2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
46 #include <asm/uaccess.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
58 u64 jiffies_64
= INITIAL_JIFFIES
;
60 EXPORT_SYMBOL(jiffies_64
);
62 extern unsigned long wall_jiffies
; /* kernel/timer.c */
64 static int set_rtc_mmss(unsigned long);
66 DEFINE_SPINLOCK(rtc_lock
);
68 #define TICK_SIZE (tick_nsec / 1000)
71 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
72 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
73 * for large CPU clock rates.
77 /* lump static variables together for more efficient access: */
79 /* cycle counter last time it got invoked */
81 /* ticks/cycle * 2^48 */
82 unsigned long scaled_ticks_per_cycle
;
83 /* last time the CMOS clock got updated */
84 time_t last_rtc_update
;
85 /* partial unused tick */
86 unsigned long partial_tick
;
89 unsigned long est_cycle_freq
;
92 static inline __u32
rpcc(void)
95 asm volatile ("rpcc %0" : "=r"(result
));
100 * Scheduler clock - returns current time in nanosec units.
102 * Copied from ARM code for expediency... ;-}
104 unsigned long long sched_clock(void)
106 return (unsigned long long)jiffies
* (1000000000 / HZ
);
111 * timer_interrupt() needs to keep up the real-time clock,
112 * as well as call the "do_timer()" routine every clocktick
114 irqreturn_t
timer_interrupt(int irq
, void *dev
, struct pt_regs
* regs
)
121 /* Not SMP, do kernel PC profiling here. */
122 profile_tick(CPU_PROFILING
, regs
);
125 write_seqlock(&xtime_lock
);
128 * Calculate how many ticks have passed since the last update,
129 * including any previous partial leftover. Save any resulting
130 * fraction for the next pass.
133 delta
= now
- state
.last_time
;
134 state
.last_time
= now
;
135 delta
= delta
* state
.scaled_ticks_per_cycle
+ state
.partial_tick
;
136 state
.partial_tick
= delta
& ((1UL << FIX_SHIFT
) - 1);
137 nticks
= delta
>> FIX_SHIFT
;
142 update_process_times(user_mode(regs
));
148 * If we have an externally synchronized Linux clock, then update
149 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
150 * called as close as possible to 500 ms before the new second starts.
152 if ((time_status
& STA_UNSYNC
) == 0
153 && xtime
.tv_sec
> state
.last_rtc_update
+ 660
154 && xtime
.tv_nsec
>= 500000 - ((unsigned) TICK_SIZE
) / 2
155 && xtime
.tv_nsec
<= 500000 + ((unsigned) TICK_SIZE
) / 2) {
156 int tmp
= set_rtc_mmss(xtime
.tv_sec
);
157 state
.last_rtc_update
= xtime
.tv_sec
- (tmp
? 600 : 0);
160 write_sequnlock(&xtime_lock
);
165 common_init_rtc(void)
169 /* Reset periodic interrupt frequency. */
170 x
= CMOS_READ(RTC_FREQ_SELECT
) & 0x3f;
171 /* Test includes known working values on various platforms
172 where 0x26 is wrong; we refuse to change those. */
173 if (x
!= 0x26 && x
!= 0x25 && x
!= 0x19 && x
!= 0x06) {
174 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x
);
175 CMOS_WRITE(0x26, RTC_FREQ_SELECT
);
178 /* Turn on periodic interrupts. */
179 x
= CMOS_READ(RTC_CONTROL
);
180 if (!(x
& RTC_PIE
)) {
181 printk("Turning on RTC interrupts.\n");
183 x
&= ~(RTC_AIE
