit. No highmem default.
134 blk_queue_max_sectors(q, max_sectors)
135 Maximum size request you can handle in units of 512 byte
136 sectors. 255 default.
138 blk_queue_max_phys_segments(q, max_segments)
139 Maximum physical segments you can handle in a request. 128
140 default (driver limit). (See 3.2.2)
142 blk_queue_max_hw_segments(q, max_segments)
143 Maximum dma segments the hardware can handle in a request. 128
144 default (host adapter limit, after dma remapping).
147 blk_queue_max_segment_size(q, max_seg_size)
148 Maximum size of a clustered segment, 64kB default.
150 blk_queue_hardsect_size(q, hardsect_size)
151 Lowest possible sector size that the hardware can operate
152 on, 512 bytes default.
156 QUEUE_FLAG_CLUSTER (see 3.2.2)
157 QUEUE_FLAG_QUEUED (see 3.2.4)
160 ii. High-mem i/o capabilities are now considered the default
162 The generic bounce buffer logic, present in 2.4, where the block layer would
163 by default copyin/out i/o requests on high-memory buffers to low-memory buffers
164 assuming that the driver wouldn't be able to handle it directly, has been
165 changed in 2.5. The bounce logic is now applied only for memory ranges
166 for which the device cannot handle i/o. A driver can specify this by
167 setting the queue bounce limit for the request queue for the device
168 (blk_queue_bounce_limit()). This avoids the inefficiencies of the copyin/out
169 where a device is capable of handling high memory i/o.
171 In order to enable high-memory i/o where the device is capable of supporting
172 it, the pci dma mapping routines and associated data structures have now been
173 modified to accomplish a direct page -> bus translation, without requiring
174 a virtual address mapping (unlike the earlier scheme of virtual address
175 -> bus translation). So this works uniformly for high-memory pages (which
176 do not have a correponding kernel virtual address space mapping) and
179 Note: Please refer to DMA-mapping.txt for a discussion on PCI high mem DMA
180 aspects and mapping of scatter gather lists, and support for 64 bit PCI.
182 Special handling is required only for cases where i/o needs to happen on
183 pages at physical memory addresses beyond what the device can support. In these
184 cases, a bounce bio representing a buffer from the supported memory range
185 is used for performing the i/o with copyin/copyout as needed depending on
186 the type of the operation. For example, in case of a read operation, the
187 data read has to be copied to the original buffer on i/o completion, so a
188 callback routine is set up to do this, while for write, the data is copied
189 from the original buffer to the bounce buffer prior to issuing the
190 operation. Since an original buffer may be in a high memory area that's not
191 mapped in kernel virtual addr, a kmap operation may be required for
192 performing the copy, and special care may be needed in the completion path
193 as it may not be in irq context. Special care is also required (by way of
194 GFP flags) when allocating bounce buffers, to avoid certain highmem
195 deadlock possibilities.
197 It is also possible that a bounce buffer may be allocated from high-memory
198 area that's not mapped in kernel virtual addr, but within the range that the
199 device can use directly; so the bounce page may need to be kmapped during
200 copy operations. [Note: This does not hold in the current implementation,
203 There are some situations when pages from high memory may need to
204 be kmapped, even if bounce buffers are not necessary. For example a device
205 may need to abort DMA operations and revert to PIO for the transfer, in
206 which case a virtual mapping of the page is required. For SCSI it is also
207 done in some scenarios where the low level driver cannot be trusted to
208 handle a single sg entry correctly. The driver is expected to perform the
209 kmaps as needed on such occasions using the __bio_kmap_atomic and bio_kmap_irq
210 routines as appropriate. A driver could also use the blk_queue_bounce()
211 routine on its own to bounce highmem i/o to low memory for specific requests
214 iii. The i/o scheduler algorithm itself can be replaced/set as appropriate
216 As in 2.4, it is possible to plugin a brand new i/o scheduler for a particular
217 queue or pick from (copy) existing generic schedulers and replace/override
218 certain portions of it. The 2.5 rewrite provides improved modularization
219 of the i/o scheduler. There are more pluggable callbacks, e.g for init,
220 add request, extract request, which makes it possible to abstract specific
221 i/o scheduling algorithm aspects and details outside of the generic loop.
222 It also makes it possible to completely hide the implementation details of
223 the i/o scheduler from block drivers.
225 I/O scheduler wrappers are to be used instead of accessing the queue directly.
226 See section 4. The I/O scheduler for details.
228 1.2 Tuning Based on High level code capabilities
230 i. Application capabilities for raw i/o
232 This comes from some of the high-performance database/middleware
233 requirements where an application prefers to make its own i/o scheduling
234 decisions based on an understanding of the access patterns and i/o
237 ii. High performance filesystems or other higher level kernel code's
240 Kernel components like filesystems could also take their own i/o scheduling
241 decisions for optimizing performance. Journalling filesystems may need
242 some control over i/o ordering.
244 What kind of support exists at the generic block layer for this ?
246 The flags and rw fields in the bio structure can be used for some tuning
247 from above e.g indicating that an i/o is just a readahead request, or for
248 marking barrier requests (discussed next), or priority settings (currently
249 unused). As far as user applications are concerned they would need an
250 additional mechanism either via open flags or ioctls, or some other upper
251 level mechanism to communicate such settings to block.
255 There is a way to enforce strict ordering for i/os through barriers.
256 All requests before a barrier point must be serviced before the barrier
257 request and any other requests arriving after the barrier will not be
258 serviced until after the barrier has completed. This is useful for higher
259 level control on write ordering, e.g flushing a log of committed updates
260 to disk before the corresponding updates themselves.
262 A flag in the bio structure, BIO_BARRIER is used to identify a barrier i/o.
263 The generic i/o scheduler would make sure that it places the barrier request and
264 all other requests coming after it after all the previous requests in the
265 queue. Barriers may be implemented in different ways depending on the
266 driver. A SCSI driver for example could make use of ordered tags to
267 preserve the necessary ordering with a lower impact on throughput. For IDE
268 this might be two sync cache flush: a pre and post flush when encountering
271 There is a provision for queues to indicate what kind of barriers they
272 can provide. This is as of yet unmerged, details will be added here once it
275 1.2.2 Request Priority/Latency
277 Todo/Under discussion:
278 Arjan's proposed request priority scheme allows higher levels some broad
279 control (high/med/low) over the priority of an i/o request vs other pending
280 requests in the queue. For example it allows reads for bringing in an
281 executable page on demand to be given a higher priority over pending write
282 requests which haven't aged too much on the queue. Potentially this priority
283 could even be exposed to applications in some manner, providing higher level
284 tunability. Time based aging avoids starvation of lower priority
285 requests. Some bits in the bi_rw flags field in the bio structure are
286 intended to be used for this priority information.
289 1.3 Direct Access to Low level Device/Driver Capabilities (Bypass mode)
290 (e.g Diagnostics, Systems Management)
292 There are situations where high-level code needs to have direct access to
293 the low level device capabilities or requires the ability to issue commands
294 to the device bypassing some of the intermediate i/o layers.
295 These could, for example, be special control commands issued through ioctl
296 interfaces, or could be raw read/write commands that stress the drive's
297 capabilities for certain kinds of fitness tests. Having direct interfaces at
298 multiple levels without having to pass through upper layers makes
299 it possible to perform bottom up validation of the i/o path, layer by
300 layer, starting from the media.
302 The normal i/o submission interfaces, e.g submit_bio, could be bypassed
303 for specially crafted requests which such ioctl or diagnostics
304 interfaces would typically use, and the elevator add_request routine
305 can instead be used to directly insert such requests in the queue or preferably
306 the blk_do_rq routine can be used to place the request on the queue and
307 wait for completion. Alternatively, sometimes the caller might just
308 invoke a lower level driver specific interface with the request as a
311 If the request is a means for passing on special information associated with
312 the command, then such information is associated with the request->special
313 field (rather than misuse the request->buffer field which is meant for the
314 request data buffer's virtual mapping).
316 For passing request data, the caller must build up a bio descriptor
317 representing the concerned memory buffer if the underlying driver interprets
318 bio segments or uses the block layer end*request* functions for i/o
319 completion. Alternatively one could directly use the request->buffer field to
320 specify the virtual address of the buffer, if the driver expects buffer
321 addresses passed in this way and ignores bio entries for the request type
322 involved. In the latter case, the driver would modify and manage the
323 request->buffer, request->sector and request->nr_sectors or
324 request->current_nr_sectors fields itself rather than using the block layer
325 end_request or end_that_request_first completion interfaces.
326 (See 2.3 or Documentation/block/request.txt for a brief explanation of
327 the request structure fields)
329 [TBD: end_that_request_last should be usable even in this case;
330 Perhaps an end_that_direct_request_first routine could be implemented to make
331 handling direct requests easier for such drivers; Also for drivers that
332 expect bios, a helper function could be provided for setting up a bio
333 corresponding to a data buffer]
335 <JENS: I dont understand the above, why is end_that_request_first() not
336 usable? Or _last for that matter. I must be missing something>
337 <SUP: What I meant here was that if the request doesn't have a bio, then
338 end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
339 and hence can't be used for advancing request state settings on the
340 completion of partial transfers. The driver has to modify these fields
342 This is because end_that_request_first only iterates over the bio list,
343 and always returns 0 if there are none associated with the request.
344 _last works OK in this case, and is not a problem, as I mentioned earlier
347 1.3.1 Pre-built Commands
349 A request can be created with a pre-built custom command to be sent directly
350 to the device. The cmd block in the request structure has room for filling
351 in the command bytes. (i.e rq->cmd is now 16 bytes in size, and meant for
352 command pre-building, and the type of the request is now indicated
353 through rq->flags instead of via rq->cmd)
355 The request structure flags can be set up to indicate the type of request
356 in such cases (REQ_PC: direct packet command passed to driver, REQ_BLOCK_PC:
357 packet command issued via blk_do_rq, REQ_SPECIAL: special request).
359 It can help to pre-build device commands for requests in advance.
360 Drivers can now specify a request prepare function (q->prep_rq_fn) that the
361 block layer would invoke to pre-build device commands for a given request,
362 or perform other preparatory processing for the request. This is routine is
363 called by elv_next_request(), i.e. typically just before servicing a request.
364 (The prepare function would not be called for requests that have REQ_DONTPREP
368 Pre-building could possibly even be done early, i.e before placing the
369 request on the queue, rather than construct the command on the fly in the
370 driver while servicing the request queue when it may affect latencies in
371 interrupt context or responsiveness in general. One way to add early
372 pre-building would be to do it whenever we fail to merge on a request.
373 Now REQ_NOMERGE is set in the request flags to skip this one in the future,
374 which means that it will not change before we feed it to the device. So
375 the pre-builder hook can be invoked there.
378 2. Flexible and generic but minimalist i/o structure/descriptor.
380 2.1 Reason for a new structure and requirements addressed
382 Prior to 2.5, buffer heads were used as the unit of i/o at the generic block
383 layer, and the low level request structure was associated with a chain of
384 buffer heads for a contiguous i/o request. This led to certain inefficiencies
385 when it came to large i/o requests and readv/writev style operations, as it
386 forced such requests to be broken up into small chunks before being passed
387 on to the generic block layer, only to be merged by the i/o scheduler
388 when the underlying device was capable of handling the i/o in one shot.