| RTC_UIE
);
184 CMOS_WRITE(x
, RTC_CONTROL
);
186 (void) CMOS_READ(RTC_INTR_FLAGS
);
188 outb(0x36, 0x43); /* pit counter 0: system timer */
192 outb(0xb6, 0x43); /* pit counter 2: speaker */
200 /* Validate a computed cycle counter result against the known bounds for
201 the given processor core. There's too much brokenness in the way of
202 timing hardware for any one method to work everywhere. :-(
204 Return 0 if the result cannot be trusted, otherwise return the argument. */
206 static unsigned long __init
207 validate_cc_value(unsigned long cc
)
209 static struct bounds
{
210 unsigned int min
, max
;
211 } cpu_hz
[] __initdata
= {
212 [EV3_CPU
] = { 50000000, 200000000 }, /* guess */
213 [EV4_CPU
] = { 100000000, 300000000 },
214 [LCA4_CPU
] = { 100000000, 300000000 }, /* guess */
215 [EV45_CPU
] = { 200000000, 300000000 },
216 [EV5_CPU
] = { 250000000, 433000000 },
217 [EV56_CPU
] = { 333000000, 667000000 },
218 [PCA56_CPU
] = { 400000000, 600000000 }, /* guess */
219 [PCA57_CPU
] = { 500000000, 600000000 }, /* guess */
220 [EV6_CPU
] = { 466000000, 600000000 },
221 [EV67_CPU
] = { 600000000, 750000000 },
222 [EV68AL_CPU
] = { 750000000, 940000000 },
223 [EV68CB_CPU
] = { 1000000000, 1333333333 },
224 /* None of the following are shipping as of 2001-11-01. */
225 [EV68CX_CPU
] = { 1000000000, 1700000000 }, /* guess */
226 [EV69_CPU
] = { 1000000000, 1700000000 }, /* guess */
227 [EV7_CPU
] = { 800000000, 1400000000 }, /* guess */
228 [EV79_CPU
] = { 1000000000, 2000000000 }, /* guess */
231 /* Allow for some drift in the crystal. 10MHz is more than enough. */
232 const unsigned int deviation
= 10000000;
234 struct percpu_struct
*cpu
;
237 cpu
= (struct percpu_struct
*)((char*)hwrpb
+ hwrpb
->processor_offset
);
238 index
= cpu
->type
& 0xffffffff;
240 /* If index out of bounds, no way to validate. */
241 if (index
>= sizeof(cpu_hz
)/sizeof(cpu_hz
[0]))
244 /* If index contains no data, no way to validate. */
245 if (cpu_hz
[index
].max
== 0)
248 if (cc
< cpu_hz
[index
].min
- deviation
249 || cc
> cpu_hz
[index
].max
+ deviation
)
257 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
261 #define CALIBRATE_LATCH 0xffff
262 #define TIMEOUT_COUNT 0x100000
264 static unsigned long __init
265 calibrate_cc_with_pit(void)
269 /* Set the Gate high, disable speaker */
270 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
273 * Now let's take care of CTC channel 2
275 * Set the Gate high, program CTC channel 2 for mode 0,
276 * (interrupt on terminal count mode), binary count,
277 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
279 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
280 outb(CALIBRATE_LATCH
& 0xff, 0x42); /* LSB of count */
281 outb(CALIBRATE_LATCH
>> 8, 0x42); /* MSB of count */
286 } while ((inb(0x61) & 0x20) == 0 && count
< TIMEOUT_COUNT
);
289 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
290 if (count
<= 1 || count
== TIMEOUT_COUNT
)
293 return ((long)cc
* PIT_TICK_RATE
) / (CALIBRATE_LATCH
+ 1);
296 /* The Linux interpretation of the CMOS clock register contents:
297 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
298 RTC registers show the second which has precisely just started.
299 Let's hope other operating systems interpret the RTC the same way. */
301 static unsigned long __init
302 rpcc_after_update_in_progress(void)
304 do { } while (!(CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
));
305 do { } while (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
313 unsigned int year
, mon
, day
, hour
, min
, sec
, cc1
, cc2
, epoch
;
314 unsigned long cycle_freq
, tolerance
;
317 /* Calibrate CPU clock -- attempt #1. */
319 est_cycle_freq
= validate_cc_value(calibrate_cc_with_pit());
321 cc1
= rpcc_after_update_in_progress();
323 /* Calibrate CPU clock -- attempt #2. */
324 if (!est_cycle_freq
) {
325 cc2
= rpcc_after_update_in_progress();
326 est_cycle_freq
= validate_cc_value(cc2
- cc1
);
330 cycle_freq
= hwrpb
->cycle_freq
;
331 if (est_cycle_freq
) {
332 /* If the given value is within 250 PPM of what we calculated,
333 accept it. Otherwise, use what we found. */
334 tolerance
= cycle_freq
/ 4000;
335 diff
= cycle_freq
- est_cycle_freq
;
338 if ((unsigned long)diff
> tolerance
) {
339 cycle_freq
= est_cycle_freq
;
340 printk("HWRPB cycle frequency bogus. "
341 "Estimated %lu Hz\n", cycle_freq
);
345 } else if (! validate_cc_value (cycle_freq
)) {
346 printk("HWRPB cycle frequency bogus, "
347 "and unable to estimate a proper value!\n");
350 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
351 to settle, as the Update-In-Progress bit going low isn't good
352 enough on some hardware. 2ms is our guess; we haven't found
353 bogomips yet, but this is close on a 500Mhz box. */
356 sec
= CMOS_READ(RTC_SECONDS
);
357 min
= CMOS_READ(RTC_MINUTES
);
358 hour
= CMOS_READ(RTC_HOURS
);
359 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
360 mon
= CMOS_READ(RTC_MONTH
);
361 year
= CMOS_READ(RTC_YEAR
);
363 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
372 /* PC-like is standard; used for year >= 70 */
376 else if (year
>= 20 && year
< 48)
379 else if (year
>= 48 && year
< 70)
380 /* Digital UNIX epoch */
383 printk(KERN_INFO
"Using epoch = %d\n", epoch
);
385 if ((year
+= epoch
) < 1970)
388 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
391 wall_to_monotonic
.tv_sec
-= xtime
.tv_sec
;
392 wall_to_monotonic
.tv_nsec
= 0;
395 extern void __you_loose (void);
399 state
.last_time
= cc1
;
400 state
.scaled_ticks_per_cycle
401 = ((unsigned long) HZ
<< FIX_SHIFT
) / cycle_freq
;
402 state
.last_rtc_update
= 0;
403 state
.partial_tick
= 0L;
405 /* Startup the timer source. */
410 * Use the cycle counter to estimate an displacement from the last time
411 * tick. Unfortunately the Alpha designers made only the low 32-bits of
412 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
413 * part. So we can't do the "find absolute time in terms of cycles" thing
414 * that the other ports do.
417 do_gettimeofday(struct timeval
*tv
)
420 unsigned long sec
, usec
, lost
, seq
;
421 unsigned long delta_cycles
, delta_usec
, partial_tick
;
424 seq
= read_seqbegin_irqsave(&xtime_lock
, flags
);
426 delta_cycles
= rpcc() - state
.last_time
;
428 usec
= (xtime
.tv_nsec
/ 1000);
429 partial_tick
= state
.partial_tick
;
430 lost
= jiffies
- wall_jiffies
;
432 } while (read_seqretry_irqrestore(&xtime_lock
, seq
, flags
));
435 /* Until and unless we figure out how to get cpu cycle counters
436 in sync and keep them there, we can't use the rpcc tricks. */
437 delta_usec
= lost
* (1000000 / HZ
);
440 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
441 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
442 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
444 * which, given a 600MHz cycle and a 1024Hz tick, has a
445 * dynamic range of about 1.7e17, which is less than the
446 * 1.8e19 in an unsigned long, so we are safe from overflow.
448 * Round, but with .5 up always, since .5 to even is harder
449 * with no clear gain.