389 Also, using the buffer head as an i/o structure for i/os that didn't originate
390 from the buffer cache unecessarily added to the weight of the descriptors
391 which were generated for each such chunk.
393 The following were some of the goals and expectations considered in the
394 redesign of the block i/o data structure in 2.5.
396 i. Should be appropriate as a descriptor for both raw and buffered i/o -
397 avoid cache related fields which are irrelevant in the direct/page i/o path,
398 or filesystem block size alignment restrictions which may not be relevant
400 ii. Ability to represent high-memory buffers (which do not have a virtual
401 address mapping in kernel address space).
402 iii.Ability to represent large i/os w/o unecessarily breaking them up (i.e
403 greater than PAGE_SIZE chunks in one shot)
404 iv. At the same time, ability to retain independent identity of i/os from
405 different sources or i/o units requiring individual completion (e.g. for
407 v. Ability to represent an i/o involving multiple physical memory segments
408 (including non-page aligned page fragments, as specified via readv/writev)
409 without unecessarily breaking it up, if the underlying device is capable of
411 vi. Preferably should be based on a memory descriptor structure that can be
412 passed around different types of subsystems or layers, maybe even
413 networking, without duplication or extra copies of data/descriptor fields
414 themselves in the process
415 vii.Ability to handle the possibility of splits/merges as the structure passes
416 through layered drivers (lvm, md, evms), with minimal overhead.
418 The solution was to define a new structure (bio) for the block layer,
419 instead of using the buffer head structure (bh) directly, the idea being
420 avoidance of some associated baggage and limitations. The bio structure
421 is uniformly used for all i/o at the block layer ; it forms a part of the
422 bh structure for buffered i/o, and in the case of raw/direct i/o kiobufs are
423 mapped to bio structures.
427 The bio structure uses a vector representation pointing to an array of tuples
428 of <page, offset, len> to describe the i/o buffer, and has various other
429 fields describing i/o parameters and state that needs to be maintained for
432 Notice that this representation means that a bio has no virtual address
433 mapping at all (unlike buffer heads).
436 struct page *bv_page;
437 unsigned short bv_len;
438 unsigned short bv_offset;
442 * main unit of I/O for the block layer and lower layers (ie drivers)
446 struct bio *bi_next; /* request queue link */
447 struct block_device *bi_bdev; /* target device */
448 unsigned long bi_flags; /* status, command, etc */
449 unsigned long bi_rw; /* low bits: r/w, high: priority */
451 unsigned int bi_vcnt; /* how may bio_vec's */
452 unsigned int bi_idx; /* current index into bio_vec array */
454 unsigned int bi_size; /* total size in bytes */
455 unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
456 unsigned short bi_hw_segments; /* segments after DMA remapping */
457 unsigned int bi_max; /* max bio_vecs we can hold
458 used as index into pool */
459 struct bio_vec *bi_io_vec; /* the actual vec list */
460 bio_end_io_t *bi_end_io; /* bi_end_io (bio) */
461 atomic_t bi_cnt; /* pin count: free when it hits zero */
463 bio_destructor_t *bi_destructor; /* bi_destructor (bio) */
466 With this multipage bio design:
468 - Large i/os can be sent down in one go using a bio_vec list consisting
469 of an array of <page, offset, len> fragments (similar to the way fragments
470 are represented in the zero-copy network code)
471 - Splitting of an i/o request across multiple devices (as in the case of
472 lvm or raid) is achieved by cloning the bio (where the clone points to
473 the same bi_io_vec array, but with the index and size accordingly modified)
474 - A linked list of bios is used as before for unrelated merges (*) - this
475 avoids reallocs and makes independent completions easier to handle.
476 - Code that traverses the req list needs to make a distinction between
477 segments of a request (bio_for_each_segment) and the distinct completion
478 units/bios (rq_for_each_bio).
479 - Drivers which can't process a large bio in one shot can use the bi_idx
480 field to keep track of the next bio_vec entry to process.
481 (e.g a 1MB bio_vec needs to be handled in max 128kB chunks for IDE)
482 [TBD: Should preferably also have a bi_voffset and bi_vlen to avoid modifying
483 bi_offset an len fields]
485 (*) unrelated merges -- a request ends up containing two or more bios that
486 didn't originate from the same place.
488 bi_end_io() i/o callback gets called on i/o completion of the entire bio.
490 At a lower level, drivers build a scatter gather list from the merged bios.
491 The scatter gather list is in the form of an array of <page, offset, len>
492 entries with their corresponding dma address mappings filled in at the
493 appropriate time. As an optimization, contiguous physical pages can be
494 covered by a single entry where <page> refers to the first page and <len>
495 covers the range of pages (upto 16 contiguous pages could be covered this
496 way). There is a helper routine (blk_rq_map_sg) which drivers can use to build
499 Note: Right now the only user of bios with more than one page is ll_rw_kio,
500 which in turn means that only raw I/O uses it (direct i/o may not work
501 right now). The intent however is to enable clustering of pages etc to
502 become possible. The pagebuf abstraction layer from SGI also uses multi-page
503 bios, but that is currently not included in the stock development kernels.
504 The same is true of Andrew Morton's work-in-progress multipage bio writeout
505 and readahead patches.
507 2.3 Changes in the Request Structure
509 The request structure is the structure that gets passed down to low level
510 drivers. The block layer make_request function builds up a request structure,
511 places it on the queue and invokes the drivers request_fn. The driver makes
512 use of block layer helper routine elv_next_request to pull the next request
513 off the queue. Control or diagnostic functions might bypass block and directly
514 invoke underlying driver entry points passing in a specially constructed
517 Only some relevant fields (mainly those which changed or may be referred
518 to in some of the discussion here) are listed below, not necessarily in
519 the order in which they occur in the structure (see include/linux/blkdev.h)
520 Refer to Documentation/block/request.txt for details about all the request
521 structure fields and a quick reference about the layers which are
522 supposed to use or modify those fields.
525 struct list_head queuelist; /* Not meant to be directly accessed by
527 Used by q->elv_next_request_fn
532 unsigned char cmd[16]; /* prebuilt command data block */
533 unsigned long flags; /* also includes earlier rq->cmd settings */
536 sector_t sector; /* this field is now of type sector_t instead of int
537 preparation for 64 bit sectors */
541 /* Number of scatter-gather DMA addr+len pairs after
542 * physical address coalescing is performed.
544 unsigned short nr_phys_segments;
546 /* Number of scatter-gather addr+len pairs after
547 * physical and DMA remapping hardware coalescing is performed.
548 * This is the number of scatter-gather entries the driver
549 * will actually have to deal with after DMA mapping is done.
551 unsigned short nr_hw_segments;
553 /* Various sector counts */
554 unsigned long nr_sectors; /* no. of sectors left: driver modifiable */
555 unsigned long hard_nr_sectors; /* block internal copy of above */
556 unsigned int current_nr_sectors; /* no. of sectors left in the
557 current segment:driver modifiable */
558 unsigned long hard_cur_sectors; /* block internal copy of the above */
561 int tag; /* command tag associated with request */
562 void *special; /* same as before */
563 char *buffer; /* valid only for low memory buffers upto
564 current_nr_sectors */
567 struct bio *bio, *biotail; /* bio list instead of bh */
568 struct request_list *rl;
571 See the rq_flag_bits definitions for an explanation of the various flags
572 available. Some bits are used by the block layer or i/o scheduler.
574 The behaviour of the various sector counts are almost the same as before,
575 except that since we have multi-segment bios, current_nr_sectors refers
576 to the numbers of sectors in the current segment being processed which could
577 be one of the many segments in the current bio (i.e i/o completion unit).
578 The nr_sectors value refers to the total number of sectors in the whole
579 request that remain to be transferred (no change). The purpose of the
580 hard_xxx values is for block to remember these counts every time it hands
581 over the request to the driver. These values are updated by block on
582 end_that_request_first, i.e. every time the driver completes a part of the
583 transfer and invokes block end*request helpers to mark this. The
584 driver should not modify these values. The block layer sets up the
585 nr_sectors and current_nr_sectors fields (based on the corresponding
586 hard_xxx values and the number of bytes transferred) and updates it on
587 every transfer that invokes end_that_request_first. It does the same for the
588 buffer, bio, bio->bi_idx fields too.
590 The buffer field is just a virtual address mapping of the current segment
591 of the i/o buffer in cases where the buffer resides in low-memory. For high
592 memory i/o, this field is not valid and must not be used by drivers.
594 Code that sets up its own request structures and passes them down to
595 a driver needs to be careful about interoperation with the block layer helper
596 functions which the driver uses. (Section 1.3)
602 There are routines for managing the allocation, and reference counting, and
603 freeing of bios (bio_alloc, bio_get, bio_put).
605 This makes use of Ingo Molnar's mempool implementation, which enables
606 subsystems like bio to maintain their own reserve memory pools for guaranteed
607 deadlock-free allocations during extreme VM load. For example, the VM
608 subsystem makes use of the block layer to writeout dirty pages in order to be
609 able to free up memory space, a case which needs careful handling. The
610 allocation logic draws from the preallocated emergency reserve in situations
611 where it cannot allocate through normal means. If the pool is empty and it
612 can wait, then it would trigger action that would help free up memory or
613 replenish the pool (without deadlocking) and wait for availability in the pool.
614 If it is in IRQ context, and hence not in a position to do this, allocation
615 could fail if the pool is empty. In general mempool always first tries to
616 perform allocation without having to wait, even if it means digging into the
617 pool as long it is not less that 50% full.
619 On a free, memory is released to the pool or directly freed depending on
620 the current availability in the pool. The mempool interface lets the
621 subsystem specify the routines to be used for normal alloc and free. In the
622 case of bio, these routines make use of the standard slab allocator.
624 The caller of bio_alloc is expected to taken certain steps to avoid
625 deadlocks, e.g. avoid trying to allocate more memory from the pool while
626 already holding memory obtained from the pool.
627 [TBD: This is a potential issue, though a rare possibility
628 in the bounce bio allocation that happens in the current code, since
629 it ends up allocating a second bio from the same pool while
630 holding the original bio ]
632 Memory allocated from the pool should be released back within a limited
633 amount of time (in the case of bio, that would be after the i/o is completed).
634 This ensures that if part of the pool has been used up, some work (in this
635 case i/o) must already be in progress and memory would be available when it
636 is over. If allocating from multiple pools in the same code path, the order
637 or hierarchy of allocation needs to be consistent, just the way one deals
640 The bio_alloc routine also needs to allocate the bio_vec_list (bvec_alloc())
641 for a non-clone bio. There are the 6 pools setup for different size biovecs,
642 so bio_alloc(gfp_mask, nr_iovecs) will allocate a vec_list of the
643 given size from these slabs.
645 The bi_destructor() routine takes into account the possibility of the bio
646 having originated from a different source (see later discussions on
647 n/w to block transfers and kvec_cb)
649 The bio_get() routine may be used to hold an extra reference on a bio prior
650 to i/o submission, if the bio fields are likely to be accessed after the
651 i/o is issued (since the bio may otherwise get freed in case i/o completion
652 happens in the meantime).
654 The bio_clone() routine may be used to duplicate a bio, where the clone
655 shares the bio_vec_list with the original bio (i.e. both point to the
656 same bio_vec_list). This would typically be used for splitting i/o requests
659 3.2 Generic bio helper Routines
661 3.2.1 Traversing segments and completion units in a request
663 The macros bio_for_each_segment() and rq_for_each_bio() should be used for
664 traversing the bios in the request list (drivers should avoid directly
665 trying to do it themselves). Using these helpers should also make it easier
666 to cope with block changes in the future.