452 delta_usec
= (delta_cycles
* state
.scaled_ticks_per_cycle
454 + (lost
<< FIX_SHIFT
)) * 15625;
455 delta_usec
= ((delta_usec
/ ((1UL << (FIX_SHIFT
-6-1)) * HZ
)) + 1) / 2;
459 if (usec
>= 1000000) {
468 EXPORT_SYMBOL(do_gettimeofday
);
471 do_settimeofday(struct timespec
*tv
)
473 time_t wtm_sec
, sec
= tv
->tv_sec
;
474 long wtm_nsec
, nsec
= tv
->tv_nsec
;
475 unsigned long delta_nsec
;
477 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
480 write_seqlock_irq(&xtime_lock
);
482 /* The offset that is added into time in do_gettimeofday above
483 must be subtracted out here to keep a coherent view of the
484 time. Without this, a full-tick error is possible. */
487 delta_nsec
= (jiffies
- wall_jiffies
) * (NSEC_PER_SEC
/ HZ
);
489 delta_nsec
= rpcc() - state
.last_time
;
490 delta_nsec
= (delta_nsec
* state
.scaled_ticks_per_cycle
492 + ((jiffies
- wall_jiffies
) << FIX_SHIFT
)) * 15625;
493 delta_nsec
= ((delta_nsec
/ ((1UL << (FIX_SHIFT
-6-1)) * HZ
)) + 1) / 2;
499 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
500 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
502 set_normalized_timespec(&xtime
, sec
, nsec
);
503 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
505 time_adjust
= 0; /* stop active adjtime() */
506 time_status
|= STA_UNSYNC
;
507 time_maxerror
= NTP_PHASE_LIMIT
;
508 time_esterror
= NTP_PHASE_LIMIT
;
510 write_sequnlock_irq(&xtime_lock
);
515 EXPORT_SYMBOL(do_settimeofday
);
519 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
520 * called 500 ms after the second nowtime has started, because when
521 * nowtime is written into the registers of the CMOS clock, it will
522 * jump to the next second precisely 500 ms later. Check the Motorola
523 * MC146818A or Dallas DS12887 data sheet for details.
525 * BUG: This routine does not handle hour overflow properly; it just
526 * sets the minutes. Usually you won't notice until after reboot!
531 set_rtc_mmss(unsigned long nowtime
)
534 int real_seconds
, real_minutes
, cmos_minutes
;
535 unsigned char save_control
, save_freq_select
;
537 /* irq are locally disabled here */
538 spin_lock(&rtc_lock
);
539 /* Tell the clock it's being set */
540 save_control
= CMOS_READ(RTC_CONTROL
);
541 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
543 /* Stop and reset prescaler */
544 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
545 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
547 cmos_minutes
= CMOS_READ(RTC_MINUTES
);
548 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
549 BCD_TO_BIN(cmos_minutes
);
552 * since we're only adjusting minutes and seconds,
553 * don't interfere with hour overflow. This avoids
554 * messing with unknown time zones but requires your
555 * RTC not to be off by more than 15 minutes
557 real_seconds
= nowtime
% 60;
558 real_minutes
= nowtime
/ 60;
559 if (((abs(real_minutes
- cmos_minutes
) + 15)/30) & 1) {
560 /* correct for half hour time zone */
565 if (abs(real_minutes
- cmos_minutes
) < 30) {
566 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
567 BIN_TO_BCD(real_seconds
);
568 BIN_TO_BCD(real_minutes
);
570 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
571 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
574 "set_rtc_mmss: can't update from %d to %d\n",
575 cmos_minutes
, real_minutes
);
579 /* The following flags have to be released exactly in this order,
580 * otherwise the DS12887 (popular MC146818A clone with integrated
581 * battery and quartz) will not reset the oscillator and will not
582 * update precisely 500 ms later. You won't find this mentioned in
583 * the Dallas Semiconductor data sheets, but who believes data
584 * sheets anyway ... -- Markus Kuhn
586 CMOS_WRITE(save_control
, RTC_CONTROL
);
587 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
588 spin_unlock(&rtc_lock
);