668 rq_for_each_bio(bio, rq)
669 bio_for_each_segment(bio_vec, bio, i)
670 /* bio_vec is now current segment */
672 I/O completion callbacks are per-bio rather than per-segment, so drivers
673 that traverse bio chains on completion need to keep that in mind. Drivers
674 which don't make a distinction between segments and completion units would
675 need to be reorganized to support multi-segment bios.
677 3.2.2 Setting up DMA scatterlists
679 The blk_rq_map_sg() helper routine would be used for setting up scatter
680 gather lists from a request, so a driver need not do it on its own.
682 nr_segments = blk_rq_map_sg(q, rq, scatterlist);
684 The helper routine provides a level of abstraction which makes it easier
685 to modify the internals of request to scatterlist conversion down the line
686 without breaking drivers. The blk_rq_map_sg routine takes care of several
687 things like collapsing physically contiguous segments (if QUEUE_FLAG_CLUSTER
688 is set) and correct segment accounting to avoid exceeding the limits which
689 the i/o hardware can handle, based on various queue properties.
691 - Prevents a clustered segment from crossing a 4GB mem boundary
692 - Avoids building segments that would exceed the number of physical
693 memory segments that the driver can handle (phys_segments) and the
694 number that the underlying hardware can handle at once, accounting for
695 DMA remapping (hw_segments) (i.e. IOMMU aware limits).
697 Routines which the low level driver can use to set up the segment limits:
699 blk_queue_max_hw_segments() : Sets an upper limit of the maximum number of
700 hw data segments in a request (i.e. the maximum number of address/length
701 pairs the host adapter can actually hand to the device at once)
703 blk_queue_max_phys_segments() : Sets an upper limit on the maximum number
704 of physical data segments in a request (i.e. the largest sized scatter list
705 a driver could handle)
709 The existing generic block layer helper routines end_request,
710 end_that_request_first and end_that_request_last can be used for i/o
711 completion (and setting things up so the rest of the i/o or the next
712 request can be kicked of) as before. With the introduction of multi-page
713 bio support, end_that_request_first requires an additional argument indicating
714 the number of sectors completed.
716 3.2.4 Implications for drivers that do not interpret bios (don't handle
719 Drivers that do not interpret bios e.g those which do not handle multiple
720 segments and do not support i/o into high memory addresses (require bounce
721 buffers) and expect only virtually mapped buffers, can access the rq->buffer
722 field. As before the driver should use current_nr_sectors to determine the
723 size of remaining data in the current segment (that is the maximum it can
724 transfer in one go unless it interprets segments), and rely on the block layer
725 end_request, or end_that_request_first/last to take care of all accounting
726 and transparent mapping of the next bio segment when a segment boundary
727 is crossed on completion of a transfer. (The end*request* functions should
728 be used if only if the request has come down from block/bio path, not for
729 direct access requests which only specify rq->buffer without a valid rq->bio)
731 3.2.5 Generic request command tagging
735 Block now offers some simple generic functionality to help support command
736 queueing (typically known as tagged command queueing), ie manage more than
737 one outstanding command on a queue at any given time.
739 blk_queue_init_tags(request_queue_t *q, int depth)
741 Initialize internal command tagging structures for a maximum
744 blk_queue_free_tags((request_queue_t *q)
746 Teardown tag info associated with the queue. This will be done
747 automatically by block if blk_queue_cleanup() is called on a queue
748 that is using tagging.
750 The above are initialization and exit management, the main helpers during
751 normal operations are:
753 blk_queue_start_tag(request_queue_t *q, struct request *rq)
755 Start tagged operation for this request. A free tag number between
756 0 and 'depth' is assigned to the request (rq->tag holds this number),
757 and 'rq' is added to the internal tag management. If the maximum depth
758 for this queue is already achieved (or if the tag wasn't started for
759 some other reason), 1 is returned. Otherwise 0 is returned.
761 blk_queue_end_tag(request_queue_t *q, struct request *rq)
763 End tagged operation on this request. 'rq' is removed from the internal
764 book keeping structures.
766 To minimize struct request and queue overhead, the tag helpers utilize some
767 of the same request members that are used for normal request queue management.
768 This means that a request cannot both be an active tag and be on the queue
769 list at the same time. blk_queue_start_tag() will remove the request, but
770 the driver must remember to call blk_queue_end_tag() before signalling
771 completion of the request to the block layer. This means ending tag
772 operations before calling end_that_request_last()! For an example of a user
773 of these helpers, see the IDE tagged command queueing support.
775 Certain hardware conditions may dictate a need to invalidate the block tag
776 queue. For instance, on IDE any tagged request error needs to clear both
777 the hardware and software block queue and enable the driver to sanely restart
778 all the outstanding requests. There's a third helper to do that:
780 blk_queue_invalidate_tags(request_queue_t *q)
782 Clear the internal block tag queue and readd all the pending requests
783 to the request queue. The driver will receive them again on the
784 next request_fn run, just like it did the first time it encountered
789 Some block functions exist to query current tag status or to go from a
790 tag number to the associated request. These are, in no particular order:
794 Returns 1 if the queue 'q' is using tagging, 0 if not.
796 blk_queue_tag_request(q, tag)
798 Returns a pointer to the request associated with tag 'tag'.
800 blk_queue_tag_depth(q)
802 Return current queue depth.
804 blk_queue_tag_queue(q)
806 Returns 1 if the queue can accept a new queued command, 0 if we are
807 at the maximum depth already.
809 blk_queue_rq_tagged(rq)
811 Returns 1 if the request 'rq' is tagged.
813 3.2.5.2 Internal structure
815 Internally, block manages tags in the blk_queue_tag structure:
817 struct blk_queue_tag {
818 struct request **tag_index; /* array or pointers to rq */
819 unsigned long *tag_map; /* bitmap of free tags */
820 struct list_head busy_list; /* fifo list of busy tags */
821 int busy; /* queue depth */
822 int max_depth; /* max queue depth */
825 Most of the above is simple and straight forward, however busy_list may need
826 a bit of explaining. Normally we don't care too much about request ordering,
827 but in the event of any barrier requests in the tag queue we need to ensure
828 that requests are restarted in the order they were queue. This may happen
829 if the driver needs to use blk_queue_invalidate_tags().
831 Tagging also defines a new request flag, REQ_QUEUED. This is set whenever
832 a request is currently tagged. You should not use this flag directly,
833 blk_rq_tagged(rq) is the portable way to do so.
837 The routine submit_bio() is used to submit a single io. Higher level i/o
838 routines make use of this:
841 The routine submit_bh() invokes submit_bio() on a bio corresponding to the
842 bh, allocating the bio if required. ll_rw_block() uses submit_bh() as before.
844 (b) Kiobuf i/o (for raw/direct i/o):
845 The ll_rw_kio() routine breaks up the kiobuf into page sized chunks and
846 maps the array to one or more multi-page bios, issuing submit_bio() to
847 perform the i/o on each of these.
849 The embedded bh array in the kiobuf structure has been removed and no
850 preallocation of bios is done for kiobufs. [The intent is to remove the
851 blocks array as well, but it's currently in there to kludge around direct i/o.]
852 Thus kiobuf allocation has switched back to using kmalloc rather than vmalloc.
856 A single kiobuf structure is assumed to correspond to a contiguous range
857 of data, so brw_kiovec() invokes ll_rw_kio for each kiobuf in a kiovec.
858 So right now it wouldn't work for direct i/o on non-contiguous blocks.
859 This is to be resolved. The eventual direction is to replace kiobuf
862 Badari Pulavarty has a patch to implement direct i/o correctly using
867 Todo/Under discussion:
869 Andrew Morton's multi-page bio patches attempt to issue multi-page
870 writeouts (and reads) from the page cache, by directly building up
871 large bios for submission completely bypassing the usage of buffer
872 heads. This work is still in progress.
874 Christoph Hellwig had some code that uses bios for page-io (rather than
875 bh). This isn't included in bio as yet. Christoph was also working on a
876 design for representing virtual/real extents as an entity and modifying
877 some of the address space ops interfaces to utilize this abstraction rather
878 than buffer_heads. (This is somewhat along the lines of the SGI XFS pagebuf
879 abstraction, but intended to be as lightweight as possible).
881 (d) Direct access i/o:
882 Direct access requests that do not contain bios would be submitted differently
883 as discussed earlier in section 1.3.
889 Ben LaHaise's aio code uses a slighly different structure instead
890 of kiobufs, called a kvec_cb. This contains an array of <page, offset, len>
891 tuples (very much like the networking code), together with a callback function
892 and data pointer. This is embedded into a brw_cb structure when passed
895 Now it should be possible to directly map these kvecs to a bio. Just as while
896 cloning, in this case rather than PRE_BUILT bio_vecs, we set the bi_io_vec
897 array pointer to point to the veclet array in kvecs.
899 TBD: In order for this to work, some changes are needed in the way multi-page
900 bios are handled today. The values of the tuples in such a vector passed in
901 from higher level code should not be modified by the block layer in the course
902 of its request processing, since that would make it hard for the higher layer
903 to continue to use the vector descriptor (kvec) after i/o completes. Instead,
904 all such transient state should either be maintained in the request structure,
905 and passed on in some way to the endio completion routine.
909 I/O schedulers are now per queue. They should be runtime switchable and modular
910 but aren't yet. Jens has most bits to do this, but the sysfs implementation is
913 A block layer call to the i/o scheduler follows the convention elv_xxx(). This
914 calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh,
915 xxx and xxx might not match exactly, but use your imagination. If an elevator
916 doesn't implement a function, the switch does nothing or some minimal house
919 4.1. I/O scheduler API
921 The functions an elevator may implement are: (* are mandatory)
922 elevator_merge_fn called to query requests for merge with a bio
924 elevator_merge_req_fn " " " with another request
926 elevator_merged_fn called when a request in the scheduler has been
927 involved in a merge. It is used in the deadline
928 scheduler for example, to reposition the request
929 if its sorting order has changed.
931 *elevator_next_req_fn returns the next scheduled request, or NULL
932 if there are none (or none are ready).
934 *elevator_add_req_fn called to add a new request into the scheduler
936 elevator_queue_empty_fn returns true if the merge queue is empty.
937 Drivers shouldn't use this, but rather check
938 if elv_next_request is NULL (without losing the
939 request if one exists!)
941 elevator_remove_req_fn This is called when a driver claims ownership of
942 the target request - it now belongs to the
943 driver. It must not be modified or merged.
944 Drivers must not lose the request! A subsequent
945 call of elevator_next_req_fn must return the
948 elevator_requeue_req_fn called to add a request to the scheduler. This
949 is used when the request has alrnadebeen
950 returned by elv_next_request, but hasn't
951 completed. If this is not implemented then
952 elevator_add_req_fn is called instead.
954 elevator_former_req_fn
955 elevator_latter_req_fn These return the request before or after the
956 one specified in disk sort order. Used by the
957 block layer to find merge possibilities.
959 elevator_completed_req_fn called when a request is completed. This might
960 come about due to being merged with another or
961 when the device completes the request.
963 elevator_may_queue_fn returns true if the scheduler wants to allow the
964 current context to queue a new request even if
965 it is over the queue limit. This must be used
969 elevator_put_req_fn Must be used to allocate and free any elevator
970 specific storate for a request.
973 elevator_exit_fn Allocate and free any elevator specific storage
976 4.2 I/O scheduler implementation
977 The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
978 optimal disk scan and request servicing performance (based on generic
979 principles and device capabilities), optimized for:
980 i. improved throughput
982 iii. better utilization of h/w & CPU time
987 AS and deadline i/o schedulers use red black binary trees for disk position
988 sorting and searching, and a fifo linked list for time-based searching. This
989 gives good scalability and good availablility of information. Requests are
990 almost always dispatched in disk sort order, so a cache is kept of the next
991 request in sort order to prevent binary tree lookups.
993 This arrangement is not a generic block layer characteristic however, so
994 elevators may implement queues as they please.
997 The last merge hint is part of the generic queue layer. I/O schedulers must do
998 some management on it. For the most part, the most important thing is to make
999 sure q->last_merge is cleared (set to NULL) when the request on it is no longer
1000 a candidate for merging (for example if it has been sent to the driver).
1002 The last merge performed is cached as a hint for the subsequent request. If
1003 sequential data is being submitted, the hint is used to perform merges without
1004 any scanning. This is not sufficient when there are multiple processes doing
1005 I/O though, so a "merge hash" is used by some schedulers.
1008 AS and deadline use a hash table indexed by the last sector of a request. This
1009 enables merging code to quickly look up "back merge" candidates, even when
1010 multiple I/O streams are being performed at once on one disk.
1012 "Front merges", a new request being merged at the front of an existing request,
1013 are far less common than "back merges" due to the nature of most I/O patterns.
1014 Front merges are handled by the binary trees in AS and deadline schedulers.
1016 iv. Handling barrier cases
1017 A request with flags REQ_HARDBARRIER or REQ_SOFTBARRIER must not be ordered
1018 around. That is, they must be processed after all older requests, and before
1019 any newer ones. This includes merges!
1021 In AS and deadline schedulers, barriers have the effect of flushing the reorder
1022 queue. The performance cost of this will vary from nothing to a lot depending
1023 on i/o patterns and device characteristics. Obviously they won't improve
1024 performance, so their use should be kept to a minimum.
1026 v. Handling insertion position directives
1027 A request may be inserted with a position directive. The directives are one of
1028 ELEVATOR_INSERT_BACK, ELEVATOR_INSERT_FRONT, ELEVATOR_INSERT_SORT.
1030 ELEVATOR_INSERT_SORT is a general directive for non-barrier requests.
1031 ELEVATOR_INSERT_BACK is used to insert a barrier to the back of the queue.
1032 ELEVATOR_INSERT_FRONT is used to insert a barrier to the front of the queue, and
1033 overrides the ordering requested by any previous barriers. In practice this is
1034 harmless and required, because it is used for SCSI requeueing. This does not
1035 require flushing the reorder queue, so does not impose a performance penalty.
1037 vi. Plugging the queue to batch requests in anticipation of opportunities for
1038 merge/sort optimizations
1040 This is just the same as in 2.4 so far, though per-device unplugging
1041 support is anticipated for 2.5. Also with a priority-based i/o scheduler,
1042 such decisions could be based on request priorities.
1044 Plugging is an approach that the current i/o scheduling algorithm resorts to so
1045 that it collects up enough requests in the queue to be able to take
1046 advantage of the sorting/merging logic in the elevator. If the
1047 queue is empty when a request comes in, then it plugs the request queue
1048 (sort of like plugging the bottom of a vessel to get fluid to build up)
1049 till it fills up with a few more requests, before starting to service
1050 the requests. This provides an opportunity to merge/sort the requests before
1051 passing them down to the device. There are various conditions when the queue is
1052 unplugged (to open up the flow again), either through a scheduled task or
1053 could be on demand. For example wait_on_buffer sets the unplugging going
1054 (by running tq_disk) so the read gets satisfied soon. So in the read case,
1055 the queue gets explicitly unplugged as part of waiting for completion,
1056 in fact all queues get unplugged as a side-effect.
1059 This is kind of controversial territory, as it's not clear if plugging is
1060 always the right thing to do. Devices typically have their own queues,
1061 and allowing a big queue to build up in software, while letting the device be
1062 idle for a while may not always make sense. The trick is to handle the fine
1063 balance between when to plug and when to open up. Also now that we have
1064 multi-page bios being queued in one shot, we may not need to wait to merge
1065 a big request from the broken up pieces coming by.
1067 Per-queue granularity unplugging (still a Todo) may help reduce some of the
1068 concerns with just a single tq_disk flush approach. Something like
1069 blk_kick_queue() to unplug a specific queue (right away ?)
1070 or optionally, all queues, is in the plan.
1073 I/O contexts provide a dynamically allocated per process data area. They may
1074 be used in I/O schedulers, and in the block layer (could be used for IO statis,
1075 priorities for example). See *io_context in drivers/block/ll_rw_blk.c, and
1076 as-iosched.c for an example of usage in an i/o scheduler.
1079 5. Scalability related changes
1081 5.1 Granular Locking: io_request_lock replaced by a per-queue lock
1083 The global io_request_lock has been removed as of 2.5, to avoid
1084 the scalability bottleneck it was causing, and has been replaced by more
1085 granular locking. The request queue structure has a pointer to the
1086 lock to be used for that queue. As a result, locking can now be
1087 per-queue, with a provision for sharing a lock across queues if
1088 necessary (e.g the scsi layer sets the queue lock pointers to the
1089 corresponding adapter lock, which results in a per host locking
1090 granularity). The locking semantics are the same, i.e. locking is
1091 still imposed by the block layer, grabbing the lock before
1092 request_fn execution which it means that lots of older drivers
1093 should still be SMP safe. Drivers are free to drop the queue
1094 lock themselves, if required. Drivers that explicitly used the
1095 io_request_lock for serialization need to be modified accordingly.
1096 Usually it's as easy as adding a global lock:
1098 static spinlock_t my_driver_lock = SPIN_LOCK_UNLOCKED;
1100 and passing the address to that lock to blk_init_queue().
1102 5.2 64 bit sector numbers (sector_t prepares for 64 bit support)
1104 The sector number used in the bio structure has been changed to sector_t,
1105 which could be defined as 64 bit in preparation for 64 bit sector support.
1107 6. Other Changes/Implications
1109 6.1 Partition re-mapping handled by the generic block layer
1111 In 2.5 some of the gendisk/partition related code has been reorganized.
1112 Now the generic block layer performs partition-remapping early and thus
1113 provides drivers with a sector number relative to whole device, rather than
1114 having to take partition number into account in order to arrive at the true
1115 sector number. The routine blk_partition_remap() is invoked by
1116 generic_make_request even before invoking the queue specific make_request_fn,
1117 so the i/o scheduler also gets to operate on whole disk sector numbers. This
1118 should typically not require changes to block drivers, it just never gets
1119 to invoke its own partition sector offset calculations since all bios
1120 sent are offset from the beginning of the device.
1123 7. A Few Tips on Migration of older drivers
1125 Old-style drivers that just use CURRENT and ignores clustered requests,
1126 may not need much change. The generic layer will automatically handle
1127 clustered requests, multi-page bios, etc for the driver.
1129 For a low performance driver or hardware that is PIO driven or just doesn't
1130 support scatter-gather changes should be minimal too.
1132 The following are some points to keep in mind when converting old drivers
1135 Drivers should use elv_next_request to pick up requests and are no longer
1136 supposed to handle looping directly over the request list.
1137 (struct request->queue has been removed)
1139 Now end_that_request_first takes an additional number_of_sectors argument.
1140 It used to handle always just the first buffer_head in a request, now
1141 it will loop and handle as many sectors (on a bio-segment granularity)
1144 Now bh->b_end_io is replaced by bio->bi_end_io, but most of the time the
1145 right thing to use is bio_endio(bio, uptodate) instead.
1147 If the driver is dropping the io_request_lock from its request_fn strategy,
1148 then it just needs to replace that with q->queue_lock instead.
1150 As described in Sec 1.1, drivers can set max sector size, max segment size
1151 etc per queue now. Drivers that used to define their own merge functions i
1152 to handle things like this can now just use the blk_queue_* functions at
1153 blk_init_queue time.
1155 Drivers no longer have to map a {partition, sector offset} into the
1156 correct absolute location anymore, this is done by the block layer, so
1157 where a driver received a request ala this before:
1159 rq->rq_dev = mk_kdev(3, 5); /* /dev/hda5 */
1160 rq->sector = 0; /* first sector on hda5 */
1164 rq->rq_dev = mk_kdev(3, 0); /* /dev/hda */
1165 rq->sector = 123128; /* offset from start of disk */
1167 As mentioned, there is no virtual mapping of a bio. For DMA, this is
1168 not a problem as the driver probably never will need a virtual mapping.
1169 Instead it needs a bus mapping (pci_map_page for a single segment or
1170 use blk_rq_map_sg for scatter gather) to be able to ship it to the driver. For
1171 PIO drivers (or drivers that need to revert to PIO transfer once in a
1172 while (IDE for example)), where the CPU is doing the actual data
1173 transfer a virtual mapping is needed. If the driver supports highmem I/O,
1174 (Sec 1.1, (ii) ) it needs to use __bio_kmap_atomic and bio_kmap_irq to
1175 temporarily map a bio into the virtual address space.
1178 8. Prior/Related/Impacted patches
1180 8.1. Earlier kiobuf patches (sct/axboe/chait/hch/mkp)
1181 - orig kiobuf & raw i/o patches (now in 2.4 tree)
1182 - direct kiobuf based i/o to devices (no intermediate bh's)
1183 - page i/o using kiobuf
1184 - kiobuf splitting for lvm (mkp)
1185 - elevator support for kiobuf request merging (axboe)
1186 8.2. Zero-copy networking (Dave Miller)
1187 8.3. SGI XFS - pagebuf patches - use of kiobufs
1188 8.4. Multi-page pioent patch for bio (Christoph Hellwig)
1189 8.5. Direct i/o implementation (Andrea Arcangeli) since 2.4.10-pre11
1190 8.6. Async i/o implementation patch (Ben LaHaise)
1191 8.7. EVMS layering design (IBM EVMS team)
1192 8.8. Larger page cache size patch (Ben LaHaise) and
1193 Large page size (Daniel Phillips)
1194 => larger contiguous physical memory buffers
1195 8.9. VM reservations patch (Ben LaHaise)
1196 8.10. Write clustering patches ? (Marcelo/Quintela/Riel ?)
1197 8.11. Block device in page cache patch (Andrea Archangeli) - now in 2.4.10+
1198 8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar,
1200 8.13 Priority based i/o scheduler - prepatches (Arjan van de Ven)
1201 8.14 IDE Taskfile i/o patch (Andre Hedrick)
1202 8.15 Multi-page writeout and readahead patches (Andrew Morton)
1203 8.16 Direct i/o patches for 2.5 using kvec and bio (Badari Pulavarthy)
1205 9. Other References:
1207 9.1 The Splice I/O Model - Larry McVoy (and subsequent discussions on lkml,
1208 and Linus' comments - Jan 2001)
1209 9.2 Discussions about kiobuf and bh design on lkml between sct, linus, alan
1210 et al - Feb-March 2001 (many of the initial thoughts that led to bio were
1211 brought up in this discusion thread)
1212 9.3 Discussions on mempool on lkml - Dec 2001.